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Scattered data interpolation problem deals with fitting of a smooth surface to a set of non-uniformly distributed data
points which extends to all positions in a domain. For instance, given f scattered data V ={(x; ,yi) , i=1,...n} € R?
over a polygonal domain ¢ and a corresponding set of real numbers 1Z; jf , we wish to construct a surface § which
has continuous varying tangent plane everywhere (typically G') such that S(x.,y.) Z;. Specifically in this paper, the
polynomial surfaces being considered belong to G' quartic Bézier functions over a triangulated domain. In order to
construct the surface, we first need to construct the triangular mesh spanning over the unorganized set of points, V which
will then have to be covered with Bézier patches with coefficients satisfying the G' continuity between patches and the
sum of squares of principal curvatures. Examples are also presented to show the extend of our proposed method.
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1. Introduction

Scattered data interpolation refers to the problem of fitting smooth surfaces through a non-uniform
distribution of data pomts. In practise, this subject is very important in various sciences and engineering
where data are often measured or generated at sparse and irregular positions. The goal of interpolation is
to construct underlying functions which may be evaluated at certain set of positions.

There are three principal sources of scattered data [Lee et al.(1997)] : measured value of physical
quantities (such as in geology and meteorology), experimental results ( in sciences and engineering) and
computational values ( in various applications of computer graphics and vision with functional data).

For the purpose of this paper, we will only focus on the scattered data from functions to be used by
our proposed method. We will construct a G' continuous surface which interpolates these given
functional data. The geometric continuity needed between adjacent parametric patches especially in the
case of Bézier patches has been given attention due to the free shape parameters which it provide and can
be used to construct and modify very complicated geometric objects. In practice, geometric continuity
avoids the usual dependence on the parameterisation of the constructed patches. The conditions required
for patches to be G"-continuous and subsequent construction of the corresponding G"-continuous surfaces
are amongst important topics in Computer Aided Geometric Design [Ye et al.(1996)].

Although several papers have dealt with G” interpolating surfaces [e.g. Loop(1994); Hahmann &
Bonneau(1999)], but very few are concerned with the scattered data interpolation as compared to the one
on C"-surfaces. We thus propose a method to construct an interpolating G! surface using a set of
scattered data in R® as well as provide examples to test the ability of this proposed scheme.

If we simply use G' continuity conditions, the resulting surfaces might have an undesired undulation
or over flatness. To overcome this problem, several global optimal fairness criteria of surfaces have been
introduced in various literatures. Amongst the earliest surface fairing aimed at minimizing faimess
criteria as an anology to the one for curve was based on the strained energy in a thin elastic plate which is
related to the total curvature in a surface, Thus, the resulting surface can then be approximated using its
geometric and curvature related properties [Nowacki & Reese(1983); Hagen & Schulze(1987)].

In this paper, we consider the method of sum of squares of principle curvatures, k,? + k,* where k;
and k, are the principle curvatures [Halstead et al.(1993); Kobbelt(1997)]. We can approximate the
objective function, k;* + k,? using a corresponding quadratic form and find the extremum of the integral
function with respect to the G' continuity conditions along the shared edges as a constrained function.

Quadratic functions can generate good surface fit to the data points. The range of applications can be
extended by using iterative procedures which will successively improve the parameter values assigned to
these data points.

We have chosen quartic Bézier triangular patches since degree 4 is necessary and sufficient to satisfy
the patch boundary interpolation constraints while at the same time allows some control points in the
interior of the patch to have certain freedom to be used for surface fairing.




This paper is organized as follows: Relevant background materials including the definition of quartic
Bézier form of triangular patches and G' continuity conditions between two adjacent patches at vertices
of triangle meshes are given in section 2; a method to construct surfaces using the sum of squares of
principle curvature is covered in section 3; examples are given in section 4 and finally in section 5, the
concluding remarks will be given.

2. Background
Let D be a two-dimensional region with (x,y) as the global coordinates system and z;, the corresponding
height at (x,y;) for i=1,2,...n. (x; y;) will be known as the data site while (x; ,y;, ;) as the data point. D is
divided into N triangle elements, D,, ¢ =1, 2, ..., N and (u,v), u,v € [0,1] are the local coordinates in each
triangle element. ’

The following known facts on triangular Bézier surfaces may be found in the literatures on curves
and surfaces for computer aided geometric design [see Farin(1992)].

2.1 Bernstein polynomial
The n* degree Bernstein polynomials over a triangle are defined by

Bl (v, W) = ;_’:k! u'v Wk o))

where u,v,w are barycentric coordinates such that  + v + w =/ and i+j+k = n.

2.2 Bézier triangular patches

The n® degree Bézier triangular patch is defined by
Payvw)= 2 buBj(4,v,w) @
i+j+k=n
where by are called Bézier ordinates of P. In this paper, we will use quartic Bézier triangular patches
(with n = 4), Each patch is defined by a control net of 15 vertices as shown in Figure 1.

With By, as the height of a control point, a quartic Bézier triangular patch can be represented by

Stvw) = Y By B (u,v,W) 3)
i+ j+k=4
where By = (i/4,j/4,5/4,by).

2.3 G continuity at vertices of triangular patches

Let T be a triangle on the x-y plane with vertices Vi(Xa, V) Va(Xes¥o), Vi(X.¥.) and barycentric
coordinates u, v and w such that any point V on T can be expressed as

V=uV;+vV,+wlV;, whereutvtw=1[and uvwz0. 4)

S interpolates the Bézier ordinates Bygg, Boso and Bggs at the vertices of V), V3, Vi of T respectively since
barycentric coordinates of these vertices are (1,0,0), (0,1,0) and (0,0,1).

We estimate the normal at each vertex using the surrounding triangles with a quadratic approximation
function,

Fley=ax’ +bxy +cy’ +dx +ey+f &)
where a, b, ¢ d, e and f are unknown coefficients.

Let the vertex Py of the triangular mesh surrounded by vertices {P;, P, . .. Py} and the height of the
vertices {Po, P; ... Py} be represented by {zy, z,,. . . ,zx}. We turn our attention to the vertex represented
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by (1,0,0) which corresponds to Po(Xo,yo). Other vertices can be dealt with in a similar way. We can
derive the first order partial derivative at Py as
Fy(xayo) =2axg+ by, +d and F,=bxy+ 2cyp+ e (6)

(1,0,0)

Figure 1: Quartic Bézier triangular patch and its control net

If we substitute the height of vertices 2, zy, . . ., Z into (5), we obtain a linear system

Uc=z | | D
where
[‘ 2 2 ] - - oA
X" X0 Yoo %o Yo 1 a A
xlz 00N J’lz xn 1 b %
U= ,C= °| and z=|"
d .
e
ERE A AR A L/ ] L2k ]

The values of a, b, ¢, d, e and f can be obtained by using the least square method

C=UU'UZ ®
and the values of F, and F, at vertex Py can then be calculated. :

Next, G' continuity conditions at the vertices of a triangular patch can be determined by using the
directional derivatives along the edges at vertex (1,0,0). Assuming that V, V;, V, and V; are located as
shown in Figure 2. The vertices V, ,V, and V; correspond to the barycentric coordinates (1,0,0), (0,1,0)
and (0,0,1) respectively. -
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VJ(XC: }’c)

V(x,y)

Vl(xm Ya) VZ(xba Yb)

Figure 2 : Vertices of a triangle element
V can be represented as in (4), that is,
(6.y) = ulxa yo) + v(xsys) + Wke Ve ).

Let ej;=(-1,1,0) and e;3= (-1,0,1) represent the direction of edges V,V, and V,V;; respectively. The
directional derivatives along e,; and e;3 at V, are

- » 2.
D,,5(1,0,0)=( F" au)Fx(xa)+( ™ 6u)F y(¥a)
= (Xp~ Xo)Fx (Xa) + (Yb-Y¥a JFy (%) ®
& o |
D, 5000)= (- Z)F, (5,)+(Z - 2)F, x,)
= (Xe- X)Fx (Xa) * (Ve-Ya JFy (Xa) (10)
From the same Bézier triangular patch, we also have
D, 5(1,0,0)= 4(=Bygo + B310) (n
D, 501,0,0)= 4(—Bygo + B301) (12)

From (9), (10), (11) and (12), we obtain

1
Bip= -ZD,”S(I,O,O)-F 3400 (13)

1
B;o; = —4— DeuS(l,0,0) + B400 (14)

Hence, using a similar method with the other vertices of the same triangle, we can determine B34, Bys),
B;ag and Bmg by the hEightS of data sites Bosw and By, ThUS, 9 control pomts Bmo, B(m), Boos B_.”o, Big,,
B30, Busi, Bjos and By;; are obtained with 6 more control points left to be determined.

2.4 G’ continuity between adjacent patches

Two patches with a common boundary curve satisfy G' continuity if both have continuously varying
tangent plane along the common curve. Figure 3 shows Bézier control points of two adjacent quartic
Bézier triangular patches. Hy and H, are given points (i.e. vertices of the triangular patches). Go, Fq, Hi,
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Gs, Hs and F; are points which are obtained by the patch gradients while G,, Fy, H,, G, and F; are the

unknown points.

We only have to consider the control polygon of {H;}, i =0, 1,...4 as the common boundary curve
and the two rows {G;},{F;}, i= 0, 1...3 which consist of the control points in each patch. Details of
derivation with regard to the G' conditions can be found in (Farin, 1992).

If the heights of {G;}, {H;}, {Fi} are {g}, {h;} and {f;} respectively, the conditions satisfying G
continuity between the two adjacent patches can be written as

ago + (1-)fo = Bho + (1-f)ly (15)
og; + (1-0)f; = Bhy + (1-B)h, (16)
ag, + (1-0)f = Bhy + (1-B)hs 'ty
ags + (1-0)f; = Bhs + (1-B)hy (18)

where a and B are constants.

H,

Figure 3 : Bézier control points of two adjacent quartic Bézier triangular patches with 2 common
boundary curve

Since the values of gy fj, #a h, g3 h3, hyand f; are already known, o and B can thus be determined
from (15) and (18). (16) and (17) can also be written as

£
4/
al-a 0 0 -1+f by |
l:o 0 g2 =[ ] (19)
a l-a -5 (1-Ph,
/2
©y

We obtain a linear system Ax = b where A is a (2 x 5) matrix with rank(A) = 2 and we can solve this
system in term of 3 free parameters, f), and A;, that is,

593



g =§[ﬂhl + A= Bk - A=) fi],

g2= == Lfh; + (- Ak - (=) f). 20)

If these free parameters can be determined adequately, all the control points By in Bézier control net will
be known for the surface to be G' continuous.

In general, we can obtain (16) and (17) on all shared edges over the whole triangular mesh. We can
form a linear system Ax=b where A is a (M x N) matrix (with M<H) and rank(A) = M.

3. Surface With Sum Of Squares Of Principle Curvartures

We will take as a surface fairing objective, the integral of the sum of squares of principle curvartures over
a smooth surface §

(St = [[ h? +k" dedy 1)
where k; and k; are the principle curvartures and D represents the whole surface.
We can approximate (21) by
186N = [[ 5o +25,°+5," dudy . )

Our goal is to find the function S(x,y) which will minimize the integral I(S). We will assume that the
whole surface S is constructed by a collection of Bézier triangular patches with each patch defined as in
(3). We can represent each patch as a convex combination of 15 control points

15

Stuvw) =Y Bigp (v, W), (23)

k=

where t =1,2...M (M is the number of triangles in a mesh),

{B{,B,Bi,...,Bis}= (Bl B0 Biro.Bbuos Bior Bbsr Bios: Bons, Bioa» Bizo. Bats

By, By, Bl B

@1, Grroonhis) = i, 40, 40V, V', 4w, &, duw’, oW, W, GV, 12u'vw, 12uvw, 6w , 121w/,
6w }.

Let I(S'(u,v,w)) be a functional defined in a triangle element D,, such that we can rewrite (22) as

) M
[Stoy)) =) I1(S" (v, w))

=
i '

=D [, (5 )2 +285)* +(55,)" dxdy @4)
1=l =

Using the parametric transformation from global coordinates (x,y) to the local coordinates (u,v), we can
transform the double integral terms of second order partial derivatives of S with respect to u and v,

S!,,S!, and S}, and rewrite (24) as

8(x,¥)

o(u,v)

dudv (25)

M -v
sty Y[ [ 6 @)
=1
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where

oy ay
ou,v)] oSudv ovou

2 2
f t ot i ot ! t of t t ot
G u,v)=c1S,, + 38,8, + 38,8, + 4SSy

un

2
+cLS 80, +ciSt,, with ({¢}},j=12,..,6 as constants).

o(x,y)
o(u,v)
B'Q,(B')" where B'is a (1 x 15) matrix represented by [Bf B Bj ... Bls] and Q is a (15 x 15)
matrix with its (i,j) entry defined as

1 el
In matrix form, the functional I(S‘(w,v,w)) = .[o.‘;) "G (u,v) dudv can be represented as

[0:15= €1 B @i + €2 B @) + €58 B0 + €48 (B)un
+ c;(¢i)uv (¢J)vv +Cé (¢i)w(¢j)w) ({C;},_] =1,2,...,6are constants).

Therefore, (25) can now be written as,

M
ISy)= Y B'Q,B") . (26)

=1
The right hand side of (26) is in quadratic form with n Bézier coefficients unknown. We can also rewrite
I(S¢x,y)) using a matrix-vector representation
I(Stx,y))= 7' Dz + ez+ c,
A 2n
where D is a real (n x n) symmetric matrix, e is a (1x n) row vector, z is a (n X 1) column vector
representing the unknown Bézier points for the entire triangular mesh and ¢ as a real constant.
In order to find a function S(x,y) which will minimize I{S(x,y)) lead us to an optimisation problem of
z' Dz + ez + ¢ subject to the G' continuity constraints Ax = b.
To solve for the required values of z, we can use an optimization toolbox in MATLAB software and
obtain the coefficients of S'(x,v,w) in (23). The interpolated G' surface with the sum of squares of
principle curvartures optimized can.then be constructed.

4. Examples

The proposed method has been tested using the following two test fanctions,

fy) = -8-x247, (xy) € [-5,51x[-5,5], gbry) = ¥ +xy + 3%, (x.y) € [-10,10x[-5,5).

For simplicity, we choose only 4 points from each test function and the two-dimensional region (x,y) is
divided into triangular elements using the Delaunay triangulation method. For each triangular patch, the
corresponding surface was constructed based on the proposed method using MATLAB 7 sofware. The
test functions are illustrated in Figures 4 and 5 respectively together with the generated G' continuous
surfaces just for comparisons to the one which we have obtained using both method of sum of squares of
principle curvature and G' continuity conditions.
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©)

Figure 4 : (a) Test function f (b) G' surface interpolation with sum of squares of principle curvarture
(c) G* surface interpolation only

(©)

Figure 5 : (a) Test function g (b) G' surface interpolation with sum of squares of principle curvarture
(¢) G' surface interpolation only

5. Conclusions

This paper describes an approach to construct smooth interpolating surfaces using a combining method of
the sum of squares of principle curvarture with the G' continuity conditions between adjacent patches.
The examples show that the surfaces obtained are fairer compared with surfaces which are constructed
based on just G' continuity conditions.
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