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Abstract

The present paper aims at a synthesis of belief revision theory with
the Sneed formalism known as the structuralist theory of science. This
synthesis is brought about by a dynamisation of classical structuralism,
with an abductive inference rule and base generated revisions in the style
of Rott (2001). The formalism of prioritised default logic (PDL) serves as
the medium of the synthesis. Why seek to integrate the Sneed formalism
into belief revision theory? With the hybrid system of the present inves-
tigation, a substantial simplification of the ranking information that is
necessary to define revisions and contractions uniquely is achieved. This
system is, furthermore, expressive enough to capture complex and non-
trivial scientific examples. It is thus closely related to a novel research
area within belief revision theory which addresses the dynamics of scien-
tific knowledge.

Keywords: Abduction, Belief Bases, Belief Revision, Default Logic, Defeasible
Reasoning, Epistemic Ranking, Structuralist Theory of Science.

1 Introduction

The present paper aims to integrate the Sneed formalism known as the struc-
turalist theory of science into belief revision theory. Among other things, this
integration allows for a substantial simplification of the ranking information that
is necessary to define revisions and contractions in a unique manner. In classi-
cal belief revision theory, some form of ranking is needed that orders any item
of the belief set. Standard concepts to introduce this ranking are the relation
of epistemic entrenchment (Gärdenfors 1988) and Spohn’s ordinal conditional
ranking functions (Spohn 1988). In the hybrid system of the present paper,
by contrast, it is only theory-elements, i.e., pieces of background theories, that
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need to have a ranking. A clear statistical explanation in terms of successful
applications can be given for this ranking. Our thesis is that epistemic ranking
is an effect of theorising and hence requires, for it to be investigated, an analysis
of how theorising governs our beliefs.

We will give an overview of how the Sneed formalism can be integrated into
belief revision theory. In structuralism, one distinguishes between intended ap-
plications of theory-elements and theoretical extensions thereof. Of particular
interest are those theoretical extensions that are models of their correspond-
ing theory-element. Classical structuralism, because of its semantic orientation,
does not have the resources to account for deductive and other forms of rea-
soning with the help of a scientific theory. It has been shown, however, how
the structuralist representation scheme can be transformed into an axiomatic
representation of scientific theories (Andreas 2010b).

A further step towards a dynamisation of classical structuralism is to introduce
an abductive inference rule that allows one to infer T-theoretical extensions
from intended applications of T. The defeasible nature of abductive reasoning
is taken into account through using the formalism of default logic. This proves
convenient to express that T-theoretical extensions are required to satisfy inter-
nal and external links to other theory-elements. The next step is to introduce
a ranking of theory-elements relevant to the domain of logical reconstruction.
The resulting system resembles the paraconsistent and nonmonotonic formalism
that Brewka (1991, 1989) developed for inferences from a belief base and which
is used in Rott’s (2001) general definition of base generated revisions in the
context of only defeasibly valid background theories. Hence, we can adopt, with
only very minor modifications, Rott’s definition of revisions and contractions
for our system. This is the final step of the synthesis.

2 Base Revisions

Let us review briefly the concept of base revisions. A belief base H is a set of
sentences being accepted, where H is not necessarily closed under the operation
of logical consequence. For a belief set A, by contrast, logical closure is required,
which means A = Cn(A), where Cn is the operator of logical consequence in
classical logic. Belief bases are intended to represent belief states insofar as all
the accepted sentences and only these be inferable from the belief base plus
some (optional) background theory.

There is no consensus in the literature about the logical form of a belief base.
In fact, few attempts have been made to characterise belief bases by formal,
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logical means. Rott (2001) and Hansson (1999) introduce the notion of a belief
base such that it contains only non-derived beliefs. A sentence φ is thus an
element of the belief base H if and only if φ is non-derived and accepted. The
investigation of base revisions with the intent of an axiomatic characterisation
by postulates has been originated by Sven Ove Hansson.

A belief base H may be joined with a set E of axioms belonging to some back-
ground theory. This strategy has been studied by Rott (2001) and Brewka
(1991) in a systematic way. There, the axioms of background theories need only
be defeasibly valid. They are simply called expectations, which gives rise to the
use of E as the symbol for the set of axioms of potentially relevant background
theories. Hans Rott’s investigation of base revisions in the context of expecta-
tions will prove highly useful for the present attempt at an integration of the
structuralist framework into belief revision theory.

Why prefer the study of base generated belief changes to investigating changes
of belief sets? One important reason for this is that belief sets will always be
infinite, whereas belief bases are usually finite. Therefore, the model of a belief
base does respect the finiteness of human beings and computers. No human
being is able to be aware of an infinite set of sentences. Nor does a computer
have the storage for such an infinite set. Of equal importance seems to be that
base revisions do respect justifications more properly than existing formalisms
for belief set revisions (Brewka 1991, p. 208).

3 Reliability and Epistemic Entrenchment

Readers of Gärdenfors (1988) will remember the introducing story about belief
revisions:

Oscar used to believe that he had given Victoria a gold ring at
their wedding. He had bought their two rings at a jeweller’s shop
in Casablanca. He thought it was a bargain. The merchant had
claimed that the rings were made of 24 carat gold. They certainly
looked like gold, but to be on the safe side Oscar had taken the rings
to the jeweller next door who has testified to their gold content.
However, some time after the wedding, Oscar was repairing his boat
and he noticed that the sulphuric acid he was using stained his ring.
He remembered from his school chemistry that the only acid that
affected gold was aqua regia. Somewhat surprised, he verified that

3



Victoria’s ring was also stained by the acid. So Oscar had to revise
his beliefs because they entailed an inconsistency.

In the formal theory, the symbolic notation for a revision is A ∗ φ, where A is
the body of presently accepted beliefs and φ a new incoming information that
is potentially inconsistent with A. More precisely, A ∗ φ denotes the result of a
revision of A by φ, that is, the set of sentences accepted after the revision. A∗φ
is required to be consistent unless φ is a logical falsehood.

In the example, it should be obvious which propositions are the elements of
A. The proposition that the ring is stained by exposure to sulphuric acid is
the new incoming information φ.1 Obviously, φ is inconsistent with A in the
example. The question thus arises: which sentences of A should be retained?
This question is answered in the formal theory of belief revision through invoking
an order ≤E of epistemic entrenchment among the propositions of A. Given
that there is such an order, it can be determined in a straightforward manner
which sentences remain accepted in the case of a contraction A÷α (Gärdenfors
and Makinson 1988, p. 89):

β ∈ A÷ α if and only if β ∈ A and either α <E (α ∨ β) or α ∈ Cn(∅) (1)

In words: A sentence β remains to be accepted in A contracted by α if and only
if β is accepted in the original belief set A and either α is strictly less entrenched
than α∨β or α is a logical truth. (α <E β if and only if α ≤E β but not β ≤E α.)
By means of the Levi-identity, which says that A ∗ φ = (A ÷ ¬φ) + φ, (1) can
be used to define A ∗ φ in a unique way, where an expansion + is defined as
A+ φ = Cn(A ∪ {φ}).

That a proposition α is more entrenched than another proposition β implies
that we are more reluctant to give up α than to give up β in the case of in-
consistencies. This “explanation”, however, has been found insufficient for a
conceptual understanding of epistemic entrenchment since the view is rather
that our hesitation to give up a proposition derives from its standing in the
epistemic entrenchment order (Gärdenfors 1988, p. 87). Attempts at a concep-
tual explanation refer to the utility of a proposition in explaining other ones, its
information-theoretic content, paradigms in the sense of Kuhn, and probabilistic

1Strictly speaking, it is sentences and not propositions that are the elements of A. As
long as we are not dealing with a formalised example, however, it is hardly possible to avoid
reference to propositions. If the sentences in a belief set are associated with an interpretation,
no harm arises from saying that a proposition is the element of a belief set.
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considerations. These efforts, however, did not result in a widely accepted, sys-
tematic, and quantitative account of epistemic entrenchment so that this notion
remained a primitive one in belief revision theory.2 Likewise, the firmness of a
belief remained a primitive notion in Spohn’s ordinal conditional ranking func-
tions (1988), which serve the same purpose as epistemic entrenchment orderings
but are more powerful when it comes to iterated revisions.

Now, here is the informal discussion of the example by Gärdenfors (1988):

He could not deny that the rings were stained. He toyed with the
idea that, by accident, he had bought aqua regia rather than sul-
phuric acid, but he soon gave up this idea. So, because he had
greater confidence in what he was taught in chemistry than in his
own smartness, Oscar somewhat downheartedly accepted that the
rings were not made of gold after all.

The discussion is focused on whether or not Oscar shall retain the belief that
the ring is made of gold. It appears that this belief has no independent standing
in the epistemic entrenchment ordering. Oscar’s readiness to give it up rather
derives from the justifications and refutations he has for the proposition that the
ring is made of gold. He gives the result of the simple, accidental chemical test,
which clearly refutes this proposition, more credit than the justification based on
the testimony of the jewellers. In other words, the chemical test is considered
more reliable than the testimony of the jewellers. Why is this? Presumably,
there is no case known to Oscar where gold was stained by exposure to sulphuric
acid, whereas Oscar knows that it happens from time to time that imitations of
gold are sold without proper declaration. Therefore, the reliability order used by
Oscar can, at least partially, be explained by the ratio of the number of successful
applications to the total number of successful and unsuccessful applications of
the inferential patterns he is considering to use as justification or refutation of
a proposition. An application of an inferential pattern is successful if and only
if its conclusion has not been withdrawn until the present time. Otherwise, it
is unsuccessful.

Goldman (1979) defines the concept of reliability as the tendency of a belief
forming process to produce beliefs that are true rather than false. The term
tendency could, Goldman explains, either refer to actual long run frequency of
truth versus error or to a propensity being determined through the outcomes
that would occur in merely possible realisations of the process. These ideas are

2With the notable exception of Rott (2001), who gives an explanation of the relation of
epistemic entrenchment in terms of rational choice theory.

5



adopted here, with the qualification that reliability is not evaluated in terms of
truth but in terms of acceptance. Those inferential patterns are reliable whose
conclusions remain accepted. Only actual applications of inferential patterns
are considered for the estimation of reliability but no potential ones.

The story about Oscar’s wedding ring suggests a formalisation in terms of base
generated revisions rather than in terms of belief set revisions. There seems to
be no difficulty in applying the division of beliefs into derived and non-derived
ones and expectations. For example, that he was told by the jeweller that the
ring is made of gold is a non-derived belief held by Oscar.3 By contrast, that
the ring is made of gold belonged to his derived beliefs. Finally, that gold is not
stained by sulphuric acid is an expectation, or a general inferential pattern in
use for justification and refutation. As a conceptual clarification of the division
of beliefs into derived and non-derived ones and expectations requires no less
than a whole research paper, let us be content with noting that the division is
applicable in the present example.

A further observation concerning the example can now be made. It appears
that no ranking information concerning the non-derived beliefs is needed to
account for Oscar’s revision considerations. That the ring is stained seems to
be accepted as firmly as the sentence saying that Oscar was told that the ring
is made of gold by the jeweller.

Here is a formalisation of the inferential patterns being considered in the story:

(e1) ∀x(LOOKS_GOLDEN(x)→MADE_OF_GOLD(x))

(e2) ∀x∀y(JEWELLER(x) ∧ SELLS(x, y) ∧ TESTIFIES_GOLD(x, y)→
MADE_OF_GOLD(y))

(e3) ∀x(¬EXPENSIV E(x)→ ¬MADE_OF_GOLD(x))

(e4) ∀x∀y(JEWELLER(x) ∧ ¬SELLS(x, y) ∧ TESTIFIES_GOLD(x, y)→
MADE_OF_GOLD(y))

(e5) ∀x∀y∀z(RING(x) ∧ SULPHURIC_ACID(y) ∧ TIME_POINT (z) ∧
EXPOSED(x, y, z) ∧ STAINED(x, z)→ ¬MADE_OF_GOLD(x))

3Of course, when Oscar starts theorising about the reliability of his memory, this belief
may cease to be non-derived. The division of beliefs into derived and non-derived ones need
not be static.
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The meanings of the symbols used should be self-explanatory so that the mean-
ing of the axioms should be obvious from the story.

Now, the only ranking information needed to account for Oscar’s revision in the
story is an order of reliability of the general axioms. For example, the following
strict total order among the axioms may be assumed for the story:

e5 > e4 > e3 > e2 > e1

Assuming a strict total order for the reliability of the axioms seems neither
adequate nor necessary, however. It appears more appropriate to say that the
following information about the order of axioms is actually used in the story:

e5 > e4, e3, e2, e1

e4 > e3, e2, e1

Here, only a partial order among the axioms is assumed. The axiom saying that
gold is not stained by exposure to sulphuric acid (e5) has the highest priority
because it has not yet been found to have exceptions.

What lessons can be drawn from this analysis? Let us sum up some, still very
conjectural results for our discussion of base generated revisions:

(i) No epistemic ranking of non-derived beliefs is needed to account for base
generated revisions.

(ii) No explicit epistemic ranking of derived beliefs needs to be given either
to account for revisions of such beliefs. Rather, conflicts at the level of
derived beliefs can be resolved by considering the inferential patterns that
were effective for the acceptance of conflicting derived beliefs. Only these
inferential patterns need to have a ranking. This ranking represents their
reliability.

(iii) The ranking of inferential patterns, that is, their reliability, can, at least in
part, be explained in terms of statistical concepts, viz., by the frequency
of their successful application.

These conjectures underlie the following systematic account of revisions by
means of the structuralist framework. It should be noticed that the conjectures
could also be incorporated into Rott’s (2001, pp. 127–136) formalism for the di-
rect mode of base generated revisions, which goes back to Brewka (1991, 1989).4

4Simply drop the priority information among the elements of the belief base and establish
the ranking of expectations according to iii).
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Why, then, do we aim to integrate the structuralist framework into belief revi-
sion theory? First, the use of set-theoretical predicates in structuralism proved
more suited to represent complex examples from science than first-order systems
without set-theory. The expressivity of structuralism has been appreciated even
by researchers who thought formal means quite inappropriate for the analysis of
science (Kuhn 1976). Second, in structuralism it is feasible to keep track of the
justifications of derived beliefs since such beliefs are represented as valuations
of T-theoretical extensions of intended applications. Elsewhere we will show
that this feature allows for more efficient revision algorithms than those com-
monly used for first-order belief sets. Third, substantial commonalities between
frames in the sense of Minsky (1974) and the types of set-theoretical predicates
used in structuralism reveal that the structuralist representation scheme is more
accurate than a non-set-theoretical, first-order representation of beliefs from a
cognitive science perspective. The point is that the structuralist framework
answers Minsky’s request for inter-propositional knowledge representation, i.e.,
the association of propositions with information about how to use them.

4 Minimal Structuralism

A core idea of structuralism is to model the application of scientific theories
to empirical systems through the application of set-theoretical predicates to se-
quences of sets that represent such empirical systems. The systematic use of
set-theoretical predicates, therefore, distinguishes the structuralist representa-
tion scheme for scientific knowledge from other formal accounts in the philos-
ophy of science. Classical structuralism, as expounded in Balzer et al. (1987),
may further be seen as the most thorough elaboration of the semantic view of
scientific theories, i.e., the view that the models of a scientific theory are essen-
tial for its identity. This semantic orientation does not necessarily preclude the
representation of deductive and other forms of reasoning because it has been
shown how the structuralist representation scheme can be transformed into an
axiomatic representation of scientific theories in the style of a more Carnapian
and hence more syntactic conception of scientific theories (Andreas 2010b). The
surplus of this transformation is the formal representation of deductive reason-
ing, which was not available in classical structuralism.

An exposition of the whole theoretical apparatus of structuralist theory of sci-
ence is well beyond the scope of the present paper. For this reason, we have
developed a simplified version, which is intended to capture the most elemen-
tary ideas and which is expounded here for the first time. Minimal Structuralism
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seemed a fitting description and a suitable label for this simplified version. For
a wide range of studies, including also scientific examples, minimal structural-
ism will be sufficiently expressive. Unlike classical structuralism it allows for
the formal representation of deductive and abductive reasoning and is in this
respect even more expressive than classical structuralism.

Let us begin with some explanations concerning the types of set-theoretical
structures and set-theoretical predicates that are introduced in a structuralist
representation of scientific knowledge. The sequences of sets being used to
represent scientific knowledge consist of a sub-sequence of base sets and another
sub-sequence of relations:

〈D1, . . . , Dk, R1, . . . , Rn〉 (2)

where D1, . . . , Dk are base sets and R1, . . . , Rn relations. Sequences of this type
are also called set-theoretical structures. Set-theoretical predicates in struc-
turalism lay down certain restrictions on the sets that are admitted as values
in a sequence of sets. More precisely, one distinguishes between typifications,
characterisations, and laws concerning the relations R1, . . . , Rn. A typification
is a statement of the form Ri ∈ σ(D1, . . . , Dk), where σ(D1, . . . , Dk) stands for
a sequence of concatenated operations on the base sets D1, . . . , Dk. The types
of operations are selection, Cartesian product, and power set. A typification
thus indicates that a relation Ri is of a determined set-theoretical type over the
sets D1, . . . , Dk. For details, see Balzer et al. (1987, pp. 6-14).

A further specification of set-theoretical structures is brought about by for-
mulas applying to them. Such formulas must be built up from the symbols
D1, . . . , Dk, R1, . . . , Rn as well as logical and set-theoretical symbols. One dis-
tinguishes between characterisations and laws. A characterisation is a formula
which contains besides set-theoretical and logical symbols only a symbol for
precisely one relation Ri, 1 ≤ i ≤ n. A law, by contrast, is a formula that
establishes some universal, non-trivial connection between at least two relations
of R1, . . . , Rn. Therefore, it must have occurrences of at least two symbols for
relations. To indicate that the law is non-trivial, we also speak of the substan-
tial law of the theory-element T. A substantial law in this sense may consist of
more than one formal axiom.

It has been observed for a long time that theory formation goes hand in hand
with concept formation. That means, the advancement of a scientific theory
comes with the introduction of concepts specific to that theory. In structuralism,
such concepts are called T-theoretical, where T stands for the theory through
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which the concepts are introduced. Paradigmatic examples of T-theoretical
concepts are the concepts of mass and of force in classical particle mechanics.
Those concepts, by contrast, which are used to describe the empirical systems
that are the subject of the application of T, are called T-non-theoretical.

The distinction between T-theoretical and T-non-theoretical concepts gives rise
to the following distinction between two kinds of set-theoretical entities:

〈D1, . . . , Dk, N1, . . . , Np〉 (3)

〈D1, . . . , Dk, N1, . . . , Np, T1, . . . , Tq〉 (4)

Structures of type (3) are intended to represent empirical systems that are
the subject of the application of T, whereas structures of type (4) represent
T-theoretical extensions of structures of type (3). The extension simply con-
sists in a valuation of the T-theoretical relation symbols. Thus, the symbols
N1, . . . , Np designate T-non-theoretical relations, whereas T1, . . . , Tq designate
T-theoretical ones. The symbols D1, . . . , Dk designate sets of empirical objects
that make up the empirical system to which the theory is applied.

Why are there different sets of empirical objects and not just one set D? This
allows for a more fine-grained characterisation of what the empirical subjects of
theory application are like. The argument types of the T-non-theoretical and the
T-theoretical concepts thus can be characterised more accurately. Specifications
of the latter kind are introduced through typifications and characterisations of
relations in the above indicated manner.

If the theory involves some mathematical apparatus, as functions to natural,
rational, or real numbers, and operations on such functions, then symbols for
sets of mathematical objects need to be introduced. This results in structures
of the following types:

〈D1, . . . , Dk, A1, . . . , Am, N1, . . . , Np〉 (5)

〈D1, . . . , Dk, A1, . . . , Am, N1, . . . , Np, T1, . . . , Tq〉 (6)
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A1, . . . , Am are sets of mathematical objects. Some or all of the T-non-theoretical
and T-theoretical relations may be functions, i.e., binary many-to-one relations.
In the theories of mathematical physics, most quantities are introduced as func-
tions taking empirical objects as arguments and having mathematical objects
as values. Think of the concepts of temperature, pressure, mass, force, electro-
magnetic field etc. In allowing the sub-sequence of sets of mathematical objects
to be empty, structures of type (5) and (6) have structures of type (3) and (4)
as special cases.

Now, here are the essentials of structuralist theory representation. The ap-
plication of a theory T to a potentially complex empirical phenomenon is not
modelled by first-order order statements. Rather, we need to start with a T-
non-theoretical description of a system of empirical entities, which are given by
structures of type (5). The application of a theory T is then represented as the
claim that the T-non-theoretical description can be extended to a T-theoretical
description such that T’s substantial law is satisfied. That means a formula
applying to structures of type (6) and having occurrences of at least two of
the relation symbols N1, . . . , Np, T1, . . . , Tq must be satisfied by a T-theoretical
description of the empirical phenomenon, which is represented by a structure
of type (5). Of course, a T-theoretical description of an empirical system is a
structure of type (6). The set-theoretical representation of an empirical phe-
nomenon to which a theory-element T is intended to be applied is called an
intended application of T.

It is a further implication of the structuralist schema of theory application that
certain links between the various theoretical descriptions of empirical systems
must be satisfied. In general, links constrain the admissible theoretical descrip-
tions of certain tuples of intended applications. If all elements of the tuple
are intended applications of one and the same theory-element, such links are
called internal.5 If, by contrast, more than one theory-element is involved, one
speaks of an external link. Links are introduced particularly if one and the same
empirical object is involved in different intended applications. For reasons of
simplicity, the present exposition will be confined to binary links.

As just indicated, the application of a theory T to empirical phenomena is seen
in structuralism as the search for T-theoretical descriptions of those phenomena,
where these descriptions must satisfy first T’s substantial law and second certain
links to T′-theoretical descriptions of other empirical phenomena. Hence, we
need to characterise by formal means those T-theoretical structures that satisfy
these two conditions. The strategy we adopt in the following is to introduce

5In classical structuralism such links are called constraints.
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a higher-order relation AE(T)(x, y) having the intended meaning that x is an
admissible extension of y. A T-theoretical extension x is admissible if and only
if it satisfies T’s substantial law and all the links of T are satisfied.

If AE(T)(x, y), then x needs to be a T-theoretical structure that extends the
representation y of an empirical phenomenon by a T-theoretical description. To
express this formally, we need to have a restriction function r(T)(x) that “cuts”
the T-theoretical relations:

Definition 1. If x = 〈D1, . . . , Dk, A1, . . . , Am, N1, . . . , Np, T1, . . . , Tq〉, then y =
r(T)(x) if and only if y = 〈D1, . . . , Dk, A1, . . . , Am, N1, . . . , Np〉, i.e., xi = yi for
all i, 1 ≤ i ≤ k +m+ p.

Now, we are in a position to state the first postulate characterising AE(T)(x, y):

P1(T) ∀x∀y(AE(T)(x, y)→ y = r(T)(x))

Second, an admissible T-theoretical extension needs to satisfy T’s substantial
law. In classical structuralism, the set of structures satisfying T’s substantial
law is designated by M(T), the set of models of T, where M(T) is introduced
by an explicit definition. (The logical form of such a definition will be indicated
with the example below.) Having an explicit definition of M(T) available, we
can advance another postulate:

P2(T) ∀x∀y(AE(T)(x, y)→ x ∈M(T))

One word on potential models is necessary here. Potential models are those
structures of which it is sensible to ask whether or not T’s substantial law
is satisfied. In more formal terms, that means, that, if x is a T-theoretical
structure and A the open formula expressing T’s substantial law, then A(x) will
have a well defined truth-value if x is a potential model of T. The definition of
M(T) is such that it follows from x ∈ M(T) that x is a potential model. For
this reason, P2(T) implies that x is a potential model if AE(T)(x, y).

Let us come to deal with links. Even in minimal structuralism, we shall distin-
guish between internal and external links. Both, internal and external (binary)
links can be characterised through an open formula φ(Li)(x, y). The following
considerations will be confined to binary links. An extension to links hav-
ing higher arity is not difficult to accomplish. If Li is an internal link, then
φ(Li)(x, y) is required to hold only for x and y being theoretical structures of
one and the same theory-element. If, by contrast, Li is an external link between
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T and T′, φ(Li)(x, y) is required to hold for ordered pairs consisting of a T-
theoretical and a T′-theoretical structure.

In view of what we have said about links, we can indicate the general form of
postulates for binary links:

P3(Li,T,T′) ∀x1∀y1∀x2∀y2(AE(T)(x1, y1) ∧ AE(T′)(x2, y2) →
φ(Li)(x1, x2))

where T and T′ need not be different.

At this point, we arrived at a formal characterisation of the admissible theo-
retical extensions of a T-non-theoretical structure. What can we say about the
empirical phenomena to which T is applied, i.e., the intended applications of
T? We know that the members of I(T), the set of intended applications, are
structures of type (5), which is ensured by postulate P1(T). It is an assumption
inherent in structuralism that the set I(T) cannot be characterised completely
by formal means. Rather the notion of an intended application is to be taken in
the literal sense that there are scientists who think that a theory is applicable to
certain empirical systems. Among other things, paradigmatic examples play an
important role in determining the range of such empirical systems. Henceforth,
we assume that the extension of pI(T)q is given somehow. The information
encoded by the set I(T) is comparable to a complete interpretation of the ob-
servation language in non-set-theoretical reconstructions of scientific theories.

What we can express formally about I(T) is the requirement that any intended
application has an admissible T-theoretical extension:

P4(T) ∀y(y ∈ I(T)→ ∃xAE(T)(x, y))

For reasons that will become obvious in the next section, we require the relation
AE(T) to be one-to-one:6

P5(T) ∀x1∀x2∀y(AE(T)(x1, y) ∧AE(T)(x2, y)→ x1 = x2)

This postulate says that the relation AE(T) is one-to-many. That AE(T)
is also many-to-one follows from postulate P1(T) and the definition of r(T).
Hence, P1(T), P5(T), and the definition of r(T) together imply that AE(T)
is one-to-one.

6This postulate is adopted from Hofer (2009, p. 53).
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The postulates P1(T) − P5(T) do, we claim, capture the intended meaning
of AE(T) completely. Henceforth, the set of these postulates is designated by
Φp(T). This set is called a system of postulates for the theory-element T. Φd(T)
may designate the set of the definitions of M(T), Mp(T) and r(T).

In speaking of introducing the relation AE(T) through postulates, we implicitly
assumed AE(T) to be a (higher-order) theoretical term. The semantics of theo-
retical terms and theoretical sentences has been expounded in Andreas (2010a).
As we want to keep the presentation of belief revisions with theory-elements as
concise as possible, we spare the reader the original semantics of the present
system of postulates and corresponding equivalence theorems. In place of this,
we will be directly concerned with the introduction of an abductive inference
rule that allows for inferences from intended applications to theoretical exten-
sions thereof. The formalism of default logic will be used for the formulation
of such an inference rule because of the defeasible nature of abduction. Then,
the semantics of default logic falls into place as the proper semantics for the
axiomatic system we are developing.

5 Examples of Theory-Elements

A few examples of how models of a theory-element T are defined may ease the
understanding of the abstract concepts before we move on to develop further the
formalism of minimal structuralism. A simple example is the lever rule in classi-
cal mechanics (Sneed 1979, pp. 65–73). In the following semiformal exposition, n
has the intended meaning of the distance function from the centre of rotation of
the lever, and t the intended meaning of the mass function. The theory-element
LR covers the case where the weights on either side are in equilibrium.

Definition 2. x is a system of the lever rule (x ∈M(LR)) if and only if there
exist D,R, n, t such that

(i) x = 〈D,R, n, t〉;

(ii) |D| > |∅|;

(iii) n : D → R;

(iv) t : D → R;

(v)
∑
y ∈ D

n(y) · t(y) = 0.
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In this case it is obvious why the formalism of higher-order logic or set-theory is
needed for the reconstruction. As the application of the theory concerns systems
of empirical objects with variable cardinality, a non-set-theoretical first-order
representation would not do the job.

Since we started the discussion of revisions with Gärdenfors’s story about the
purchase of a golden ring, we shall give a formalisation of at least two axioms be-
ing applied there. Admittedly, the formalisation looks contrived as the example
does not require the set-theoretical formalism of structuralist theory of science.
In other words, using that formalism for representing Gärdenfors’s story is like
using a sledge hammer to crack a nut. Yet, as is the case with many exam-
ples in applications of mathematical logic, particularly with those of Artificial
Intelligence, they may well serve the purpose of conveying an understanding of
the formalism. The meanings of the symbols will be obvious from the above
formalisation, where the symbols of that formalisation are abbreviated now by
their initials as follows: J(x) - x is a jeweller; S(x, y) - x sells y; T_G(x, y) - x
testifies that y is made of gold; M_G(x) - x is made of gold.

Definition 3. x is a system of a theory about a jeweller’s testimony (x ∈
M(JT)) if and only if there exist D,J, S, T_G,M_G such that

(i) x = 〈D,J, S, T_G,M_G〉;

(ii) |D| = 2;

(iii) J ⊆ D;

(iv) S ⊆ D ×D;

(v) T_G ⊆ D ×D;

(vi) M_G ⊆ D;

(vii) ∀y1∀y2(J(y1) ∧ ¬S(y1, y2) ∧ T_G(y1, y2)→M_G(y2)).

The one-place relation M_G, which stands for being made of gold, is JT-
theoretical in a weak sense. It is possible to determine the extension of that
relation with the help of JT but it is not necessary to use this theory-element
for that purpose, which would be required for M_G being JT-theoretical in
the strong sense.

Another theory through which we can determine the extension of M_G, at
least via negation, captures axiom (e5) of the story (symbols: S_A(x) - x is
sulphuric acid; E(x, y, z) - x is exposed to y at time z; ST (x, y) - x is stained at
time y):
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Definition 4. x is a system of a theory about the sulphuric-acid-test of gold
(x ∈M(SAT)) if and only if there exist D1, D2, S_A,E, ST,M_G such that

(i) x = 〈D1, D2, S_A,E, ST,M_G〉;

(ii) |D1| = 2;

(iii) |D2| ≤ ℵ0;

(iv) S_A ⊆ D1;

(v) E ⊆ D1 ×D1 ×D2;

(vi) ST ⊆ D1 ×D2;

(vii) M_G ⊆ D1;

(viii) ∀y1∀y2∀y3(S_A(y2) ∧ E(y1, y2, y3) ∧ ST (y1, y3)→ ¬M_G(y1)).

The intended interpretation of D2 is a set of time points, where it is assumed
that this set has not more than countably many members.

As it stands, one and the same object may be classified as being made of gold
according to an application of JT and, at the same time, classified as not being
made of gold according to an application of SAT. This result is desired to some
extent. It makes it possible to represent situations where two pieces of evidence
conflict with one another such that the conflict at the theoretical level can be
traced back to a conflict at the empirical level. On the other hand, it is desirable
that the conflict becomes recognisable in the formal system. To achieve this, an
external link must be established:

P3(L1,JT,SAT) ∀x∀y∀z(x ∈ M(JT) ∧ y ∈ M(SAT) ∧ z ∈ (D1)x ∧ z ∈
(D1)y → (R4)x = (R4)y)

This formulation uses the convention that, if x = 〈D1, . . . , Dk, R1, . . . , Rn〉,
(Dm)x, 1 ≤ m ≤ k, denotes Dm and (Rp)x, 1 ≤ p ≤ n, Rp.

For readers being familiar with Minsky’s seminal (1974) paper and with ob-
ject oriented programming languages such as C++ and Java, whose develop-
ment was deeply inspired by ideas of Minsky, the connection of the structuralist
framework to frames will be worth consideration. According to the cognitive
characterisation, a frame is a data structure that we re-collect from memory
when we encounter a typical situation. According to the formal characterisa-
tion, a frame is a set of slots that allow only certain types of values as fillers.
There are ‘simple’ type conditions that express these constraints on admissible
values. In addition, there are ‘complex’ conditions that relate the values of
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one slot to the values of another. In structuralism, simple type conditions are
called typifications and complex ones laws. For a frame in the sense of Minsky,
it is essential to be related to other frames in various ways. In structuralism,
we have at least three types of relations among frames: internal and external
links, and the relation of specialisation. (The latter relation was not covered
by the present account.) Of course, our view is that theory-elements are frame
concepts.

A frame in the sense of Minsky as well as a class in C++ and Java come with
their own descriptive, i.e., non-logical vocabulary. This allows for a modular-
isation of data manipulation, which makes programming code more intuitive,
less error-prone and easier to maintain. In precisely the same way it holds for
the structuralist framework that the descriptive vocabulary of the global lan-
guage of science is divided into sub-vocabularies, where a theory-element has its
own non-logical vocabulary. Intended applications and T-theoretical extensions
thereof are individuated by a particular interpretation of that sub-vocabulary.
Scientific reasoning, then, occurs at different levels: within an intended applica-
tion of a theory-element, among the intended applications of one and the same
theory-element (by means of internal links), among different intended applica-
tions of different theory-elements (by means of external links). Arguably, this
allows for a more fine-grained and more accurate representation of scientific
reasoning.

6 Abductive Inferences in Minimal Structural-
ism

Abduction is a mixed bag. Informally speaking, an abductive inference is an
inference from phenomena to hypotheses explaining such phenomena. A more
formal account is given by the following inference rule (Flach 2000, p. 93):

C A |= C

A
(7)

Underlying this inference rule is the view that abductions are inverted deduc-
tions, which is common to most AI approaches to abduction. Hence, the rule
allows one to infer from a proposition C another proposition A which has C
among its semantic consequences.

In analysing reasoning from phenomena to potential explanations, however, we
should distinguish more carefully between the background theory and the hy-
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pothesis, which together explain the phenomenon. The kind of inference we are
particularly interested in here is one that leads to an interpretation of phenom-
ena in light of an antecedently given theory to the effect of extending the report
of phenomena by a theoretical description. (7) would only make sense if C were
to include some piece of a theory, but the process of theory formation seems too
chaotic and too complex to be captured by a simple inference rule.

This being said, we may improve upon (7) as follows:

C A, T |= C

A
(8)

where T stands for a theory being given in some axiomatic formulation, C
represents an observed phenomenon and A a specific, theoretical antecedent
condition that entails C in the context of T . This inference rule is inspired by
and intended to capture the ingenious definition of a conjectural consequence
relation by Flach (2000, p. 96). If one thinks of explanations in terms of the
old DN approach, inference rule (8) can be said to allow for inferences from
empirical phenomena to hypotheses potentially explaining those phenomena,
together with a non-empty set of general laws: A, T represents the explanans,
C the explanandum.

The DN approach to explanation encountered some rivals in the second half of
the twentieth century. Among them, the unification approach to scientific ex-
planation does seem to be of particular relevance to our investigation (Friedman
1974; Kitcher 1976). A formal equivalent of the unification approach has been
seen in the idea that a T-theoretical structure being a model of T and extend-
ing an intended application of y explains y with the help of T since y becomes
embedded into a theoretical model once such a T-theoretical structure is found.
Intended applications in the structuralist sense are thus seen as empirical phe-
nomena waiting to be explained. This model-theoretic notion of explanation
has been advanced by Stegmüller (1985, p. 113) and was systematically investi-
gated by Bartelborth (2002). Taking it up, we can give a first, approximative
explanation of what a hypothesis explaining a phenomenon is in structuralism:

Explanation 1. Let y be a T-non-theoretical structure that represents some
phenomenon. Then, a T-theoretical structure x explains y with the help of a
background theory T if and only if i) r(T)(x) = y and ii) x ∈M(T).

Using proposition (1) for an abductive inference results in the following rule:
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y ∈ I(T), y = r(T)(x), x ∈M(T)
(x, y) ∈ AE(T)

(9)

This inference rule schema represents corresponding inference rules for every
theory-element T under consideration in the logical reconstruction. Unlike (8),
(9) does not require the empirical phenomenon, that is, in this case, the intended
application, to be derivable from the explanans.7 Hence, the abductive inference
rule (9) is more liberal than (8).8

That y is an intended application of T, x a T-theoretical extension of y, and x
satisfies T’s substantial law are minimal requirements for x to be an admissi-
ble extension of y. Moreover, postulates of type P3(Li,T,T′) must hold, i.e.,
any link between (x, y) ∈ AE(T) and (x′, y′) ∈ AE(T′) must be satisfied. It
appears sensible, therefore, to include the satisfaction of links to other, poten-
tially admissible theoretical extensions in the antecedence of the inference rule
(9). The problem arising then is that we would need to know the extension of
AE(T′) for any T′ being potentially linked to (x, y) ∈ AE(T). However, any
proposition of the form (x′, y′) ∈ AE(T′) can only be inferred by means of the
abductive inference rule (9) in the first place. For this reason, it is not possible
to include the satisfaction of links among the premisses of this rule.

In this situation, we take recourse to the formalism of default logic. This logic
comes with a new type of inference rule that has the syntactic form

φ : ψ1, . . . , ψn
χ

(10)

where φ, ψ1, . . . , ψn, and χ are closed formulas of predicate logic. Its meaning
is: If φ and it is consistent to assume that ψ1, . . . , ψn, then χ. Consistency is
understood as being relative to a setW of presumed facts, or accepted sentences,
joined with the set of sentences that have been derived fromW so far. ψ1, . . . , ψn

7The intended application is only derivable in the trivial sense that it can be obtained by
the restriction function r(T) from the theoretical extension. Yet, the intended application
need not be derivable from the theoretical part of the theoretical extension x, that is, the
T-theoretical relations of x. In a more extended discussion it could be shown that (9) allows
us to capture inferences licensed by (8) as well, if the theory T in (8) is formalised in the
structuralist style.

8Even though inference rule (9) is more liberal than (8), it does not capture every kind of
inference being associated with the term “abduction”. In particular, (9) does not capture the
process of theory formation. The term “abduction” is used here merely to make the exposition
more vivid. Nothing depends on how appropriate this use is. For an excellent systematic
survey concerning abduction see Schurz (2008).
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are called justifications or consistency conditions. A normal default is one where
the consistency conditions are identical with the consequent χ:

φ : χ
χ

(11)

Open defaults, i.e., default rules with occurrences of free variables, are, in stan-
dard default logic, taken to represent all of their ground instances.

Using default logic, the satisfaction of links can be taken into account through
the following two steps. First, every postulate of type P3(Li,T,T′) is included
in the set W of accepted sentences. Second, inference rule (9) is turned into a
default rule as follows:

δ1(T)
y ∈ I(T), y = r(T)(x), x ∈M(T) : (x, y) ∈ AE(T)

(x, y) ∈ AE(T)

In words: If y is an intended application of T, x a T-theoretical extension of
y, x a model of T, and it is consistent to assume that (x, y) ∈ AE(T), then
(x, y) ∈ AE(T). Suppose there is an ordered pair (x′, y′) ∈ AE(T′) such that
a link postulate P3(Li,T,T′) is falsified for the quadruple (x, y, x′, y′). In this
case, (x, y) ∈ AE(T) cannot consistently be added to the stock of accepted
sentences.

Let us be more precise about the default theory capturing abductive inferences
to theoretical extensions of intended applications. As is well known, a default
theory is a pair (W,D), where W is a set of sentences and D a set of default
rules. In our case, W contains any proposition of the form b ∈ I(T), where b
is a T-non-theoretical structure and T a theory-element. Further, W contains
the postulates P1(T)−P3(T) and P5(T) for any theory-element T. Moreover,
the set of definitions given by Φd(T) is contained in W for any theory-element
T.9

The general form of the defaults in our default theory is given by the schematic
inference rule δ1(T). Since the number of theory-elements to be considered and

9One may wonder whether P1(T) and P2(T) are not dispensable once the inference rule
δ1(T) is introduced. This is not the case. According to this rule, y ∈ I(T), y = r(T)(x), x ∈
M(T) are sufficient conditions for inferring (x, y) ∈ AE(T) as long as (x, y) ∈ AE(T) can
consistently be added. By contrast, P1(T) and P2(T) state that y = r(T)(x), x ∈ M(T) are
necessary conditions for (x, y) ∈ AE(T).

In not including P4(T) among the axioms ofW , we obtain a system that is more liberal than
Φp(T) ∪ Φd(T) with deductive logic. The motivation for not including P4(T) will become
apparent in the next section when priorities for defaults are introduced to account for the
reliability of applying theory-elements to empirical systems.
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the number of intended applications of any theory-element are always finite, the
schematic letter T and the free variable y may be replaced by all of its instances,
which yields a set of open defaults of the form:

δ2(T)
bj ∈ I(T), bj = r(T)(x), x ∈M(T) : (x, bj) ∈ AE(T)

(x, bj) ∈ AE(T)

Replacing the remaining free variable in δ2(T) would lead to a cumbersome for-
mulation of the set D of defaults. We shall therefore “postpone” the replacement
of open defaults with their ground instances to the definition of the inference
notions in the next section. This will allow us to make an important observation
there concerning the applicability of open defaults.

7 The Semantics of Default Logic

Assuming the reader to be roughly familiar with the elements of default logic,
here we will review briefly the notion of an extension and the corresponding
inference notions, with consideration of explanation (6). In the standard se-
mantics for default logic it is assumed that open defaults are replaced by all
of their ground instances such that every default δ ∈ D is closed (cf. Brewka
et al. (2008) and Antoniou (1997), p. 25). The following definitions, however,
are adjusted to default theories with open normal defaults having exactly one
occurrence of a free variable, as is the case with our default theory. Let us begin
with the fixed-point semantics. There, the notion of an extension is defined as
follows:

Definition 5. Let (W,D) be a default theory. The operator Γ assigns to every
set S of formulas the smallest set U of formulas such that:

(i) W ⊆ U ,

(ii) Cn(U) = U ,

(iii) For all substitutions (u/x) with u being a tuple of ground terms: if φ(x) :
ψ(x)/ψ(x) ∈ D,U |= φ(u/x), S |6= ¬ψ(u/x), then ψ(u/x) ∈ U .

A set E of formulas is an extension of (W,D) if and only if E = Γ(E), that is,
E is a fixed-point of Γ.
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The operational definition of an extension by Antoniou (1997) may in some
respect seem more intuitive. The underlying idea is to define, first, what it is
for a sequence of closed defaults to be applicable to the set of currently accepted
sentences. The latter set grows with each application of a default unless the
consequence of the default was already believed in. Second, the idea is to define
what it is for such a sequence to be maximal in the sense that no further default
of D can be applied. Sequences of defaults satisfying both conditions are called
closed and successful processes. Let us begin with the definition of the concept
of a default being applicable to a deductively closed set of formulas:

Definition 6. A closed normal default δ = φ:ψ
ψ is applicable to a deductively

closed set of formulas E if and only if φ ∈ E and ¬ψ /∈ E.

Now, let Π be a sequence of closed defaults such that, for every element δ1 of Π,
there is a substitution (u/x) and some δ2 ∈ D with δ1 = δ2(u/x). This sequence
is a successful process if and only if every default can in the order given by the
sequence be applied to the deductive closure of W joined with consequences
of previously applied defaults. Π is a closed process if and only if there is no
default δ2 ∈ D and no substitution (u/x) such that δ2(u/x) /∈ Π and δ2(u/x)
is applicable to E = Cn(W ∪ {cons(δ) | δ occurs in Π}), where cons(δ) denotes
the consequence of the default δ. Then, the notion of an extension of the default
theory can be defined as follows:

Definition 7. A set E of formulas is an extension of the default theory (W,D)
if and only if there is some closed and successful process Π of (W,D) such that
E = Cn(W ∪ {cons(δ) | δ occurs in Π}).

Note that the notion of an extension in the sense of default logic must by no
means be confounded with the notion of a T-theoretical extension in the sense
of structuralism. Both notions are in play in our system, however.

Note that, in our default theory, an open default cannot be applied with two
different substitutions in one and the same successful process. If an open default
of the form δ2(T) has been applied for a substitution (u1/x), we receive a
conclusion of the form (u1, bj) ∈ AE(T). Because of this and because P5(T)
requires the relation AE(T) to be one-to-many, δ2(T) cannot be applied with
another substitution (u2/x), u2 6= u1 in the same process. However, several
instantiations of such an open default may occur in different processes being
closed and successful.10

10For the present structuralist theory of belief revision this has the consequence that P5(T)

does not imply a unique valuation of the T-theoretical relations.
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Upon the notion of an extension of a default theory, two inference relations are
introduced:

Definition 8. A sentence φ can sceptically be inferred from a default theory
(W,D) - in symbols: (W,D) |∼s φ - if and only if φ is a member in any extension
of (W,D).

Definition 9. A sentence φ can credulously be inferred from a default theory
(W,D) - in symbols: (W,D) |∼c φ - if and only if φ is a member of at least one
extension of (W,D).

In Andreas (2010a), we argued at length for a semantics in which a theoreti-
cal sentence φ is true only then if it is true in any admissible interpretation of
the language, where the set of admissible interpretations is determined by the
postulates and the intended interpretation of the non-theoretical symbols. Fol-
lowing these considerations, we should only trust the sceptically valid inferences
of (W,D).

In the exposition of the inference notions of default logic, the replacement of
open defaults with their ground instances has been moved to the definition of
the notion of an extension of a default theory (W,D). Both the standard and
the present definitions work properly only when there is, for every object in the
domain of interpretation, a ground term naming that object. A proper semantics
for open defaults has been developed, among others, by Lifschitz (1990). This
semantics could be used for our default theory as an alternative to the present
modification of the standard definitions. Lifschitz, however, though working
with structures, finally uses substitutions of free variables too by introducing
extensions of the set of object constants.11

In yet another respect, the present system differs from standard expositions of
default logic. The present default theory comes with semiformal axioms couched
in naive set theory. Its complete formalisation, therefore, would require either
use of formal set theory or higher-order logic. Standard expositions of default
logic, by contrast, are confined to first-order default theories. Since, however,
the syntax and semantics of default logic do not essentially rely on a first-order
setting and since the present use of that logic is more philosophically than
computationally motivated, no objection shall arise from that difference.

11Working with substitutions of free variables in open defaults is objectionable in similar
veins as the substitutional reading of the quantifiers is in predicate logic. In the case of un-
named objects in the domain of interpretation, we may lose important solutions. Particularly
critical is the treatment of real numbers which form an uncountable domain. For a defence of
the substitutional quantification against common objections, see Wallace (1971) and Gottlieb
and McCarthy (1979).
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8 Theory-Elements Prioritised

The key motivation for the study of belief change is the observation that incom-
ing information happens to be inconsistent with our presently accepted body of
beliefs quite frequently. In applying theory-elements to empirical systems, we
are facing inconsistency problems as well. Contrary to the postulates P2(T)
and P4(T), an intended application of T may not have a theoretical extension
being a model of T. More frequent is the case where two intended applications
b1 ∈ I(Ti) and b2 ∈ I(Tj) have theoretical extensions being models of I(Ti)
and I(Tj) respectively, but there are no corresponding theoretical extensions x1

and x2 such that x1 ∈M(Ti), x2 ∈M(Tj), and x1 and x2 are satisfying every
link between (Ti) and (Tj).

In the case of our simple case study, there is no process Π that contains both an
instance of δ1(JT) and one of δ1(SAT). There is an extension, however, that
contains a set-theoretical representation of the proposition that the ring is made
of gold and another extension that contains a set-theoretical representation of
the proposition that the ring is not made of gold. Hence, neither proposition can
sceptically be inferred from the default theory. Reference to credulous inferences
would not make sense here because we could infer then both a sentence φ and
its negation.

Our knowledge of chemistry and our everyday experience say that the chemical
test with sulphuric acid is more reliable than the testimony of the jewellers.
Hence, we think that the proposition that the ring is not made of gold should
be inferable. How shall we formally represent this? Experts on default logic will
certainly anticipate the answer: We introduce priorities among defaults! These
priorities represent reliability information in the sense that δ1(Ti) <R δ1(Tj)
means that the application of any instance of δ1(Tj) is more reliable than the
application of any instance of δ1(Ti). Note that the priority order concerns
open defaults in the form of δ1(T). Any two instances of such an open default
occupy the same position in the ranking of defaults.

Even though we may have some intuitions about the reliability of theory appli-
cation, it is desirable to have a precise explanation of this notion. In Section 3
we indicated that a finite frequency interpretation of reliability may do the job.
Let us assume that the theory-elements have a history of applications that is not
represented by the sets I(T). Let a successful application be one from which a
T-theoretical proposition was inferred that remained accepted. An application
of a theory-element is unsuccessful, by contrast, if there is no such T-theoretical
proposition. For example, an experimental test whose result became accepted
without revision is a successful application of a corresponding theory-element.
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If, however, the experimental result could not gain acceptance or was revised at
a later time, this is an instance of an unsuccessful application.

Let Cs(T) denote the cardinality of the set of successful applications of T and
Cu(T) denote the cardinality of the set of unsuccessful applications of T. Then,
our priority order should satisfy the following minimal requirement:

If δ1(Ti) <R δ1(Tj), then
Cs(Ti)

Cs(Ti) + Cu(Ti)
<

Cs(Tj)
Cs(Tj) + Cu(Tj)

(12)

In short, this requirement says that if the application of Tj is considered more
reliable than the application of Ti, then the ratio of successful applications of
Tj must be higher than that ratio of Ti.

We may also introduce the following stronger condition:

δ1(Ti) <R δ1(Tj) if and only if
Cs(Ti)

Cs(Ti) + Cu(Ti)
<

Cs(Tj)
Cs(Tj) + Cu(Tj)

(13)

Introducing the weaker condition allows one to take other aspects into account
because it allows for exceptions from a strict finite frequency interpretation of
the reliability of theory-elements. Further research is needed to show whether
additional rules must be considered for the epistemic ranking of theory-elements.
Even so, this alone would have no bearing on the thesis that the epistemic
ranking of propositions can be replaced with a ranking of inferential patterns
being effective for derived beliefs. The central claim of the present investigation
is not that the finite frequency interpretation of the epistemic ranking of theory-
elements is more than an approximation and thus comprehensive.

So much for the material conditions that the priority order must satisfy. The
formal conditions that <R must satisfy should not be chosen too restrictively.
It is not sensible to require that the priority information for theory-elements is
given in the form of a strict well order. For example, if

Cs(Ti)
Cs(Ti) + Cu(Ti)

=
Cs(Tj)

Cs(Tj) + Cu(Tj)

then neither δ1(Ti) <R δ1(Tj) nor δ1(Ti) >R δ1(Tj) should be assumed.
Consider further the case where a new theory comes into play. In that case, no
statistics about the ratio of successful applications of its theory-elements will be
available. Hence, it is hardly achievable, if not impossible, to give precise priority
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information for these theory-elements unless the applications of some other well
established theory can be reduced to the applications of the new theory. To
require <R to be a strict partial order leaves enough room for cases where no
precise priority order among two or more theory-elements can be determined.
Another important reason for not requiring <R to be a strict well order is that
any two instances of an open default in the form of δ1(T) must occupy the same
position in the ranking.

Still, it may be argued that in the case where the ratio of successful applications
of Tj is only marginally higher than the ratio of successful applications of Ti,
one should not assume that δ1(Ti) <R δ1(Tj). To account for this point, one
shall require the difference in the ratio of successful applications to be higher
than or equal to a certain margin m,m < 1:

δ1(Ti) <R δ1(Tj)if and only if
Cs(Ti)

Cs(Ti) + Cu(Ti)
<

Cs(Tj)
Cs(Tj) + Cu(Tj)

and

Cs(Tj)
Cs(Tj) + Cu(Tj)

− Cs(Ti)
Cs(Ti) + Cu(Ti)

≥ m

(14)

Let us now come back to the formalism of prioritised default logic. The effect of
introducing priorities among defaults is simply that defaults cannot be applied
in an arbitrary order any more. Rather, the order of defaults in a successful
process must respect the priority information of defaults. Here are the formal
details of prioritised default logic (PDL) (Antoniou 1997, p. 93):

Definition 10. (PDL-Extension) T = (W,D,<) is a prioritised default the-
ory if (W,D) is a normal default theory and < a strict partial order on D. E is
a PDL-extension of T if and only if there is a strict well order � on D which
contains < and generates E.

A strict well order � on D is said to generate an extension E if and only if
there is a closed and successful process Π such that the elements of Π are ordered
according to � so that the first elements of Π are those of highest priority, and
E = Cn(W ∪{cons(δ(u/x)) | δ(u/x)occurs inΠ}). Note that it is not necessary
that any default of D is applied. A strict well order � contains a strict partial
order < if and only if it holds for all x, y : x < y → x� y.

Once a priority among theory-elements is introduced in our example, saying
that the theory-element of the chemical test is more reliable than the testimony
of the jewellers, and the formalism of PDL is adopted, it is no longer admissible
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to apply an instance of the open default δ1(JT) before one of δ1(SAT) has been
applied, given that the open default δ1(SAT) is applicable at all to the set W
of facts. Hence, the result is that any extension of the default theory represents
the proposition that the ring is not made of gold and no extension represents
the opposite result. Hence, the proposition that the ring is not made of gold can
be inferred sceptically from the default formalisation of Gärdenfors’s example.

9 The Final Synthesis

In the preceding sections, we have attempted to demonstrate how a dynamisa-
tion of classical structuralism can be brought about through the following opera-
tions on its formalism: (i) introduction of the relation AE(T) by postulates, (ii)
introduction of an abductive inference rule that is embedded in the formalism
of default logic, and (iii) introduction of priorities among the theory-elements,
which represent the reliability of their application. One important surplus of
this dynamisation is that potentially inconsistent information - inconsistent in
the sense of classical logic - can be dealt with in a sensible way, that is, with-
out letting reasoning break down because anything becomes inferable from the
accepted body of beliefs.

Where is the connection of the dynamisation of classical structuralism to belief
revision theory? Once an inferential formalism is available that is sufficiently
powerful to deal with classically inconsistent information and, moreover, a di-
vision of beliefs into derived and non-derived ones and expectations available,
revisions can be defined in a straightforward manner. This is an implication of
Rott’s (2001) investigation of base generated revisions. Thus, the style in which
he defines base generated revisions can be adopted for our prioritised default
theory of scientific theories in the structuralist framework, as we will show now.

Rott (2001) distinguishes between the direct and the coherence constrained
mode of base revisions. According to the direct mode, the revision of belief
bases is plain and straightforward insofar as incoming beliefs are simply added
to the belief base. Simple removals of elements of the base are also allowed. This
direct form of base change is combined with a more sophisticated formalism of
deriving beliefs that should be paraconsistent and nonmonotonic. In the coher-
ence constrained mode, by contrast, belief bases are changed by sophisticated
operations that require choices where the incoming information is inconsistent
with the base. This kind of base change is combined with a straight form of
theory derivation, in which the inference relation of classical logic is adopted.

For the direct mode of base revisions, Hans Rott defines the set of sentences
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inferable from a prioritised base H = 〈H1, . . . ,Hn〉 and a set of prioritised
expectations E = 〈E1, . . . , Em〉 as follows (2001, p. 128):

A = Inf(H) = Consol(E ◦ H) (15)

where A stands for the set of accepted propositions and Consol for a nonmono-
tonic formalism through which a classically consistent set of consequences can
be attained from a potentially classically inconsistent set of basic beliefs plus ex-
pectations. E◦H designates the concatenation of E andH, i.e., a sequence of sets
of the form 〈E1, . . . , Em, H1, . . . ,Hn〉 = 〈G1, . . . , Gk〉 = G, where k = m + n.
Brewka’s construction of preferred subtheories (1991; 1989) is used to define
Consol(E ◦ H). Here is a condensed account of this definition: Any subset of
G1 ∪ . . . ∪Gn is a subtheory of G. A set F is a preferred subtheory of G if and
only if (i) it is classically consistent; and (ii) there is no classically consistent
subtheory F ′ of G such that there is an i with (F ∩Gi) ⊂ (F ′ ∩Gi) and, for all
j > i, F ∩ Gj = F ′ ∩ Gj . A sentence φ is an element of Consol(E ◦ H) if and
only if it is entailed by all preferred subtheories of G.

Once Inf (H), the inference operation for a prioritised base in the context of
prioritised expectations, has been defined by means of Consol, the definition of
revisions is straightforward (Rott 2001, p. 130):

A ∗ φ = Inf (H ◦ 〈φ〉) = Consol(E ◦ H ◦ 〈φ〉) (16)

where ◦〈φ〉 simply stands for placing φ on top of the prioritised base H. The
new incoming information φ has thus top priority. If the belief base is not
prioritised, as is the case with our system, H ◦ 〈φ〉 reduces to H ∪ {φ}, where
H is the belief base voided of priorities.

For our system it is natural to use what Rott describes as the direct mode of
base generated revisions. Incoming information has the form bi ∈ I(Tj) and
is simply added to the base. All members of the base have this logical form;
no priority order for the elements of H is assumed. Contractions consist in the
elimination of a proposition of the form bi ∈ I(T), accordingly. Let us introduce
some more symbolic notations for the definition of belief changes in our system:

(i) H is the set of accepted propositions saying that a non-Tj-theoretical
structure bi is an intended application of Tj .
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(ii) Φp is the set of postulates P1(T) - P3(T), and P5(T) for any theory-
element T.

(iii) Φd is the set of definitions of Mp(T), M(T), and r(T) for any theory-
element T.

(iv) D is the set of defaults in the form of δ2(T) for any theory-element T and
any intended application b ∈ I(T).

(v) <R is a strict partial order for defaults in the form of δ2(T) that represents
the reliability of the application of the corresponding theory-elements.

(vi) W = H ∪ Φp ∪ Φd

(vii) Inf(W,D,<R) = {φ | (W,D,<R) |∼s φ}

According to (vii), PDL is used as nonmonotonic formalism in place of Consol.12

The present definitions of revisions and contractions thus differ from Rott’s
original ones with regard to the inference formalism in use. (This variation is
feasible since Rott’s systematisation of base revisions is not bound to a particular
nonmonotonic inference operation being used to define such revisions in the
direct mode.) Moreover, no priority information of the belief base is needed for
these definitions. This simplifies the overall ranking information needed for the
system substantially.

Now, we can define revisions and contractions along the lines of Brewka (1991)
and Rott (2001):

A = Inf(W,D,<R) (17)

A ∗ φ = Inf(W ∪ {φ}, D,<R) (18)

A÷ φ = Inf(W \ {φ}, D,<R) (19)
12One must wonder whether the inference formalism of PDL is also paraconsistent. Strictly

speaking, the answer to this question is no. If the set W of the triple (W,D,<R) is classically
inconsistent, then the set Inf(W,D,<R) is also inconsistent. Yet, the inference operation
of default logic is paraconsistent in the sense that the introduction of consistency conditions
ψ1, . . . , ψn in (10) turns a classically inconsistent set of facts plus defeasible inference rules
into a pair (W,D) from which sensible information can be inferred.
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where φ is always a proposition of the form bi ∈ I(Tj).

The use of prioritised default logic in place of Brewka’s construction of preferred
subtheories deserves a brief consideration, finally. There are no compelling
reasons for this choice. The defeasible nature of the abductive inference rules
of the present system could also be accounted for by means of the preferred
subtheories approach to defeasible reasoning. It is not difficult to transform the
present system into one that works with that approach. To our mind, however,
the default presentation of the system has the merit of being intuitively very
well accessible. Its syntactic format allows for a very direct and, hence, intuitive
representation of the defeasible nature of abductive inference rules of type δ2(T)
and their priority ordering. As for the semantics, it must be observed that the
operational semantics for prioritised default theories with only normal defaults
strongly resembles the construction of preferred subtheories.

10 Further Examples

The discussion of a few more examples may serve to illuminate some features
of the present system. It is reasonable to think that the succession of scientific
theories in the history of science can be represented as a process of revisions,
in which the advancement of novel theories leads to a retraction of older ones.
According to this view, Newtonian physics was retracted at the time when rela-
tivistic physics could be shown to have a wider range of successful applications
and to resolve certain anomalies of Newtonian physics. The picture coming with
the present system, however, is not so strict as to assume retraction of and revi-
sion by whole theories. Rather, it is intended applications of certain axioms of
scientific theories as opposed to whole scientific theories that are the subject of
belief changes in science. Scientific theories - in the sense of formal or informal
axiomatic systems - are only indirectly revised by adding or retracting appli-
cations of certain axioms from our corpus of scientific beliefs. Therefore, the
axioms of classical physics remain in place for an overwhelmingly large range of
applications despite the advancement of relativistic physics and quantum me-
chanics. It is only those applications where the empirical phenomena resisted an
explanation in terms of classical physics that had to be retracted, such as black
body radiation, the perihelion of Mercury, and the speed of light in moving
reference systems.

Furthermore, it is important to note that the superiority of relativistic physics
or quantum mechanics over classical physics in the critical applications does
not depend on the epistemic ranking of corresponding theory-elements. The
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problem with classical physics here rather is that the empirical findings cannot
be extended to a T-theoretical model. If this is the case, the antecedent of the
corresponding abductive inference rule δ2(T) is not satisfied so that the rule
cannot successfully be applied to the stock accepted sentences. Therefore, the
epistemic ranking among theory-elements need not be invoked to explain why
classical physics cannot be used and is in fact not used for a theoretical account
of black body radiation, the perihelion of Mercury, the speed of light in moving
reference systems etc.

To find scientific examples where the epistemic ranking of theory-elements is de-
cisive, it seems more promising to study areas in which the experimental meth-
ods are less reliable and corresponding results more tentative than in physics
as canonised by textbooks and university courses. For this reason, let us have
a look at a theory in some other scientific discipline, viz., sequence analysis
in molecular biology. The rationale of (computational) sequence analysis is to
establish computational measurements on which judgements of homology con-
cerning DNA sequences can be based. Two DNA sequences are homologous
if and only if they have a common ancestor sequence in evolutionary history.
In other words, the goal of sequence analysis is to find biologically meaningful
metrics so as to make homology inferable from a high similarity value. Putative
knowledge of homology is then used to assign functions to protein sequences
since proteins that are expressed by homologous DNA sequences are likely to
have the same function in biochemical pathways. Such assignments are partic-
ularly important if the function of one of the proteins is not accessible to direct
experimental investigation. Besides this application, assignments of function
being derived from judgements about homology may serve as hypotheses that
will be tested experimentally.

Yet, homology does not necessarily imply functional equivalence of the cor-
responding gene expression products. It is only orthologous genes where the
inference to functional equivalence is considered reliable, even though not valid
without exceptions. Two sequences are orthologous if and only if their diver-
gence was caused by a speciation, that is, a divergence of lineages of organisms.
Other forms of homology are gene duplication, i.e., the divergence of lineages
of genes within an organismal lineage, and horizontal gene transfer, i.e., the
divergence of lineages of genes by transfer across different organismal lineages
(Pevsner 2003, pp. 41–86, 223–272).

The idea underlying the computational measurement of sequence similarity is to
find optimal alignments of sequences and to evaluate then the number and the
kind of matches and mismatches. The quality of an alignment is given by the
total alignment value, which is determined by summarising over the matches
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and mismatches, where mismatches usually have weights so that different types
of mismatches have a different impact on the alignment value. (Matches make
a positive contribution to the alignment value, whereas mismatches a negative
one.) An alignment is optimal if and only if there is none with a higher total
alignment value. The alignment value of the optimal alignment is taken as
sequence similarity value. Different ways of weighing matches and mismatches
are represented by so-called scoring matrices (Gusfield 1997, pp. 215-226).

Since there is a many-to-one correspondence between DNA and protein se-
quences, the computation of optimal alginments can also be applied to protein
sequences. The latter method is usually considered more informative concern-
ing relations of homology than the direct comparison of DNA sequences for two
reasons. First, there are different triples of nucleotides that encode one and
the same protein when transcribed. Second, since proteins react in biochemical
pathways, they determine more directly the properties of the cells than origi-
nal DNA sequences. There is a whole theory about properly aligning protein
sequences, which led to so-called PAM-matrices as scoring schemes.

In structuralist terms, we can say that we have here several T-theoretical re-
lations on the domain of sequences: homology, orthology, paralogy, functional
equivalence. T may stand for the whole of molecular biology. Further, there
is a T-theoretical function that assigns a similarity value to pairs of sequences.
To be more precise, there are as many functions of sequence similarity as there
are scoring matrices in use for DNA and protein sequences. Several theory-
elements were touched upon in the preceding explanations: One that represents
the inference from homology to functional equivalence (T1), another one rep-
resenting the inference from orthology to having an equivalent function (T2),
one saying that two DNA (protein) sequences with a sufficiently high similarity
value are homologous (T3,d (T3,p)), and, finally, theory-elements representing
the computation of sequence similarity with the many different scoring schemes
(T4,1, . . . ,T4,n). Unfortunately, there is no single theory-element that allows
to ascribe the function to a DNA sequence, but rather an intricate network of
inferential patterns that would and actually does take tremendous resources to
unfold.

What can be said about the priority ordering of these theory-elements? Cer-
tainly, none should be assigned the highest rank in the overall ordering of molec-
ular biology since all are only defeasibly valid. For reasons indicated above, T2

is better than T1. Further, sequence similarity of protein sequences is a more re-
liable indicator of homology than sequence similarity of DNA sequences, which
means that T3,p is better than T3,d. Different scoring schemes lead to differ-
ently reliable indicators of homology depending, in particular, on the temporal
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distance of the presumed event of divergence in evolutionary history. Further
comparative judgements about the reliability of the theory-elements considered
are difficult to justify. Of course, these are only cursory remarks which may be
seen as preliminary to a thorough case study.

11 Conclusion

The system outlined here has it that incoming information must be of the form
bi ∈ I(Tj). How plausible is that? What does this constraint upon the logical
form of incoming information mean in less formal terms? Now, it means that
for an incoming piece of information we can always distinguish between some
phenomenal evidence for a T-theoretical proposition, the T-theoretical propo-
sition itself, and the theory T in light of which we interpret the phenomenal
evidence.

Take, for example, the proposition φ saying that the degree of global warming is
1, 8◦ Kelvin for the period between 1900 and 2000. Several empirical phenomena
may lead us to consider adoption of the theoretical proposition φ. We may have
read a sentence having the meaning of φ in a newspaper of the yellow press.
Alternatively, we may have read such a sentence in a scientific journal. Finally,
we may be the one who conducted the by no means trivial statistical study from
which φ resulted. Little consideration is necessary to see that the computation
of the degree of global warming is anything but straightforward. In any case,
some non-empty set of universal axioms and inferential patterns is used to infer
proposition φ from empirical data. Even in the case of the newspaper, there
is an inference recognisable from the proposition that I read a sentence with
the meaning that φ to φ itself. In the structuralist representation scheme, such
inferential patterns are represented by theory-elements.

In the belief revision literature it has been observed that the reliability of the
belief forming process through which we came to accept a proposition φ mat-
ters for the epistemic standing of φ. In light of this observation, the standard
notation for belief revisions A ∗φ appears to be an oversimplification because it
does neither represent the belief forming processes through which we came to
accept the elements of A nor the process driving us to accept a new proposition
φ that is potentially inconsistent with the set of previously accepted ones. The
present system, by contrast, forces one to represent the belief forming processes,
at least for derived beliefs. Observations concerning the relation between reli-
ability and acceptance, which had to be made in the informal explanations in
the belief revision literature so far, are thus coming into the reach of a formal
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representation.

In essence, the present system attempts to account for the view that the epis-
temic ranking of propositions is an effect of theorising and that the ranking of
theory-elements can be interpreted, at least for a certain range of cases, in statis-
tical terms. If this view is correct, non-derived empirical data are accepted with
equal firmness without qualification. The ranking of derived beliefs φ depends
then on the ranking of the T-non-theoretical premisses and on the ranking of
the theory-element T that was used to derive φ. A few minor emendations
are necessary, however, to take into account that T-non-theoretical premisses
coming with an intended application of T need not be pure empirical data
but rather may be derived by another theory-element T′.13 Being careful, we
should say that the present system is about having the resources to keep track
of justifications that are effective for derived beliefs.
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