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Comparing the “Typical Score” Across 
Independent Groups Based on Different Criteria 

for Trimming 

S.S. Syed Yahaya1, A.R. Othman2, and H.J. Keselman3 

Abstract 

Nonnormality and variance heterogeneity affect the validity of the traditional tests 
for treatment group equality (e.g. ANOVA F-test and t-test), particularly when 
group sizes are unequal. Adopting trimmed means instead of the usual least 
squares estimator has been shown to be mostly affective in combating the 
deleterious effects of nonnormality. There are, however, practical concerns 
regarding trimmed means, such as the predetermined amount of symmetric 
trimming that is typically used. Wilcox and Keselman proposed the Modified One-
Step M-estimator (MOM) which empirically determines the amount of trimming. 
Othman et al. found that when this estimator is used with Schrader and 
Hettmansperger’s H statistic, rates of Type I error were well controlled even 
though data were nonnormal in form. In this paper, we modified the criterion for 
choosing the sample values for MOM by replacing the default scale estimator, 
MADn, with two robust scale estimators, Sn and Tn , suggested by Rousseeuw and 
Croux (1993). To study the robustness of the modified methods, conditions that 
are known to negatively affect rates of Type I error were manipulated. As well, a 
bootstrap method was used to generate a better approximate sampling distribution 
since the null distribution of MOM-H is intractable. These modified methods 
resulted in better Type I error control especially when data were extremely 
skewed.  
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1 Introduction 

Parametric procedures for testing the equality of central tendency measures, such 
as the ANOVA F-test and Student’s two-sample t-test, are adversely affected by 
nonnormality, variance heterogeneity, particularly when the design is unbalanced 
(i.e, groups sizes are unequal). Specifically, violations by any of these assumptions 
can seriously inflate Type I error rates; that is, spurious rejections of null 
hypotheses of equal means can increase. Nevertheless, the ANOVA F-test, for 
example, is often used in statistical practice even when the data suggest that 
population variances are unequal (Kulinskaya, Staudte, & Guo, 2003), and even 
though it is well established that the ANOVA is not robust when the homogeneity 
assumption does not hold (Wilcox, Charlin, & Thompson, 1986).   

In order to overcome the biasing effects of nonnormality and variance 
heterogeneity, alternative methods have been recommended. Cochran (1937), as 
noted by Kulinskaya et al. (2003), suggested weighting the terms in the sum of 
squares explained by the respective inverses of the sample variances, and provided 
a chi-square test for equal means based on a transformation of the ANOVA F-test. 
However, the design still has to be balanced. Kulinskaya et al. (2003) also noted 
that for unbalanced designs, the James (1951) and Welch (1951) procedures 
weight the terms (the sum of squares explained) by estimates of the inverses of the 
variances of the respective sample means. This weighted sum of squares for 
explained variance possesses an approximate chi-squared distribution under the 
null hypotheses of equal population means for large sample sizes. 

Nonetheless, even if the problem of unequal variances could be overcome, the 
assumption of normality must also be satisfied with classical procedures that 
employ the usual least squares estimates. Furthermore, although ANOVA is known 
to be robust to small deviations from normality, the extent of these deviations are 
unknown since there is no exact measurement of these violations or deviations, 
unless the sample size is large enough to guarantee normality.   

Nonparametric counterparts of these procedures, namely the Kruskal-Wallis 
and the Mann-Whitney tests, were developed to deal with such problems. 
However, these nonparametric procedures are more appropriate for nonnormal 
symmetric data. Furthermore, nonparametric procedures are frequently less 
powerful than parametric procedures, and, accordingly, require larger sample sizes 
to reject a false hypothesis. 

Violations to the homogeneity of variances and/or normality assumptions are 
common in the behavioural and social sciences (See discussions by Wilcox, 1997, 
2003). Thus, researchers should expect distortions of rates of Type I error for 
classical tests of mean equality. Robust statistical procedures, that is those that use 
non least squares estimators (e.g., trimmed means), are useful and viable 
alternatives to traditional methods as they have been shown to (typically) control 
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rates of Type I error (Keselman, et al., 2002; 2000; Othman et al., 2004; Syed 
Yahaya et al., 2004; Wilcox et al.1988; 2001). One such test, the MOM-H statistic, 
originally proposed by Wilcox and Keselman (2003), modifies the well-known 
one-step M-estimator and applies the estimates in a robust test statistic (to be 
defined). 

2 Methods 

One of the strategies adopted when dealing with extreme values is trimming.  
There are many trimming strategies, however, in this paper we consider two, 

namely, (1) trim a predetermined amount of the data and then compute θ̂ , a robust 
estimator, or (2) empirically determine the amount of trimming, trim that amount, 

and then computing θ̂ .  Trimming needs to be done carefully to avoid the loss of 
information during the process. For instance, when sampling from a light-tailed 
distribution, it might be desirable to trim very few observations, or if sampling is 
from a normal distribution, trimming might not be needed at all. For a right-
skewed distribution, a natural reaction is to trim more observations from the right 
versus the left tail of the empirical distribution.   

The usual approach to trimming outlying values is to trim symmetrically from 
each tail of the empirical distribution. By using this method of trimming, even 
observations from a normal distribution will be trimmed according to a 
predetermined amount such as 10% or 20% from each tail (in other words, 20% 
and 40% of the data are removed), when such distribution needs no trimming at 
all. Furthermore, any trimmed mean has a breakdown point (the number of 
extreme values that causes the estimator to inflate to an extreme value), which 
implies that a trimmed mean may not withstand large proportions of extreme 
values.  

To mitigate these drawbacks, Wilcox and Keselman (2003) introduced a robust 
estimator known as the Modified One-Step M-estimator (MOM). The MOM 
estimator empirically determines the amount, if any, of data to be trimmed, and 
results indicate that it competes well with methods based on symmetrically 
trimmed means with regard to Type I error control. Similar to the sample median, 
the MOM estimator is a robust central tendency estimator that possesses the 
highest breakdown point. Othman et al. (2004) used MOM as the central tendency 
measure in their work with a robust statistic (H) presented by Schrader and 
Hettmansperger (1980) (MOM-H). 
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2.1 MOM-H statistic 

The H test is defined as 

2
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This statistic is readily adaptable to any measure of central tendency and 
appears to give reasonably good results when using the Harrel-Davis estimator of 
the median. However, its use is not recommended for the comparison of means or 
even trimmed means (Wilcox, 1997).   

Othman et al. (2004) examined the operating characteristics of the H test 
statistic when testing for the equality of the “typical” score across treatment 

groups. However, they modified this statistic by replacing θ̂  with the MOM 

estimator (denoted as Mθ̂ ). The modified test statistic is known as MOM-H, and, 

as they indicated, this statistic can be used to test MJMMH θθθ === ...: 210  versus 

jMiMH θθ ≠:1  for at least one pair of (i , j). Othman and his colleagues found that 

MOM-H was quite effective in controlling rates of Type I error even though data 
were heteroscedastic and nonnormal in shape. 

In this paper, we modified the MOM-H statistic by substituting the default 
trimming criterion, incidentally the scale estimator, MADn, with two of the robust 
scale estimators suggested by Rousseuw and Croux (1993), i.e. Sn and Tn.  We 
chose these substitutions because these scale estimators possess higher breakdown 
points and, accordingly, they may be better for screening the data for extreme 
values. 

2.1.1 MOM estimator 

MADn is the default scale estimator used in the criterion for determining extreme 

values when computing Mθ̂ . Let ( )njjjj YYYY ,...,, 21=  be a sample from an unknown 

skewed distribution Fj and let jM  be the population median of Fj. The estimator as 

suggested by Wilcox and Keselman (2003) is defined as 
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     Y(i)j  = the i th ordered observations in group j  , 

     i1     =  the number of Yij  observations such that (Yij  – jM̂ ) < -  2.24(MAD
jn ), and  

     i2    =  the number of Yij  observations such tha  (Yij  – jM̂ ) >   2.24(MAD
jn ).  

2.1.2 Criterion for choosing the sample values       

From Equation 2.4 the criterion used to determine the number of extreme 
observations in each group j , centers around the indices i1 and i2, where i1 and i2 
are the number of extreme observations in the left- and right-tail, respectively. For 

a sample with no extreme value, wherein i1 = i2 = 0,  Mθ̂  is equal to the mean for 

the j th group. After eliminating the extreme values, calculate jMθ̂  and proceed 

with the calculation of the H statistic.  
The next section will briefly outline the scale estimators that were substituted 

for the default scale estimator, MADn. 

2.2 Scale estimators 

In searching for measures of scale, the breakdown value is of considerable 
practical importance as it constitutes one of the components in measuring 
robustness (Wilcox, 1997). The three scale estimators mentioned in this paper 
have the optimum breakdown value of 0.5. These scale estimators possess explicit 
formulae guaranteeing the uniqueness of the estimates. Moreover, they also 
contain bounded influence functions, a vital component of robust estimators. 
Another advantage of these estimators is their simplicity, making them easy to 
compute. 

For the following sections, let ( )nxxxX ,...,, 21=  be a random sample from any 

distribution and let the sample median be denoted as ii xmed .  

2.2.1 Sn 

Rousseeuw and Croux (1993) suggested alternatives to MADn that can be used as 
initial or ancillary scale estimates that are more efficient and as well are not 
slanted towards symmetric distributions.  One such estimator is Sn, defined as 

             { }jijin xxmedmedcS −=  .                                                        (2.5) 

This estimator is similar to MADn; the only difference between the two is that the 

jmed  operation is transferred to the outside of the absolute value. This makes Sn a 

location free estimator. Instead of measuring the deviation of observations from a 
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central value, Sn looks at a typical distance between observations. Another 
advantage is its explicit formula which means that this estimator is always 
uniquely defined. A modest simulation study by Rousseeuw and Croux (1993) 
found that a correction factor, c = 1.1926, succeeded in making Sn unbiased for 
finite samples. They also proved that Sn has the highest possible breakdown point. 
In terms of efficiency, Sn was proven to be more efficient (58.23%) than MADn 
(36.74%) with Gaussian distributions. 

2.2.2 Tn 

Another promising scale estimator proposed by Rousseeuw and Croux (1993) 
which possesses attractive robust properties is Tn , defined as 

                               { }∑ −=
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T                                             (2.6) 

It has been proven that Tn has a 50% breakdown point, a continuous influence 
function, and an efficiency of 52%, thus making it a better scale estimator than 
MADn. 

2.3 Bootstrap method 

Since the sampling distribution of MOM-H is unknown, the p-values were 
obtained by means of the percentile bootstrap method (See, e.g. Efron and 
Tibshirani, 1993). The bootstrap method is known to give a better approximation 
than one based on the normal approximation theory and is a suitable method 
especially when the samples are of moderate size (Babu, Padmanabhan, and Puri, 
1999). Keselman, Wilcox, Othman, and Fradette (2002) indicated that Type I error 
control could be improved by combining bootstrap methods with methods based 
on certain robust location measures. The basic idea of bootstrapping is that in the 
absence of any other information about a population, the values in a random 
sample are the best guide to the distribution, and resampling the sample is the best 
guide of what can be expected if the population is resampled. To obtain the p-
value using the percentile bootstrap method, the following steps are followed (See 
Wilcox, 1997):  

(1) Based on the available data, calculate the MOM-H statistic.   
(2) Randomly sample (with replacement), b 1, ,B= K bootstrap samples  from 

the data. 
(3) Each of the sample points in the bootstrapped groups must be centered at 

their respective estimated MOMs (i.e., jMijij YC θ̂** −= ). 
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(4) Let MOM-H*  (denoted as *MH ) be the value of MOM-H, when applied to 

the *
ijC  values. 

(5) Repeat Step 2 to Step 4 B times yielding *
B

** MH,...,MH,MH 21 . 

(6) Calculate the p-value as (# of >*
BMH  MOM-H)/B.   

 
These calculated p-values represent the empirical Type I error rates for the 

procedures investigated under the MOM-H statistic. 

3 Procedures and empirical investigatiosns 

Three tests for location equality (comparing the typical score across groups) were 
compared for their sensitivity to the effects of nonnormality and variance 
heterogeneity in an independent groups design comprising two or four groups. The 
three procedures that we investigated were:  

(1) MOM-H with MADn 
(2) MOM-H with Sn 
(3) MOM-H with Tn. 

 
In the remainder of this paper, each of these methods will be referred to by its 

respective scale estimator, MADn , Sn , and Tn . 
In studying the robustness of these procedures, four variables were 

manipulated, creating conditions which are known to highlight the strengths and 
weaknesses of tests for the equality of location parameters. The four variables 
were: (1) number of groups, (2) population distribution, (3) degree of variance 
heterogeneity, and (4) pairing of unequal variances and group sizes. 

Unequal group sizes, when paired with unequal variances, can affect Type I 
error control for tests that compare the typical score across groups. The total 
sample sizes and the group sizes for the case of two and four groups were N = 40 
(15, 25) and N = 80 (10, 15, 25, 30), respectively.    

Three distributions representing three levels of skewness (zero, mild and 
extreme) were investigated. The standard normal distribution represents a 
distribution with zero skewness. For nonnormal distributions, we chose the chi-

squared distribution with three degrees of freedom ( 2
3χ ) to represent mild 

skewness and the g-and-h distribution (Hoaglin, 1985) with g = 0.5 and h = 0.5 to 

represent extreme skewness.  The skewness and kurtosis values for the 2
3χ  

distribution are 1γ = 1.63 and 2γ = 4.00, respectively (Othman et al., 2004). The 

theoretical values for skewness and kurtosis of the g = 0.5 and h = 0.5 distribution 
are 1γ = 2γ = undefined. The purpose of choosing these extreme values is based on 

the premise that if a method performs well under large departures from normality, 
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then it offers some reassurance that it will perform well for distributions 
encountered in practice. 

In terms of variance heterogeneity, the largest and smallest variances differed 
by a 36:1 ratio. Though this ratio may seem extreme, similar and larger ratios have 
been reported in the literature (Keselman, Wilcox et al., 2004). Keselman et al. 
(1998), as cited by Keselman, Othman et al. (2004), noted that in a review of 
articles published in prominent education and psychology journals,  ratios as large 
as 24:1 and 29:1 in one-way and factorial completely randomized designs were 
observed. Wilcox (2003) cited data sets where the ratio was 17,977:1!  Thus 
although the ratio of 36:1 may appear to be large, it still seems to be a reasonable 
“potentially” extreme condition under which the efficacy of the tests should be 
examined. 

As indicated, unequal group sizes, when paired with unequal variances, can 
affect Type I error control for tests that compare the typical score across groups 
(Keselman et al., 2002; Keselman, et al., 1998; Othman et al., 2004). Therefore, 
we positively and negatively paired the sample sizes and variances. A positive 
pairing occurs when the largest group size is associated with the largest group 
variance, while the smallest group size is associated with the smallest group 
variance. On the other hand, in a negative pairing, the largest group size is paired 
with the smallest group variance and the smallest group size is paired with the 
largest group variance. Positive and negative pairings typically produce 
conservative and liberal results, respectively, for tests that compare measures of 
central tendency across groups. 

This study was based on simulated data. In terms of data generation, we used 
the SAS generator RANNOR (SAS Institute, 1999) to obtain pseudo-random 
standard normal variates. To generate the chi-squared variates with three degrees 
of freedom, three standard normal variates were generated and then squared and 
summed.   

Observations from a g-and-h distribution were generated by converting 
standard normal variables to random variables utilizing the following equation: 

                                            )2/exp(
1)exp( 2

ij
ij

ij hZ
g

gZ
Y

−
                                 (3.1) 

based on the values of g-and-h selected for investigation. Specifically, setting g = 
0, and h = 0, yields the standard normal distribution. The case g = 0 corresponds to 
symmetric distributions, and the tails of the g-and-h distribution get heavier as h 
increases, while the distribution becomes more skewed as g increases.   

The design specifications are shown in the following tables.   

Table 1:  Design Specification for Two Groups. 

PAIRING  GROUP      SIZES  POPULATION   VARIANCES 
  1 2 1 2 

POSITIVE   10 15 1 36 
NEGATIVE  10 15 36 1 
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Table 2:  Design Specification for Four Groups. 

PAIRING GROUP SIZES POPULATION  
VARIANCES 

 1 2 3 4 1 2 3 4 
POSITIVE 10 15 20 25 1 1 1 36 

NEGATIVE 10 15 20 25 36 1 1 1 

                         
In examining the Type I error rates the group location measures were set to 

zero.  For each condition examined, 5000 data sets were generated and within each 
data set, 599 bootstrap samples were obtained. The nominal level of significance 
was set at α  = 0.05. 

4 Results 

According to Bradley’s (1978) liberal criterion of robustness, a test can be 
considered robust if its empirical rate of Type I error, α̂ , is within the interval 

ααα 5.1ˆ5.0 ≤≤ . Thus, if the nominal level is α= 0.05, the empirical Type I error 
rate should be in the interval ˆ.025 .075α≤ ≤ . Based on this criterion of robustness, 
our preliminary analyses of the empirical values indicated some of the procedures 
we investigated were remarkably robust in the presence of heterogeneous and 
nonnormal data. Table 3 contains Type I error rates when we examined two 
groups, while Table 4 contains the 4J =  rates for MADn,  Sn, and Tn. Most 
noteworthy is that all of the empirical values in both tables were within Bradley’s 
(1978) interval; therefore, according to this criterion all the methods should be 
regarded as robust. 

However, in order to tease out differences between the procedures, we then 
adopted a more stringent criterion of robustness. In particular, the more stringent 
criterion considers a procedure to be robust if its empirical estimate of error is 
within the interval (.045 -.055). Values outside this interval are in boldface type in 
the tables. 

4.1 Two groups case 

The reader can note that by referring to the grand average (last row) of Table 3, 
which is the overall average for each procedure across distributions, all of the 
values fell within the stringent criterion of robustness; furthermore, the Sn 
procedure had a value (.0488) that was closest the nominal value.  Setting aside 
the results from the most extreme distribution (g = 0.5 and h = 0.5), the Sn 
procedure still produced an averaged value (.0556) closest to the nominal value 
compared to MADn (.0559) and Tn (.0608).  
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It should also be noted that the average values vary with the distributions 
investigated. Specifically, (1) for the symmetric distribution, every value fell 
within the (.045-.055) interval, (2) when data were chi-squared distributed, rates 
were somewhat larger though all in the robustness interval, and (3) when data were 
g-and-h distributed rates ranged from .0324 to .0370. 

Table 3: Type I Error Rates. 

Distribution Pairing MOM-H with corresponding scale estimators 
  MADn Sn Tn 
     

+ve .0496 .0510 .0502 Normal 
-ve .0470 .0440 .0482 

 Average .0483 .0475 .0492 
+ve .0626 .0624 .0718 2

(3)χ  
-ve .0642 .0648 .0732 

 Average .0634 .0636 .0725 

+ve .0328 .0370 .0354 g-and-h 
-ve .0324 .0334 .0328 

 Average .0326 .0352 .0341 
Grand 
Average 

 
.0481 .0488 .0519 

 
With regard to pairings of group sizes and variances, remember that Othman et 

al. (2004) found that positive pairings produced conservative values, while 
negative pairings generated liberal values. In contrast, the procedures we examined 
resulted in higher empirical estimates of error for positive pairings when data were 
either normal or g-and-h distributed. Thus, the current results are not in accord 
with those of Othman et al. (2004). Only when examining the procedures with chi-
squared data resulted in deflated empirical estimates for positive pairings. 

4.2 Four groups case 

The 4J =  empirical Type I error values are contained in Table 4. The grand 
average values are similar and close to the nominal .05 value, with nT  exhibiting 

the smallest discrepancy between empirical and nominal values, (i.e., .0496 vs. 
.05).  

Across distributional shapes, there were variations in the procedures that could 
be designated as “best”. However, when the results from the most extreme 
distribution (g = 0.5 and h = 0.5) were set aside we found that the Sn procedure 
produced an average value (.0576) closest to the nominal value compared to MADn 
(.0578) and Tn (.0593). 
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Table 4:  Type I Error Rates. 

Distribution Pairing MOM-H with corresponding scale estimators 
  MADn Sn Tn 
     

+ve .0486 .0478 .0486 Normal 
-ve .0520 .0540 .0542 

 Average .0503 .0509 .0514 
+ve .0646 .0642 .0694 2

(3)χ  
-ve .0660 .0642 .0650 

 Average .0653 .0642 .0672 
+ve .0292 .0268 .0286 g-and-h 
-ve .0286 .0308 .0316 

 Average .0289 .0288 .0301 
Grand 
Average 

 
.0482 .0480 .0496 

 
Specifically, when data were normal in shape, the empirical p-values for all 

procedures were well controlled, with MADn (.0503) emerging as the best 
procedure. On the other hand, when data were chi-squared distributed, the best 
results belonged to the Sn procedure (.0642), while for g-and-h distributed data, the 
Tn procedure emerged as best (i.e., .0301). As well, we note that across 
distributions, the empirical estimates of Type I error for the chi-squared and the g-
and-h distributions inclined towards liberal and conservative values respectively.               

Lastly, we note that the empirical p-values obtained from all procedures tested 
under the symmetric distributions were concordant with the findings reported by 
Othman et al. (2004) with respect to pairings of group sizes and variances. 
However, for the skewed distributions that we investigated, mixed results were 
obtained. In particular, when data were chi-squared distributed, MADn   resulted in 
higher empirical p-values and Tn resulted in smaller empirical p-values for 
negative pairings, while the Sn procedure resulted in equivalent values for both 
pairings. In contrast, when data were g-and-h distributed, when the pairing was 
negative, MADn resulted in a lower Type I error estimate, while the Tn  and  Sn 
procedures resulted in higher rates of error.     

5 Conclusion 

In this paper, we investigated the Type I error rates of three methods that can used 
to compare measures of the “typical score” across independent groups when data 
are neither normal nor homoscedastic. The procedures that were compared differed 
according to the estimate of scale that was incorporated as the trimming criterion 
for the MOM-H statistic originally described by Wilcox and Keselman (2003). The 
MOM-H statistic empirically determines the amount of data, if any, that should be 
trimmed from each tail of the empirical distribution. Thus, as noted by Othman et 
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al. (2004), MOM-H can be most reliable for examining differences between groups 
when data are nonnormal. In our investigation, we adopted MOM-H with the 
robust scale estimators suggested by Rousseuw and Croux, (1993).   

Our results indicated that all three procedures were robust with respect to Type 
I error control even though data were nonnormal and heterogeneous; that is, all 
rates were within Bradley’s stringent interval criterion (i.e., within the interval 
.045-.055). The minute variabilities between the empirical p-values across the 
procedures indicate that the procedures were on par with one another. However, 
when averaging rates of Type I error across the conditions investigated, the rank 
order of the tests with respect to the deviation of empirical from nominal rates, 
indicate that MOM-H with Tn was best, thus making it the procedure we 
recommend to researchers.  
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