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Abstract. Adaptive filtering problem refers to a class of application in signal
processing that deals with adaptation of a system so as to adjust itself with the
phenomenon that is taking place in its surrounding. Examples of such problem
include adaptive system modeling, noise cancellation, equalization and prediction.
The adaptive filtering problem may be mathematically formulated as an adaptive
least squares problem in which a set of parameter values are updated so that the
time varying sum of squared error cost function is minimized. Numerous
algorithms are available for solving adaptive filtering problems and they may be
classified into two categories: iterative methods and direct methods. In this paper,
we perform a comparative study of four iterative search methods, namely, the
method of steepest descent, the Newton's method, the Conjugate Gradient method
and the Direction Set method. The methods are implemented and applied in
system modeling and they are assessed in terms of rate of convergence,
computational complexity, misadjustments and their sensitivity to spectral
condition number or the eigenvalue spread. Our main objective is to provide a
comprehensive understanding of the adaptive implementation of the methods, their
performance according to assessment criteria mentioned above and also provide
possible modifications to improve the performance.

Key-words: Adaptive least squares problem, adaptive filtering, adaptive
algorithms :

1 Introduction

Adaptive filtering problems has received considerable attention from the
engineering community during the past several decades due to its application in
many diverse fields such as system identification, equalization, prediction and
noise cancellation. From mathematical perspective, adaptive filtering problem may
be viewed as an adaptive least squares problem. The standard least squares
problem can be reduced to solving a linear system of equations whereas in the
adaptive least squares problem, a time varying linear system is resulted at each
state.

As a consequence, many of the algorithms available for solving adaptive filtering
problem, are derived from iterative methods for solving linear system of equations.
For example, the most widely implemented adaptive algorithms in practice, namely
the Least Mean Square (LMS) algorithm is derived from the method of steepest
descent. Other search methods which have found their place in solving adaptive
filtering problem are the direction set method and the conjugate gradient method
[3, 4, 5]
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In this paper, we will review several algorithms which are derived from four
different iterative search methods, namely the method of steepest descent, the
Newton’s method, the direction set method and the conjugate gradient method.
Our objectives are 1) to provide a clear understanding of their implementation in
solving adaptive filtering problem; 2) to evaluate their performance in terms of rate
‘ . mi i ‘ innat ity ar itivity towrards
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2 Adaptive Filtering Problems

Adaptive filtering problem is a filter design technique which allows for adjustable
coefficients that can be optimized to minimize some measure of error.
Mathematical formulation for adaptive filtering problem usually takes the form of
an adaptive least squares problem, where the value of the filter coefficients are
adjusted so that they are optimized in the least squares sense. In contrast with the
standard least squares problem, the sum of squared error function in the adaptive
least squares problem is a time varying function which adapts itself with the time
varying input data.

2.1 Adaptive Filters

A schematic diagram of an adaptive filter is given in Fig. 1 below where for every
input signal u(n), the filter produces output y(n). This output is compared with a
desired signal s(n) to produce an error signal e(n)= y(n)—s(n) which is the
difference between the output and the desired signal. The objective in the design an
adaptive filter is to adjust its parameters so that the error e(n) is minimized.
. Desired
signal, S(n)

+
. Adaptive filter
. >
u(n) 7 ¥n)
Error signal,
eln)

Fig.1 Block diagram for an adaptive filter

2.2 Mathematical Fomulations for Adaptive Filtering
Problems

For a linear linear transversal filter, the output to filter at time # is given by,

N-1
Yn = ijunmj
=0
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where N is the filter order and x(/) is the j th coefficient of the filter. The #th state of

the sum of squared error function is the sum of squared errors from time Oup to
n, which is given by the equation below,

J,,(x)=2?»,(")(a,~Tx—s,-)2 (1)
i=0
where ai=[ui Uiy oo u,-_N+,], x=[}_co Xy e xN_l]T and xﬁ") can be in two

forms, either 7&5") L or x§") =A™ where 0<A <1. The first choice of xﬁ") gives rise
n

to an average sum of squared error whereas- the second choice gives an exponentially
weighted sum of squared error and the weighting factor A is referred to as the forgetting
factor which is intended to ensure that the past data are “forgotten” in order to track the
statistical variations of the data in nonstationary environment.

The adaptive least squares problems is the problem of minimizing the cost function
(1) with respect to filter coefficients x,, j = 0,...,N-1. In matrix form, the adaptive

least squares problem may be represented as follows
minJ, (x)= min(b,,Tb,, -2x"A,b, +x” A,,Aﬁx) 2)
X X

where

A, =|:.J;Lg'—)ao,\[ﬁ"_)a;,...\/ks,—”)an}r and b, =|:\/7»g—")s0,\ﬁ§"—)sl,...,\/?~$,—”)s"].

The quantity R=A,A! is identified as the autocorrelation matrix of the input

signal and the vector p=A b, is the vector of cross-correlation between the input
and the desired signal.

3 Iterative Search Methods and Application in
Adaptive Filtering Algorithms

We note that the minimization problem given in (2) has an exact solution at every
state 1, which is the solution to a system of Nx N linear equation

Rx=p
so that at every state n, the optimum solution is given by

-1
xapt (n)z R(n) p(n) ‘.
Hence the adaptive least squares problem can be viewed as an adaptive search for
the solution to a (time varying) system of Nx N linear equations.

In this section we will review three classes of algorithms which are based on four
iterative search methods, the steepest descent method, the Newton’s method, the
direction set method and the Conjugate Gradient method.
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3.1 LMS and LMS-Newton Algorithm

In this section we will be discussing the most widely used adaptive algorithm and
that is the Widrow-Hoff Least Mean Square (LMS) algorithm derived in 1959 [8]. It
is based on the method of steepest descent where the coefficient vector X is
updated along the direction of steepest descent, i.e. the negative gradient. This
gives the following recursion formula for the_ coefficient vector,

Xpi1 = Xp _MV C ]
where V denotes the gradient vector. For the least squares problem, the gradient
vector is given by V= 2(Rx—p). The LMS algorithm is obtained by replacing the
gradient vector with its instantaneous value and that is  -2e,x, where

e, =¥, —5, isthe instantaneous error.

In the Newton’s method, the gradient vector in (4) is scaled with a factor A R™!

ave
where X, is the average of the eigenvalues of R, giving
Xpel =Xy~ H’»mR—lV
Using the instantaneous value as the estimate for the gradient we have the
following recursion formula for the LMS-Newton algorithm
' Xpe1 =X, +2UA, R7e, %,
It is a well known fact that the LMS algorithm is sensitive to the spread in the
eigenvalue of the correlation matrix. This property is inherited from the method of
steepest descent where several modes of convergence exist which corresponds to
the number of distinct eigenvalues in R. Because prior knowledge of R is rarely
known, this property makes the rate of convergence of the LMS algorithm
unpredictable. The LMS-Newton algorithm .is considered as an improved version
where it only has one mode of convergence [9]. However, because the LMS-Newton

algorithm requires knowledge of R‘l, this algorithm cannot be implemented in
practice,

3.2 The Direction Set Based Algorithm

The direction set method is inherited from the Powell and Zangwill method for
optimizing unconstrained minimization problem [8, 13]. Given a starting estimate
x and a set of N linearly independent direction {dl,...,d,v}, the direction set
method searches along each direction sequentially for a better estimate. The search
through N directions is called one cycle. Before the next search cycle, directions
may or may not be modified (depending on the linear independence of the new set
of directions), and a new starting estimate maybe chosen. The iterative algorithm
for updating the coefficient vector within each cycle takes the form

xf’,:)l =X} +0L‘,(")d$"), i=1..N
where 0,,-(") is the stepsize and dg") is the search direction, The optimal stepsize can
be obtained by setting V J(x +ocd) =0 which gives
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o __ 48 REx" -p(n)
ST R
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The simplest form of the direction set method is obtained by choosing the
Euclidean directions as the search direction at each cycle, i.e. dsn) = [0.‘.0] 0...0]T

where the 1 appears in the i th position. This gives rise to the Euclidean Direction
Search (EDS) algorithm. A further modification of the EDS algorithm can be found
in [11, 12] (Fast EDS algorithm) and [2] (Scaled EDS algorithm).

()

3.3 The Conjugate Gradient Based Algorithm

The Conjugate Gradient method (CG) looks for a set of linearly independent
direction vectors {dl,,..,d N} which are conjugate with respect to R so that the
solution vector x* can be expressed as

X =oqd;+ady .o ydy .
Minimization of the cost function J gives rise to the same formula for the stepsize

o as given in (5) although conjugacy with respect to R is not a requirement for
the search directions in the direction set method.

In order to maintain conjugacy with respect to R, the ith search direction is
updated as follows

d; =g, +Biadiq
where g; is the gradient vector at the i th iteration and B; is a scalar value given
7
8:8;
-
818111 .
dependent on the correlation matrix R and the cross-correlation vector p,
estimates of the gradient requires estimates of both R and p. We will highlight

two ways of implementing the CG method in adaptive filtering problem [3, 4] which
employs two different technique of estimating R and p:

i) The cost function is assumed to be the averaged sum of squared error, i.e.

50)=13 -

i=0

as B; = . Since the gradient vector in the adaptive filtering problem is

T

1
so that the correlation matrix R, =—A A, , where A, =[ao,al,...,an]T
n

. 1
and the crosscorrelation vector becomes p,=—A,b, where
: n

b, =[s0,sl,...,sn ]T . In the CG algorithm for adaptive filtering, the finite
sliding data windowing is used to estimate R, and p,, where, only data

samples inside a window of finite length M are used. Hence we have the
following estimates,
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1 < T 1~ .
R,=— Daa;, - p,=— >s(jh,.
! Mj=r§/f+l} ! . Mj=”_ZM+| /

For every incoming data sample, the conjugate gradient iteration is run
kg times, where &, =min(N,M )
ii) The cost function is assumed to be the exponentially weighted sum of

squared error
z 2
Ty)=Y T x-s,)
=0 )

Using an exponentially decaying data windowing, the correlation matrix
and the cross-correlation vector may be updated recursively as follows,

= T.
R, =R, +a,a,

P, = }'pn—l +S(nﬁ"
In this implementation, the conjugate gradient iteration is performed once
for every incoming data sample.

4 Comparative performance

In our discussions here, we will be assessing the performance of adaptive
algorithms in section 3 in the framework of adaptive system modeling. The block

diagram for adaptive system modeling is in Fig. 2. The inpit signal is filtered
1-a?

through a colouring filter with the frequency response H (z): , Where

1-oz™
[oc|<1 . The parameter o controls the eigenvalue spread of the input correlation
matrix, where o =0 gives uncorrelated sequence (white) with small eigenvalue
spread. The aim is to find the parameters of a model x through an adaptive
algorithm so that the difference between the unknown system output, a’(n), and
the adaptive model output, y(n), is minimized according to some specified cost
function. Noise, n(n), with a variance of 0.001 is added to the output of the
unknown system. :

Noise, 1 (n)

Unknown system, H g, E}t

1-o
H =
iy 0= e L
Colouring filter Adaptive by (”) %
model —p
ya () |

Fig. 2 Adaptive system modeling
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4.1 Rate of Convergence and Misadjustment

An efficient adaptive algorithm is one that minimizes usage of data without
compromising the quality of solution. In other words we require the algorithm to
have a reasonably high rate of convergence and at the same time it keeps the
solution as close as possible to the optimum solution. Commonly, in adaptive
filtering problems, the rate of convergence is assessed by the number of iterations
required to achieve the steady state mean squared error (MSE). In addition to that,
the quality of the steady state solution is measured through the quantity called
misadjusment which is the ratio of the excess MSE (the difference between the
steady state MSE and the MSE corresponds to the optimum solution) to the steady
state MSE. In our discussions here, because the exact solution is available, we will
be evaluating rate of convergence and misadjustments by looking at the
progression of error between the coefficient vector of the unknown system and that
of the adaptive filter.

Fig. 3 (i) displays the progression of error (computed in norm-2) as the number of
iteration increases. It is clearly shown that both LMS and LMS-Newton algorithms
have comparable rate of convergence where a steady state error is achieved after
600 iterations. However the EDS and the Conjugate Gradient based algorithms
provide a much superior convergence. rate, where steady state error is achieved
only after about 40 iterations.

540 950 0, 5% aa0 50 iooo
(1)
Fig. 3 Progression of error as iteration increases. Error is measured by the norm of
the difference between the coefficient vector of the unknown system and the

coefficient vector of the adaptive model (N = 5)

The steady state errors shown in Fig. 3 (ii) gives a better view of misadjustments
produced from the solutions. It can be seen that although conjugate gradient
method has a high rate of convergence, it does tend to produce higher
misadjustment compared to the other algorithms.

4.2 Computational complexity B

Another important assessment criterion. is the computational complexity of the
algorithm. A higher computational complexity means the algorithm requires a
higher storage capacity and computation time, High computational complexity also
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makes the algorithm more susceptible to. round off errors, hence, reducing the
quality of solution.

Table 1 below summarizes the computational complexity of the algorithms
discussed as a function of the adaptive filter order, N.

Table 1 Computational complexity

Algorithm . Complexity
LMS o o(n)
EDS T olv?)
Fast EDS . o)
CG (Implementation (i)) O(NZ)
CG (Implementation (ii)) O(N 2)

To see the effect of computational complexity on convergence and misadjustments,
we plot the error profile for a much larger N in Fig. 4.
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Fig. 4 Rate of convergence and misadjustment for N = 30

Increasing the value of N has little effect on the LMS-based algorithms. However,
for the EDS algorithm, we see a slower convergence rate than in previously and a
significant increase in the initial errors. The misadjustment for the EDS algorithm
remains comparable to that of the LMS-based algorithm. For the CG algorithm,
although the convergence rate remains unchanged, we see a significant increase in
the misadjustment.

4.3 Sensitivity to eigenvalue spread

We now compare the sensitivity of the solutions for our problem towards eigenvalue
spread for all the algorithms, Note that eigenvalue spread is defined as A nax [ Momin 5

where 4., is the largest eigenvalue of R and Amin is the smallest eigenvalue.
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Fig.5 Sensitivity towards eigenvalue spread. The value of eigenvalue spread is controlled by
the parameter o .

As predicted, the convergence rate of the LMS algorithm is reduced for large
eigenvalue spread and almost no effect on the LMS-Newton algorithm is found. For
both the EDS and CG algorithm, although eigenvalue spread has little effect on
their rate of convergence, the misadjustments suffers terribly from it.

5 Conclusions

We have reviewed four different adaptive algorithms for solving adaptive filtering
problem, namely the LMS algorithm, the LMS-Newton algorithm, the direction set
based method and the conjugate gradient based method. These algorithms are
treated as iterative search method for solving a time-varying linear systems of
equation of the form Rx=p, where R corresponds to the time-varying correlation

matrix of the adaptive problem and p corresponds to the time-varying cross-
correlation vector.

Performance evaluation of the algorithms are conducted within the framework of
an adaptive system modeling problem. The EDS and the CG method proved to have
superior rate of convergence compared to the LMS-based method. However, due to
the high computational complexity of the CG algorithm, it tends to give higher
misadjustment compared to the other algorithms.

The convergence rate of the EDS and the CG algorithm is not affected much by the
increase in eigenvalue spread. However, poor misadjustments are obtained. To this
end, we note that the eigenvalue spread is the same as the condition number of
R . Therefore, preconditioning the algorithms with a suitable preconditioning
matrix will help reduce this problem.
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