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Abstract

A popular macroeconomic forecasting strategy takes combinations across many
models to hedge against model instabilities of unknown timing; see (among others)
Stock and Watson (2004) and Clark and McCracken (2009). In this paper, we exam-
ine the effectiveness of recursive-weight and equal-weight combination strategies for
density forecasting using a time-varying Phillips curve relationship between infla-
tion and the output gap. The densities reflect the uncertainty across a large number
of models using many statistical measures of the output gap, allowing for a single
structural break of unknown timing. We use real-time data for the US, Australia,
New Zealand and Norway. Our main finding is that the recursive-weight strat-
egy performs well across the real-time data sets, consistently giving well-calibrated
forecast densities. The equal-weight strategy generates poorly-calibrated forecast
densities for the US and Australian samples. There is little difference between the
two strategies for our New Zealand and Norwegian data. We also find that the
ensemble modeling approach performs more consistently with real-time data than
with revised data in all four countries.
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1 Introduction

In the presence of unknown structural changes, a number of studies have found that
forecast combination using time-varying recursive weights, based on historical forecast
performance, is an ineffective strategy for improving point forecasts. Stock and Watson
(2004) and Clark and McCracken (2009), among others, have found that an equal-weight
strategy is more effective in terms of root mean squared forecast error.
Increasingly, forecasters and policymakers in economics are interested in forecast den-

sities rather than point forecasts. Jore, Mitchell and Vahey (2009) [JMV] demonstrate
that a recursive weight density combination strategy, using the logarithmic scores of the
component forecast densities, produces well-calibrated ensemble densities.
This paper examines the effectiveness of recursive and equal-weight combination strate-

gies for forecast densities using a Phillips curve relationship between inflation and the
output gap. We consider convex combinations of probability forecasts known as the “lin-
ear opinion pool” (see Timmermann (2006, p177)). In addition to allowing for a large
number of candidate detrending methods, we consider a model space which allows for a
single structural break of unknown timing. We evaluate the recursive and equal-weight
strategies by examining the probability integral transforms (pits) of the combined den-
sities for inflation in real time. We consider real-time data for the US, Australia, New
Zealand and Norway.
For the recursive-weight strategy, we construct forecast density combinations based on

the logarithmic score for inflation forecast densities produced from the component models
to generate model weights; see, for example, Garratt, Mitchell and Vahey (2009) [GMV].
We compare and contrast the inflation forecasts from equal-weight ensembles and the

recursive-weight variants. The recursive-weight strategy performs well across the real-time
data sets, consistently giving well-calibrated forecast densities. The equal-weight strategy
performs less consistently, generating poorly-calibrated forecast densities for the US and
Australian samples in particular. There is little difference between the two strategies for
our New Zealand and Norwegian data. We also find that the ensemble modeling approach
performs more consistently with real-time data than with revised data in all four countries.
The remainder of this paper is structured as follows. In Section 2, we outline the

component models. In Section 3, we describe our methods for forecast density combination
and evaluation. In Section 4, we apply our methodology to US, Australian, New Zealand
and Norwegian data and presents the results. In the final section we conclude and discuss
the scope for future research.

2 Component models

Following Orphanides and van Norden (2005) and GMV, we consider Phillips curve fore-
casting models of the form:

πt+h = αj
1 +

PX
p=1

βj1,pπt−p+1 +
PX
p=1

γj1,py
j
t−p+1 + εj1,t+h, (1)
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where inflation is defined as πt = ln(prt)− ln(prt−1), where pr is the price level, and the
various output gap measures are denoted yjt , where j = 1, . . . , J ; P denotes the maximum
number of lags in inflation and the output gap measures respectively, and h is the forecast
horizon.1 Notice that there is model uncertainty over the output gap measure but also the
appropriate values of P (treated as fixed here). We therefore will have N different models
i = 1, . . . , N , defined over different values of J , P and, as introduced below, the number of
break dates used when considering structural change, each with their associated forecasts
of inflation.
We augment this specification with the corresponding output gap equation to create

a bivariate VAR system. The output gap equation takes the form:

yjt+h = αj
2 +

PX
p=1

βj2,pπt−p+1 +
PX
p=1

γj2,py
j
t−p+1 + εj2,t+h. (2)

Note that for simplicity, we have assumed that the lag structure is identical in the two
equation system.2

To facilitate comparison with GMV, we consider their base set of seven “flexible time
trends”, derived from univariate filters (J = 7). We define the output gap as the difference
between observed output and unobserved potential (or trend) output. Let qt denote the
(logarithm of) actual output in period t reported in a given vintage of data dated t+ 1,
and μjt be its trend using definition j where j = 1, 2, . . . , J . Then the output gap, yjt , is
defined as the difference between actual output and its jth trend measure. We assume the
following trend-cycle decomposition:

qt = μjt + yjt .

The seven methods of univariate trend extraction are: quadratic [Q], Hodrick-Prescott
[HP], a forecast-augmented HP [HPF], Christiano and Fitzgerald [CF], Baxter-King [BK],
Beveridge-Nelson [BN], and Unobserved Components [UC]. GMV describe the specifica-
tions of each detrending approach.
In our applications the total number of models considered will be determined by the

number of variants of P used in equations (1) and (2), as well the number of breaks
considered. We allow for lags 1 to 4 for both terms in each equation (i.e. P = 1, 2, 3, 4),
so that in total we consider 28 (7× 4) components in the model space before considering
structural break variants.
A number of VAR studies have noted the scope for parameter change to improve fore-

casting performance. Following GMV, we expand the model space to allow for a single
structural break of unknown timing in a pragmatic and computationally convenient man-
ner. For each VAR specification described above, we consider every candidate break date,
assuming a coincident break in the conditional mean and variance. With the computa-
tional burden in mind, we assume the break dates to be identical across equations for

1We set h = 1 in our applications that follow to simplify the presentation of the results from our many
models.

2Larger systems pose no conceptual problems but add to the computational burden.
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each VAR specification, where the break date is restricted to occur before the start of the
evaluation period in which component densities are combined.3

3 Methods for ensemble combinations and evalua-
tions

The inflation targeting regimes adopted worldwide, following the innovative steps taken
by the Reserve Bank of New Zealand in 1988, focused the attention of many central
banks on forecasting inflation. More recently, several central banks (including the Bank of
England, Norges Bank and Sveriges Riksbank) have moved to publish forecast densities for
key macroeconomic variables. With these developments in mind, we construct ensemble
forecast densities for inflation based on the (out of sample) forecast performance of our
many component models (described in the previous section).
We construct the predictive densities for the component models using forecast density

combination methods. Earlier papers, by JMV and GMV, take this approach to ensem-
ble modeling. In contrast, Stock and Watson (2004) and Clark and McCracken (2009)
(among others) study point forecast combinations across a large number of models. Al-
though point forecast combination has a longer tradition in economics (e.g., see Bates and
Granger (1969)) than ensemble forecasting, the focus of our study is on providing mone-
tary policymakers with an estimate of the entire probability distribution of the possible
future values of the variable of interest–the forecast density.
GMV explore the similarities and differences between the uncertain instabilities liter-

ature, typified by macro-econometric work by Stock-Watson and Clark-McCracken, and
the ensemble forecasting literature in weather forecasting and climatology. A recent pa-
per by Bache, Mitchell, Ravazzolo and Vahey (2009) describes the embryonic ensemble
forecasting literature in macro-econometrics, and provides a characterization. In short,
the ensemble methodology combines the forecast densities from a large number of rel-
atively simple component models using time-varying weights to approximate the (likely
nonlinear, and non-Gaussian) data generating process. The macro-econometric literature
stemming from Stock-Watson (and others) can be distinguished by the emphasis on point
forecast combination and simple combination strategies, such as equal weights.

3.1 Ensemble methods

To construct our ensemble forecasts, we aggregate forecasts supplied by “experts”. Each
expert uses a unique two equation VAR specification to produce a forecast density for
inflation.; see (among others) JMV and Timmermann (2006, p177)). Given i = 1, . . . , N

3Since we have one break in every feasible observation prior to the start of the evaluation period,
which varies by sample, the total number of components varies by country. We report the number of
components in each case in the data section.
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VAR specifications, the ensemble densities are defined by the convex combination:4

p(πτ,h) =
NX
i=1

wi,τ,h g(πτ,h | Ii,τ ), τ = τ , . . . , τ , (3)

where g(πτ,h | Ii,τ ) are the h-step ahead forecast densities from model i, i = 1, . . . , N of
inflation πτ , conditional on the information set Iτ . The publication delay in the production
of real-time data ensures that this information set contains lagged variables, here assumed
to be dated τ − 1 and earlier. Each individual model is used to produce h-step ahead
forecasts via the direct approach; see the discussion by Marcellino, Stock and Watson
(2003). Hence, the macro variables used to produce an h-step ahead forecast density for
τ are dated τ −h− 1. (In applying this framework to the data from four countries below,
we set h = 1 for simplicity.) The non-negative weights, wi,τ ,h, in this finite mixture sum
to unity.5

Since each VAR considered produces a forecast density that is multivariate Student-
t (see the discussion in Garratt, Koop, Mise and Vahey (2009)), the combined density
defined by equation (3) will be a mixture–accommodating skewness and kurtosis. That is,
the combination delivers a more flexible distribution than each of the individual densities
from which it was derived. As N increases, the combined density becomes more and more
flexible, with the potential to approximate non-linear specifications.
We consider two distinct strategies for constructing the weights, wi,τ ,h: recursive

weights and equal weights. In the former, the weights change with each recursion in
the evaluation period τ = τ , . . . , τ . In the latter, we restrict the weights to be constant
and equal throughout the evaluation.

3.1.1 Recursive weights (RW)

With the RW strategy, we construct the ensemble weights based on the fit of the individual
model forecast densities. Like Amisano and Giacomini (2007) and Hall and Mitchell
(2007), we use the logarithmic score to measure density fit for each component model
through the evaluation period. The logarithmic scoring rule gives a high score to a density
forecast that assigns a high probability to the realized value.6 Specifically, following JMV,
the recursive weights for the h-step ahead densities take the form:

wi,τ ,h =
exp

hPτ−1−h
τ−tr ln g(πτ,h | Ii,τ )

i
PN

i=1 exp
hPτ−1−h

τ−tr ln g(πτ,h | Ii,τ )
i , τ = τ , . . . , τ (4)

4The linear opinion pool is often justified by considering an expert combination problem. Wallis (2005)
proposes the linear opinion pool as a tool to aggregate forecast densities from survey participants. Hall
and Mitchell (2007) combine two inflation density forecasts from two institutions.

5The restriction that each weight is positive could be relaxed; for discussion see Genest and Zidek
(1986).

6The logarithmic score of the i-th density forecast, ln g(πτ,h | Ii,τ ), is the logarithm of the probability
density function g(. | Ii,τ ), evaluated at the outturn πτ,h.
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where the τ− tr to τ comprises the training period used to initialize the weights. Compu-
tation of these weights is feasible for a large N ensemble. Given the uncertain instabilities
problem, the recursive weights should be expected to vary across τ .
From a Bayesian perspective, density combination based on recursive logarithmic score

weights, RW, has many similarities (for h = 1) with an approximate predictive likelihood
approach (see Raftery and Zheng (2003), and Eklund and Karlsson (2007)). Given our
definition of density fit, the model densities are combined with equal (prior) weight on
each model–which a Bayesian would term non-informative priors. Given these weights,
we construct an aggregate forecast density for inflation (recursively, at each horizon).
GMV use those same weights to construct an h-step ahead ensemble predictive for the
output gap.

3.1.2 Equal weights (EW)

The EW approach attaches equal (prior) weights to each model with no updating of the
weights through the recursive analysis: wi,τ ,h = wi,h = 1/N .

3.2 Forecast density evaluations

In constructing the RW forecast densities, we evaluate forecasts using the logarithmic
score at each recursion. The many models are repeatedly evaluated using real-time data.
A popular evaluation method for forecast densities, following (for example) Dawid (1984)
and Diebold et al (1998), evaluates relative to the “true” but unobserved density using
the probability integral transforms (pits) of the realization of the variable with respect
to the forecast densities. A density forecast can be considered optimal (regardless of the
user’s loss function) if the model for the density is correctly conditionally calibrated; i.e.,
if the pits zτ,h, where:

zτ,h =

Z πτ,h

−∞
p(u)du,

are uniform and, for one-step ahead forecasts, independently and identically distrib-
uted. In practice, therefore, density evaluation with the pits requires application of tests
for goodness-of-fit and independence at the end of the evaluation period.7

The goodness-of-fit tests employed include the Likelihood Ratio (LR) test proposed by
Berkowitz (2001). We use a three degrees-of-freedom variant with a test for independence,
where under the alternative zτ,h follows an AR(1) process. Since the LR test has a
maintained assumption of normality, we also consider the Anderson-Darling (AD) test
for uniformity, a modification of the Kolmogorov-Smirnov test, intended to give more
weight to the tails (and advocated by Noceti, Smith and Hodges (2003)). We also follow
Wallis (2003) and employ a Pearson chi-squared test which divides the range of the zτ,h
into eight equiprobable classes and tests whether the resulting histogram is uniform. To

7Given the large number of component densities under consideration, we do not allow for parameter
uncertainty when evaluating the pits. Corradi and Swanson (2006) review pits tests computationally
feasible for small N .
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test independence of the pits, we use a Ljung-Box (LB1) test, based on autocorrelation
coefficients up to four (with our quarterly data).

4 Applications

We begin our analysis by describing the sample data for each of our four countries. Then
we present the results, focusing on the calibration properties of the inflation forecast
densities for the two strategies EW and RW.

4.1 Data

In this section we describe the four samples used, for the US, Australia, New Zealand
and Norway. Throughout our analysis, we use real-time observations for real output.
We note that the availability of real-time data differs across the countries, with the US
and Australian data sets covering longer periods in comparison with New Zealand and
Norway. As a result, the evaluation periods are considerably shorter in these two cases.
We provide more details below.

United States

For the US, we use the same real-time US data set as Clark and McCracken (2009) and
GMV. The quarterly real-time data used refer to real GDP and the GDP price deflator.
Here we use 83 vintages (data observed at a specific point in time), starting in 1987q1
ending in 2007q3. The data for each vintage, avoiding the period of the Korean War, are
for 1954q3, . . . , τ − 1 where τ − 1 = 1986q4, . . . , 2007q2. Data on output and the price
deflator are first released with a one quarter lag.
The raw data for GDP (in practice, GNP for some vintages) are taken from the

Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists. This
is a collection of vintages of National Income and Production Accounts; each vintage
reflects the information available around the middle of the respective quarter. Croushore
and Stark (2001) provide a description of the database. The US evaluation period is:
τ = τ , . . . , τ where τ = 1991q4 and τ = 2007q3 (64 observations), as we drop the first 20
quarters which we use as the training period to intilaise weights (i.e. tr = 20 in equation
(4)), reflecting the large sample size available in the case of the US. To implement density
combination through the evaluation period requires an additional assumption about which
measurement is to be forecast. Following Clark and McCracken (2009), GMV and others,
we use the second estimate as the “final” data to be forecast. For consistency, we report
results for the same definition of “final” data for all forecast density combinations and
evaluations. See also the discussion in Corradi, Fernandez and Swanson (2007).
To repeat, for all four countries, in each of our VAR applications, we consider lag

lengths of one to four (P = 1, 2, 3, 4) and have set J = 7. We also allow for a sin-
gle structural break of unknown timing in each VAR component. The break occurs in
the conditional mean and the variance for both equations. This pragmatic treatment of

7



structural breaks implies that we forecast with VARs using a variety of expanding win-
dows for parameter estimation. The break date is restricted to occur before the start of
the evaluation period to reduce the computational burden. When considering structural
breaks, at each recursion, the sample size varies between the full sample 1, 2, ...., τ − 1
and 0.85 × (τ − 1), ..., τ − 1 for the US, thereby covering a minimum of 15% of the full
sample in each recursion. Hence in the case of the US, we consider 376 component models
for each measure of the output gap considered. With seven measures of the output gap
derived from flexible trends, the predictives combine 2632 component specifications for
each observation in the evaluation period.

Australia

Our real-time real output data for Australia were obtained from the Reserve Bank
of Australia (described in detail in Reserve Bank of Australia Research Discussion Pa-
pers No 2002-05 and 2002-06). There are 63 vintages of quarterly real GDP seasonally-
adjusted data starting in 1991q3 and ending in 2007q4. The data for each vintage are for
1959q3, . . . , τ−1 where τ−1 = 1991q2, . . . , 2007q3 where data on output are first released
with a one quarter lag. As real-time data for prices is not available for Australia (this
is also true of New Zealand and Norway), we use the consumer price index from a single
vintage, as a feature of consumer prices is that they typically have very minimal revisions.
The consumer price series was downloaded from the IMF’s International Financial Statis-
tics data base, dated July 2009. The Australian evaluation period is: τ = τ , . . . , τ where
τ = 1996q2 and τ = 2007q4 (47 observations). As the sample sizes were comparable to
those used for the US, structural breaks were handled in an identical manner i.e. tr = 20
and we require a minimum of 15% of the sample, for each recursion, for all regressions.
Hence the number of component models for each measure of the output gap is 356, making
for a total of 2492 models evaluated in the combination each period.

New Zealand

Our real-time real output data for New Zealand were obtained from the Reserve Bank
of New Zealand (described in detail at www.rbnz.govt.nz/research/2482495.html). There
are 40 vintages of quarterly real GDP seasonally-adjusted data starting in 1998q1 and
ending in 2007q4, where the data for each vintage are for 1987q2, . . . , τ − 1 where τ −
1 = 1997q4, . . . , 2007q3. Data on output are first released with a one quarter lag. The
consumer price series was downloaded from the IMF’s International Financial Statistics
data base in July 2009. The New Zealand evaluation period is: τ = τ , . . . , τ where
τ = 1999q1 and τ = 2007q4 (36 observations), as given the shorter sample, we drop just
5 observations as the training period to intialise weights (tr = 5). Similar considerations
were also applied when dealing with structural breaks, where at each recursion, the sample
size varies between the full sample 1, 2, ...., τ−1 and 0.50×(τ−1), ..., τ−1, hence we have
a minimum of 50% of the sample. As a consequence the number of component models for
each measure of the output gap is 48, making for a total of 336 models evaluated in the
combination each period.
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Norway

The real-time real output data for Norway were obtained from Norges Bank.8 There
are 29 vintages of quarterly real GDP seasonally-adjusted data starting in 2001q2 and
ending in 2008q2, where the data for each vintage are for 1978q1, . . . , τ − 1 where τ −
1 = 2001q1, . . . , 2008q1. Data on output are first released with a one quarter lag. The
consumer price series was downloaded from the IMF’s International Financial Statistics
data base in July 2009. The Norwegian evaluation period is: τ = τ , . . . , τ where τ =
2002q2 and τ = 2008q2 (25 observations). For Norway we also drop 5 observations as the
training period (i.e tr = 5) and the restrict the sample size when considering structural
break to be a minimum of 50%. Hence the number of component models for each measure
of the output gap is 208, making for a total of 1456 models evaluated in the combination
each period.

4.2 Results

In this section, we present our results on the calibration properties of the forecast densities
resulting from our ensemble methodology, for the EW and RW strategies. We begin with
the US results (which we treat separately on the grounds that the real-time data are of
exceptional quality), and then turn to the remaining three countries.

4.2.1 US

Table 1 reports the pits tests p−values, together with the AD test statistic (which has a
95% critical value of 2.5). The figures in bold denote that the forecast density is correctly
calibrated for a 95% confidence interval on the basis of that individual test; that is, when
we cannot reject at a 95% confidence level the null hypothesis that the densities are
correctly calibrated. There are four rows to the table. The first two refer to the RW
strategy, with real time data (RW-RT), and final-vintage data (RW-FV), respectively.
The third and fourth rows give corresponding results for the EW strategy, with real-time
data (EW-RT), and final-vintage data (EW-FV), respectively.
Looking at the real time data results, we see that the RW strategy gives well-calibrated

densities on the basis of all seven tests, row 1. But the EW strategy fails two of the seven
tests in real time, row 3.
Turning to the revised final-vintage data, we see that for both the EW and RW

strategies, the performance is somewhat weaker. The RW strategy passes four of the
seven tests, and EW passes three.

8They can be obtained from Norges Bank on request.
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Table 1: US Ensembles

LR2 LRl LRu LR3 AD χ2 LB
RW-RT 0.19 0.38 0.29 0.33 1.02 0.16 0.24
RW-FV 0.01 0.12 0.27 0.01 2.08 0.01 0.29
EW-RT 0.02 0.52 0.10 0.03 1.96 0.19 0.11
EW-FV 0.00 0.07 0.09 0.00 3.01 0.04 0.06

Notes: LR2 is the p-value for the Likelihood Ratio test of zero mean and unit variance of the inverse

normal cumulative distribution function transformed pits, with a maintained assumption of normality for

the transformed pits; LRupper is the p-value for the LR test of zero mean and unit variance focusing on

the 10 percent upper tail; LRlower is the p-value for the LR test of zero mean and unit variance focusing

on the 10 percent lower tail; LR3 supplements LR2 with a test for zero first order autocorrelation; AD is

the Anderson-Darling test statistic for uniformity of the pits which assuming independence of the pits has

an associated 95 percent asymptotic critical value of 2.5. χ2 is the p-value for the Pearson chi-squared

test of uniformity of the pits histogram in eight equiprobable classes. LB is the p-value from a Ljung-Box

test for independence of the pits. The Log Score is the average log score over the evaluation period.Notes:

LR2 is the p-value for the Likelihood Ratio test of zero mean and unit variance of the inverse normal

cumulative distribution function transformed pits, with a maintained assumption of normality for the

transformed pits; LRupper is the p-value for the LR test of zero mean and unit variance focusing on the

10 percent upper tail; LRlower is the p-value for the LR test of zero mean and unit variance focusing on

the 10 percent lower tail; LR3 supplements LR2 with a test for zero first order autocorrelation; AD is the

Anderson-Darling test statistic for uniformity of the pits which assuming independence of the pits has

an associated 95 percent asymptotic critical value of 2.5. χ2 is the p-value for the Pearson chi-squared

test of uniformity of the pits histogram in eight equiprobable classes. LB is the p-value from a Ljung-Box

test for independence of the pits. The Log Score is the average log score over the evaluation period.

4.2.2 Australia, New Zealand and Norway

Tables 2, 3 and 4 present the results for Australia, New Zealand and Norway, respectively.
The Australian results, in Table 2, suggest that like the US case, the RW strategy produces
well-calibrated real-time densities (row 1). Although we note that the RW strategy does
fail two of the seven tests. In contrast, the EW strategy indicates calibration failure for
five of the seven tests (row 3). As with the US results, we see weaker calibration for both
strategies with final-vintage data. For example, with the EW strategy, row 4, the null of
correct calibration is not rejected on the basis of just one test with 95 percent confidence.
Turning to the New Zealand and Norway results, Tables 3 and 4, respectively, we see

that RW and EW perform similarly in real time. The RW strategy results in only one
rejection at a 95 percent confidence interval (row 1 in each table). And the EW strategy
betters that slightly with no tests failed (row 3 in each case).
As for the Australian and US data, both strategies fail more tests with final-vintage

data. For example, with the EW strategy, five and four tests are failed for New Zealand
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and Norway, respectively; see row 4. For the RW strategy, five (New Zealand) and three
(Norway) tests are failed, respectively; see row 2.

Table 2: Australian Ensembles

.

LR2 LRl LRu LR3 AD χ2 LB
RW-RT 0.417 0.353 0.013 0.428 2.280 0.011 0.970
RW-FV 0.159 0.061 0.002 0.172 3.198 0.014 0.164
EW-RT 0.015 0.437 0.013 0.021 4.032 0.008 0.940
EW-FV 0.016 0.014 0.010 0.027 4.477 0.010 0.195

Notes: see notes to Table 1

Table 3: New Zealand Ensembles

LR2 LRl LRu LR3 AD χ2 LB
RW - RT 0.085 0.556 0.684 0.107 2.523 0.230 0.479
RW - FV 0.000 0.022 0.204 0.000 2.907 0.004 0.696
EW - RT 0.071 0.361 0.936 0.074 2.265 0.333 0.508
EW - FV 0.000 0.022 0.149 0.000 3.136 0.003 0.474

Notes: see notes to Table 1.

Table 4: Norwegian Ensembles

LR2 LRl LRu LR3 AD χ2 LB
RW - RT 0.185 0.537 0.030 0.280 1.624 0.689 0.385
RW - FV 0.019 0.064 0.033 0.028 1.530 0.611 0.249
EW - RT 0.154 0.142 0.254 0.157 1.392 0.611 0.132
EW - FV 0.028 0.035 0.022 0.041 1.205 0.766 0.341

Notes: see notes to Table 1.

4.2.3 Interpretation

Overall, there are two substantive findings. First, we see that for the relatively short New
Zealand and Norwegian samples, there is little to separate the EW and RW strategies,
with both strategies giving real-time forecast densities that cannot reject the null of no
calibration failure. In contrast, for the longer US and Australian real-time samples, the
EW strategy fails a number of pits tests. The RW strategy seems more robust on the
these longer real-time samples.
The second findings is that the density forecasting performance is less satisfactory

for the ensembles with final-vintage data. Data revisions contaminate the Phillips curve
relationship in all four countries considered.
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5 Conclusions

In this paper, we have examined the effectiveness of recursive-weight and equal-weight
strategies for combining forecast densities using a Phillips curve relationship between in-
flation and the output gap. Using data for the US, Australia, New Zealand and Norway,
we find that the recursive weight strategy performs consistently well. In the two cases
with longer samples of real time data–the US and Australia–the equal-weight strat-
egy results in forecast densities that exhibit calibration failure. This result reverses the
perceived wisdom that simple averages are more reliable–a result found in a number of
well-known studies of point forecasting accuracy. In future work, we intend to investigate
the calibration properties of recursive-weight ensembles with dynamic stochastic general
equilibrium components.
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