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Testing the Equality of Location Parameters
for Skewed Distributions Using .S with
High Breakdown Robust Scale Estimators

S S. Syed Yahaya, A.R. Othman and H.J. Keselman

Abstract. A simulation study had been carried out to compare the Type I
error and power of 51, a statistic recommended by Babu et al. (1999) for
tosting the equality of location parameters for skewed distributions. Othman
ot al. (in pross) showed thal this stalistic is robust to the underlying popula-
tions and is also powerful. In our work, we moditied this statistic by replacing
the standard errors of the sample medians with four alternative robust scale
estimators; the median absolute deviation (MATD) and three of the scale es-
timators proposed by Rousseeuw and Croux (1993); @n, S, and T,,. These
estimators were chosen based on their high breakdown value and bounded in-
Auence function, and in addition, they arc simple and eagy to compute, Even
though MAT! is mare appropriate for symmetric distributions (Rotissestiv
and Croux, 1993), due to its popularity and for the purpose of comparison,
we decided to include it in our study. The comparison of these methods was
based on their Type I error and the power for J = 4 groups in an unbalanced
design having heterogencous varinness. Data from the Chi-square distribution
Wlth 3 degrees of freedom were considered, Since the null dlqtrlhutmn of Sy
is imtractable, and its asymptotic null distribution may not be of much
for practical sample sizes, bootstrap methods were used to give a better ap-
proximation. The S statistic combined with each of the scale estimators was
shown to have good control of Type I errors.

Mathematics Subject Classification (2000). 62G10.
Keywords. Type I error, power, bootstrap, skewed distributions, breakdown
value.

1. Introduction

Progress has been made in terms of finding better methods for controlling Type I
error and power to detect treatment effects in the one-way independent group de-
signs. Through a combination of impressive theoretical developments, more flexible
statistical methods, and faster computers, serious practical problems that seemed
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insurmountable only a few years ago can now be addressed. These developments
are important to applied researchers because they greatly enhance the ability to
discover true differcnces between groups and improved their effort in trying to
guard against secing benefits that do not exist.

Analysis of variance (ANOVA) is one of the mast commonly used slutistical
methods for locating trestment effects in the cne-way independent groups de-
sign. Geuerally, violating the assumptions associated wilh the standard ANOVA
method can seriously hamper its ability to detect true differences. Non-normality
aud heteroscedasticity are the two general problems in ANOVA. In particular,
when these problems occur at the same time, rates of Type 1 error usually are
inflated or depressed, resulting in spurious rejections of null hypotheses. They can
also substantially reduce the power of a test, resulting in treatment effects going
undetected. Reductions in the power to.detect differences between groups occur
hocause the uanal standard deviation () is very sensitive to outlicrs and will be
greatly influenced by their presence. Consecuently, the standard error of the mean
{(@?/n ) can become seriously inflated when the underlying distribution has hcavy
tails (Wilcox et al., 1998). Therelore, the stundard crror of the F statistics in
ANOVA is larger thau it should be and power accordingly will be depressed.

To achieve a good test, one needs to he able to comtrol T'yvpe 1 errars and
to increase the power. We do not want to lose power, and at the same lime we
do not want to inflate the Type T error. In recent years, numerous methods for
locating treatment effects simultaneously controlling Type T error and power to
detlect treatment effects have been studied. The classical least squares estimators
can be highly inefficient in non-normal models. In their effort to control the Type
I error and power rate, investigators were looking into numerous robust methods.
Robust methods generally are insensitive to assumptions about the overall nature
of the data. Robust measures of lucation such as trimmed means, medians or M-
estimators were considered as the alternatives for the usual least squares estimator,
that is, the usual mean. These measures of location tendency have been shown
to have better control over Type I error and power to detect trcatment effects
(Othman, Keselman, Padmanabhan, Wiicox, & Fradette, in press). Using trimmed
means and variances based on Winsorized sum of squares will enable one to obtain
test statistics which do not suffer losses in power due to non-normality (Wilcox,
Keselman, & Kowalchuk, 1998).

Babu, Padmanabhan, and Puri (1999) proposed a more flexible statistical
method that can deal with asymmetric distributions and heteroscedastic settings.
Known as the \5; statistics, this method is one of the latest procedures in assessing
the effects of a treatment variable across groups. Othman et al. (in press) replaced
the standard errors of the sample medians in S7 with asymptotic variances but
this modification did not result in better Type I error control compared to the
former. . ) o v L o

Unlike methods using trimmed means, when using S; one can work with
the original data without having to transform or to trim the data in achieving
symmetry. Simple transformations may fail to deal effectively with outliers and

Y

Testi

heavy taile
the observ:
1997).

2. Methc

Thiis paper
Sy metlind
tors propos
and T, we)
tiou, ihe by
compared i
1101-TIOTINa
51 is more
coptral ton
the sample

Z.1. 57 Me
When deali

. population

sample me:
1904). Sy is
To underst
skewed dist
skewed dist
For testing
(,7), the &

[
I

w

M; is
wy 18 1
n; is
57 is the su
divided by
distributio
sampling d

et al. (in |

According
approximal
method is



velopments
» ability to
1 trying to

{ statistical
groups de-
d ANOVA
-normality
pariicular,
wnally are
. They can
fects going
JUps occur
ind will be
f the mean
Las heavy
batistics iu
essed.
errors and
e time we
cthods for
I power to
extimators
1 the Type
b methods.
rall nalure
ians or M-
estimator,
een shown
ent effects
g trimmed
2 1o obtain
y (Wilcox,

statistical
¢ settings.
1 assessing
3) replaced
iances but
red to the

work with
achieving
tliers and

v

. Testing the Equality of Location Parameters for Skewed Distrjbutions 321

heavy tailed distributions. Even the popular strategy of taking logarithms of all
the observations does not necessarily reduce problems due to outliers (Wilcox,
1997).

2. Methods

This paper focuses on the 5; method and the modified S; methods. The modified
51 methods are the S statistics combined with each of the four scale estima-
tors proposed by Rousseeuw and Croux (1993). These estimators, MAD,,, S,, Qn,
and 7}, were chosen for their high breakdown value and bounded influence func-
tion, the hasic tools for judging robustness (Wilcox, 1997). The S; methods were
compared in terms of Type I error and power under conditions of normality and
non-normality. Non-normality will be represented by skewed distributions since
Sy is more appropriate for skewed data. S methods use sample medians as the

- central tendency. Being simple and having the highest possible breakdown value,

the sample median is still a popular robust estimator of location.

2,1. 5y Method

When dealing with a skewed distribution, the parameter of interest is thercfore the
population median. For this particular case, the S statistics which are based on
sample medians will be more appropriate to compare distributions (Babu et al.,
1999). S is a solution to the problem when the assumption of symmetry is suspect.
To understand §), consider the problem of comparing location parameters for
skewed distributions. Let Y; = (Y1;,Yy,..., Y, 4;) be a sample from an unknown
skewed distribution F; and let M, be the population median of Fiog=1,200.0
For testing Ho : My = My = --- = M, versus H, : M, # M, for at least one pair
(i,7), the S| statistic is defined as

(N1, — M)

S5y = D lb'z'jl where s;; = = £
1i255J v/ (i + ;)
"
w= (a2

LWy
iy = —, and
1, n;

"J

Y, - MJD*

A:Ij is the sample median from the jth group,
w; 1s the squared mean absolute deviation from sample median M N j, and
n; is the sample size for group j.

S1 is the sumn of all possible differences ol sample medians from the J distributions

_divided by ‘their respective sample standard errors, &. Therefore, if there are J

distributions, then the number of possible differences equals J(J —1)/2. Since the
sampling distribution of S is unknown, Babu et al. (1999), followed by Othman

et al. (in press), used the bootstrap percentile method for obtaining p-values.

According to Babu et al. (1999), the bootstrap method is known to give a better
approximation than the one based on the normal approximation theory and this
method is attractive, especially when the samples are of moderate size. Taking
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into consideration the intractability of the sampling distribution of 9 and the
reliability of the bootstrap method, the p-values in our study were obtained by
- using the percentile bootstrap method (see, e.g., Efron and Tibshirani, 1993). To
abtain the p-value, the percentile bootstrap method is used as follows:
1. Calculate S; based on the available data.
2. Generale boolstrap samples by randomly sampling with replacemiert 14 ol-
servations from the jth group yielding Y75, Y3, ..., Yo
3. Each of the sample points iu the bootstrapped groups must be centered at
their respective estimatecd medians.
4. Use the bootstrap sample to compute the ) statistic, denoted by S;*.
Repeat Step 2 to Step 4 B times ylelding St,, 81y, ..., Sip. B = 599 appears
sufficient, in most situations when n >12 (Wilcox, 1097).

(W

6. Calculate the p-value as (f of 57, > $1)/B

The amount of computer time depends mainly on how long it takes to evaluale
the boolstrap replications and increases linearly with B. The number -B varies
according Lo approximations. For estimating the standard error, B = 50 is often
cnough to give a good estimate, while larger B is needed for estimating the per-
centiles. Efron and Tibshirani (1993) suggested that B should be at least 500 or
1000 in order {0 malke the variability of the estimated percentile acceptably low.
Hypothesis testing will adopt the same range of B as the percentile to achieve
acceptable accuracy.

Type I error and power of the test corresponding to cach method will be
determined and compared.

2.2. Scale Estimators
When searching for measures of scale, the breakdown value turns out to have

considerable practical importance {(Wilcox, 1997). The four scale estimators pro-
posed by Roussecuw and Croux (1993) have the optimum breakdown value of 0.5.
These scale estimators have explicit formulas, which guarantee uniqueness of the
estimates. They also have bounded influence functions, which is one of the most
important properties for robust estimators. Another advantage of using these es-
timators is their simplicity, which make them easy to compute.

- Let X = (z1,%2,...,2,) be a rardomr sample from any distribution and let

the sample median be dencted by med; z;.

2.2.1. MAD,,. A very robust scale estimator is the median absolute deviation
about the median, given by

MAD,, = bmed; |z; — med; z;|.

The constant b is needed to make the estimator consistent for the parameter of
interest.

The MAD,, has the best possible breakdown value, and its influence fune-
tion is bounded, with the sharpest possible bound among all scale estimators
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(Rousseeuw and Croux, 1993). Huber (1981) identified MAD,, as the single most
useful ancillary estimate of scale dug to its high breakdown property. .

Despite all these advantages, MAD,, has some drawbacks. It has very low
efficiency (only 37%) with Gaussian distributions. MAD,, takes a symmetric view
on dispersion, because one first cstimates a central value (the median) and then
attaches equal importance to positive and negative deviations from it, which does
not seem to be a natural approach for asymmetric distributions.

2.2.2, 5,.. Rousseeuw and Croux {1993) suggested alternatives to MAD,, that can
be used as initinl or aucillary scale csbimalbes i Whe siwtoe wuy but that are more
efficient and not slanted towards symmetric distributions.

One such estimator is Sy, defined as
Sp = cmed; {med; |z; - z;l.}

Sy is very similar to MAD,,. The only difference being that the med; opera-
tion is moved outside the absolute value. This makes S, alocation free estimator.
Instead of measuring the deviation of observations from a central value, 8, looks at
a typical distauce belween observatious. Another advantage is ibs explicit formula
which means that this estimator is always uniquely defined. A modest simulation
study by Rousseeuw and Croux found that the correction factor ¢ = 1.1926 suc-
ceeded in making S, unbiased for finite samples. They also proved that S, has
the highest possible breakdown value. In terms of efficiency, S, was proven to be
more efficient (58.23 %) than MAD,,

2.2.3. ¢),. Even though the influence functions for MAD,, and S, are hounded,
they have discontinuities. For a smooth influence tunction, Roubseeuw and Croux

proposed an estimator @, defined as
Qu =d{]zi —a;]5i < 7}k

where d is a constant factor,
; R
L2)/!

=
and h =Tn/2] + 1.

The estinator @y, shares the atlraclive properties of Sy; a simple and ex cplicit
formula, suitable for asymmetric distributions, and attains the optimal value for
its breakdown value (50 %). Other added advantages are the smooth influence
function and the high efficiency (82 %) with Gaussian distributions. ITowever,
with small samples, S, performs better than Q,.

I

[ e i
[N

2.2.4. T,. Another promising scale estimator proposed by Rousseeuw and Croux
(1993) which possesses the attractive properties of the robust scale estimator is

T, defined as
h
1
= 1.3800+ {med{zZ - f} .
h Zl "
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It was proven that T, has a 50 % breakdown value, a continuous influence
function, and an efficiency of 52 %, which makes it more efficient than MAD,,.
Like 5,, and (.., this estimator has a simple and explicit formula which guarantees
uniqueness and it is suitable for asymmetric distributions. ;

"Taking into consideration all the attractive propertics attached to the acale
eslitalors, such ug the breakdown value, continuous influence function, and their
efficieney, we substibnuted the standard errors derived from them in place of 3 Sy

3. Procedures

The procedures investigated were:

S with MAD,,

S] with Qq

S, with S,

S with T,

51 with @

Each of these five methods was tested for freatment group equality under two iypes
of distributions, the normal and skewed distributions. Note that for the rest of this
paper, each of these methods will be referred to by its scale estimator, MAD,,, @..,
S, Ty, and @. We compared MAD,,, (),,, Sn, and 1}, with the existing procedure,
@ in terms of their Type I error and power rate.

&N

S

4. Empirical Investigation

For comparison with the work done by Othman et al. (in press), this paper focused
on an unbalanced completely randomized design containing four groups with small
samples. Since Sy is appropriate for skewed distributions, we chose the x3 distribu-
'~ tion for simulating the non-normality condition. The skewness and kurtosis values
for the x2 distribution are 1.63 and 4.00 respectively. This distributional shape
was chosen for reasons of comparability to the work. Type I error rates had been
found to be distorted when the underlying distribution is skewed, e.g., the case of
the two sample t-test in Sawilowsky and Blair (1992). Other conditions which are
known- to highlight the strengths and weaknesses of test for equality of location
are heteroscedasticity, and the pairing of variances and group sizes.

For this reason, only unbalanced designs and unequal variance of 36:1 ratio
will be considered (see Table 1). Variances and group sizes are both positively
and negatively paired. For positive pairings, the group having the fewest number
of observations was associated with the population having the smallest variance,
while the group having the greatest number of observations was associated with
the population having the largest variance, whereas for the negative pairings, the
group with largest observations was paired with smallest variance and the group
with smallest observations was paired with population having largest variance.
These conditions were chosen since they typically produce conservative results for
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TABLE 1. Design Specification for the Four Groups.

PAIRING | CROUP SIZES | GROUP VAR
11213 j4]1(2{3)4
POSITIVE {10{15(25;30| 1 [1[1] 36
NEGATIVE | 1015253036 (1]1] 1

TABLE 2. Type 1 Error rates.

| Distribution | Puairing | S1 with corres onding scale estimators

MAD, [ Q. | S, | 1, o

2 pos | 0.027 | 0.017 | 0.020 | 0.032 | 0.004
[ neg | 0.034 |0.010 | 0.026 ] 0.037 | 0.007
Normal pos | 0.025 | 0.012 | 0.021 | 0.023 | 0.017
“neg | 0.020 | 0.023 | 0.028 | 0.030 | 0.013

Average | 0.029 | 0.018 | 0.027 | 0.031 | 0.010

the positive pairings and liberal results for the uegative pairings (Othman et al.,
in press). We set the samples at ny = 10,no = 15,n3 = 25 and ny = 30 and
heterogeneous variances at 1,1,1, and 36 respeclively for pusitive pairings and 36,
1,1,1 respectively for the negative pairings.

Our choices of these extreme conditions (skewness, heteroscedasticity, and
unbalanced designs) were based on the premise that if a procedure works under
extreme conditions, it is likely to work under most conditions to be encounterad
by researchers.

"The random samples were drawn using SAS generator RANNOR (SAS insti-
tute, 1989). The variates were standardized, and then transformed to v} variates
having mean p; and variance UJ?. The design specification for the four groups is
shown in Table 1.

For Type I error, the group means were (0, 0, 0, 0). For power, one of the
group means will be non-zero. Cohen (1977) stated that for the effect size to be
uniquely determined, the pattern separation of the mcans should be specified.
Three patterns were identified, the minimum, intermediate, and maximnum vari-

. ability. Our study focused on the intermediate variability, where the J means were

equally spaced over the range. In this case, the group means were (=1, -0.5, 0.5,
1).

For each of the designs, 1000 datasets were simulated, and 599 bootstrap
samples were generated.

5. Results

The results for Type 1 error and power rates for the methods investigated were
outlined in Table 2 and Table 3, respectively.
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TARLE 3. Power rates.

Distribution | Pairing | 51 with corresponding scale estimmators |

MADn Qn Sn T, Q.
X3 pos 0.078 |0.059 ) 0.075 | 0.091 | 0.100
, _meg | 0.088 [0.064[0.082 0,102 0.131
Normal pos 0.403 {0.365 { 0.396 | 0,408 | (.588
neg | 0.227 [0.260 ] 0.221 | 0.278 | 0.715 |
Average | 0.199 | 0.187 | 0.194 | 0.220 | 0.384

Based on the liberal criterion of robustness (Bradley, 1978), a test can be
vousidered robust if its empirical rate of Type I error, & , is within the interval
0.5 < & < 1.5 For the nominal level @ = 0.05, the Type I error rate should
be between 0.025 and 0.075. The ewmpirical Type I error rates in Table 2 indicate
robustness in three of the methods investigated. MAD,,, S, and T}, produced av-
erage values ranging from 0.028 to 0.031, all within the Bradley’s liheral criterion.
These methods produced higher Type T error rates for skewed distribution com-
pared to the normal distributions. Even though the method using @, estimator
did not satisfy Bradley’s libcral criterion, the average error rate for both distribu-
tions were higher than the default .5; method (with &). The average valne for Q,,
was 0.018 while for & the average value was only 0.010. However, both methods
produced average Type I error rates which were considered to he too conservative,
meaning that the estimated rates of Type I error were below 0.025. & produced a
more conservative Type I error rate for skewed distribution.

For both distributions, the empirical Type I error rates for the positive pair-
ings were smaller than for negative pairings, except for the palrmgs for S, which
showed no variabilily when the data were skewed.

Our new methods, combining the Babu et al. (1999) §; and Rousseeuw and
Croux (1993) scale estimators were able to show some improvement over the de-
fault §; using & in terms of Type I error rate. The T, method . resulted in the
best average error rate of 0.031, which was nearest to the nominal level. All the
methods studied (excluding &) produced better average error rate for the skewed
distribution compared to normal distribution. The average error—rate-across the
three methods, MAD,,, §,, and T,, exhibited small variability for both distribu-
tions.

The average power values outlined in Table 3 show two sets of results. The
low values belong to the four methods when data were skewed, whereas the larger
values were obtained when data were normal. Ranging from 0.075 to 0.131, the
average power rate for the new methods under skewed distribution were low. The

average values when data were normal ranged from a low of 0.221 and to a high

of 0.408. The default S; under normal distribution resulted in an average value
rate of (.7. Even though the default S; under skewed distributions produced the
highest average power rate compared to the rest of the methods, the value of
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0.131 was still very low. The mean values across the four methods showed very
little variability for both distributiqps.

The negative and positive pairings for the skewed distributions did not show
much variability for each method, but for the normal distribution, the variability
was obvious for different pairings.

6. Conclusion

This paper focused on the situation, common in psychological and educational
research, where the observations are from skewed distributions. One requires sta-
tistics which are robust especially in locating treatment effects. Realizing the need
of a good statistic in addressing this problem, we integrate the 9; statistic by Babu
et al. (1999) with the high breakdown scale estimators of Rousseeuw and Croux
(1993). This paper has shown some improvement in the statistical solution of lo-

cating treatment effects. In controlling the Type T errar rate, the study reported in
this paper leads us to formulate the tollowmg conclugions and recommendations.
When symmetry is suspect, we can avoid itinuning or transforming the observa-
tions by using one of the methods in onr paper. These new methods produced
better Type I error rates than the default §, using @. Three of the investigated
methods, MAD,,, S, and T}, reasonably controlled Type I errors; the remaining
methods, @, and @, were conservative at a significance level of 0.05.

The methods are considered robust when they meet the criteria for robustness
with values in between 0.025 and 0.075 for 0,05 level,

The findings on power rate did not show any nprovement, from the previous
research done by Othman et al. (in press). Babu et al. (1999) in their investigation.
on exponential and log-normal distributions with 55 alqo produced low power rates
which were less than .10,
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