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Two statistics for testing the equality of central tendency measures under conditions of
variance heterogeneity and non-normality, i.e. S; and MOM-H, were compared in the
context of a one-way completely randomized design. Both statistics were matched with
two highly robust scale estimators: MAD,, and 7. For the S; statistic, MAD,, and T,, were
used as scale estimators. For MOM-H, they were used as the trimming criterion for the
modified one-step M-estimator (MOM), the central tendency measure for the MOM-H
statistic. The tests proved to be robust to our conditions of variance heterogeneity and
non-normality.
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1.0 Introduction

In comparing measures of location for two or more groups, the classical methods, i.e.,
Student’s two-sample -test and the ANOVA F-test, are among the most commonly used
statistical methods in the one-way independent groups design. However, these methods
are adversely affected by non-normality, particularly when variances are heterogenous
and group sizes are unequal (Lix and Keselman, 1998). Violating the assumptions
associated with these methods will cause their Type I error and power rates to be
distorted. The Type I error rates will be inflated (liberal) from the nominal value,

resulting in spurious rejections, and power rates can be substantially reduced from the



theoretical value, resulting in true effects being missed. Even though it is well established
that the ANOVA (and ¢) is (are) not robust if the homogeneity assumption does not hold
(Wilcox et al., 1986), it (they) is (are) often used by applied researchers even when the
data suggest that population variances are unequal (Kulinskaya et al., 2003). It is also
well known that a slight departure from normality can have a substantial effect on power
for these methods (Sawilowsky and Blair, 1992; Wilcox, 1995).

In an effort to overcome the deficiencies associated with the # and ANOVA F-
tests, researchers continue to seek alternative methods. For example, Cochran (1937)
suggested weighting the terms in the sum of squares explained by the respective inverses
of the sample variances, and he provided a chi-squared test for equal means based on a
transformation of the ANOVA F-test. However, the design has to be balanced (i.e., equal
sample sizes per group). For unbalanced designs, James (1951) and Welch (1951) had
suggested weighting the terms in the sum of squares explained by estimates of the
inverses of the variances of the respective sample means. This weighted sum of squares
has an approximate chi-squared distribution under the null hypothesis of equal population
means for large sample sizes. Even if the problem of unequal variances could be
overcome, non-normality may still be problematic for the classical and some alternative
methods. The purpose of our paper therefore was to examine other methods that may be
adopted to compare measures of the typical score across independent groups when data
are neither normal in form nor variances equal across groups.
2.0 Test Statistics

In searching for an alternative approach in testing central tendency measures in

the one-way independent groups design, we suggested two robust procedures. The first



was the Sy statistic by itself, not in the adaptive manner as originally proposed by Babu et
al. (1999). The second was the MOM-H statistic proposed by Othman et al. (2004). These
statistics were combined with selected robust scale estimators. Based on the proposed
robust scale estimators by Rousseeuw and Croux (1993), one of the scale estimators we
used, 7, has the highest breakdown point and a bounded influence function.
Additionally, we were also interested in MAD,, one of the most popular robust scale
estimators, based on its robustness. We incorporated these scale estimators with .Sy and
found that the method pr;)vided good Type I error control when data were generated from
moderately skewed distributions (Syed Yahaya et al., 2004a; 2004b). Babu et al. (1999)
proposed using the S) statistic in order to overcome non-normality and variance
heterogeneity. With this statistic one does not need to trim data.

| Another way of dealing with skewed data is by trimming data from the tails of a
distribution. Working with actual data, Wilcox et al. (2000) found that power can be
greatly increased and control over the probability of a Type I error can Be better by
comparing trimmed means versus means. However, there are practical concerns
regarding trimming and accordingly with comparing trimmed means rather than the usual
least squares means, as is the case with ANOVA. One issue is that by assumption, the
amount of trimming is fixed prior to analyzing the data. Another concern is that trimming
is typically assumed to be symmetric. Given these concerns, researchers are faced with
the issue of determining the best percentage of trimming and from which tail(s) should
the trimming occur. For example, if sampling is from a light-tailed distribution or normal

distribution, it might be desirable to trim very few observations or perform no trimming



at all. If the distribution is skewed, a natural reaction is to trim more observations from
the skewed side of the empirical distribution.

Wilcox et al. (2000) suggested modifying the one-step M-estimator (MOM) as a
means of addressing the issue of how much of the data should be trimmed and from
which tails, if any, the data should be trimmed. This central tendency estimator, like a
trimmed mean, can be applied to a test statistic in order to investigate the equality of
central tendency measures across treatment groups (Keselman et al., 2002; Othman et al.,
2004). By using a statistic mentioned by Schrader and Hettsmansperger (1980), examined
by He et al. (1990), and discussed by Wilcox (1997), Othman et al. (2004) proposed a
method known as MOM-H which uses MOM as the central tendency measure.

2.1 S1 Statistic

Consider the problem of comparing location parameters for skewed distributions.
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S; is the sum of all possible differences of sample medians from the J distributions
divided by their respective sample standard error, @. Therefore, if there are J
distributions, the number of possible differences equals J(J — 1)/2.

When dealing with skewed distributions, the parameter of interest is therefore the
population median. As stated in the formula, S; uses the median as its central measure.
Therefore, in the case of skewed distributions, S; seems to be a suitable procedure for
comparing the typical score (median) across independent groups.

2.2 MOM-H Statistic
MOM-H is a procedure that uses a statistic originaily proposed by Schrader and

Hettmansperger (1980) known as the H test. The test is defined as
1 ¢ A
H=—=>"n(6,-6.y, [2.4]
where N = an and
-
6.=5.6.1J.
J

This statistic is readily adaptable to any measure of central tendency but not
recommended for means or trimmed means (Wilcox, 1997).

Othman et al. (2004) used the H statistic when comparing the typical score across
treatment groups. However, they modified this statistic by replacing & with the MOM
(denoted as éM ). The modified test statistic is known as MOM-H, and the goal of this

statistic is to test H,: 6,,, =6, =...=6,, versus H,:0,,#6,, . for at least one pair of (,




J). Keselman et al. (2002) found that rates of Type I error for MOM-H were not affected
when data were skewed.
221 MOM estimator

MAD, is the default scale estimator used in the criterion for determining extreme values

when computing éM. Let ¥, = (Y1 Ine J.,...,Ynj) be a sample from an unknown skewed

distribution F; and let M, be the population median of F; . The estimator as suggested

by Wilcox and Keselman (2003) is defined as

5 & Yy,
gMj = Z . . > [2.5]
i=ij+1 nj -4 -

where

Y= the ith ordered observation in group j,

i = the number of Y;; observations such that (Y -M ;) <-2.24( MAD,,J_ ), and

i = the number of Y observations such that (¥;; — M ;) > 2.24( MADnj ).

2.2.2 Criterion for choosing the sample values
From Equation 2.5, the criterion used to determine the number of extreme observations in
each group j, centers around the indices #; and i, where i; and i, are the number of

extreme observations in the left- and right-tail, respectively. For a sample with no
extreme values, wherein i; = iy = 0, éM is equal to the mean for the jth group. After
eliminating the extreme values, calculate éM , and proceed with the calculation of the /7

statistic.
The next section will briefly outline the alternative scale estimators that were used

as substitutes to the default scale estimators in the previous two statistical tests.



2.3 Scale estimators

In searching for measures of scale, the breakdown value is of considerable practical
importance as it constitutes one of the components in measuring robustness (Wilcox,
1997). The scale estimators defined in this paper have the optimum breakdown value of
0.5. These scale estimators possess explicit formulas guaranteeing the uniqueness of the
estimates. Moreover, they also contain bounded influence functions, a vital component of
robust estimators. Another advantage of these estimators is their simplicity, making them

easy to compute.

For the following sections, let X = (x,,x,,...,x,) be a random sample from any
distribution and let the sample median be denoted as med,x, .

2.3.1 MAD,
A very popular and robust scale estimator is the median absolute deviation about the
median, given by

MAD, = b med,|x, — med x| . [2.6]

The constant & in the formula is needed to make the estimator consistent for the
parameter of interest. For example, if observations are randomly sampled from a normal
distribution with b = 1, the estimator does not estimate o, the standard deviation, instead,
it estimates 0.6745a. To posit MAD, in a more familiar context, it is typically rescaled
so that it estimatés o when sampling from a normal distribution. In this case, set b =
1.4826.

MAD,, is simple and easy to compute and its extreme sturdiness makes it ideal for

screening the data for extreme values in a quick way by computing



x, —med x;
MAD
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>K [2.7]

for each x; and flagging those x; as extreme when the statistic exceeds a certain cut off
point. MAD,, has the best possible breakdown point, and its influence function is bounded
(Rousseeuw and Croux, 1993). Huber (1981) identified MAD, as the single most useful
ancillary estimate of scale due to its high breakdown property.

232 T,

Another promising scale estimator proposed by Roussecuw and Croux (1993) which

possesses the attractive properties of a robust scale estimator is 7, , defined as

h
T, =1.380012{med
=

J#i

X, — X j|} . [2.8]
(k)

It was proven that 7, has the highest breakdown point (50%), a continuous influence
function, and an efficiency of 52%, which makes it more efficient than MAD,. This
estimator has a simple and explicit formula which guarantees uniqueness and it is suitable
for asymmetric distributions.

Taking into consideration all the attractive properties attached to the scale
estimators, such as the breakdown point, continuous influence function, and efficiency, it
was therefore decided that these estimators would be used as the scale estimator for S;
and as a criterion for choosing the sample values for MOM-/1.

2.3 Bootstrap Method
Since the sampling distributions of S; and MOM-H are unknown, Babu et al. (1999),
followed by Othman et al. (2004), used the bootstrap percentile method for obtaining the

p-values in their studies. According to Babu et al. (1999), the bootstrap method is known



to give a better approximation than the one based on the normal approximation theory,
and this method is attractive, especially when samples are of moderate. Taking into
consideration the intractability of the sampling distributions of S; and MOM-H, and the
reliability of the bootstrap method, the percentile bootstrap method (see, e.g. Efron and
Tibshirani, 1993) was utilized to assess the statistical significance (p-value) of each
procedure in our study.
3.0  Procedures and Empirical Investigations
S1 and MOM-H, were combined with the two highly robust scale estimators. Specifically,
the following methods were investigated:

1. St with MAD,,

2. St with 7,

3. MOM-H with T,, ,
and the default methods for S; and MOM-H, that is,

4. S1 with @ and

5. MOM-H with MAD,, .
In the remainder of this paper, each of these procedures will be referred to by its
respective scale estimator, MAD,, and T,,.

Four variables were manipulated: (1) number of groups, (2) population
distribution, (3) degree of variance heterogeneity, and (4) pairing of unequal
variances and group sizes.

Investigations were done on completely randomized designs containing two (J =
2) and four unbalanced groups (J = 4) since previous research had utilized similar designs

(Lix and Keselman, 1998; Othman et al., 2004; Yuen, 1974). By analyzing these two



cases, we are able to compare the effect of the number of groﬁps on the Type I error rates
of the investigated procedures.

In invéstigating the effects of distributional shape on rates of Type I error, three
distributions representing different levels of skewness were considered. The standard
normal distribution represents a distribution with zero skewness. In addition, two non-
normal distributions were also analyzed. They were the chi-squared distribution with

three degrees of freedom and the g-and-# distribution with g = 0.5 and 2 = 0.5. We chose
the chi-squared distribution ( 77 ) to represent mild skewness and the g-and-A distribution
(Hoaglin, 1985) to represent extreme skewness. The skewness and kurtosis values for the
%, distribution are y,= 1.63 and y, = 4.00, respectively (Othman et al., 2004). On the

other hand, the respective theoretical values for skewness and kurtosis of the g-and-A

distribution are y, =y, =undefined. The purpose of selecting the extreme g and h

distribution is based on the assumption that if a method performs well under seemingly
large departures from normality, then it can be safely assumed that the method will also

perform well for distributions of lesser skewness.

Variance heterogeneity is one of the two major problems researchers typically
encounter when testing the equality of location measures. The classical ANOVA F-test
(as well as the two-sample f-statistic) is (are) known to yield misleading results when
there exist different population variances (Kulinskaya et al., 2003). To investigate the
effect of variance heterogeneity on Type 1 error rates, variances with a 1:36 (J = 2) or
1:1:1:36 (J = 4) ratio were assigned to the groups. Though this ratio may seem large,

larger ratios have been reported in the literature (Keselman, Wilcox et al., 2004).



When unequal variances were paired with unequal sample sizes, negative and
positive pairings were formed. A positive pairing involves pairing the largest number of
observations with the largest variance and the smallest number of observations with the
smallest group variance. For the negative pairing case, the largest group of observations
was paired with the smallest group variance, while the smallest group of observations
was paired with the largest group variance. It should be noted that pairings of sample
sizes and variances do have an éffect on Type 1 error rates (Keselman et al., 1998;
Keselman, Othman et al., 2004; Othman et al., 2004). Positive and negative pairings
typically produce conservative and liberal results, respectively (Othman et al., 2004).

The programs and simulations were run using the SAS/IML language. The random

samples were generated using the SAS generator RANNOR (SAS Institute, 1999). The
variates transformed to g2 and g-and-# variates and then standardized. In examining the

Type I error rates, the group location measures were set to zero and group variances
factored into the variates. For each condition examined, 5000 data sets were generated
and within each data set, 599 bootstrap samples were obtained. The nominal level of
significance was set at a = .05..

4.0  Results

To evaluate the particular conditions under which a test is insensitive to assumption
violations, Bradley’s (1978) liberal criterion of robustness was employed. "According to
this criterion, a test is considered robust if its empirical rate of Type I error (& ) lies in the
0.5a < @ < 1.5 interval. Therefore, for the 5% level of statistical significance used in
this study, a test was considered robust, in a particular condition, if its empirical Type I

error fell within the (.025-.075) interval.



4.1 S1 Procedures for J=2
The empirical Type I error rates are contained in Table 4.1. The Grand Average in the

last row of the table, which represents the overall performance of a procedure, shows that

Table 4.1: Type I Error Rates (J = 2; unbalanced design)

Distribution | Pairing S with corresponding scale estimators
MAD,, T, @

Normal +ve .0524 0534 .0448
-ve .0564 0532 0422
Average 0544 0533 0435

Chi-sq +ve .0408 .0406 .0426
-ve .0440 .0374 0390
Average 0424 .0390 L0408

g-and-h +ve 0294 0286 0192
-ve 0314 .0242 0156
Average .0304 0264 0174

Grand

Average L0424 .0396 .0339

the corresponding p-values satisfy Bradley’s (.025 to .075) interval for robustness.
Therefore, all the procedures were found to be robust. The average value for the MAD,
(.0424) procedure was the closest to the nominal level. In comparing the original S (i.e.
with &) against the modified S; procedures, it clearly can be seen that the MAD,
procedure performed exceptionally well across the three distributions, producing Type I
error rates which were closest to the .05 nominal value. With regard to variance and
group size pairings, except for MAD,, the other procedures generated higher p-values for

positive pairs across the three distributions investigated.



4.2 S1 Procedures for J=4

Table 4.2 contains the Type I error values for the four groups unbalanced design. One can
observe from the table that none of the grand average p-values were within the (.025-
.075) interval; that is, none of the procedures can be considered robust under Bradley’s
criterion of robustness.

Table 4.2: Type I Error Rates (/= 4; unbalanced design)

Distribution | Pairing S with corresponding scale estimators
MAD, T, @

Normal +ve .0248 0244 .0278
-ve .0268 .0260 0302
Average 0258 .0252 .0290

Chi-square | +ve 0236 .0264 .0246
-ve 0324 0330 .0278
Average 0280 .0297 0262

g-and-h +ve .0188 .0174 .0078
-ve .0206 0194 .0102
Average 0197 0184 .0090

Grand

Average .0245 0244 .0214

However, if we compare these values with the values of the original S; (&) procedure,
the modified S, procedures using scale estimators MAD, and 7, generated better
empirical Type I error rates. Although, the overall performance of the modified
procedures proves to be better than the original Sl procedure, the p-values of .0245 and
.0244 for MAD,, and T, respectively, are slightly conservative with regard to Bradley’s
criterion,

In general, our results indicate that the MAD,, procedure was as good as the T,
procedure when date were obtained from skewed distributions. Although MAD, adopts

a symmetric view on dispersion, the results indicate that it functions effectively under



skewed conditions and was found to be the best procedure under extreme conditions of
non-normality. In contrast, the original S statistic (with @) only performed well under
symmetric conditions, and was the least effective procedure under extreme conditions.

43  MOM-H Procedures for J =2

All the J = 2 Type I error values contained in Table 4.3 are within the (.025-.075)
interval.  Accordingly, all the procedures are robust under Bradley’s criterion for

robustness.

Table 4.3: Type I Error Rates (J = 2; unbalanced design)

Distribution | Pairing | MOM-H with corresponding scale
estimators
MAD, T,

Normal +ve .0496 .0502
-ve .0470 .0482
Average 0483 0492

Chi-sq +ve 0626 0718
-ve 0642 .0732
Average 0634 0725

g-and-h +ve .0328 .0354
-ve .0324 .0328
Average .0326 .0341

Grand

Average 0481 0519

Based on the Grand Average values, the MAD,, procedure generated an average value .
closest to the .05 nominal level, with a p-value of .0481. However, across distributional
shapes, T, seems to be the better procedure for symmetric and extremely skewed
distributions, while MAD, performed best for the mildly skewed distribution
investigated. All the values obtained when sampling from the symmetric distribution

were not only robust, but they also satisfied Bradley’s stringent criterion of robustness



which requires the values to be within a (.045-.055) interval. For the chi-squared
distribution, all the empirical Type I error rates tended to be above the nominal .05 value;
nonetheless, they were still within the interval. The procedures examined under the g-
and-£ distribution also produced good Type I error rates, ranging from .0324 to .0370.
With regard to variance and group size pairings, the procedures, examined under
the normal and g-and-4 distribution, generated higher p-values for positive pairings.
These results are not consistent with the results reported by Othman et al. (2004), where
they observed that positive and negative pairings produced conservative and liberal
results, respectively. Only the procedures tested under the chi-squared distribution

produced lower p-values for the positive pairing case.

44  MOM-H Procedures for J= 4

Table 4.4 contains the empirical Type I error rates for the four groups case. Of
particular significance was the finding that all p-values were within Bradley’s (.025-.075)
interval.

Table 4.4: Type I Error Rates (J = 4; unbalanced design)

Distribution | Pairing | MOM-H with corresponding scale
estimators
MAD, T,

Normal +ve .0486 .0486
-ve .0520 .0542
Average L0503 0514

Chi-sq +ve .0646 .0694
-ve .0660 .0650
Average .0653 0672

g-and-h +ve .0292 .0286
-ve .0286 .0316
Average .0289 0301

Grand

Average L0482 .0496




The Grand Average values, are consistent and close to the nominal level of .05, with the
T, procedure being closest, i.e., with a p-value of .0496. Across distributional shapes,
there was variation in which procedure could be described as best. When data were
obtained from the normal distribution, the p-values for the procedures were well
controlled, with MAD,, (.0503) emerging as the best procedure. Likewise, for the chi-
square distribution, MAD,, provided the best control with an empirical Type I error rate
of .0653. For the g-and-A distribution, 7, provided better control (i.e., .0301). In addition,
we found that the p-values for the chi-squared and the g-and-4 distributions tended
generally to be liberal and conservative, respectively.

For the variance and sample size pairings, it should be noted that the p-values
obtained from all the procedures examined under the s.ymmetric distributions are in
agreement with the findings from Othman et al. (2004). However, for the skewed
distributions, we obtained mixed results. For example, for chi-squared distributed data,
MAD, resulted in higher p-values, while T, resulted in lower p-values for negative
pairings. In contrast, when data were g-and-% distributed, and the pairing was negative,
MAD, resulted in lower p-values, while larger p-values were found for the 7, procedures.
5.0 Conclusion

In our investigation we compared a number of procedures which can be used to
compare the typical score across independent groups of subjects when data are non-
normal and variances are unequal. Two statistics, S; and MOM-H, exhibited good control
of their Type I error rates; however, MOM-H had better rates of error for both designs
investigated (J =2 and J = 4). The MOM-H procedures, when data were normal, satisfied

Bradley’s stringent interval of robustness criterion (.045-.055), whereas most of the S;



statistics were within this interval only when J = 2. For chi-squared distributed data, even
though all the MOM-H and S; procedures were robust, the Type I error rates differed
between the two statistics; MOM-H empirical rates tended to towards the liberal end of
the continuum while the S; values tended toward the conservative side of .05. Because we
believe it is generally important to control the rate of Type I error, procedures with
conservative values are preferable to those with liberal values. Therefore, under mild
conditions of skewness, the S; statistics we investigated would be preferable. For data
that is more substantially non-normal (i.e., skewed -- the g-and-% distribution), MOM-H
performed exceptionally well, providing good Type I error rates. On the other hand, none
of the S procedures were robust for J = 4, and only two procedures, MAD,, and 7, were
robust for J = 2 with p-values of .0304 and .0264, respectively. Therefore, when working
with extremely skewed data, the MOM-H procedures seem preferable.

Our goal was to search for some alternative methods for testing the equality of
location measures when data are obtained from skewed distributions. In this final section,
we would like to share some of the advances that emerged from our investigation.
Modifications to the S; and MOM-H statistics successfully improved the performance of
the two statistics in terms of Type I error control. The original S; procedure performed
well when data were obtained from a symmetric distribution; however, its rate of Type I
error was not well controlled when the degree of non-normality was more extreme. On
the other hand, S; with 7, or S} with MAD,, proved to be much more effective with regard
to Type I error control and thus should be considered as viable statistics to be adopted,

particularly for testing the equality of two groups.



When there are more than two groups, that is, when J = 4, we recommend the
MOM-H procedures - the best results were found for the MOM-H with T7,. This
procedure performed remarkably well for symmetric and extremely skewed distributions.
However, it should be noted that, when observations are mildly skewed, the use of this
procedure might result in slightly inflated Type I error rates (from the .05 level).
Nevertheless, the p-values observed in this study showed that they are still within
Bradley’s definition of robustness. Therefore, when dealing with mildly skewed
distributions any of the S; procedures will be a good alternative. Similarly, for J = 2, the
MOM-H procedures performed exceptionally well under symmetric and extremely
skewed distributions. However, for mildly skewed distributions, we suggest any of the S;
procedures, especially S; combined with the MAD, scale estimator. When researchers
suspect that their data is extremely skewed, in a manner similar to the characteristics of
the g-and-4 distribution (g = 0.5 and /4 = 0.5), then clearly, it will be advantageous to
adopt one of the MOM-H procedures.

It is our impression that applied researchers would prefer a method that compared
treatment performance across groups with a measure for the typical score which is based
on as much of the original data as possible. S; will be the best choice for this purpose.
Moreover, no trimming or transforming of the data is needed when using this statistic,
meaning that one can save all the information that might have been lost if trimming had
been applied. However, if the data need to be trimmed, one can avoid unnecessary
trimming by usihg one of the MOM-H procedures. These procedures empirically
determine whether observations, if any, should be trimmed, as well as where (which tail)

the data should be trimmed from.
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