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KAJIAN CIRI-CIRI KITOSAN SEBAGAI MATRIKS IMMOBILISASI BAGI 
BIOSENSOR 

 

ABSTRAK 

 

Dua jenis kitosan (FCHIT dan SCHIT) telah diselidik sebagai matriks 

immobilisasi bagi pembuatan biosensor glukosa. Kelikatan-purata berat 

molekul bagi FCHIT and SCHIT telah ditentukan iaitu 981.80 kD dan 398.61 kD 

masing-masing. Darjah deasetilasi yang ditentukan dengan FDUV 

spektrofotometri didapati sebanyak 82.44% dan 77.20% masing-masing. Ciri-

ciri fizikal larutan dan membran kitosan telah dikaji dengan melarutkannya di 

dalam pelbagai jenis pelarut asid organik (asid asetik, asid laktik dan asid 

maleik). Kedua-dua jenis kitosan paling larut dalam asid asetik akueus, diikuti 

dengan asid laktik dan akhir sekali asid maleik. Membran kitosan yang 

disediakan dalam asid asetik adalah fleksibel, lutsinar, rata dan cepat kering. 

Membran tersebut mempamerkan kekuatan mekanikal dan panjangan-pada-

takat-pecah yang baik serta nyata sekali lebih tinggi daripada yang disediakan 

dalam asid laktik dan asid maleik. Hasil kajian analisis FTIR dan mikrograf 

SEM menunjukkan interaksi intermolekular antara kitosan dan glukosa 

oksidase (GOD). Aktiviti katalitik yang lebih tinggi telah diperhatikan pada 

GOD-FCHIT daripada GOD-SCHIT dan juga melalui ikatan-silang dengan 

glutaraldehid daripada penjerapan. Muatan enzim yang lebih tinggi daripada 

0.6 mg boleh mengurangkan aktiviti. Reaksi terhadap glukosa paling tinggi 

diperhatikan pada membran dengan ketebalan 0.21 ml/cm2 bagi GOD-

FCHIT/PT, manakala pada membran dengan ketebalan 0.35 ml/cm2 bagi GOD-

SCHIT/PT. Keadaan eksperimen yang optimum untuk menganalisis glukosa 
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pada pH 6.0 melalui biosensor didapati ialah 35°C dengan keupayaan gunaan 

pada 0.6 V. Dalam keadaan itu, masa reaksi pada 85 s dan 65 s telah 

diperhatikan bagi GOD-FCHIT/PT dan GOD-SCHIT/PT masing-masing. 

Michaelis-Menten tetap yang nyata didapati 12.7370 mM bagi GOD-FCHIT/PT 

dan 17.6920 mM bagi GOD-SCHIT/PT. Ini menunjukkan bahawa GOD-

FCHIT/PT mempunyai afiniti yang lebih besar bagi enzim itu. Lagipun, GOD-

FCHIT/PT menunjukkan kepekaan yang lebih tinggi (52.3666 nA/mM glukosa) 

apabila dibandingkan dengan GOD-SCHIT/PT (9.8579 nA/mM glukosa) pada 

S/N>3. Kebolehan mengulang dan kebolehan menyalin yang lebih baik telah 

dicapai oleh GOD-FCHIT/PT dibandingkan dengan GOD-SCHIT/PT dalam 

sukatan glukosa. GOD-FCHIT/PT didapati menunjuk aktiviti enzim yang 

tertinggi di kalangan elektrod yang diselidik selama 2 bulan dalam kajian. Takat 

gangguan dihadapi oleh GOD-FCHIT/PT dan GOD-SCHIT/PT adalah tidak 

berbeza dengan nyata sekali. Walaupun biosensor dengan selaput Nafion 

dapat mengurangkan gangguan isyarat dengan nyata sekali, ia juga dapat 

mengurangkan reaksi terhadap glukosa dengan signifikan. Perlaksanaan 

biosensor dalam penentuan glukosa dalam serum tikus telah ditaksir. 

Keputusan ketepatan dan dapat kembali yang lebih baik telah diperolehi oleh 

GOD-FCHIT/PT. Maka, GOD-FCHIT/PT menunjukkan perlaksanaan yang lebih 

baik apabila dibandingkan dengan GOD-SCHIT/PT. Sebagai kesimpulan, 

membran kitosan mempunyai potensi untuk dijadikan suatu matriks yang 

sesuai bagi perkembangan biosensor glukosa. 
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A STUDY ON THE CHARACTERISTICS OF CHITOSAN AS AN 
IMMOBILIZATION MATRIX FOR BIOSENSORS 

 

ABSTRACT 

 

Two chitosan samples (FCHIT and SCHIT) were investigated as an enzyme 

immobilization matrix for the fabrication of glucose biosensor. The viscosity-

average molecular weight of FCHIT and SCHIT were determined to be 981.80 

kD and 398.61 kD respectively. Their degree of deacetylation determined by 

FDUV spectrophotometry were 82.44% and 77.20% respectively. The physical 

properties of chitosan solution and membrane were studied by dissolving the 

chitosan in different organic acids (acetic acid, lactic acid and maleic acid). 

Both the chitosan samples were most soluble in aqueous acetic acid, followed 

by lactic acid and maleic acid. Chitosan membranes prepared from acetic acid 

were flexible, transparent, smooth and quick-drying. They exhibited good 

mechanical strength and elongation at break and the values were significantly 

higher than those prepared in lactic acid and maleic acid. FTIR spectra and 

SEM micrographs showed the existence of intermolecular interactions between 

chitosan and glucose oxidase (GOD). Higher catalytic activities were observed 

on GOD-FCHIT than GOD-SCHIT and for those crosslinked with 

glutaraldehyde than through the adsorption technique. Enzyme loading higher 

than 0.6 mg could decrease its activity. The highest response for glucose was 

observed at 0.21 ml/cm2 membrane thickness for GOD-FCHIT/PT and 0.35 

ml/cm2 membrane thickness for GOD-SCHIT/PT. The optimum experimental 

conditions for analyzing glucose at pH 6.0 using the biosensors were found to 

be at 35 °C with an applied potential of 0.6 V. Under such conditions, response 
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times of 85 s and 65 s were observed for GOD-FCHIT/PT and GOD-SCHIT/PT 

respectively. The apparent Michaelis-Menten constant ( app
MK ) was found to be 

12.7370 mM for GOD-FCHIT/PT and 17.6920 mM for GOD-SCHIT/PT. This 

indicated that the GOD-FCHIT/PT had greater affinity for the enzyme. 

Moreover, GOD-FCHIT/PT showed higher sensitivity (52.3666 nA/mM glucose) 

when compared with GOD-SCHIT/PT (9.8579 nA/mM glucose) at S/N>3. A 

better repeatability and reproducibility were achieved by GOD-FCHIT/PT than 

GOD-SCHIT/PT in the glucose measurement. GOD-FCHIT/PT was found to 

give the highest enzymatic activity among the electrodes under investigation. 

The extent of interference encountered by GOD-FCHIT/PT and GOD-

SCHIT/PT was not significantly different. Although the Nafion coated biosensor 

significantly reduced the signal due to the interferents under study, it also 

significantly reduced the response to glucose. The performance of the 

biosensors in the determination of glucose in rat serum was evaluated. 

Comparatively better accuracy and recovery results were obtained for GOD-

FCHIT/PT. Hence, GOD-FCHIT/PT showed a better performance when 

compared with GOD-SCHIT/PT. In conclusion, chitosan membrane has the 

potential to be a suitable matrix in the development of glucose biosensor. 
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CHAPTER 1: INTRODUCTION 

 

1.1 CHITOSAN  

1.1.1 General Introduction and Functional Properties 

Chitosan, a linear binary heteropolysaccharide, is composed of β-1,4-linked 

glucosamine (GlcN) with various degrees of N-acetylation of GlcN residues 

(Kittur et al., 2003). Chitosan occurs naturally in some microorganisms, yeast 

and fungi (Illum et al., 2001). Its occurrence is much less widespread than that 

of chitin. Chitin is a linear chain consisting of N-acetyl-D-glucosamine (2-

acetamido-2-deoxy-β-D-gluconopyranose) joined together by β(1→4) linkage 

(Krajewska, 2005). It is a non-toxic, biocompatible and biodegradable natural 

polymer of high molecular weight (~500,000 kDa) (Yadav & Bhise, 2004). It is 

the second most common polysaccharide occurring in nature after cellulose. 

Chitin is found in abundance in shells of exoskeletons of insects, shells of 

crustaceans and fungal cell wall (Illum et al., 2001; Tangpasuthadol et al., 

2003; Aberg et al., 2004).  

 

Chitosan is prepared by alkaline N-deacetylation of chitin (Kittur et al., 2003; 

Berger et al., 2004) using concentrated sodium hydroxide (NaOH) solutions at 

high temperature for a long period of time. Another approach to produce 

chitosan is by enzymatic N-deacetylation under relatively mild conditions 

(Prashanth et al., 2002; Wang et al., 2004). The commercially available 

chitosan is mostly derived by alkaline N-deacetylation from chitin of 

crustaceans because it is easily obtainable from the shells of crabs, shrimps, 

lobsters and krill (Amorim et al., 2003; Cervera et al., 2004a; Krajewska, 2005). 
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Figure 1.1 shows the two-step process in the production of chitosan. It involves 

extraction of chitin and removal of calcium carbonate (CaCO3) with dilute 

hydrochloric acid from shells of crustaceans and deproteination with dilute 

aqueous sodium hydroxide. The second step is deacetylation of chitin by 

treating it with 40-50% aqueous sodium hydroxide at 110-115 °C for several 

hours without oxygen. Chitosan is produced when the degree of deacetylation 

(DD) is greater than 50% (Steenkamp et al., 2002). However, it was also 

reported that chitin with a DD of 75% or above is known as chitosan (Cervera 

et al., 2004a). 

 

The two polymers, chitin and chitosan have similar chemical structure and are 

analogues of the homopolymer cellulose where the respective acetamido and 

amino groups replace the hydroxyl group at carbon-2 as shown in Figure 1.2. 

The difference between chitin and chitosan is in the acetyl content of the 

polymer where they can be distinguished by their solubility.  

 

 

 

 

 

 

 

 

  

Figure 1.1. Production of crude chitosan. 
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Figure 1.2. Structure of chitin, chitosan and cellulose. 
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The degree of deacetylation (DD) and molecular weight (MW) are two 

fundamental parameters that can affect the properties and functionality of 

chitosan (Berger et al., 2004; Baxter et al., 2005; Cho et al., 2006). These 

properties include solubility (Rege & Block, 1999; Hwang & Shin, 2000; Duarte 

et al., 2002), viscosity (Yadav & Bhise, 2004), reactivity such as heavy metal 

ion chelation and proteinaceous material coagulation (Sabnis & Block, 2000; 

Duarte et al., 2002; Gamage & Shahidi, 2007), loading (enzyme-loaded) 

properties (Alsorra et al., 2002) and film properties such as tensile strength, 

elasticity, elongation and moisture absorption (Lipscomb, 1995; Tan et al., 

1998; Nunthanid et al., 2001).  

 

With the apparent pKa value of the amino group of about 6.5 (Taqieddin & 

Amiji, 2004), chitosan is only soluble in aqueous acidic solutions and insoluble 

in water and alkaline solutions (Krajewska, 2004). When dissolved, the amino 

groups (–NH2) of the glucosamine are protonated to -NH3
+ (Wang et al., 2006). 

The cationic polyelectrolyte readily forms electrostatic interactions with other 

anionic groups (Fee et al., 2003). In an acidic environment the majority of 

polysaccharides are usually neutral or negatively charged (Chen & Tsaih, 1998; 

Hwang & Shin, 2000). The cationic chitosan molecule interacts with negatively 

charged surfaces and anionic systems leading to modification of the 

physicochemical characteristics of these systems (Illum et al., 2001; Xu et al., 

2005), ultimately giving rise to its unique functional properties.  
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1.1.2 Membrane Properties 

The mechanical property is one of the parameters considered in the selection 

of the membrane in any application (Chen & Hwa, 1996). Tensile testing 

provides an indication of the strength and elasticity of the membrane. Tensile 

strength is a measurement of breaking strength applied per unit of cross-

sectional area. Elongation at break however, is a measure of the ductility of a 

membrane, a characteristic that defines the ability of a membrane to deform 

before failure occurs. Therefore, elongation is a type of deformation, which is 

simply a change in shape under stress. Low values for elongation at break 

imply brittleness in the membrane (Macleod et al., 1997). A membrane is 

considered brittle when it cannot deform very much or stretch very far before it 

breaks. Therefore, tensile strength and elongation at break take into account 

the response of membranes to an external stress. 

 

1.1.3 Molecular Weight and Methods of Characterization 

The total length of the chitosan polymer formed by repeating units of D-

glucosamine is an important characteristic of the molecule. Hence, the 

molecular weight (MW) is a key feature for its functional properties (Wang et 

al., 2004). Nunthanid et al. (2001) reported that increase in molecular weight of 

chitosan increased the tensile strength, elongation as well as moisture 

absorption of the films. Chen and Hwa (1996) explored the effect of MW of 

chitosan with the same degree of deacetylation (DD) on the tensile strength, 

elongation at break, enthalpy and permeability properties of the chitosan 

membrane. They showed that tensile strength, elongation at break and 

enthalpy of membrane prepared from high MW chitosan were higher than those 



 6

of low MW chitosan. However, the permeability of membrane prepared from 

high MW chitosan was lower than that prepared from low MW chitosan. Higher 

MW chitosan was reported to have good film-forming properties because of 

intra- and intermolecular hydrogen bonding (Cervera et al., 2004b). 

Furthermore, high MW chitosan could affect the ability of chitosan to retard 

drug release. Fukura et al. (2006) reported the use of high and low MW 

chitosan as matrix tablet retardants and as drug release enhancers for poorly 

water-soluble drugs respectively. The latter might be due to an improvement in 

wettability resulting from better solubility of low MW chitosan in water. The 

effect of MW of chitosan on its antibacterial activity has also been explored. 

Increasing the MW of chitosan increased the antibacterial activity (Zhang et al., 

2003). 

 

Due to the harsh deacetylation in commercial processing of native chitin 

involving both alkaline N-deacetylation and acidic depolymerization, 

commercial chitosan are available in the MW range of 50 to 2,000 kDa (Rege & 

Block, 1999). MW of chitosan can be further lowered by acidic 

depolymerization (Berger et al., 2004) and prolonged reaction time of 

deacetylation (Blair et al., 1987).  

 

MW of chitosan can be measured by gel permeation chromatography (Chen & 

Hwa, 1996; Pochanavanich & Suntornsuk, 2002; Kumar et al., 2004), size-

exclusion chromatography coupled to multi-angle laser light scattering (Fee et 

al., 2003), high-performance liquid chromatography (Wu et al., 1976), light 

scattering (Rao, 1993; Chen & Tsaih, 1998) or viscometry (Maghami & 
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Roberts, 1988; Chen & Hwa, 1996; Schipper et al., 1996; Sabnis & Block, 

2000; Berth & Dautzenberg, 2002). Among these techniques, viscometry is the 

most commonly used method for determining the MW of polymers (Wang et al., 

2004). Use of light-scattering instrument usually requires prior experience and 

unknown sources of dust in the sample can often corrupt the data. Although gel 

permeation chromatography (GPC), size exclusion chromatography (SEC), 

high-pressure liquid chromatography (HPLC) and gel filtration chromatography 

(GFC) are by far the most versatile and useful techniques for the determination 

of MW in a polymer sample, these would involve the use of expensive 

instruments. 

 

1.1.3(a) Viscometry 

Polymers dissolved in solution may have polymer-solvent interactions, and 

generally results in an increase in viscosity (Sekhon & Singh, 2004). The 

viscosity of polymers is dependent on molecular weight (MW). The higher the 

MW of polymer, the more viscous the polymer solution will be (Choi et al., 

2005). When a polymer has a higher MW, it has a bigger hydrodynamic 

volume, that is, the volume of a polymer coil when it is in solution. The solvent 

molecules will be bound more strongly to the polymer with increasing 

hydrodynamic volume, leading to a decrease in the motion of the polymer in the 

solvent. Hence, the viscosity of a polymer solution is proportional to the MW of 

the polymer. Therefore, by measuring the viscosity of a polymer solution, the 

MW of the polymer can be conveniently determined.  
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The viscosity of a fluid is a measure of its resistance to flow (Harding, 1997). 

Several important viscosity functions are used in viscosity studies. The relative 

viscosity, ηrel = η/η0, is the dimensionless ratio of solution viscosity, η, to solvent 

viscosity, η0. The specific viscosity is given by ηsp = ηrel – 1. The reduced 

viscosity, ηred = ηsp/c, is the increase in fluid viscosity per unit polymer solute 

concentration, c. The unit of reduced viscosity is ml/g (or dl/g). A related term is 

the inherent viscosity, ηinh = (lnηrel)/c. Owing to the effects of non-ideality and/or 

associative phenomena, both ηred and ηinh are concentration dependent. The 

limit as c→0 of both ηred and ηinh is defined as the intrinsic viscosity [η], 

presumably so named because it is an intrinsic function of the 

dissolved/dispersed macromolecule (Harding, 1997):  

   [η] = )(ηlim red
0c→

= /c)(ηlim sp
0c→

 

   [η] = )(ηlim inh
0c→

= )/c}{(lnηlim rel0c→
 

Extrapolation of zero polymer concentration will eliminate polymer 

intermolecular interactions. When the polymer concentration is expressed in 

g/ml, the units of [η] will be ml/g. The plots used to find the intrinsic viscosity are 

called the Huggins plot (ηred versus c) which usually has a positive slope and 

Kraemer plot [ln(η/η0) versus c] which has a negative slope. The curves of both 

plots should be linear with a common intercept, which is the intrinsic viscosity 

(Harding, 1997).  

 

The intrinsic viscosity measured in a specific solvent is related to the viscosity-

average molecular weight, Mv, by the Mark-Houwink equation,  

[η] = KMv
a 
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where K and a are Mark-Houwink constants, whose values depend on the 

polymer type and the solute-solvent system (Laka & Chernyavskaya, 2006). 

For chitosan, they are affected by the degree of deacetylation, pH, ionic 

strength and temperature (Mao et al., 2004; Wang et al., 2004) but are 

independent of MW over a wide range of values (Prashanth et al., 2002; Kittur 

et al., 2003; Wang et al., 2004). The exponent ‘a’ is a function of polymer 

geometry, and is equal to 0, 0.5~0.8 and 1.8 for sphere, random coil and rod 

shape respectively. These constants can be determined experimentally by 

measuring the intrinsic viscosities of several polymer samples for which the 

MW can be determined by an independent method such as light scattering 

(Wang et al., 1991). 

 

1.1.4 Degree of Deacetylation  

The chemical composition of different types of chitosan is characterized by the 

FA value (molar fraction of acetylated units) or the degree of deacetylation [DD 

= 100(1- FA)%] (Trzciński et al., 2002). DD is the mole fraction of the 

glucosamine residue (GlcN) in the polymer chain (Shigemasa et al., 1996), 

indicating the proportion of free amino groups (reactive after dissolution in weak 

acid) on the polymer. This parameter is important since it indicates the cationic 

charge on the molecule after dissolution in dilute acid.  

 

Chitosan with high DD has high positive charges resulting in high reaction 

activity because the relatively active primary amino groups of chitosan are 

readily available for chemical modifications (Pochanavanich & Suntornsuk, 

2002; Wang et al., 2004). Depending on its MW, the increase in DD of chitosan 
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could change the tensile strength of the membranes. Chitosan membranes 

become more brittle and absorb less moisture at higher DD (Nunthanid, 2001). 

Kim et al. (2006) reported that low DD chitosan films have lower water vapour 

permeability and total soluble matter as well as higher tensile strength 

compared with high DD chitosan films.  

 

The N-deacetylation of chitin is almost never complete without inducing 

degradation of the polysaccharide backbone (Prashanth et al., 2002; Cervera 

et al., 2004a). The DD values close to 100% is rarely achieved with the 

relatively mild and simple alkaline N-deacetylation method (Yong et al., 2000). 

The DD of commercially available chitosan generally ranges from 60 to 90%, 

depending on the manufacturing process (Rege & Block, 1999). Anyway, DD 

can be lowered by reacetylation (Berger et al., 2004). Hwang et al. (2002) 

reported that the MW of chitosan drastically decreased and DD increased with 

an increase in temperature, reaction time and NaOH concentration.  

 

Various methods have been reported for the determination of the DD of 

chitosan. These include pH-metric titrimetry (Avadi et al., 2004), linear 

potentiometric titrimetry (Tolaimate et al., 2000),  colloid titrimetry (Berth & 

Dautzenberg, 2002), sodium hydroxide titrimetry (Pochanavanich & 

Suntornsuk, 2002), hydrogen bromide titrimetry (Domszy & Roberts, 1985; 

Sabnis & Block, 1997), ninhydrin test (Curotto & Aros, 1993), 1H NMR 

(Tolaimate et al., 2000; Mao et al., 2004; Freier et al., 2005), CP/MAS 13C NMR 

(Prashanth et al., 2002; Kittur et al., 2003; Kumar et al., 2004), gel permeation 

chromatography (Berth & Dautzenberg, 2002), pyrolysis-gas chromatography 
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(Muzzarelli et al., 1980; Lal & Hayes, 1984), infrared spectroscopy (Sabnis & 

Block, 2000; Amorim et al., 2003; Mao et al., 2004;), near infrared spectroscopy 

(Rathke & Hudson, 1993), first derivative ultraviolet spectrophotometry 

(Muzzarelli & Rochetti, 1985; Tan et al., 1998; Khan et al. , 2002), ultraviolet 

spectrophotometry (Aiba, 1986), pyrolysis-mass spectrometry (Mattai & Hayes, 

1982) and circular dichroism measurements (Domard, 1987). 

 

Although many methods are available for the determination of DD, it is 

essential to choose a simple, rapid, user-friendly, cost effective and reliable 

method that could tolerate the presence of impurities, especially the common 

contaminant protein. Methods that measure directly the amine or acetyl amine 

groups on the glycoside unit of chitosan would be preferred (Tan et al., 1998). 

Sophisticated methods such as circular dichroism, NMR (nuclear magnetic 

resonance) and thermogravimetry are not only costly for routine analyses but 

require highly trained and skilled personnel (Tan et al., 1998). Infrared and near 

infrared spectroscopy are primarily solid-state methods, and may yield 

inaccurate results during the weighing of the hygroscopic chitosan sample. 

Moisture content hence needs to be eliminated and the sample purity must be 

determined separately. Furthermore, variation can be found in the results 

obtained using different baselines with these methods (Shigemasa et al., 1996; 

Tan et al., 1998). On the other hand, the hydrogen bromide titrimetry is limited 

by the presence of protein contaminants remaining in the sample during the 

extraction process, which resulted in lower DD values (Khan et al., 2002). Tan 

et al. (1998) also reported the protein contaminants commonly present in crude 

chitosan samples affecting the results of NMR, linear potentiometric titrimetry 
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and ninhydrin test. Titrimetry, NMR spectroscopy and gel permeation 

chromatography methods depend on the sample solubility (Shigemasa et al., 

1996).  

 

The first derivative ultraviolet spectrophotometry (FDUVS) was reported as the 

simplest and most convenient method among all the presently available 

methods (Tan et al., 1998). The method requires only very small amount of 

sample, simple reagents and instrumentation. There is no interference problem 

from protein contamination. Therefore, the FDUVS method was selected to 

determine the DD of chitosan samples in the present study.  

 

1.1.5 Applications of Chitosan  

Chitosan is increasingly important in the areas of biomedical, agriculture, 

cosmetics, environmental control, waste-water treatment and food processing. 

In biomedical applications, chitosan has been employed as absorption 

enhancer of hydrophilic drugs across mucosal surfaces (Fee et al., 2003), 

accelerator for wound healing (Muzzarelli, 1977; Minagawa et al., 2007), wound 

dressing (Martindale, 2000), haemodialysis membranes (Mallete et al., 1983; 

Nasir et al., 2005), contact lenses (Ravi-Kumar, 2000), artificial skin (Ravi-

Kumar, 2000; Freier et al, 2005) and surgical sutures (Nakajima et al., 1986; 

Tachibana et al., 1988). Chitosan has also been used in drug delivery systems 

(Illum et al., 2001; Wang et al., 2001; Mi et al., 2002; Hsiue et al., 2003; Nie et 

al., 2006), ophthalmology (Ravi-Kumar, 2000), tissue engineering (Zhong et al., 

2000; Anseth et al., 2002) and for enzyme immobilization (Zhou et al., 2002; 

Hsieh et al., 2003; Wang et al., 2005).  
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The excellent membrane forming, high mechanical strength and adhesion 

ability coupled with non-toxic and biocompatible characteristics make chitosan 

an ideal immobilization matrix for the fabrication and construction of biosensors 

(Yao et al., 2003; Wang et al., 2005; Lin et al., 2007). In addition, chitosan is 

capable of adsorbing metal ions and various organic halogen substances thus 

prevent the enzyme used in biosensors from damage (Wang et al., 2005). 

Moreover, chitosan can form thermally and chemically inert film that is insoluble 

in water (Wang et al., 2005). Yang et al. (2004b) reported the enzyme 

immobilized on chitosan showed high activity due to its considerable protein-

binding capacity. Apart from this, the ability to form a transparent thin film is 

another virtue for chitosan to be used in optical sensor (Zhao et al., 1998; Zhou 

et al., 2002). 

 

In agriculture, chitosan is used primarily as a plant growth enhancer, a 

preservative coating and biofungicide that boosts the ability of plants to defend 

against fungal infections (Oester et al., 2000). In the cosmetic area, chitosan is 

used as a fungicidal and fungistatic agent in moisturizer, body creams, hair 

lotion and bath lotion (Ravi-Kumar, 2000). Moreover, chitosan is effective in 

treating acne. It is able to inhibit certain bacteria that cause inflammation 

associated with acne (Oester et al., 2000).  

 

Chitosan-based formulations have major applications in wastewater treatment 

due to the coagulating, flocculating and metal-chelating properties of chitosan 

originating from the high density of amino groups on its polymer chains 

(Krawjewska, 2005). Chitosan is used as non-toxic flocculent in the treatment 
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of organic polluted wastewater and as a chelating agent or for the removal of 

toxic (heavy and reactive) metals from industrial wastewater. Furthermore, 

proteinaceous material from industrial wastewater can be removed through 

coagulation mechanism (Krajewska, 2005).  

 

Chitosan has been found to be safe for oral consumption. In food industry, 

chitosan-based materials have been used as antimicrobial agents, beverage 

clarification additives, flavour extenders, colouring and texture stabilizers 

(Krajewska, 2005). Apart from these uses, chitosan is well known as a fat 

binder (Hennen, 1996). It is an amino polysaccharide that has the ability to bind 

lipids in the stomach before the lipids are absorbed through the digestive 

system into the blood stream. Recent years, Hayashi and Ito (2002) reported 

the antidiabetic action of chitosan. Accordingly, daily administration of chitosan 

solutions as drinking water prevented the progression of non-obese and obese 

type-2 (non-insulin dependent diabetes) diabetes mellitus through 

normalization of hypertriglycaeridemia, hyperglycaemia and hyperinsulinism.  
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1.2 BIOSENSOR 

1.2.1 Introduction 

A biosensor is commonly described as an analytical device incorporating a 

biological or biologically derived recognition element, either intimately 

associated or integrated within a physicochemical transducer to produce a 

signal proportional to the target analyte concentration (Singhal et al., 2002).  

 

The biological component e.g. enzymes, antibodies, nucleic acids and 

receptors is a biomolecule that contributes to the high specificity of the 

biosensor in recognizing its target analyte. The analyte is first transformed by 

the biological component to a quantifiable property and then into an electrical 

signal by the transducer. Biological components can be distinguished as 

bioconverting agents or biocapturing agents (Freitag, 1999). Bioconverting 

agents such as enzymes catalyze oxidation or reduction involving specific 

substrate(s) to product(s). Antibodies, nucleic acids and receptors are 

examples of biocapturing agents where their selectivity are dependent on their 

affinity towards the target analyte. Depending upon the biological recognition 

elements used, biosensors can be divided into two groups, namely catalytic 

and affinity biosensors (Tombelli et al., 2005).  

 

The choice of biological component depends on the analyte under 

investigation. What is important is a direct relationship between the biosensor 

signal and the quantity of the analyte. Since the invention of the first oxygen 

electrode by Clark and Lyons (1962), enzymes have been the most regularly 

employed biorecognition elements encountered in catalytic biosensors for the 
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analysis of small molecules such as glucose which is widely monitored in 

medicine, biotechnology and food industry (Freitag, 1999).  

 

In the development of any biosensor, some critical performance requirements 

for a particular application must be considered. A reliable biosensor should 

respond selectively to an analyte of interest among a range of analytes. 

Alternatively, the response may be to a group of analytes of similar chemical 

structure such as carbonyl compounds. Apart from selectivity, a biosensor 

needs to show high sensitivity. The signal-to-noise ratio must be large, with 

detectable signals from small changes in analyte (e.g. 0.1 mM or approximately 

2 mg/dl glucose) concentration (Wilkins & Atanasov, 1996). The linear dynamic 

range of the calibration curve should be wide enough for the assay of the 

analyte. For example, the determination of glucose in blood needs to be at 

least 1X10-4 to 5X10-2 M to cover the range of normal and diabetic blood 

glucose levels. For the biosensor to be useful, the detection limit has to be 

better than 10-5 M. Besides this, the response time has to be considered when 

developing a reliable biosensor as this may affect the usefulness of the device 

for repetitive routine analyses. The response time which refers to the time for 

the system to reach equilibrium should not exceed 10 min ideally (Eggins, 

2002).  

 

Being analytical devices, the measurements by biosensors must be precise 

where random errors must be below a certain level so that repetitive 

measurements are reproducible within a certain range. With biosensors, the 

expected reproducibility between replicate determinations should be at least 
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±(5-10)%  (Eggins, 2002). Accuracy, which describes the proximity to the true 

value, and affected by systematic errors is another important criterion. Together 

with precision, they determine whether a method is suitable for a particular task 

(validation) or whether data generated under the routine use of a bioanalytical 

method are acceptable (acceptance criteria) (Karnes & March, 1993).  

 

1.2.2 Enzyme Immobilization  

The conversion of enzymes from a water-soluble, mobile state to a water-

insoluble immobile state fixed onto a support/matrix physically separates the 

enzyme from the bulk of the solution (Krajewska, 2004; Milosavić et al., 2005). 

Three important aspects must be considered prior to immobilization, namely, a) 

properties of the free enzyme vs. the immobilized enzyme, b) type of support 

used and c) methods of support activation and enzyme attachment (Worsfold, 

1995). 

 

1.2.2(a) Properties of Free Enzyme vs. Immobilized Enzyme 

Enzymes are catalytic proteins which possess high selectivity towards a given 

substrate. They increase the rate or velocity of a chemical reaction under mild 

conditions by lowering the free energy of activation (∆G°‡) of the chemical 

reaction without changing the overall process or equilibrium of a reaction. 

Although enzymes can catalyze one reaction after another, they may have 

lower activity after several runs. Unlike inorganic catalysts, enzymes are 

specific. Most enzymes can break down a particular substrate or synthesize a 

particular compound. The specific action of enzymes gives minimum unwanted 
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side-products. The various types of specificity of enzymes are stereo 

specificity, absolute specificity, group specificity and low specificity.  

 

Immobilized enzyme possesses a number of advantages compared to the free 

enzyme (Pekel et al., 2003). Immobilization of enzymes onto a solid support 

protects them against oxygen, humidity and biological contaminants (Miertuš et 

al., 1998). The structure is therefore more stable and their handling easier 

(Naik et al., 2005). Immobilized enzyme systems allow reuse of the enzyme 

and easy recovery of the product, thus minimizing enzyme loss (Seo et al., 

1998; Akgöl et al., 2001; Tsai et al., 2003). If immobilization procedure is 

reversible, the inactive enzyme can be desorbed and the matrix further 

recharged with the fresh enzyme.  

 

In analytical applications, immobilized enzyme is key to the development of 

biosensors (Krajewska, 2004). The resultant biosensor must have good 

sensitivity, selectivity, dynamic range, response time, stability and shelf-life 

(Sakuragawa et al., 1998; Tsai et al., 2003). The performance of an enzyme 

electrode may be affected by the thickness of the enzymic layer, the enzyme 

loading as well as the conditions for the enzymatic reaction (Bardeletti et al., 

1991).  

 

Immobilization may have a considerable effect on enzyme kinetics, stability (Xu 

et al., 2001), changes in pH and temperature, Michaelis-Menten constant 

( app
MK ) and maximum reaction rate (Vmax) for the enzyme-catalyzed reaction 

(Bartlett et al., 1992; Danisman et al., 2004). This could be due to structural 
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changes to the enzyme (Wang et al., 2003) with the creation of a distinct 

microenvironment, different from the bulk solution around the enzyme 

(Krajewska, 2004). The properties and functions of immobilized enzymes are 

therefore characterized by three factors that include a) the biochemical 

properties and the kinetic parameters of the enzyme, b) the chemical as well as 

mechanical properties of matrices and c) the immobilization methods. 

 

1.2.2(b) Support 

The most important factor affecting the performance of an immobilized enzyme 

is the support material (Krajewska, 2004). Different types of supports have 

been used to immobilize enzymes namely beads and membranes (Ida et al., 

2000) using different immobilization techniques. There is no universal support 

for all enzymes. The types of matrix and conditions for immobilization have to 

be determined for each enzyme (Bickerstaff, 1997). The following 

characteristics should be considered when choosing a support for immobilizing 

an enzyme.   

 

Physical properties  

A suitable support must possess ease of assuming different geometrical 

configurations providing the system with permeability and surface area suitable 

for a chosen biotransformation (Krajewska, 2004). The surface density of the 

binding site available to the enzyme determines the maximum binding capacity. 

The support materials should also have good mechanical stability, rigidity and 

good flow properties for enzyme stability and activity on storage (Danisman et 

al., 2004; Krajewska, 2004).  
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Chemical properties 

Hydrophilic matrices are generally preferred for enzyme immobilization. They 

should be inert to enzyme(s), substrate(s) or co-factor(s) and possess available 

functional groups for direct reactions and chemical modifications (Krajewska, 

2004), have high affinity to proteins (Krajewska, 2004), have the ability to be 

regenerated or reused and are compatible with certain buffers (Fortier et al., 

1990). They should also have a large surface area with a high content of the 

reactive groups (Arica et al., 2000; Danisman et al., 2004). Apart from this, a 

good support material should be non-degradable and biocompatible without 

altering the native structure of the enzyme and affecting its biological activity 

(Luo et al., 2004; Taqieddin & Amiji, 2004). In addition, an ideal support should 

be resistant against bacterial or fungal attack, disruption by chemicals, pH, 

temperature, organic solvents, or even enzymes such as proteases 

(Bickerstaff, 1997). They should be non-toxic and biocompatible if the end 

product is to be used for food, pharmaceuticals or agricultural products (Arica 

et al., 2000; Taqieddin et al., 2002; Krajewska, 2004). 

 

1.2.2(c) Methods of Enzyme Immobilization 

Methods of enzyme immobilization can be broadly classified as physical or 

chemical methods (Krajewska, 2004). The four common approaches to enzyme 

immobilization are a) adsorption, b) entrapment, c) covalent coupling and d) 

crosslinking (Eggins, 2002).  

 

 

 



 21

Adsorption 

Adsorption is a simple, economical, reversible and quick way for immobilizing 

an enzyme with the retention of its activity (Hsu & Tsai, 2001; Yağar & 

Sağiroğlu, 2002; Debeche et al., 2005). In this procedure, links between the 

matrix and the protein molecules can be hydrophobic or ionic in nature (Momić 

et al., 2002) with little or no conformational changes of the enzyme (Tang et al., 

2004). The amount and stability of the immobilized enzyme might be low with 

no formation of covalent bonds between the support and the amino acid 

residues on the enzyme surface (Yağar & Sağiroğlu, 2002). Desorption of the 

enzyme may occur with changes in temperature, pH, solvent, ionic strength, 

concentration of enzyme or adsorbent (Zhu et al., 2005).  

 

Entrapment method 

This method is based on the localization of an enzyme within the lattice of a 

polymer matrix or its enclosure in semi-permeable membranes tight enough to 

prevent only the biocatalyst but not the substrate(s) or product(s) from diffusing 

out into the reaction medium. Here the enzymes are entrapped in the interstitial 

spaces of crosslinked and water-insoluble polymers without formation of bonds 

or chemical coupling between the enzyme and the gel matrix or membrane 

(Kennedy & Cabral, 1987). 

 

The advantages of the technique include high viable enzyme concentration and 

the possibility of co-immobilizing different types of enzymes physically 

separated from each other. The technique does not alter the conformation of 

the enzyme where only aqueous solvents are used (Scheller & Schubert, 
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1992). There are, however, some major drawbacks. Firstly, the diffusional 

barriers as well as the steric hindrance to high molecular weight substrates 

make the method unsuitable for enzymes such as ribonuclease, trypsin, and 

dextranase acting on macromolecular substrates. The large diffusional barriers 

to the substrate and product may slow down the reaction and the response 

time of the biosensor. Secondly, some loss of enzyme activity due to the 

production of free radicals during polymerization or leakage through the wide 

pores in the gel could occur.  

 

Another approach involves entrapping the enzyme within a hollow fibre of semi-

permeable membrane such as cellulose triacetate where the substrate solution 

flows through the hollow fibre. The advantages of this method include high 

resistance of the fibres to weak acids and alkalis, solutions of high ionic 

strength and organic solvents. However, inactivation of the enzyme may occur 

with the use of water-immiscible liquids, polymer solvents or precipitating 

agents (Kennedy & Cabral, 1987). 

 

The entrapment method also includes microencapsulation of the enzyme within 

a semi permeable membrane without any bond formation (Sharma et al., 

2007). Microencapsulation provides a means of utilizing an enzyme 

continuously in its native state over a long period of time. The advantages of 

this immobilization technique include the extremely large surface area for 

contact between substrate and enzyme within a relatively small volume and the 

possibility of simultaneous entrapment of several (different) enzymes in a single 

step (Kennedy & Cabral, 1987). The sequence of enzymatic reactions in 
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multiple enzyme systems will result in longer response time (Bardeletti et al., 

1991). Leakage of enzyme from the microcapsule may also take place 

(Kennedy & Cabral, 1987). 

 

Covalent-binding method 

Covalent coupling of the enzyme molecules with the support material lead to 

very stable preparations. The bond is normally formed between functional 

groups on the carrier and groups on the enzyme not essential for the catalytic 

activity (Lim et al., 1999; Eggins, 2002). Chemically reactive sites of a protein 

are usually amino (NH2) groups from lysine or arginine, carboxyl (COOH) 

groups from aspartic acid, glutamic acid, hydroxyl (OH) groups from serine, 

threonine, phenol residues of tyrosine, sulfhydryl (SH) group from cysteine and 

the imidazole group of histidine (Scheller & Schubert, 1992; Eggins, 2002). 

Three main factors have to be considered for covalent immobilization of 

enzymes, namely a) the functional groups of proteins suitable for covalent 

binding, b) the coupling reactions between the enzyme and the support and c) 

the functionalized supports suitable for enzyme immobilization (Kennedy & 

Cabral, 1987).  

 

The immobilization process is conducted in three steps namely activation of the 

carrier, coupling of the enzyme and removal of adsorbed enzymes from the 

support (Kennedy & Cabral, 1987). A wide variety of support materials have 

been used for enzyme immobilization including Sepharose (beaded agarose), 

cellulose, magnetic particles, silicates derived from China clay or diatomaceous 

earth and glass. In all cases, the support materials must possess reactive 



 24

groups. If they do not, then the support can be activated by chemical means 

using cyanogen bromide, carbodiimide, glutaraldehyde, aminosilane, 

diazonium salts, acid chloride, isocyanate and isothiocyanate derivatives. 

Selection of the crosslinker determines the type of covalent bond that will be 

formed (Kennedy & Cabral, 1987).  

 

An advantage of this method is that covalent bonding is strong with no release 

of the enzyme into the solution even in the presence of substrate dissolved in 

high ionic strength solutions (Kennedy & Cabral, 1987). The covalent bonding 

between enzyme and carrier not only stabilizes the enzyme during catalytic 

reactions at higher temperature, it also allows the enzyme to withstand 

denaturants and organic solvents better (Arica et al., 2000). However, a loss in 

enzymatic activity due to its conformational changes is encountered if amino 

acids essential for the catalytic activity are involved in the covalent linkage to 

the support (Scheller & Schubert, 1992) or harsh coupling conditions are used 

(Afaq & Iqbal, 2001). To protect the active site, the enzyme can be immobilized 

in the presence of a competitive inhibitor or substrate (Kennedy & Cabral, 

1987). 

 

Crosslinking 

This approach is based on the production of three-dimensional crosslinked 

insoluble enzyme aggregates by bi- or multifunctional reagents (Kennedy & 

Cabral, 1987). The chosen crosslinking agent specifically binds functional 

groups on the enzyme away from its active site to avoid inactivation, at 

concentrations suitable for aggregation. The gelatinous nature of the product 
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