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ABSTRAK 

 

Kekebalan terhadap chloroquine telah mengakibatkan peningkatan 

kematian dan morbiditi daripada penyakit malaria P. falciparum. Ketiadaan 

vaksin yang berkesan mengakibatkan terapi malaria bergantung pada kombinasi 

ubat alternatif seperti Mefloquine dan Artesunate dan tahap kekebalan terhadap 

ubat-ubat alternatif tersebut kerap meningkat. Adalah diketahui bahawa agen 

perencat glycoprotein P berupaya menghalang kekebalan sel barah terhadap 

pelbagai ubat melalui pencegahan effluks ubat anti-barah oleh glycoprotein P. P. 

falciparum juga didapati membentuk homolog glycoprotein P (pgh1) pada 

membrannya dan Verapamil dan pengujakimia lain (contohnya: antihistamin) 

boleh mengekang kekebalan Chloroquine. Oleh demikian, adalah dicadangkan 

bahawa agen perencat glycoprotein P boleh berfungsi sebagai pengujakimia 

yang berkesan kerana pengangkut dalam kelas "ABC superfamili" kerap 

mempunyai substrat dan agen perencat yang serupa. 

Dua agen perencat p-gp (rifampicin dan omeprazole) diuji dalam kajian ini 

secara in vitro dan in vivo dengan matlamat menghalang kekebalan terhadap 

Chloroquine. 

P. falciparum yang sensitif terhadap chloroquine and yang kebal terhadap 

chloroquine (strain HB3, TM90C2B, Dd2) dicairkan daripada keadaan sejukbeku 

dan dikultur dalam media RPMI 1640, sel darah merah 'O' dan serum pada 37˚C 

 ْ◌b erdasarkan protocol Trager-Jansen yang diubahsuai. Chloroquine dicairkan 

secara berperingkat dan diuji bersama Rifampicin/Omeprazole dalam nisbah 
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kepekatan yang berbeza-beza dalam plat micro ELISA steril yang mengandungi 

kultur parasit. Selepas tempoh inkubasi yang tertentu, plat ujian dikeluarkan and 

keputusan dicapai melalui kaedah kematangan schizont atau melalui 

pergabungan hipozantina radioaktif dengan DNA parasit. 

P. berghei (strain NK65, ANKA) juga dicairkan dan disuntik ke dalam 

ruang peritoneal tikus Swiss Albino yang berumur 6-7 minggu. Bila virulen 

menjadi stabil, pelbagai amaun Chloroquine diberikan bersama Rifampicin atau 

Omeprazole mengikut regim Peter's selama 4 hari berturut-turut. Peratusan 

parasitemia diketahui melalui calitan nipis darah tikus pada sisip kaca. Hari 

parasit muncul kembali dalam darah dan hari kematian tikus juga dicatat. 

Kajian in vitro menunjukkan bahawa Rifampicin bersifat amat antagonis 

terhadap chloroquine untuk strain HB3 dan TM90C2B (FIC purata >2). Takat 

antagonis berkurangan apabila tempoh inkubasi drug bersama parasit 

dipanjangkan ke 72 jam. Keputusan ini disokong dalam kajian in vivo di mana 

tikus yang diberi rifampicin serta chloroquine menunjukkan parasit muncul 

kembali dengan lebih awal dan kematian tikus meningkat. 

Kajian in vitro Omeprazole menunjukkan ia juga bersifat antagonis 

terhadap Chloroquine tetapi tidak seteruk berbanding interaksi Rifampicin-

Chloroquine. Pada dos harian 5-20 mg/kg, kajian in vivo mendedahkan bahawa 

Omeprazole mengurangkan kematian tikus dalam tempoh pemerhatian sebulan 

dan melambatkan kemunculan semula parasit dalam darah, tetapi keputusan 

tersebut tidak mencapai tahap signifikan bila diuji dengan statistik. Tiada kesan 

yang nyata pada kadar penurunan parasitemia.  
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Rifampicin bersifat amat antagonis terhadap chloroquine secara in vitro 

and in vivo. Maka, kombinasi Rifampicin-Chloroquine patut dielakkan dalam 

amalan klinikal. Kemungkinan bahawa penggunaan Rifampicin dalam pesakit TB 

yang juga menghidap malaria boleh menyebarluaskan kekebalan Chloroquine 

kerana pemanjangan tempoh untuk membasmi parasit. 

 Kedua-dua inhibitor p-glycoprotein tidak merupakan pengujakimia yang 

berkesan buat gejala kekebalan chloroquine. Maka mekanisme kekebalan 

parasit malaria terhadap Chloroquine perlu diselidik semula untuk menjumpai 

agen yang lebih sesuai untuk mengekang kekebalan Chloroquine. 
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ABSTRACT 
 
 

Chloroquine resistance has resulted in a resurgence of morbidity and 

mortality from P. falciparum malaria. The lack of an effective vaccine forces 

dependence on alternative drug combination therapies based on mefloquine or 

artesunate, of which the incidence of multidrug resistance is steadily rising. P-

glycoprotein inhibitors reverse multidrug resistance in tumour cells by preventing 

efflux of anti-neoplastic drugs by p-glycoprotein, an ATP-binding cassette 

transporter (ABC). P. falciparum was also found to possess a p-gp homologue 

(pgh1) and that verapamil and other chemosensitizers (antihistamines, 

antidepressants) are able to reverse chloroquine resistance. It was postulated 

that potent p-gp inhibitors would be effective chemosensitizers as transporters of 

the ABC superfamily frequently share similar substrates and inhibitors. 2 known 

p-gp inhibitors (rifampicin and omeprazole) are assayed in this study, in vitro and 

in vivo, aiming to achieve chemoreversal of chloroquine resistance. 

Chloroquine-sensitive and chloroquine-resistant P. falciparum (HB3, 

TM90C2B, Dd2 strains) were thawed and maintained in continuous culture using 

RPMI 1640 media, ‘O’ RBCs and pooled serum at 37°C using a modified Trager-

Jansen candle jar protocol. Serial two fold dilutions of chloroquine and assayed 

chemosensitizers were performed on sterile ELISA microplates in checkerboard 

pattern to achieve different drug ratios in respective culture wells.  

After a fixed incubation period, test plates were harvested and results obtained 

by assessing schizont maturation or incorporation of radioactive hypoxanthine. 
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P. berghei (NK65, ANKA strains) were thawed and injected 

intraperitoneally into naïve Swiss Albino mice (6-7 weeks old). Upon stabilization 

of virulence, various chloroquine doses combined with rifampicin or omeprazole 

were administered intraperitoneally following a standard Peters’ consecutive 4-

day treatment regime. Percentage parasitemia was assessed by thin smears of 

tail blood. Day of recrudescence and survival within a month were also noted. 

In vitro rifampicin showed marked antagonism when combined with 

chloroquine against P. falciparum strains HB3 and TM90C2B (average FIC >2). 

Antagonism was less marked with a longer incubation period (72 hours). These 

results were supported in the in vivo study where mice receiving rifampicin and 

chloroquine showed earlier recrudescence and a drop in overall survival. 

In vitro tests showed that omeprazole is mildly antagonistic when 

combined with chloroquine. The in vivo study revealed that for ANKA and NK65 

strains, omeprazole at doses of 5, 10 and 20 mg/kg/day, slightly improves day of 

recrudescence and overall survival figures at the end of a month without reaching 

significance. Effect on rate of decline of parasitemia is very minimal.  

As rifampicin is strongly antagonistic to chloroquine both in vitro and in 

vivo, such combinations should be avoided in clinical practice. It is possible that 

concomitant use of rifampicin in TB patients who also contracted malaria, may 

have helped propagate chloroquine resistance due to the lengthier clearance 

times of the parasite. As neither p-glycoprotein inhibitor is a suitable 

chemosensitizer for chloroquine resistance perhaps a reevaluation of resistance 

mechanisms would expedite the search for a suitable chemoreversal agent. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1  Malaria overview 

 

 Malaria, a parasitic infection transmitted by certain anopheline 

mosquitoes, is one of the most prevalent and pernicious diseases of humans, 

estimated to kill between 700,000 – 2.7 million people (mainly children) 

worldwide each year as shown in Table 1.1. It affects about 5% of the world’s 

population. (Breman, 2001) 

 While Malaysia has one of the oldest malaria control programs in the 

world and large scale eradication programs and vector control measures that 

have resulted in a steep drop in incidence in the nineties, from 2.99/1000 

population in 1994 to 0.56/1000 population in 2000. However despite the general 

success in controlling malaria, it remains an important health issue in remote 

areas. A good majority of cases occur in Sabah where emerging chloroquine 

resistance has been noted. 

 The widespread availability of cheap and effective anti-malarials, 

particularly chloroquine and sulphadoxine-pyrimethamine has curbed the extent 

of mortality and morbidity, but it has also encouraged the development and 

spread of resistance. While many strategies have been offered to counter 

chloroquine resistance, the lack of a truly effective vaccine has spurred 

investigators to intensify the search for cheap and potent new drugs/drug 

combinations to address this need.   
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Table 1.1  Deaths and malaria-related deaths (1,000s)  

Area 
Population

All deaths 

(%) 

Malaria 

deaths (%) 

Malaria/total 

(%) 

World 

Africa 

America 

Eastern 

Mediterranean 

Europe 

Southeast Asia 

Western Pacific 

6,122,210 

655,476 

837,967 

493,091 

874,178 

1,559,810 

1,701,689 

56,554 

10,681 

(18.9) 

5,911 (10.5) 

4,156 (7.3) 

9,703 (17.2) 

14,467 

(25.6) 

11,636 

(20.6) 

1,124 

963 (85.7) 

1 (-) 

55 (4.9) 

0 

95 (8.5) 

10 (0.9) 

2.0 

9.0 

0.02 

1.3 

- 

0.7 

0 

Adapted from the World Health Organization World Health Report, 2002 
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1.2  Malaria lifecycle and clinical manifestations 

 

 There are four species of Plasmodia which infect humans, but 

Plasmodium falciparum accounts for the majority of instances of morbidity and 

mortality. Its virulence and adaptability are important factors which make it a 

deadly threat. While drug resistance for P. vivax has also been noted, this 

phenomenon is nowhere near as widespread as that of P. falciparum. 

  

 The lifecycle of a malarial parasite is a complex one as shown in Figure 

1.1. An infected mosquito injects sporozoites into the blood of the host. 

Sporozoites enter liver cells, multiply and release merozoites into the blood 

stream. Merozoites invade red blood cells and start a phase of multiplication 

where they mature from ring forms to early trophozoites, late trophozoites, 

immature schizonts and mature schizonts which burst to release another batch of 

merozoites; a cycle which can be repeated indefinitely causing malarial 

symptoms. A small portion of merozoites develop sexually into gametocytes 

which are then taken up by mosquitoes when they feed, thus completing the 

cycle.  A summary of various clinical manifestations of malaria is given in Figure 

1.2. 
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Figure 1.1 Lifecycle of Plasmodia 
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