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Abstract

We propose a methodology for producing density forecasts for the output gap
in real time using a large number of vector autoregessions in inflation and output
gap measures. Density combination utilizes a linear mixture of experts framework
to produce potentially non-Gaussian ensemble densities for the unobserved output
gap. In our application, we show that data revisions alter substantially our proba-
bilistic assessments of the output gap using a variety of output gap measures derived
from univariate detrending filters. The resulting ensemble produces well-calibrated
forecast densities for US inflation in real time, in contrast to those from simple uni-
variate autoregressions which ignore the contribution of the output gap. Combining
evidence from both linear trends and more flexible univariate detrending filters in-
duces strong multi-modality in the predictive densities for the unobserved output
gap. The peaks associated with these two detrending methodologies indicate output
gaps of opposite sign for some observations, reflecting the pervasive nature of model
uncertainty in our US data.
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1 Introduction

The formulation of monetary policy in many central banks gives prominence to the output
gap despite its uncertainty as documented by Orphanides and van Norden (2002, 2005).
Their work establishes both the unreliability in real time of output gap (point) measure-
ments implied by a variety of well-known filters, and the associated difficulties of using
those imprecise measurements to forecast inflation in real time.
This paper provides a methodology that allows the researcher to gauge the uncertainty

in output gap measurements across a number of detrending methods. Given the difficulties
of estimating stable empirical relationships in short samples, and the presence of macro
data revisions, estimates of the output gap based on a single detrending method are
fragile; see, for example, Watson (2007). Whereas Orphanides and van Norden (2002)
focus on the sensitivities of particular output gap measures, we focus on the uncertainty
across different measures and model specifications.
Our ensemble methodology constructs real-time predictive densities for the unobserved

output gap using many component bivariate vector autoregressive (VAR) models. Com-
ponent models are differentiated by the detrending measure used to derive the output
gap, and auxiliary assumptions (such as lag lengths and break dates). We combine fore-
cast densities from component models using a linear mixture of experts (also known as
the linear opinion pool); see Timmermann (2006) for a discussion of density combination
methods. For each component VAR in inflation and a single output gap measure, we mea-
sure the Kullback-Leibler “distance” between the real-time h-step ahead inflation forecast
density and the true but unknown density using the logarithmic score. Our linear opinion
pool builds potentially non-Gaussian forecast densities for inflation and the unobserved
output gap from the many components using Kullback-Leibler distance weights for in-
flation. In this way, our output gap predictive densities (predictives) reflect the ability
of the ensemble to predict inflation; following the idea in Laubach and Williams (2003),
we use the Phillips curve to inform our analysis of real-time output gaps. The ensemble
densities for the unobserved output gap reveal the real-time uncertainty about the output
gap (h-steps ahead) by construction. In so doing, we focus on predictive density combi-
nation over the entire model space, rather than on the difficulties of using, or selecting, a
particular detrending method.
In our US application, we estimate many vector autoregressive models in inflation and

various individual output gap measures using real-time (vintage) data supplied by the
Federal Reserve Bank of Philadelphia; see Croushore and Stark (2003). The component
models vary by the detrending method used to construct the output gap, the lag lengths
in the VAR, and the timing of a single structural break. For simplicity, the detrending
methods considered in this example are a selection of commonly used univariate filters,
each of which allows the trend to be more flexible over time than with a linear time trend.
(In principle, our methodology could also be applied to multivariate detrending methods).
For our US sample, we find that for some time series observations, the ensemble

predictive densities for the output gap based on heavily-revised data generate very dif-
ferent probabilistic assessments of the output gap compared to those generated using
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real-time data. For example, policymakers using real-time data in the late 1990s would
have concluded that the probability of above trend output (a boom) was much smaller
than subsequently indicated once the data were revised. We also show that a simple
autoregressive benchmark (i.e., a forecasting model without the output gap) produces
poorly calibrated densities for US inflation, despite its competitive performance in terms
of point forecast accuracy. Put differently, output gaps matter for forecasting inflation
densities. Broadening the scope of our applied work to consider linear time trends in
output, as well as more flexible trends, produces a very different assessment of the latent
output gap variable using a “grand ensemble” which combines the two trend types. For
our US data, this indicates strong multi-modality for the output gap. Our example draws
attention to the risk attached to business cycle assessments based on the “best” single
(univariate) detrending method.
The remainder of this paper is structured as follows. In Section 2 we describe our

methods for forecast density combination used to gauge the uncertainty in the latent
output gap. In Section 3, we apply our methodology to US data to produce output gap
densities. In the final Section, we conclude and discuss the scope for future research in
this area.

2 Methodology

In this Section of the paper, we describe our methodology for gauging the model un-
certainty in the output gap. We begin by defining a well-known model space for the
component bivariate VARs, broadening slightly the space of van Norden and Orphanides
(2005) to allow scope for a single structural break of unknown timing in the inflation equa-
tion. Then we describe how to construct the ensemble predictives from the component
densities.

2.1 Component Model Space

Following van Norden and Orphanides (2005), we consider linear Phillips curve forecasting
models of the form:

πt+h = αj
1 +

PX
p=0

βj1,pπt−p +
PX
p=0

γj1,py
j
t−p + εj1,t+h, (1)

where inflation is denoted πt and the various output gap measures are denoted yjt , with
j = 1, . . . , J ; P +1 denotes the maximum number of lags in inflation and the output gap
measures, and h is the forecast horizon.
We augment this specification with the corresponding output gap equation:

yjt+h = αj
2 +

PX
p=0

βj2,pπt−p +
PX
p=0

γj2,py
j
t−p + εj2,t+h. (2)
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to create a bivariate VAR system. For simplicity, we assume that the lag structure is
identical in the two equation VAR system.
We emphasize that although each VAR component uses a particular output gap mea-

sure, our aim is not to find the “best” single measure of the output gap. Rather, we wish
to build ensemble forecast densities for the unobserved output gap variable, conditional
on a number of candidate measures. In doing so, we interpret the various output gap
measurements as deviating from the “true” but unobserved output gap by more than
white noise measurement error.
The two-equation recursive structure described by equations (1) and (2) is common

to many more detailed models of inflation determination. For example, Rudebusch and
Svensson (2002) and Laubach and Williams (2003) start with similar bivariate struc-
tures, and add additional explanatory relationships and restrictions; Garratt et al (2009)
consider bigger VARs to assess whether money causes inflation and output. In princi-
ple, additional equations and the imposition of identifying conditions pose no conceptual
problems for our methodology, although the computational burden would increase. We
prefer to restrict our attention to a two-equation model space which, as Sims (2008) notes,
lies at the heart of many explanations of inflation determination.
A number of papers, including Stock and Watson (1999), have argued that the rela-

tionships between inflation and output gaps altered during the shift from (what is often
referred to as) the US Great Inflation to the Great Moderation. Hence, for output gap
measurement applications on contemporary samples, the model space must accommodate
structural breaks of unknown timing in a computationally convenient manner. We take
a pragmatic response and consider every feasible single break date, assuming a single
coincident break in the conditional mean and variance for both equations. This raises
the potential number of models dramatically since, in effect, each candidate break date
defines a new component VAR. We also note that there is uncertainty over the number of
lags to include in the system. If we have J output gap measures, and for any given yjt , we
have K different variants defined over different values of the maximum lag length and the
location of the break date, then in total we have N = J ×K models, and N associated
forecasts of inflation and the output gap.

2.2 Ensemble Construction

Monetary policymakers often focus on the forecast performance for inflation when con-
sidering output gap measures in practice. In our ensemble approach, we construct the
output gap predictives based on the forecast densities for inflation of our many compo-
nent VAR models.1 We combine the many component forecast densities using the linear
mixture of experts, also known as the linear opinion pool; see Timmermann (2006). Each
bivariate component VAR is scored for the Kullback-Leibler distance between the real-
time h-step ahead inflation forecast density and the true but unknown density. Density
combination, via the linear opinion pool, then constructs the ensemble forecast densities

1Many central banks including the Bank of England, Norges Bank and Sveriges Riksbank publish
forecast densities for key macroeconomic variables.
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for inflation and the unobserved output gap using Kullback-Leibler distance weights for
inflation, based on the logarithmic scores of the forecast densities. The resulting out-
put gap densities reflect the model uncertainty in the many component specifications,
including the uncertainty regarding the measure of the output gap.
More formally, we consider a monetary policy maker seeking to aggregate forecasts

supplied by “experts”’, each of which uses a unique bivariate VAR specification to produce
a forecast density for inflation. Given i = 1, . . . , N VAR specifications, the combined
densities are defined by the convex combination:2

p(πτ,h) =
NX
i=1

wi,τ,h g(πτ,h | Ii,τ ), τ = τ , . . . , τ , (3)

where g(πτ,h | Ii,τ ) are the h-step ahead forecast densities from model i, i = 1, . . . , N
of inflation πτ , conditional on the information set Iτ (the same form of equation is also
used when constructing output gap combined densities). The publication delay in the
production of real-time data ensures that this information set contains lagged variables,
here assumed to be dated τ−1 and earlier. For simplicity, we assume that each individual
model is used to produce h-step ahead forecasts via the direct approach; see the discussion
by Marcellino, Stock and Watson (2003). Hence, the macro variables used to produce an
h-step ahead forecast density for τ are dated τ − h. In the case where h = 1, the forecast
effectively becomes a “nowcast”. The non-negative weights, wi,τ ,h, in this finite mixture
sum to unity.3 Furthermore, the weights may change with each recursion in the evaluation
period τ = τ , . . . , τ .
Each component VAR considered can be estimated by maximum likelihood for the

Gaussian linear model to provide each component forecast density g(·). However, the
ensemble density defined by equation (3) will be a mixture of the component densi-
ties. Therefore, the linear opinion pool accommodates potentially severe departures from
Gaussian behaviour. For example, multi-modal forecast densities for the output gap are
feasible. This feature allows us to explore the extent to which various measurements of
the output gap shape the ensemble forecast densities. Kascha and Ravazzolo (2009) dis-
cuss logarithmic opinion pooling which forces the forecast densities to be unimodal, and
masks the tension between forecasts from various component models.
We propose the weights be based on the fit of the individual component forecast

densities. Following Amisano and Giacomini (2007), Hall and Mitchell (2007) and Jore,
Mitchell and Vahey (2009), the logarithmic score measures density fit for each compo-
nent through the evaluation period. The logarithmic score of the i-th density forecast,
ln g(πτ,h | Ii,τ ), is the logarithm of the probability density function g(. | Ii,τ ), evaluated
at the outturn πτ,h. The logarithmic scoring rule is intuitively appealing as it gives a

2Morris (1974,1977), Winkler (1981), Lindley (1983) and Genest and McConway (1990) discuss linear
opinion pools and expert combination. Wallis (2005) proposes the linear opinion pool as a tool to
aggregate forecast densities from survey participants. Mitchell and Hall (2005) combine two inflation
density forecasts but do not consider ensemble macroeconometric systems.

3The restriction that each weight is positive could be relaxed; for discussion see Genest and Zidek
(1986).
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high score to a density forecast that assigns a high probability to the realized value.
Specifically, the recursive weights for the h-step ahead densities take the form:

wi,τ ,h =
exp

hPτ−1−h
τ−κ ln g(πτ,h | Ii,τ )

i
PN

i=1 exp
hPτ−1−h

τ−κ ln g(πτ,h | Ii,τ )
i , τ = τ , . . . , τ (4)

where τ − κ to τ − 1 comprises the training period used to initialize the weights, for a
given choice of κ.
Density combination based on recursive logarithmic score weights has many simi-

larities with an approximate predictive likelihood approach.4 Given our definition of
density fit, the model densities are combined with equal (prior) weight on each model–
which a Bayesian would term non-informative priors. (Koop (2003, chapter 11) pro-
vides a recent general discussion of Bayesian model averaging methods.) The Kullback-
Leibler distance between the ensemble density and the true but unknown density f(πτ,h),
E [ln f(πτ,h)− ln p(πτ,h)], where the expectation is taken in the correct distribution, can
be minimized by maximization of the ensemble’s logarithmic score. Hall and Mitchell
(2007) and Geweke (2009) consider iterative methods to maximize the logarithmic score,
suitable for small N . Outside the economics literature, Raftery et al. (2005) and Carvalho
and Tanner (2006) employ the EM algorithm to estimate component weights.
We conclude this Section by remarking on a number of interesting features of our

ensemble modeling strategy for measuring the uncertainty in the output gap. First, our
methodology involves combining forecasting densities from a potentially large number of
locally linear Gaussian components. In this regard, we are motivated by our desire to ac-
count for uncertainty over auxiliary assumptions that are common in more conventional
VAR analyses, especially assumptions about the appropriate detrending filter for output.
Selection of any single empirical specification inevitably gives rise to the “uncertain in-
stabilities” problems documented by, for example, Clark and McCracken (2009). That is,
our empirical methodology utilizes a model space which could be described as “incom-
plete”; see Geweke (2009). Given that we attach a negligible probability to our model
space containing the “true” empirical specification, we approximate the unknown model
using our entire ensemble system.5

Second, we combine the predictives based on out of sample forecast density perfor-
mance for inflation through the evaluation period, even though the VAR components are
estimated individually by conventional (in-sample) maximum likelihood methods. This
feature limits the extent of overfitting, and permits combinations of VARs using differ-
ent sample lengths for component parameter estimation. Our focus on inflation as the
metric for assessing forecast density performance facilitates the combination of wide vari-
ety of output gap measures. These could come from univariate or multivariate methods.

4In applications with h > 1,the product of the h-step ahead forecast densities does not correspond to
the marginal likelihood.

5Morley and Piger (2009) use Bayesian model averaging to construct point forecasts but not forecast
densities for the US business cycle.
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The researcher might prefer, for example, to utilize measures based on the production
function.6

Third, recursive updating of the Kullback-Leibler distance based weights, wi,τ ,h, occurs
through the evaluation period. That is, the ensemble density has time varying weights,
and can approximate (highly) non-linear processes, even though the component models
themselves are (locally) linear.
Finally, we note that ensemble forecasting methods, such as those used in this paper,

have been found to be effective in producing well-calibrated forecast densities outside the
economics literature. For example, meteorologists commonly construct ensemble densities
to deal with uncertainty in “initial conditions” (auxiliary assumptions). The “Ensemble
Prediction System” developed by the European Centre for Medium-Range Weather Fore-
casts follows the same general ensemble principles to forecast weather densities effectively.
For an early description of weather ensemble forecasting see Molteni et al. (1996).

3 Application: Real-time Predictive Densities for the
US Output Gap

In our application, we construct predictive densities for the output gap in the US using
the methods described in the previous Section. We begin our analysis by describing the
candidate measures of the output gap defined using flexible time trends, followed by some
alternative specifications which use output gaps derived from linear time trends. Then
we describe our component VARs using output gaps measures derived from flexible time
trends (including a simple autoregressive model), provide some details of our US sample
and, in the final part, present the results for the ensemble forecast densities for the output
gap, and consider the impact of real-time data on the predictive densities.

3.1 Output Gap Measures from Flexible Time Trends

Our base set of (flexible) output gap measures (derived from univariate filters) are taken
from Orphanides and van Norden (2002, 2005).7 We assume that the policymaker wishes
to assess the model uncertainty across our selection of output gap measures. We subse-
quently extend the model space to examine the impact of assuming linear time trends in
(the logarithm of) output.
We define the output gap as the difference between observed output and unobserved

potential (or trend) output. Let qt denote the (logarithm of) actual output in period
t reported in a given vintage of data, and μjt be its trend using definition j where j =
1, 2, . . . , J . Then the output gap, yjt , is defined as the difference between actual output
and its jth trend measure, where we assume the following trend-cycle decomposition:

qt = μjt + yjt . (5)
6For simplicity, we will use univariate detrending methods in our example given below.
7Marcellino and Musso (2009) provide a recent analysis of univariate and multivariate real-time output

gap measures using Euro-area data.
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Initially, we consider seven methods of univariate trend extraction: quadratic [Q],
Hodrick-Prescott [HP], a forecast-augmented HP [HPF], Christiano and Fitzgerald [CF],
Baxter-King [BK], Beveridge-Nelson [BN], and Unobserved Components [UC]. Note that
we estimate the trends at every vintage, hence estimation is recursive, where each recursion
uses a different vintage of data as well as an additional observation. We summarize the
seven detrending specifications below.

1. For the quadratic trend based measure of the output gap we use the residuals from a
regression (estimated recursively) of output on a constant and a squared time trend.

2. For the HP, Hodrick and Prescott (1997), we set the smoothing parameter to be
1600 for our quarterly US data.8 This two-sided filter relates the time-t value of the
trend to future and past observations. Moving towards the end of a finite sample
of data, it becomes progressively one-sided, and its properties deteriorate; see Mise,
Kim and Newbold (2005).

3. To accommodate the one-sided problem, in addition to the HP trend, we use a
forecast-augmented HP trend (again, with smoothing parameter 1600), with fore-
casts generated from an univariate AR(8) model in output growth (estimated re-
cursively using the appropriate vintage of data). The implementation of forecast
augmentation when constructing real-time output gap measures for the US is dis-
cussed at length in Garratt et al. (2008).9

4. Turning to the CF measure, Christiano and Fitzgerald (2003) propose an optimal
finite-sample approximation to the band-pass filter, without explicit modeling of the
data. Their approach implicitly assumes that the series is captured reasonably well
by a random walk model and that, if there is drift present, this can be proxied by
the average growth rate over the sample.

5. We also consider the band-pass filter suggested by Baxter and King (1999). We
define the cyclical component to be fluctuations lasting no fewer than six, and no
more than thirty two quarters–the business cycle frequencies indicated by Baxter
and King (1999). Watson (2007) reviews band-pass filtering methods.

6. Turning to the BN trend, Beveridge and Nelson (1981), we note that this perma-
nent trend and transitory cycle decomposition relies on a priori assumptions about
the correlation between permanent and transitory innovations. The BN approach
imposes the restriction that shocks to the transitory component and shocks to the
stochastic permanent component have a unit correlation. We assume the ARIMA
process for output growth is an AR(8), the same as that used in our forecast aug-
mentation.

8We could, of course allow for uncertainty in the smoothing parameter. We reduce the computational
burden in this application by fixing this parameter at 1600.

9The forecasting model could in principle use information on revisions as described in Garratt et al.
(2008).
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7. Finally our UC model is based on Watson (1986). Like the BN approach, the
decomposition relies on a restriction as to the assumed correlation between the
permanent and transitory components, here taken to be zero. For a description of
the UC approach see Canova (1998). Morley et al. (2003) examine the relationship
between the UC and BN methodologies. For the UC trend, we adopt the following
form:

μ7t = α+ μ7t−1 + t and y7t = ρ1y
7
t−1 + ρ2yt−2 + υt, (6)

and t and υt represent mean-zero normally distributed i.i.d. errors.

3.2 Alternative Specifications and Grand Ensemble

In the empirical exercise that follows, we first construct output gap predictives for the
seven flexible trends outlined above. Then we will assess the contribution of data re-
visions to output gap uncertainty across these specifications. However, in output gap
applications of this type, alternative detrending methods are feasible of course. For ex-
ample, there exists considerable debate in the literature about whether linear time trends
methods would be more appropriate than flexible trends. We emphasize that a number
of researchers (Orphanides and van Norden, 2002) have documented the difficulties of
using linear time trends for real-time analysis. This approach typically indicates that for
our data set output lies (considerably) below trend towards the end of the sample but as
more data become available, the output gap measurements are systematically revised so
that output lies closer to, or above trend. Despite this well-known issue, we supplement
our preferred model space with component VARs using linear time trends to measure
the output gap. We do so because the linear time trend approach provides very different
measurements from our more flexible trends, and so highlights the practical issues that
arise for a more eclectic model space.
More formally, we consider a distinct model space in which our various VAR models

use an output gap defined as the residual, but, from the regression model:

qt = a+ b1t+ b2D73,tt+ b3D84,tt+ ut.

The linear time trend without breaks is defined by D73,t = D84,t = 0. We note that,
in principle, one could allow for breaks of unknown timing, and number (up to a bound).
For simplicity, we utilize two time trend with breaks specifications: (i) D73,t = 0 for
1954q4-1973q3=0, D73,t = 1 for 1973q4-2007q2, and D84,t = 0 following Orphanides and
van Norden (2002); and (ii) D73,t = 0 for 1954q4-1973q3=0, D73,t = 1 for 1973q4-2007q2,
and D84,t = 0 for 1954q4-1983q4, D84,t = 1 for 1984q1-2007q2 to capture the additional
impact of the Great Moderation. That is, in total we consider three linear time trend
variants: no breaks, the one break in 1973, and breaks in both 1973 and 1984.
In our applied work, we consider additional ensemble forecast densities for inflation

conditional on linear time trends, [LT]. We conclude our analysis by combining the “flex-
ible trend” [FT] ensemble with the alternative LT ensemble into a “grand ensemble”. We
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adopt the same ensemble methodology outlined above to construct the grand ensemble
predictive densities from the two ensembles.

3.3 Components and Weights

For each VAR in our application, we consider maximum lag lengths of P + 1 = 1, . . . , 4.
We also allow for a single structural break of unknown timing in each VAR component. In
order to reduce the computational burden, the break date is restricted to occur before the
start of the evaluation period, τ , with at least 15 percent of the sample used for post-break
in-sample estimation of each component. The break occurs in the conditional mean and
the variance for both equations. In total, we considerK = 376 component models for each
measure of the output gap considered. With seven measures of the output gap derived
from flexible trends, the predictives for the FT ensemble combine N = 2632 component
specifications for each observation in the evaluation period.
We construct the weights based on the fit of the individual component forecast densities

as outlined in Section 2.2 and following Jore, Mitchell and Vahey (2009), we use the
logarithmic score to measure density fit for each component through the evaluation period.
Given the relatively large number of quarterly observations available in our data set we set
κ = 20, therefore allowing a training period of five years. Note also that the computation
of these weights is feasible even for the large N considered in our application.
Although our methodology is applicable to longer forecast horizons, in the results that

follow, we report the h = 1 case. Given the one quarter lag in the release of real-time
data measurements, the forecast density for the output gap is a nowcast.

3.4 US data

In this Section, we describe our US sample, which spans both the Great Inflation and
the Great Moderation. We use the same real-time US data set as Clark and McCracken
(2009). The quarterly real-time data comprise real GDP and the GDP price deflator which
has 170 vintages (data observed at a specific point in time, known as the vintage date),
starting in 1965q4 ending in 2008q1. The data for each vintage, avoiding the Korean War,
are for 1954q3, . . . , τ − 1. Data for output and the price deflator are released with a one
quarter lag.
The raw data for GDP (in practice, GNP for some vintages) are taken from the

Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists. This
is a collection of vintages of National Income and Product Accounts; each vintage reflects
the information available around the middle of the respective quarter. Croushore and
Stark (2001) provide a description of the database. The data transformations for the
output gap variables are described above. We define inflation as the difference in the log
of the price deflator, multiplied by 100.
Our out of sample evaluation period is: τ = τ , . . . , τ where τ = 1991q4 and τ = 2007q3

(64 observations). In order to implement ensemble methodology through the evaluation
period requires an additional assumption about which measurement is to be forecast.
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Following Clark and McCracken (2009) and others, we use the second estimate as the
“final” data to be forecast. For consistency, we report results for the same definition of
“final” data for all forecast density combinations and evaluations. See also the discussion
in Corradi, Fernandez and Swanson (2009).
Figure 1 plots the output gaps based on flexible trends used in our application, and

draws attention to the considerable model uncertainty confronted by policymakers. For
the majority of the observations, the many measures give conflicting evidence about the
size and sign of the US output gap. We note also that this Figure is based on the full-
sample “final vintage” data, 2008q1. As emphasized by Orphanides and van Norden
(2002), the flexible trends under consideration here often provide very different measure-
ments in real time.

3.5 Results

In our results section, we gauge the uncertainty in the real-time output gap measurements
using the ensemble methodology described above. We compare and contrast the real-time
forecast densities for the output gap displayed by the ensemble with the corresponding
final vintage ensemble. For both types of data, the ensembles utilize flexible trends to
construct the output gap measures. Then we evaluate the inflation forecast densities from
the flexible trends variant by examining their probability integral transforms at the end
of the evaluation period. We complete the analysis by considering the grand ensemble
combination of the flexible trends ensemble, FT, with the linear time trends ensemble,
LT.

3.5.1 Real-time Output Gap Predictives

Recall that our ensemble forecast densities are potentially non-Gaussian. Reporting a
central measure of the output gap could be very misleading in the presence of severe
departures from Gaussian predictives, such as multi-modality. In practice, central banks
often focus on the probability of particular events of interest to policymakers. With this
in mind, we plot the probability of a specific event, a negative output gap Pr(yt < 0), for
our real-time ensemble in Figure 2. The equivalent ensemble based on the final vintage
of date is also shown. Recall that all predictives are “nowcasts”: one step ahead forecasts
from macro data arriving with a one-period lag.
Before we examine the impact of data revisions, we first make a number of observations

about real-time output gap probabilities. First, the probability of a negative output gap
displays considerable variation through the sample, but there are runs of probabilities
above (below) 50 percent. Second, for the 1993 to 1999 period, there is rarely a particularly
high or particularly low probability of a slump. Over that period, the probability of a
negative output gap using real time data generally fluctuates in the range of 30 to 70
percent. Third, during the periods in which the ex post data suggest that the US economy
contracted during 2000 and 2001, the probability of a negative output gap computed in
real-time rises very sharply. Finally, throughout the sample, the policymaker is almost
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never certain of the sign of the output gap–the probability is never one or zero.
Turning to the final vintage ensemble with flexible trends, we see that at times data

revisions alter the implied sign of the output gap nowcast. For example, whereas the real-
time data imply the probability of a negative output gap is around 35 percent in 1994q1,
the corresponding probability with final-vintage data is around 55 percent. Similarly, in
1998q1 the real-time data gives a probability of approximately 33 percent, but the revised
data indicate nearly 60 percent.10 We also see from Figure 2 that data hindsight gives
the policymaker reduced uncertainty about the sign of the output gap during the late
1990s. For 1997 through 2000, the probabilities of a negative output gap are smaller
for final vintage than for real-time data–there is greater precision about the output gap
sign ex post. This relationship is also apparent from 2003 though 2006, when the final
vintage data indicate fairly strong support for a boom, but the real-time data imply the
probability of a negative output gap of around 50 percent.
Since the FT ensemble exhibits substantial departures from Gaussian behavior, we

plot in Figure 3 the (real-time) one step ahead forecast densities through our evaluation
period. The dates of the periods forecast are provided along the x-axis, and the size of
the output gap are supplied along the y-axis. The shades of the forecast densities indicate
mass, with highest mass represented by white, and lowest mass represented by black.
The lack of symmetry in the predictive densities is apparent, and at times they display
mutimodality. We note, however, that the two highest peaks rarely differ in the predicted
sign of the output gap for the FT ensemble.

3.5.2 Inflation Ensemble Predictives

We turn now to our assessment of the calibration of the predictive densities for inflation
based on our flexible trends ensemble.
A common approach to forecast density evaluation provides statistics suitable for one-

shot tests of (absolute) forecast accuracy, relative to the “true” but unobserved density.
Following Rosenblatt (1952), Dawid (1984) and Diebold et al. (1998), evaluation can use
the probability integral transforms (pits) of the realization of the variable with respect
to the forecast densities. A density forecast can be considered optimal (regardless of the
user’s loss function) if the model for the density is correctly conditionally calibrated. We
gauge calibration by examining whether the pits zτ,h, where:

zτ,h =

Z πτ,h

−∞
p(u)du,

are uniform and, for one-step ahead forecasts, independently and identically distrib-
uted (see Diebold et al. (1998)). In practice, therefore, density evaluation with the

10Although as we have noted, point estimates of the output gap can be misleading with non-Gaussian
predictives, the correlation coefficient between the final-vintage probabilities shown in Figure 3 and the
Congressional Budget Office’s own point estimates of the output gap is 83 percent. With real-time data
the correlation is 67 percent.
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pits requires application of tests for goodness-of-fit and independence at the end of the
evaluation period.11

The goodness-of-fit tests employed include the Likelihood Ratio (LR) test proposed by
Berkowitz (2001); we use a three degrees-of-freedom variant with a test for independence,
where under the alternative zτ,h follows an AR(1) process. We also follow Berkowitz
(2001) and report a censored LR test which focuses on the 10% top and bottom tails.
This is designed to detect forecast failure in the tails of the forecast density. In addi-
tion, we consider the Anderson-Darling (AD) test for uniformity, a modification of the
Kolmogorov-Smirnov test, intended to give more weight to the tails (and advocated by
Noceti et al., 2003). Finally, following Wallis (2003), we employ a Pearson chi-squared
test (χ2) which divides the range of the zτ into eight equiprobable classes and tests for
uniformity in the histogram.
Turning to the test for independence of the pits, we use a Ljung-Box (LB) test, based

on autocorrelation coefficients up to four.
We also investigate relative predictive accuracy by considering a Kullback-Leibler in-

formation criterion (KLIC)-based test, utilizing the expected difference in the log scores
of candidate densities; see Bao et al. (2007), Mitchell and Hall (2005) and Amisano and
Giacomini (2007). Suppose there are two density forecasts, g(πτ,h | I1,τ) and g(πτ,h | I2,τ),
so that the KLIC differential between them is the expected difference in their log scores:
dτ,h = ln g(πτ,h | I1,τ) − ln g(πτ,h | I2,τ). The null hypothesis of equal density forecast
accuracy is H0 : E(dτ,h) = 0. A test can then be constructed since the mean of dτ,h over
the evaluation period, dτ,h, under appropriate assumptions, has the limiting distribution:√
Tdτ,h → N(0,Ω), where Ω is a consistent estimator of the asymptotic variance of dτ,h.12

Mitchell and Wallis (2009) discuss the value of information-based methods for evaluating
forecast densities that look well-calibrated from the perspective of the pits.
Examining the goodness of fit and independence pits tests presented in Table 1 (see

Section 3.5.3 for discussion of the KLIC test), we see that the real-time inflation ensemble
forecast densities, FT, based on the seven flexible trends are well calibrated at a 95%
confidence level. (Instances of appropriate calibration are marked in boldface.13) The
densities constructed using final vintage data, FT-FV, shown in the second row of Table
1 show evidence of calibration failure at 95% for two of the pits tests (LR and χ2).

11Given the large number of component densities under consideration in the ensemble, we do not allow
for estimation uncertainty in the components when evaluating the pits. Corradi and Swanson (2006)
review pits tests computationally feasible for small N .
12When evaluating the density forecasts we treat them as primitives, and abstract from the method

used to produce them. Amisano and Giacomini (2007) and Giacomini and White (2006) discuss more
generally the limiting distribution of related test statistics.
13To control the joint size of the six evaluation tests applied would require the use of a stricter p-

value. For example, the Bonferroni correction indicates a p-value threshold, for a 95% confidence level,
of (100%− 95%)/6 = 0.8% rather than 5%.
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Table 1: Ensemble Forecast Density Evaluation, 1991q3-2007q2

LR LRl LRu AD χ2 LB Log Score
FT 0.33 0.38 0.33 0.35 0.16 0.24 -1.339

FT-FV 0.01 0.12 0.27 0.08 0.01 0.29 -1.217
LT 0.18 0.04 0.96 0.04 0.11 0.17 -1.371
GE 0.60 0.28 0.48 0.53 0.76 0.57 -1.322
AR 0.01 0.80 0.01 0.06 0.11 0.03 -1.438

Notes: FV denotes final vintage data are used. LR is the p-value for the Likelihood Ra-
tio test of zero mean, unit variance and zero first order autocorrelation of the inverse normal
cumulative distribution function transformed pits, with a maintained assumption of normality
for the transformed pits ; LRu is the p-value for the LR test of zero mean and unit variance
focusing on the 10 percent upper tail; LRl is the p-value for the LR test of zero mean and
unit variance focusing on the 10 percent lower tail; AD is the small-sample (simulated) p-value
from the Anderson-Darling test for uniformity of the pits assuming independence of the pits.
χ2 is the p-value for the Pearson chi-squared test of uniformity of the pits histogram in eight
equiprobable classes. LB is the p-value from a Ljung-Box test for independence of the pits based
on autocorrelation coefficients up to four. Log Score is the average logarithmic score over the
evaluation period. The GE statistics are computed over a shorter evaluation period, reflecting
the need for an extra training period (here set to 10 quarters).

3.5.3 Grand Ensemble and Benchmark

Mindful of the debate in the literature about the importance of linear output trends for
forecasting inflation in real time, in the third row of Table 1 we report pits tests for
the linear trend ensemble, LT. We also provide, in the fourth row, the tests for the grand
ensemble, GE, based on the real-time combination of FT and LT variants.14 The final row
evaluates the forecast density from a simple benchmark AR(1) specification for inflation.
The linear time trend variant, LT, and the AR(1) benchmark both fail to match the

performance of the FT ensemble. The LT ensemble fails two of the six pits tests, and the
AR benchmark fails three of the six tests, at the (individual) 95 percent confidence level.
For the AR, failure is marked for the independence component (picked up by LR and LB)
of the pits tests. This is consistent with the view that the AR conditions on an incomplete
information set by ignoring the output gap; see Corradi and Swanson (2006) and Mitchell
and Wallis (2009). Moreover, the AR density is rejected in favor of either ensemble (FT
or LT) using the KLIC-based test at a 95% confidence level, thereby indicating that the
improvements observed in the log scores for the ensembles over the AR, reported in the
final column of Table 1, are statistically significant.

14Comparing the real-time and final vintage versions of the LT, AR and GE predictives gives qualita-
tively similar results to the flexible trends case reported in Table 1.
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This result is noteworthy given the “perceived wisdom” in the macro forecasting lit-
erature that parsimonious autoregressive specifications are “hard to beat”; e.g., see Stock
and Watson (2007). This view relates to measures of point forecast accuracy in general,
and RMSFE in particular.15 When examining the whole forecast density, AR models are
easier to beat. We also examined (but do not report) AR benchmarks with lag order 2,3
and 4, with no qualitative differences in the results.
Turning to the grand ensemble, GE, we see that the real-time forecast densities are

well calibrated for inflation. The performance of the GE is unsurprising given that FT
ensemble performs well. However, consideration of linear time trends substantially alters
the implied forecast densities for the output gap. Figure 4 provides a plot of GE predictive
densities through our evaluation period. As with Figure 3 (the FT case), areas of highest
mass are marked in white, and lowest mass in black. The GE results in multi-modal
forecast densities with predominately two peaks stemming from the LT and FT ensembles.
The LT gives predictive densities that almost always predict output below trend. Hence,
where the FT ensemble predicts a boom, the LT ensemble typically indicates a slump.
Even when the two peaks are relatively close, in 2000 and 2001, differences remain. Figure
5 provides the GE forecast density for an individual observation, 2000q1, as an example.
As a final robustness check, we repeated our grand ensemble exercise including the AR

benchmark. In this case, we found the same broad story: the GE was well calibrated with
no pits test failures for inflation. But the forecast densities for the output gap revealed
strong multi-modality.

4 Conclusions

In this paper, we have proposed a methodology for producing predictive densities for
the output gap in real time using a large number of vector autoregessions. Ensemble
combination via a linear mixture of experts framework produces potentially non-Gaussian
densities for the unobserved output gap. In our US application, the resulting ensemble
produced well-calibrated forecast densities for inflation in real time, in contrast to those
from simple univariate autoregressions which ignored the contribution of the output gap.
We have also shown that data revisions altered our probabilistic assessments of the output
gap based on univariate flexible trends. Adding linear detrending specifications via our
grand ensemble indicated strong multi-modality for the unobserved output gap. The
twin peaks associated with linear time trends and more flexible trends, at times, pointed
to output gaps of opposite sign. These issues are not apparent from more conventional
assessments of the output gap. In future work, we plan to analyze monetary policy
issues in an incomplete model space. We feel that a consideration of the contributions of
data uncertainty to policy errors in the presence of multi-modal output gap nowcasts is
warranted.

15Over our evaluation period FT has a RMSFE against the inflation outturn of 0.856; LT of 0.910 and
AR of 0.920.
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Figure 1: Output Gaps, Various Flexible Trends, Final Vintage 
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Figure 2: One Step Ahead Probability of a Negative Output Gap, Flexible Trend Ensemble
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