
APPENDICE A

ON AN IMPROVED PARALLEL CONSTRUCTION
OF SUFFIX ARRAYS

FOR LOW BANDWIDTH PC-CLUSTER

Pusat Pengajian Sains Komputer1

Pusat Pengajian Sains Matematik2

Kok Jun Lee1

Nur'Aini Abdul Rashid1

Rosni Abdullah1

Norhashidah Md. Ali2

Universiti Sains Malaysia
11800 Minden,
Pulau Pinang,
MALAYSIA

Tel.: +(604) 65377888 Fax.: +(604) 6573335
Main author email: kokjl@hotmail.com

Presented at

International Symposium on Information Technology 2003

Crown Princess Hotel
Kuala Lumpur Malaysia.

30th Sept – 2nd October

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/11929899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kokjl@hotmail.com

ON AN IMPROVED PARALLEL CONSTRUCTION
OF SUFFIX ARRAYS

FOR LOW BANDWIDTH PC-CLUSTER

Universiti Sains Malaysia
kokjl@hotmail.com, (nuraini, rosni, shidah)@cs.usm.my

Abstract: An algorithm for the parallel construction of suffix arrays generation
for any texts with larger alphabet size on distributed memory architecture is
presented. Our main goal is to achieve constant communication complexity for
any string with large alphabet size while the number of processors involved in
the computation is increased, and to derive a practical implementation that
works well for typical input string. Our experiments using several genomes and
texts data set on low cost network PC-cluster shows that our algorithm works
well and scalable. We present some experimental evidence to show that our
parallel algorithm works well even in low bandwidth network architecture.

Keywords: Affordable Computing, Knowledge Representatives, Parallel
Processing, Distributed Computing

1. INTRODUCTION

Suffix array is the ordered indexes of suffixes in lexicographical for a given string. Let
T[1, n] denote a string over the alphabet ∑. The suffix array for T is an integer array
SA[1,n] such that ∀i∈{1, 2, ... , n }.T[SA[i], n] < T[SA[i+1], n], where “<” denote the
lexicographical order. It is a conceptually simple [17] and compact [17] data structure
which is important in string processing, computational biology [3], and data compression
[11].

The suffix array is the most compact and simple among suffix automaton and suffix tree.
The searching time is competitive with the suffix tree in practice [17], but the suffix arrays
do require three to ten times longer to be built. Suffix array construction is simple as it can
be constructed even with any string sorting algorithm. However, general purpose string
sorting algorithm fails to take advantage of the fact that we are sorting a collection of
related suffixes. Much faster sequential methods ([5], [7], [11], [14], [17]) have been
designed for sorting the suffixes of a string. Another alternative to overcome the
computational bottleneck in the construction of suffix arrays is the utilization of parallel
algorithms.

The use of a set of connected processors, as parallel machine is an attractive alternative
nowadays. This type of distributed memory parallel machine is a good cost-performance
tradeoff. One may employ fast switching technology to allow the dissemination of high-
speed networks of processors at relatively low cost compared to shared memory super
computer.

A number of parallel and distributed suffix array construction algorithms have been
designed for message passing environment previously ([6], [9], [10], [13]). Performance
of the algorithm in such platform is mainly affected by its total communication overhead.
The communication complexity usually depends on the number of processors involved,
the number and length of the messages to be sent and received. One may reduce the
communication overhead by designing an algorithm with less communications as possible
[13] or by choosing efficient communication network machine [9] such as IBM SP based
on the High Performance Switch (HPS) or Myrinet switch cluster.

All previous works ([6], [9], [10], [13]) were experimented and analyzed on efficient
communication network machine. They obtained good and scalable performance on such
platform. Unfortunately, it is not clear whether ([6], [9], [10], [13]) will perform well if
they run their works on a low cost network PC-cluster with low bandwidth which is
affordable by most people today. The main issue is that their algorithms involve
communication overhead. This issue leads us to design a parallel algorithm without any
communication. A little constant computational overhead is incurred, but it is worth since
our consideration is to reduce very expensive communication cost. We intend to
experiment our work on low cost network PC-cluster with low bandwidth to see if the
same performance can be achieved. The parallelism model we adopt here is that of low
cost network PC-cluster with low bandwidth where the communication cost is very
expensive.

2. PREVIOUS AND RELATED WORK

It is necessary to distribute sorting workload in order to sort all suffixes of a string
concurrently. Several parallel algorithms are currently available to sort suffixes in
distributed memory architecture

A generalization of the parallel quick sort is presented in [6]. This algorithm considers the
global sorted suffix arrays which results in the sorting task to be broken into n/p similarly-
sized portions and distributed among p processors. Each processor holds exactly one such
slice at the end. A key idea of this algorithm is to quickly deliver to each processor the
suffixes index corresponding to its slice. This algorithm works with p-percentiles obtained
in one step and it has total time complexity of O(n/p) communication in the average case.

Another parallel quick sort-based algorithm is presented in [10]. This algorithm is based
on the recursive parallel quick sort approach, where a suitable pivot is found for the whole
distributed set of suffixes and the partition phase redistributes the indexes of the suffix
array so that each processor has only suffixes smaller or larger than the pivot. Instead of
finding p-percentiles [6], this algorithm used binary recursive approach based on one
pivot. This algorithm has a total time complexity of O((n log p) / p) communication in
the average case.

Previous distributed algorithms are generalizations of general purpose sorting algorithm.
However, much faster special purpose algorithm for suffix sorting can be adapted, because
the suffixes are overlapping substrings coming from the same string. The first distributed

algorithm which generalizes a special purpose sequential algorithm was presented in [9].
This algorithm was based on Manber & Myers [17] sequential algorithm. The algorithm
achieved a good computation complexity but the communication complexity is worse than
[6]. In the experimental analysis, they used 2-processor shared memory workstation to
simulate a very fast network, yet they did not get a good communication time.

Recently, another parallel suffix sorting algorithm is presented in [13]. This algorithm is
much more practical to implement and works well for typical input. The algorithm first
partitions the suffixes into buckets, which are then assigned to individual processors for
local sorting. Not much communication is involved in the sorting activity compared with
the previous work. Once the bucket sorting is done, each bucket can be sorted
independently. Since each bucket lies completely within a processor, no communication is
necessary for local sorting. However in the bucket-sorting phase, they used All-Reduce
and All-to-All collective communication operation provided by MPI standard. A
communication model for collective MPI operations has been evaluated in [16]. If we
consider our bandwidth B and size of the message S as key variables, we can obtain at
least O(S/B) communication by considering latency and logarithmic time phase as
constant parameter. S in this algorithm is equal to |∑|w, where w denote the first w
characters involve in the bucket sorting. In the experimental analysis in [13], they
evaluated their algorithm on IBM SP-2 using genomes of several organisms. Their
experimental result showed that their algorithm delivered good and scalable performance,
since B is high (IBM SP-2) and |∑| is only 4 for any genome (i.e. {A, T, C, G}). The
communication complexity depend on the size of alphabets, so no assumption can be
make if the used platform is of low bandwidth network and the text with larger |∑| such as
protein sequences, linguistic texts especially those written in Asian languages is used as
input.

3. PARALLEL CONSTRUCTION OF SUFFIX ARRAYS

In this section we present our parallel algorithm for construct of suffix array. Our main
idea is almost the same as [13], where the suffixes are partitioned into buckets and each
bucket is further sorted by string sorting algorithm. However their bucket sorting involves
communication while ours involve none at all.

Consider that each processor contains a string T[1,n] and an integer array SA[1, n] of size
n. Since each processor has its own copy of T, they can bucket-sort the text in parallel.
Indexes of suffixes, which have the same first character, are put on a consecutive area in
SA. We do not distribute the bucket-sorting task among the processors. Every processor
does its own bucket sorting. Some computational overheads do exist here, but it is worth,
because no communication is involved and it just needs insignificant period of time
compared to its total sorting time. This small bucket-sorting time will be a constant while
the number of processors is increased. We still can gain good speedup by parallel the local
sorting in the next phase.

Once the bucket sorting is completed, the suffix array has been partitioned into buckets.
Now the problem remains to find out how each processor calculates the buckets belonging

to them. Note that each processor owns a whole set of suffixes and buckets information, so
no communication is needed between cooperating processors in the buckets assigning
task.

Any load balancing heuristic can be used to allocate the buckets to processors. Our
implementation uses the following simple scheme, which is similar, as [13]. First we
partition the bucket-sorted SA into p slices of length exactly n/p. If a partition falls within
a bucket, we readjust the partition so that it coincides with the nearest bucket boundary.
Since each processor needs only two boundary indexes, the indexes for starting and ending
of the partition belong to them, they just need to calculate this two values in parallel, still
no communication is needed.

At this stage, the array SA has been partitioned across processors such that each bucket
lies completely within a processor. This guarantees that all suffixes within a processor are
only lexicographically larger or smaller than any suffix which is allocated in the difference
processors. The suffixes belonging to each partition are sorted locally within each
processor. Every processor locally sorts their partition concurrently. We use Bentley and
Sedgewick’s [8] “on fast algorithms for sorting strings" for our local sorting. Any special
purpose suffix sorting algorithms is not suitable to be used for low bandwidth network,
since each consecutive suffix has been distributed lexicographically across processors by
bucket sort, a lot communication is needed.

Execution time for the parallel algorithm is affected by load balancing among processors.
However, load balancing for this problem is mainly affected by the input data, not only the
partition size of SA among the processors but also the average match length (AML) [12]
of the suffixes within one processor to another. However, our algorithm should perform
well for typical random strings, since it expects the length of prefix sufficient to
differentiate between two suffixes is O(log n) [13]. In the next section, we present some
experimental analysis of our algorithm on representative data set drawn from Calgary Text
Compression Corpus [2].

4. EXPERIMENTAL RESULTS

We implemented our parallel algorithm using C and PVM. For input texts with |∑|< p ,we
transform the input text according to the algorithm provided in [14]. This transformation is
to ensure that there are enough buckets to assign to each processor. We tested the program
on following data: Complete genome of E.coli (length 4, 638, 690 bases), linguistic texts;
bible.txt (4, 047, 392 characters), world192.txt (2,473,400 characters) and combine.txt
(6520792 characters, concatenation of bible.txt and world192.txt)

Our timing is based on the slowest processors. The timing is terminated using barrier
function provided by PVM.

First, we experimentally evaluate our program on cluster of SUN Workstation with 10
bases hub. Figure 1 shows our algorithm works well and almost obtained a linear speedup.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6

Number of Processors

S
pe

ed
up

Ideal Speedup

E.coli

bible.txt

world192.txt

combine.txt

Figure 1: Speedup as a function of the number of processors for difference data

For our second experiment, we run our program on PC-cluster of Intel Pentium IV
(1.8GHz). First, we connected the PC using 3com Switch 24-port with 100 base and for the
second experiment we connected this cluster of PC using 3com Hub 8-port with 10 base.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1 2 3 4 5 6

Numbers of Processors

Sp
ee

du
p

E.coli

bible.t xt

combine.t xt

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6

Numbers of Processors

Sp
ee

du
p

E.coli

bible.t xt

combine.t xt

Figure 2: Speedup as a function
of the number of processors for
difference data on high
bandwidth network (100Mbps
Switch)

Figure 3: Speedup as a function
of the number of processors for
difference data on low
bandwidth network (10Mbps
hub)

From the figures 2 and 3, we get almost linear speedup for both different bandwidth of
connection are obtained. This indicates our algorithm is not platform dependent and work
well even in low bandwidth network connection. Figure 4 shows that we obtained almost
overlapping speedup on both bandwidths using combine.txt as the input data.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1 2 3 4 5 6

Number Of Processors

Sp
ee

du
p combine.txt on

100Mbps sw itch

combine.txt on
10Mbps Hub

 Figure 4: Speedup as a function of the number of processors for combine.txt text data
on PC-cluster with 10Mbps hub and 100Mbps switch connection.

5. CONCLUSIONS

We presented a simple parallel algorithm for suffix arrays construction. We have created a
fast implementation of our algorithm using Bentley & Sedgewick’s code and N.J. Larsson
& K.Sadakane’s code. We have experiment our program using data set downloaded from
[2]. The evaluation of our program on low bandwidth network proved to produce similar
results to that obtained on high bandwidth network, hence indicating that the parallel
algorithm is platform independent.

6. REFERENCES

A. Macêdo, M.A.Cristo, E.S.Silva, D.M.Barbosa, J.Kitajima, B.Ribeiro, G.Navarro and N.

Ziviani.1998 .Experimental Analysis of Parallel Quicksort-Based Algorithm for
suffix Array Generation .Proceedings of 3rd International Meeting on Vector and
Parallel Processing (VECPAR'98), pages 1049-1062 [1]

Calgary Text Compression Corpus.

(online)ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/ (5 June
2003) [2]

D. Gusfield, 1997. Algorithms on Strings, Trees, and Sequences- Computer Science and

Computational Biology. Cambridge University Press. [3]

D. Knuth, 1973. The Art of Computer Programming, Vol 3: Sorting and Searching.
 Addison-Wesley. [4]

G. Manzini and P.Ferragina, Aug 2002. Engineering a Lightweight Suffix Array

Construction Algorithm. Proceedings of the 10th European Symposium on
Algorithms (ESA '02), Rome, Italy. Springer Verlag Lecture Notes in Computer
Science n. 2461, pages 698-710. [5]

ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/

G.Navarro, J.Kitajima, B.Ribeiro and N.Ziviani, June 1997. Distributed generation of
suffix arrays. Proceedings of the 8ht Symposium on Combinatorial Pattern
Matching (CPM'97), LNCS 1264, pages 102-115. [6]

H. Itoh and H. Tanaka, 1999. An efficient method for in Memory construction of suffix

arrays. Proceedings of the 6th Symposium on String Processing and Information
Retrieval (SPIRE'99), pages 81-88. [7]

J.Bentley and R.Sedgewick, 1997. Fast Algorithms for Sorting and searching Strings.
 Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
 pages 360-369.[8]

 J. Kitajima, G.Navarro. A fast Distributed suffix Array generation Algorithm. Proceedings
 of the 6th Symposium on String Processing and Information
 Retrieval (SPIRE'99), pages 97-104 [9]

J. Kitajima, G.Navarro, B.Ribeiro and N.Ziviani, 1997. Distributed generation of suffix

arrays: A quicksort-based approach. Proceedings of 4th South American Workshop
on String Processing (WSP'97), pages 53-69. [10]

K. Sadakane, 1998. A fast algorithm for making suffix arrays and for burrows-wheeler

transformation.Proceedings of the IEEE, Data Compression Conference (DCC'98),
pages 129-138. [11]

K. Sadakane and H. Imai, 1998. Constructing Suffix Arrays Of large Texts

transformation. Proceedings of the IEICE 9th Data Engineering Workshop
(DEWS '98) [12]

N. Futamura, S. Aluru, and S. Kurtz, 2001. Parallel Suffix Sorting, Proceedings of the 9th

International Conference on Advanced Computing and Communications
(ADCOM2001), pages 76-81 [13]

N.J. Larsson and K.Sadakane,1999. Faster suffix sorting, Technical Report in Department

of Computer Science, Lund University, sweeden, LU-CS-TR: pages 99-214. [14]

P.M. McIlroy and K. Bostic, 1993. Engineering radix sort. Computing Systems,
 6(1): pages 5-27. [15]

S. Girona, J. Labarta and R.M. Badia, 2000. Validation of Dimemas communication model
 for MPI collective operations. Proceedings of the Recent Advances in Parallel
 Virtual Machine and Message Passing Interface (Euro-PVM/MPI 2000,.
 pages 39-46. [16]

U. Manber and Myers, Oct 1993. Suffix arrays: a new method for on-line string searches.
 SIAM Journal on Computing, 22: pages 935-948. [17]

	kjlnuraini
	ON AN IMPROVED PARALLEL CONSTRUCTION
	OF SUFFIX ARRAYS
	11800 Minden,
	Pulau Pinang,
	MALAYSIA

	ON AN IMPROVED PARALLEL CONSTRUCTION
	OF SUFFIX ARRAYS
	FOR LOW BANDWIDTH PC-CLUSTER
	Universiti Sains Malaysia

