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Abstract

One of the mawmn focus of scattered data mterpolation
18 fitng a smooth surface to a set of non-umiformly
distributed data points which extends to all positions in a
prescribed domam In this paper, given a set of scattered
data V={(x,,y),1=1, ,n}€ R’ over a polygonal domam

and a corresponding set of real numbers {z, }:1=1 we wish

fo construct a surface S which has continuous varying
tangent plane everywhere (G') such that S(x,y) = z,

Specifically, the polynomal being considered belong to
G quartic Bézier functions over a triangulated doman

In order to construct the surface, we need to construct the
triangular mesh spanming over the unorgamzed set of
pomnts, V which will then have to be covered with Bezier
patches with coefficients satisfying the G' continuity
between patches and the mimmized sum of squares of
prncipal curvatures Examples are also presented to
show the effectiveness of our proposed method

1. Introduction

Scattered data nterpolation refers to the problem of
fiting smooth surfaces through a non-umform
distnbution of data pomnts In practice, this subject 1s very
mportant 1n various sciences and engineering where data
are often measured or generated at sparse and irregular
positons The goal of imterpolation 1s to construct
underlying functions which may be evaluated at certain
set of positions

There are 3 principal sources of scattered data [10]
Mmeasured value of physical quantities (such as geology
and meteorology), experimental results (1n sciences and
tngmeenng) and computational values (in various
applications of computer graphics and wvision with

Ctional data)
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For the purpose of this paper, we will only focus on
the scattered data from functions to be used by our
proposed method We will construct a G' continuous
surface which mterpolates these given functional data
The geometnc contmuity needed between adjacent
parametrnic patches especially in the case of Bézier
patches has been given attention due to the free shape
parameters which 1t provides and can be used to construct
and modify very comphlicated geometric objects In
practice, geometric continmty avoids the wusual
dependence on the parametenisation of the constructed
patches The conditions required for patches to be G-
continuous and subsequent construction of the
corresponding  G"-continuous surfaces are amongst
mmportant topics 1 Computer Aided Geometric Design
[17]

Although several papers have dealt with G"
mterpolating surfaces (e g see [5] and [12]), but very few
touched on the scattered data interpolaton We thus
propose a method to construct an interpolating G' surface
using a set of scattered data m R’ as well as provide
examples to test the ability of this proposed scheme

If we simply use G' continuity conditions, the
resulting surfaces might have an undesired undulation or
over flatness To overcome this problem, several global
optimal farrness critenia of the constructed surfaces have
been introduced n vanous lteratures Amongst the
earhest surface faring aimed at mimmzing fairness
cnteria as an anology to the one for curve was based on
the strained energy m a thin elastic plate which 1s related
to the total curvature mn a surface Thus, the resulting
surface can then be approximated using its geometric and
curvature related properties ([4],[14])

In this paper, we consider the method of mimimized
sum of squares of principle curvatures ([6], [9]) The
objective function can then be approximated using a
corresponding quadratic form The extremum of the



integral function 1s then calculated with respect to the G'
continuity conditions along the shared edges as a
constrained function

Quadratic functions can generate good surface fit to
the data pomnts The range of applications can be extended
by using iterative procedures which will successively
mmprove the parameter values assigned to these data
points.

We have chosen quartic Bézier tnangular patches
since degree 4 1s necessary and sufficient to satisfy the
patch boundary interpolation constraints while at the same
time allows some control pomnts i the interior of the
patch to have certain freedom to be used for surface
fainng.

This paper 1s orgamzed as follows' Relevant
background materials including the definition of quartic
Bézier form of triangular patches and G' continuity
conditions between two adjacent patches at vertices of
triangle meshes are given i section 2, a method to
construct surfaces using the mimimized sum of squares of
prnciple curvature 1s covered 1n section 3, examples are
given in section 4 and finally 1n section 5, the concluding
remarks will be given.

2. Background

The " degree Bernstein polynomials over a triangle
are defined by

u:_/k

By (u,v, w)= vw

Pkl M
where u,v,w are barycentric coordinates such that  + v +
w=landiH+k=n

The n® degree Bézier triangular patch 1s defined by

Pluyvw)= D b Bl (u,v,w) )
i+ ) +k=n
where by, are called Bézier ordmates of P We will use
quartic Bézier tnangular patches (with n = 4). Each patch
1s defined by a control net of 15 vertices as shown 1n
Figure 1.
With b, as the height of a control pomt, a quartic
Bézier triangular patch can be represented by
Stuyv,w)= > B, By (u,v,w)
1+ j+k=4
where By, = (1/4,)/4,k/4,b,)

Let T be a tnangle with vertices V,, V,, V; and
barycentnic coordinates u, v and w such that any point V
on T can be expressed as

V='I.1V| +VV2+WV3 5
whereu+v+w=1and u,v,w>0

S mterpolates the Bézier ordinates Bago, Boao and Boos
at the vertices V,, V,, V3 of T respectively The normal at
each vertex 1s estimated using the surrounding triangles
with a quadratic approximation function,

&)

G
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F(x,y)=ax2+bxy+cy2+dx+ey+f

where a, b, ¢, d, e and f are unknown coefficients

Let vertex P, of the triangular mesh sun-o.
vertices {P1, P, Py} and the height of the yery.
{Po, Py, P} be represented by {z, z, . e
respectively We tum our attention to fhe ) v
represented by (1,0,0) which corresponds to P, 4
can derive the first order partial derivative at Pt;(:so.}’o). s

F(xo.yy) = 2axg + by, + d and

157]

—

Fy=bxg+2cy, +e ©
If we substitute the height of vertices zg, z,, . . ., Zx
mnto (5), we obtain a linear system
Ve =z )

where

2 2
X" XoYo Yo Xp Yo 1

2
x12 o T m n 1

2 2
¥ *kYe Yoo %k Vi !

=

a Zy

b z,
c= ¢ and z=

d

e

L/ ] TS

Matnx U 1n (7) 1s always in the form of rank deficient
matrix (that 1s, rank of U 1s less than number of
unknowns) and we can solve the systems by using the
simple linear algebra [ 7] using pseudo nverse of U m the
least square method.

Theorem 1: Consider the (m x n} system Ax=b
(a) The associated system ATAx=A"b1s
always consistent
(b) The least-squares solutions of Ax=b are
precisely the solutions of 474x = A"b
(c) The least squarg solution 1s umque 1f and
only 1f rank A8 n
Proof of the Theorem 1 can be found m [7] Thus,
the values of a, b, ¢, d, e and f can be obtained, using the
least square method,

Cc = U'U) 'U%, (8)



and the values of F, and F, at vertex Py can then be
calculated

(1,0,0)

Figure 1. Control net of quartic Bézier triangular
patch

LetV, V,, V, and V3 be located as shown m Figure 2
The vertices Vi1,V and v, correspond to the barycentric
coordmates (1,0,0), (0,1,0) and 0,0,1) respectively

VJ(XC: y::)

Vix, y)

Va(Xp, ¥1)
Vl (xas Y a)

Figure 2. Vertices of a triangle element

Let ¢ = (-1,1,0) and €= (-1,0,1) represent the
direction of edges V|V, and ViV, respectively The
directional denvatives along e;; and e, sat'V, are

D, 5(10,0)= (%—%)Fx G+ Z-2yr (s,

o
= (Xb' Xa)Fx (Xa) + (Yb«Ya )Fy (xa) (9)
—(x_ax »_¥
D, 5(1,0,0)= (aw au)“"} (xg)+(aw au)Fy (x,)
= (X, Xa)Fx (xa) + Ve ¥a )F. y (%a) (10)
Thus, we have
D, 5(1,0,0)= 4(-B,, +8B3)9) (11

DE]SS(1,0’0)= 4(_5400 +B3OI) (12)
or
1
Byio= =D, 5(L,0,0)+ By, (13)
1
Bios = - Dy, S(,0,0)+ By (14)

Stmilarly, B3, Bys,, Bios and By,; can be determined
from By, and By, respectively, with 6 more control
pomts left to be determined.

2.1 G’ continuity between adjacent patches

Two patches with a common boundary curve satisfy
G' continuity 1f both have continuously varymg tangent
plane along the common curve Figure 3 shows an
example of Bézier control points of two adjacent quartic
Bézier tnangular patches. Hy and H, are the given vertices
of the patches Go, Fo, H,, G, H; and F; are obtamed from
the patch gradients while Gy, F, Hy, G, and F; are pots
to be determined

We only have to consider {H,, 1= 0, I, 4} as the
common boundary(@hrve and {3 F, 1= 0, 1 .3} which
consist of the control points 1n each patch Details of
dertvation with regard to the G' conditions can be found
in 3]

If the heights of {G.}, {H,}, {F,} are denoted by {g.},
{h} and {f} respectively, the conditions satisfymg G'
continuity between the two adjacent patches can be
written as

ago + (1-a)fy = Bhy + (1-B)h, (15)
ag; + (1-a)f, = Bh, + (1-B)h, (16)
0g2 + (1-a)f; = Bhy + (1-B)h, (17)
ags + (1-a)fs = Bh; + (1-B)h, (18)

where a and P are constants

Since the values of go fo ho hy, g3 h;, h,and f
are already known, a and B can thus be determined from
(15) and (18) (16) and (17) can also be written as

Ax; =b- AzXz (19)
where
4 = = B 15 a 2x2 scalar matrix, % = & 1 1s the
0 « &2
unknown vector, Ay = a0 B~ 15a2x3
0 I-a -
5
matnx, x = £, | 18 avector of free parameters and
hy
b= [ Bh J 1S a constant vector
(-B)h,

Since A 15 a non-singular matrix for ¢ # 0, we can
always solve ( 19) for x,, that 1s,

x =4, (b~ 4yx,) (20)



If x, can be determined adequately, all the control
pomts B, n Bézier control net will be known for the
surface to be G' contmuous

Figure 3. Control points of adjacent quartic
Bézier triangular patches

3. Surface with minimized sum of squares of
principle curvartures

A surface fammng objective will be the integral of the
sum of squares of principle curvartures

1SeyN= [[n® +h;® dedy @1

where k; and k, are the principle curvartures and D
represents the surface to be constructed (21) 1s not widely
used to far composite surfaces with many free
parameters, perhaps because of the complexity of its
parametric form and computational difficulties A much
more popular method [19] 1s the hneanzed form of (21)
which uses second-order parametric dertvatives in place
of the principal curvartures and can be wrtten as,

1(S(x,y)) = H)Suz +25,7+S,,7 ddy (22)

Now, our amm 1s then to find the function S(x,y)
which will minimize the integral I(S). Assume that the
whole surface can be constructed by a collection of Bézier
tnangular patches with each patch defined as m (3). We
can represent each patch as a convex combmation of 15
control points,

15
S'u,vw) = ZB,’,d)k (u,v,w), (23)
k=1

where t =1,2 m (m 1s the number of triangles 1n a mesh),
{B: ,Bé’Bé, ,Bf5}= {Bftoo: BZISIO' B{30,B{)40, 3501:

Bgs, Bios. Byiss Booa Bxo. By, 31’21' By, Biiy, 3622}
fbi, &5, b5t = wt, by, s’ VY 4w, w, 4uw’

aw’, W, 6V, 12uPvw, 12uvw, 6u'w’ 121w’ 6vw )
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Let I(S'(u,v,w)) be defined 1n a tnangle elemen; D -
such that we can write (22) as

56 =3 (" G, w)

t=1

. ) N2 2
=§:J‘L,(S Y +2Sy) +(S,)" dxdy (24
r=1 e

Using the parametric transformation from (x,y) to the
local coordmates (u,v), we can write the double integral of
second order partial denvatives of S with respect to u and

v, S S and S!,

uu = uv

1S~ ZE [ l—’y)idudv

o) _ ey By
o(u,v)] Ouov

and thus (24) can be expressedas -

25)

where

+chSt. S,

G'(u,v)= clS' LS+ 5SSy +
+ckSL,St, "‘"—'eSw
with ({c}},7=12, ,6 as constants)

matrix  form, the functional I(S'wv,w) =

E_E G (u,v (x—’;~dudv can be represented as

B'Q,(B")T where B'1s a (1 x 15) matrix represented by

[Bf B, B B{s]and Qs a (15 x 15) matnx with its
(1,)) entry defined as
(0,1, = 1 @) @)+ €20)u @ ))un

+¢5@)w @) +c6@0)w© )

Thus, (25) can be written as,

M
I(Stey)= ) B'Q,(B")"
1=1
The nght hand side of (26) 1s 1n quadratic form with
6 Bézier coefficients unknown We can also rewrite
I(S(x,y)) n terms of a matnx-vector representation
I(Sx,y)= zI Mz + ez+c, 27N
where M 1s a real (n X n) symmetric matrix, e 1s a (1x n)
row vector, Z 1s a (n x 1) column vector representing the
unknown Bézier pomnts for the entire triangular mesh and
c as a real constant
In order to find a function S(x,y) which will
mmlrmze I(S(x,y)) lead us to an opt1rmsat10n problem of
z' Mz + ez + c subject to the G' continuity constraints
Ax=b
To solve for the required values of z,"we can-use an
optimzation toolbox in MATLAB software and obtam

(26)



the coefficients of S'(w,v,w) 1 (23) The interpolated G’
surface with the mimmized sum of squares of principle
curvartures optimmzed can then be constructed

4. Examples

To test the accuracy of our method, we choose 36
data points from the 3 well-known functions n [15],
Fl(x,y) = 0 75exp(-((9x-2)* + (9-2)°)/4
+ 0 75exp(~(9x+1)*/49 - (9y+1)/10)
+ 0 50exp(-((9x-7)° + (9y-3)")/4)
-0 20exp(-(9x-4)* - (9y-7)%,
(x.y) € [0,1 2]x[0,1 2]
F2(x,y)= (1 25 +cos(5 4y)/(6+6(3x-1)*,
(x.y) € [0,1]x[0,1]
F3(x,y)=exp(-20 25((x-0 5)°+(»-0 5))), (x,3) € [0,1]x[0,1]

For each data set, the two-dimensional region (x,y)
15 divided mto triangular elements using Delaunay
tnangulation For each patch, the corresponding surface
was constructed using MATLAB 7 sofware The measure
of error norm [15] was taken to be SSE/SSM, where SSE
1s the sum of squared errors (deviation from test function
values), and SSM 1s the sum of squared of deviation ot
the 1296 test function values (36x36 grid pomts) from
their mean We also compute the coefficient of
determmation 1’=1-SSE/SSM as shown i Table 1
According to [15], the values of r? show that our method
15 a very good fit for the functions, F1 and F2 and a good
fit for F3 These results are shown 1n Figures 4, 5 and 6
respectively

5. Conclusions

Thus paper describes an approach to construct smooth
Interpolating surfaces using a combiming method of the
minimized sum of squares of principle curvarture with the
G! continuity conditions between adjacent patches The
examples show that the surface obtamned are fairer
Compared with surfaces which are constructed based on
just G! continuity conditions We will focus on G?
continuity conditions m future research

Table 1. Error norms and coefficient of
determination ,r?

Fen | Error norms r

F1 | 0007873 0992127
F2 | 0002942 0997058
F3 1001681 098318
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o2 R Py o 02 T"
(b)
Figure 4. (a) Test function F1 (b) Proposed
method

(b)
Figure 5. (a) Test function F2 (b) Proposed
method



Figure 6. (a) Test function F3 (b) Proposed
method
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