UNIVERSITI SAINS MALAYSIA

Second Semester Examination Academic Session 2007/2008

April 2008

EEE 510 - ANALOG CIRCUIT DESIGN

Duration: 3 hours

Please check that this examination paper consists of SIX pages of printed material before you begin the examination.

This paper contains SIX questions.

Instructions: Answer FIVE (5) questions.

Answer to any question must start on a new page.

Distribution of marks for each question is given accordingly

All questions must be answered in English.

1. Given a MOS transistor in a configuration as shown in Figure 1. Draw the small signal model of the transistor. Assume $V_{sb} = V_{ds} = 0$. g_{mb} , r_o , C_{sb} and C_{db} are ignored. Prove that

$$f_{T} = \frac{1}{2\pi} \quad \frac{g_{m}}{C_{gs} + C_{gb} + C_{gd}}$$

Compare the above expression with the unity gain frequency expression for the BJT.

Figure 1

(20 marks)

2. Determine the voltage gain of the transistor amplifier circuit shown in Figure 2. Assume $\beta_{ac} = \beta_{dc} = 100$. $V_T = 26 \, \text{mV}$ and $V_{BE} = 0.7 \, \text{V}$. Neglect all parasitic elements in the small-signal equivalent circuit of the BJT in this amplifier circuit. Neglect the base charging capacitance and the collector-base resistances. Assume that r_o is very large.

(20 marks)

Figure 2

3. Consider the BiCMOS amplifier shown in Figure 3. The BJT has V_{BE} = 0.7 V and β = 200 . The NMOS transistor has a threshold voltage V_t = 1V and $K'W/L = 2\,mA/V^2$. Consider the DC bias circuit for this amplifier. Neglect the base current of Q_2 in determining the current in Q_1 . Find the DC bias currents in Q_1 and Q_2 , and show that they are approximately 100 μ A and 1 mA respectively.

4. Figure 4 shows a non-inverting configuration of an operational amplifier.

Figure 4

- (a) Identify the type of feedback in this circuit. (5 marks)
- (b) Find the expression of the loop gain. (5 marks)
- (c) Find the expression of the closed loop gain. (10 marks)
- 5. Circuit in Figure 5 has a GBW of 200 MHz. If VDD is 2.5 V and $\mu_n C_{OX} = 100 \mu \frac{A}{V^2} \,, \; \mu_p C_{OX} = 50 \mu \frac{A}{V^2} \,, \; \; V_{thn} = \left|V_{thp}\right| = 0.5 V \; \text{and CL is 1 pF}$

Find:

(a) gm.

(10 marks)

(b) W/L of MN1

(10 marks)

Figure 5

6. Based on Figure 6, draw IX versus VIN

(20 marks)

Figure 6

0000000