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It was with great delight that I accepted the invitation to contribute to this book.
Many years ago, while training in Paris for a possible career in psychoanalysis, I
became interested in the philosophy of mathematics, not such a surprising event
if one recalls how in France psychoanalytic theory grapples with a vast range
of intellectual endeavours. Well, the name of Albert Lautman was mentioned
and I found a volume of his, the 1977 edition of his works with 10/18, in the
library of the George Pompidou Centre. At the time, much of the philosophical
setting of his work passed me by, but I was entranced by his varied examples
of structure similarity, which reminded me of what I had enjoyed most from an
undergraduate mathematics degree.

At the same time, inspired by Colin McLarty’s Uses and Abuses of the His-
tory of Topos Theory (1990), I was learning some category theory, in particular
through Lambek and Scott’s book, Introduction to Higher-Order Categorical
Logic, and it wasn’t hard to figure out that had he survived the war Lautman
would have embraced category theory whole-heartedly. Shortly after, I returned
to London to study for a Masters and PhD in philosophy of mathematics, and
it was only then that I began to appreciate the gulf that separated Lautman’s
treatment of mathematics from the dominant analytic philosophical approach
prevalent in the USA and UK. Where Lautman could talk about Galois connec-
tions and theta functions, Poincaré duality and class field theory, these remained
as probable topics for Anglophone philosophical discussion as the monsoon sea-
son in southern India, or the reproductive cycle of the lesser horseshoe bat. The
best opportunity I could conceive to talk about real mathematics was provided
by Lakatos’s invitation to transfer his research programmme construction, de-
vised for science, to mathematics. Heeding his call, case study material could be
chosen at will from those parts of mathematics found most attractive. Lakatos’s
somewhat rigid framework of stark rivalry between parallel research programmes
made it very hard, however, to treat the interweaving of theories in twentieth
century mathematics so dear to Lautman.

Here, then, is an opportunity to return to Lautman and to the origin of
theses I have held for twenty years:

1. Rather than accord logic philosophical priority over other parts of math-
ematics, we should consider it as any other branch, a place where key
concepts recurrently manifest themselves.

2. The reality of mathematics is to be addressed through these recurrent
manifestations, the ‘realisation of dialectical ideas’ as Lautman put it,
and not through Quinean notions of ontological commitment.



In this paper I want to take a look at the second of these theses in the context
of a couple of examples Lautman provided for us, and to raise some questions
about the mathematical nature of his ‘dialectical ideas’.

1 La Montée vers L’Absolu

If there’s one chapter I remember well twenty years later it is Lautman’s La
Montée vers L’Absolu. Here we find brilliantly associated the manifestations
within philosophy and within mathematics of an idea relating imperfection and
perfection. This two-part idea maintains that any case of imperfection pre-
supposes a corresponding perfection, and that it is possible to understand the
attributes of the associated perfection through the defects of the imperfect en-
tity. This idea’s realisation in philosophy occurs in Descartes’ argument that
we may know the existence of a perfect being, and its attributes, through the
awareness of our own imperfections. For example, we sometimes doubt rather
than know, this is an imperfection, therefore we can say that a perfect being is
omniscient.

Longer is spent by Lautman on mathematical examples from algebraic num-
ber theory and from algebraic topology. An imperfection of Q is that the poly-
nomial 22 — 2 doesn’t split over it. It lacks an element squaring to 2, something
a perfected Q must then have. The field Q(v/2) is a step towards perfection, but
we can tell the same story equally for other polynomials, so that the perfected
Q must in fact be its algebraic closure. Turning now to topology, an imper-
fection of the circle is that a loop in it may not be contractible to a point. A
single circuit of the circle, for example, cannot be contracted to a point. On the
other hand, the path sitting over this circuit in a circle wound twice around the
original circle is contractible. Again, this doubled circle suffers from less imper-
fection, but still any path in it lifted from a path in the original circle winding
an even nonzero number of turns will not be contractible. In this situation the
perfected circle is a helix. These two mathematical examples share much in
common, where a lattice of intermediate fields, in the one case, and a lattice of
intermediate covering spaces, in the other, may be associated to certain lattices
of subgroups.

As Jean Dieudonné observed in his preface to the 10/18 edition, in selecting
this material, Lautman showed great sensitivity to the kind of structure simi-
larity so prevalent in contemporary mathematics, and which is extremely well
captured by the language of category theory. Indeed, a very important moment
in the unification of the topological and number theoretic constructions occurred
with Grothendieck’s introduction of the notion of a fibre functor. Through this
notion, mathematicians can try to understand the number theoretic manifesta-
tions of the noncommutativity of the fundamental group. Remember that in
the topological case, the fundamental group is the group of based loops up to
deformation. In topology itself, we can construct a Galoisian account of other
imperfections represented by higher homotopy groups.

Certainly, this extraordinarily rich seam of mathematics is far from ex-
hausted. Indeed, an updated version of Lautman’s chapter would cover, as
Yves André (2008) does, differential equations, motives, periods and renormal-
isation. But what we do have, and which Lautman did not, is the notion that
the heart of the matter, his ‘idea’; is capable of being framed by a piece of



mathematical language, at least to the extent that the idea manifests itself in
mathematics. Mathematics can address the idea at a level of abstraction above
its manifestations. Indeed, when Saunders Mac Lane in his article The Protean
Character of Mathematics (Mac Lane 1992) use the Galoisian idea to provide
evidence for his claim that “the same mathematical structure has many different
empirical realizations” (p. 3), he ends his list of major contributions with

Janelidze, 1988 Categorical formulation of Galois structure
Various, 1990 One adjunction handles Galois and much more. (p.
13)

So now here’s a question: What work does the term ‘dialectic’ do? Why aren’t
these primitive ideas which manifest themselves so clearly in mathematics just
simply ‘mathematical’? While there was no language to capture the commonal-
ity of Galoisian field extensions and Poincaréan deck transformations, it might
seem plausible to take this commonality to be something beyond mathematics.
But does this make sense today?

Perhaps the solution is to be found by recalling that the perfect/imperfect
idea does not manifest itself solely in mathematics. Remember the example
of a non-mathematical realisation given by Lautman was Descartes’ argument
for God from his own imperfections. We could argue that something of what
is manifest here is not mathematical, so that the idea common to both this
philosophical situation and the Galoisian situation is not itself mathematical.
Certainly there would seem to be little point in mathematising Descartes’ ar-
gument. But we might wonder whether it is significant that the manifestation
in philosophy is rather, shall we say, thin, while manifestations in mathemat-
ics are enormously richer. Moreover, if we want to capture the essence of the
mathematical situation it is arguable whether perfection and imperfection are
the best terms. Galois himself seems to have more inclined to think in terms of
‘ambiguity’ rather than imperfection. In his final letter he writes,

Mes principales méditations depuis quelque temps étaient dirigées
sur 'application a I’analyse transcendante de la théorie de 'ambiguité.

Il s’agissait de voir a priori dans une relation entre quantités ou
fonctions transcendantes quels échanges on pouvait faire, quelles
quantités on pouvait substituer aux quantités données sans que la
relation plt cesser d’avoir lieu. Cela fait reconnaitre tout de suite
I'impossibilité de beaucoup d’expressions que ’on pourrait chercher.
Mais je n’ai pas le temps et mes idées ne sont pas encore bien
développées sur ce terrain qui est immense... (quoted in André 2008)

Of course, ambiguity could be taken as a form of imperfection, but unless the
cartesian case can be understood as a form of ambiguity, the commonality must
appear to us as lessened.

Now, although Lautman steers clear of the term, Michael Polanyi’s treatment
of universals as the ‘joint meaning of things forming a class’ is relevant here.
This meaning, he claims, is “something real since it is capable of manifesting
itself indefinitely in the future”. He continues,

It has, indeed, an heuristic power that is usually twofold. (1) A
universal concept usually anticipates the occurrence of further in-
stances of itself in the future, and if the concept is true, it will



validly subsume these future instances in spite of the fact that they
will unpredictably differ in every particular from all the instances
subsumed in the past. (2) A true universal concept, designating a
natural class, for example a species of animals, anticipates that the
members of the class will yet be found to share an indefinite range
of uncovenanted properties; i.e., that the class will be found to have
a yet unrevealed range of intension. (Polanyi 1969, 170-1)

To illustrate these powers, at a stage when it had been proposed that mice
and elephants belong to a class, named ‘mammalia’, we might have expected (1)
very different animals would turn out to be mammals, and (2) that an indefinite
range of commonalities between mice and elephants would be discovered. In
this case, in the light of the subsumption of legless, aquatic dolphins under the
class, and the discovery of major physiological and ultimately genetic similarities
between mice and elephants, these powers were admirably displayed.

I think we can risk overlooking the differences between universals and ideas
here, and ask whether the commonality manifested in Decartes’ and Galois’
thoughts has these same heuristic powers. Along the lines of (1), we might look
for another rich manifestion of the imperfection/perfection dialectic elsewhere.
Certainly we can find Galois theory employed in physics, for example, Gepner
2006, but it is not obvious that perfection/imperfection is relevant to this work
on rational conformal field theory. Elsewhere, homotopy theory accounts for
defects in nematic liquid crystals (Nash and Sen 1983, Ch. 9). Although with a
connotation of imperfection, it is not clear that from the existence of a crystal
with defects we arrive at the corresponding notion of a perfected defectless
crystal. Furthermore, if this is to count as a third manifestation of Lautman’s
dialectical idea, we should note the close relation to mathematics it bears. This
is hardly a third point in a triangle of manifestations of the dialectical idea, but
rather a point a whisker away from the mathematical ones.

On the other hand, along the lines of (2), perhaps the appearance of thinness
in the philosophical example is illusory. Perhaps it could reveal itself to be
more Galoisian then we thought. Well, there is an obvious way to make the
philosophical story richer, it seems to me, one suggested strongly by our later
mathematical understanding. Had the full Galoisian idea appeared in Descartes’
thought, he would have had to put into association all the hierarchy of different
substructures of the complex of man’s imperfections with the hierarchical of
different kinds of angelic being interposed between Man and God. Apparently,
in his Summa Theologica, Aquinas describes a hierarchy of angels arranged in
three ranks of three levels each. It would not be at all surprising to me if this
or some other elaborate angelogical theory of the Middle Ages could be drafted
into something like a Galoisian form.

But perhaps the mathematical example was rather special in any case.
Surely not all examples of common realisation in mathematics are so well ad-
dressed by a mathematical theory as this one. Let us look to another of Laut-
man’s case studies.

2 Reciprocity and Duality

In ‘Nouvelles Recherches sur la Structure Dialectique des Mathématiques’ (1939),
Lautman discusses the use of analysis in number theory. He notes that some



have felt uncomfortable with this use and have sought to eliminate it. But
Lautman sees no metaphysical necessity for this ‘purification’. Rather than
take arithmetic as metaphysically prior to analysis, instead he proposes that we
consider them equally as realisations of the same dialectical structures.

He gives the example of reciprocal entities. In arithmetic we have quadratic
reciprocity, where the Legendre symbols are acting as a kind of inverse to each

other.
(£) ()=

Here, for odd primes p and ¢, the first Legendre symbol takes the value +1, if
p is a square modulo ¢, and otherwise it takes the value —1.

He goes on to note that it has been possible to generalise reciprocity in
two different ways. First, to algebraic integers in any field. Second, to allow
more general congruences, not just to a square, but to other powers. This
has been achieved algebraically he notes, but then adds that Hecke has also
provided analytic means of deriving general quadratic reciprocity results using
theta functions.

Here we define

m=+00

0(r) = Z e_’"mz,

m=—0o0

noting that singular points are at 7 = 2ir, r a rational, but that for any such r,
/TO(T + 2ir) takes a finite value which is, up to factors, the Gauss sum C(—r).
Now we have the transformational property of the theta function

0(1/7) = V7O(T),

and this tells us that there is a reciprocal relation between C(r) and C(—1/4r),
from which ordinary quadratic reciprocity follows.
Lautman claims,

This dialectical idea of reciprocity between elements can be so clearly
distinguished from its realisations in arithmetic and in in analysis
that it is possible to find a certain number of other mathematical
theories in which it realises itself similarly.

Now, before we look to see where else Lautman sees reciprocity realised, let us
note that it is important for Lautman that the dialectical idea be clearly distin-
guished from its realisations. Again we may wonder what hangs on the inability
of 1930s mathematics to capture, or at least approach, the idea of reciprocity
itself. At the time it must have seemed a distant prospect to have a frame-
work which could cover all realisations, especially as Lautman goes on to invoke
some very recent work of André Weil indicating that there was a relationship
between reciprocity laws and Poincaré duality. This duality relates homology in
dimension m and cohomology in dimension n —m in a manifold of dimension n,
which in certain kinds of manifold entails a simple relationship between homol-
ogy in complementary dimensions. Once again, Lautman had chosen his case
study brilliantly. There is indeed a commonality between quadratic reciprocity



and Poincaré duality, one which relates closely to the Galoisian idea of the last
section, which I shall briefly sketch.

Later, in the 1970s, Barry Mazur and David Mumford noted a powerful
analogy between ideals in algebraic number fields and links in 3-manifolds as
follows. From the perspective of étale-cohomology, the integers Z, or rather the
scheme Spec(Z), appears to be a kind of three-dimensional sphere. A prime
number p has an associated scheme K, = Spec(Z/pZ) which from the same
perspective appears to be a 1-dimensional submanifold of this sphere. A huge
amount of progress can now be made by transferring ideas from knot theory
over to algebraic number theory. Poincaré duality can then be used to define
the linking number of two ‘knots’ K, and K,. Quadratic reciprocity, in this
framework, amounts to little more than the fact that the linking number of
knots A and B is the same as the linking number of knots B and A (Waldspurger
1976).

The analytic part of the story has also been enormously developed since
Lautman’s time to relate L-function reciprocity with Poincaré duality, and
so much more. Here we are touching on the hottest areas of contemporary
mathematics, the monumental Langland’s Program and Grothendieck’s motives.
Lautman’s sense of the unity of mathematics was extremely acute. He had a
phenomenal ability to point us to mathematical reality. But again, with the
success in indicating mathematical reality comes the question as to what is not
mathematical about the ideas manifesting themselves here. Although we are
not yet at the point where there’s a comprehensive mathematical theory of all
forms of duality, there is at least a strong sense that the idea of duality itself,
rather than its specific manifestations, may be addressed mathematically. Again
the language of category theory, and its higher-dimensional cousin, is involved,
dualities often being expressible as equivalences.

One useful distinction is that Lawvere and Rosebrugh introduce in chapter
7 of their book Sets for Mathematics (2003) between ‘formal’ and ‘concrete’
duality. Formal duality concerns mere arrow reversal in the relevant diagrams,
SO

of course if the original diagrams had been given specific interpre-
tation in terms of specific sets and mappings, such interpretation is
lost when we pass to this formal dual in that the formal dualiza-
tion process in itself does not determine specific sets and specific
mappings that interpret the dualized statement. (p. 121)

Concrete duality, on the other hand, occurs in situations where a new diagram
is formed from an old one by exponentiating each object with respect to a given
dualizing object, e.g., X becomes VX, with V the dualizing object. The arrows
are naturally reversed in the new diagram. Now,

Not every statement will be taken into its formal dual by the process
of dualizing with respect to V', and indeed a large part of the study
of mathematics

space vs. quantity
and of logic

theory vs. example



may be considered as the detailed study of the extent to which formal
duality and concrete duality into a favorite V' correspond or fail to
correspond. (p. 122)

Now, unlike in the case of the perfection/imperfection dialectic, we do not
learn from Lautman of a non-mathematical realisation of the idea of reci-
procity /duality, but if the Langlands Program is to be made of philosophical
importance for the rest of philosophy due to its being a case of the manifestation
of an idea which equally manifests itself in other spheres of life, we would need
to come up with some interesting examples. We could think up some sugges-
tions, but a worry would surely be that they paled into insignificance beside
the mathematical one. Our best chance again would be to look to physics, e.g.,
the duality between the electric field and the magnetic field. However, again
physical examples share an enormous amount in common with mathematical
examples. Indeed they share a whole interlocking history of mutual influence
and development, from Hodge theory and de Rham cohomology, leading right
up to mirror symmetry and the S- and T-dualities of string theory. Kapustin
and Witten (2006) relate electric-magnetic duality to a part of the Langlands
Program. There are many indications again of category theory playing a key
role.

But perhaps Lautman’s problem is that he instinctively points us to manifes-
tations of the same idea in mathematics which is itself ultimately approachable
by mathematical theory. There are suggestions that not all of mathematics goes
this way.

3 The Two Cultures of Mathematics

While Lautman’s aesthetic sense regarding mathematics drove him to examples
which have ultimately shown themselves to be addressible by category theory,
other such aesthetic senses are current. While I believe Lautman would have
thoroughly enjoyed the material we discuss on the blog I jointly run, The n-
Category Café, the blog written by Terence Tao reveals a rather different sen-
sibility. The best effort to capture this difference is, I believe, Timothy Gowers
essay The Two Cultures of Mathematics, in which the distinction is made be-
tween ‘theory-builders’ and ‘problem-solvers’. I think we have to be very careful
with these labels, as Gowers himself is.

...when I say that mathematicians can be classified into theory-
builders and problem-solvers, I am talking about their priorities,
rather than making the ridiculous claim that they are exclusively
devoted to only one sort of mathematical activity. (p. 2)

To avoid misunderstanding, then, perhaps it is best to give straight away
paradigmatic examples of work from each culture.

e Theory-builders: Grothendieck’s algebraic geometry, Langlands Program,
mirror symmetry, elliptic cohomology.

e Problem-solvers: Combinatorial graph theory, Ramsey’s theorem, Sze-
merédi’s theorem, arithmetic progressions among the primes.



Gowers mentions Sir Michael Atiyah as a prime example of a theory builder,
and recommends his informal essays, the ‘General papers’ of Volume 1 of his
Collected Works. Indeed, they convey an aesthetic which I came to admire
enormously as a PhD student in philosophy. On the other hand, Paul Erddos is
mentioned as a consummate problem-solver. What then of the corresponding
aesthetic?

One of the attractions of problem-solving subjects, which Gowers collects
under the loose mantle of ‘combinatorics’, is the easy accessibility of the prob-
lems.

One of the great satisfactions of mathematics is that, by standing on
giants’ shoulders, as the saying goes, we can reach heights undreamt
of by earlier generations. However, most papers in combinatorics
are self-contained, or demand at most a small amount of background
knowledge on the part of the reader. Contrast that with a theorem
in algebraic number theory, which might take years to understand if
one begins with the knowledge of a typical undergraduate syllabus.

(p. 12)

For someone who had recently won a Fields’” Medal, it would seem strange to
feel the need to defend ones interests, but after describing a problem involving
the Ramsey numbers, Gowers writes:

I consider this to be one of the major problems in combinatorics and
have devoted many months of my life unsuccessfully trying to solve
it. And yet I feel almost embarrassed to write this, conscious as I
am that many mathematicians would regard the question as more
of a puzzle than a serious mathematical problem. (p. 11)

Two types of appeal which are commonly made to warrant the importance of
one’s field are its connections to other fields and its applicability. Now,

As for connections with other subjects, there are applications of com-
binatorics to probability, set theory, cryptography, communication
theory, the geometry of Banach spaces, harmonic analysis, number
theory ... the list goes on and on. However, I am aware as I write this
that many of these applications would fail to impress a differential
geometer, for example, who might regard all of them as belonging
somehow to that rather foreign part of mathematics that can be
safely disregarded. Even the applications to number theory are to
the “wrong sort” of number theory. (p. 13)

The Green-Tao theorem, concerning the lengths of arithmetic progressions
amongst the primes, might be a good candidate to illustrate this “wrong sort”
of number theory. Indeed, this provided Minhyong Kim with a nice way to
represent the difference between cultures. Which of the following attracts us
more?:

e The theorem about primes in arithmetic progressions.

e The theorem about arithmetic progressions in primes.



The first of these was a result by Dirichlet, an early step in the theory-builders’
topic algebraic number theory.

Now, it’s not that, on the theory-building side, all number theoretic results
emerging from the “right sort” of number theory are deemed important. In-
deed, Fermat’s Last Theorem has come in for plenty of abuse over the years.
Rather, it was the successful activity behind the scenes leading to the proof
of the Taniyama-Shimura conjecture that is generally regarded as the major
achievement. So, even were results about the existence of arithmetic progres-
sions amongst the primes to be judged similarly abused, there might again be
some general result lurking behind the scenes. However, according to Gowers,
in combinatorics one deals not so much with general theorems, but rather broad
principles. For example,

...if one is trying to maximize the size of some structure under cer-
tain constraints, and if the constraints seem to force the extremal
examples to be spread about in a uniform sort of way, then choosing
an example randomly is likely to give a good answer. (p. 6)

It is no accident that category theory does not come into play in Gower’s ‘com-
binatorics’. Thus, if one is according importance to mathematical activity in
terms of its impact on mathematics as a whole, then rather than the transfer of
theoretical results and apparatus between fields, made so much easier by cate-
gory theory, it may be necessary to look to more subtle relationships, such as
when:

Area A is sufficiently close in spirit to area B, that anybody who
is good at area A is likely to be good at area B. Moreover, many
mathematicians make contributions to both areas. (p. 14)

Now, it certainly seems that the common ‘spirit’ may be expressed as an idea.
For example, in his paper, The dichotomy between structure and randomness,
arithmetic progressions, and the primes (Tao 2005), Terence Tao tells us about
manifestations in much of his work of the structure/randomness idea. Is this
territory more promising for Lautman?

First, we should say that the current mathematical state of play now should
not mislead us. It is possible that a more explicit general theory will emerge to
account for the results of Tao and Gowers, just as an abstract theory of the Ga-
loisian dialectical idea has emerged since Lautman’s day. For thoughts of a pos-
sible reconciliation with regard to the two approaches to number theory, see Kim
2007. But, even if no such explicit theory captures the structure/randomness
pair, as the category theoretic formulation does the Galoisian idea, it seems to
me that we can do no other than take Tao’s paper as mathematical. If there is
no alternative access to an idea than a mathematical one, I don’t see why the
idea shouldn’t be seen as mathematical.

4 Conclusion

Lautman’s study of reciprocity is placed after an account of Heidegger’s ideas on
the difference between ‘ontological’ and ‘ontic’, ‘essence’ and ‘existence’. 1 have
not mentioned this discussion here, finding its language to be rather foreign to



my own. Instead I have dwelt on the Lautman’s attempts to situate the source
of the reality of mathematics in a place which lies beyond mathematics.

Nous voudrions montrer, avant de conclure, comment cette concep-
tion d’une réalité idéale, supérieure aux mathématiques et pourtant
si préte a s’incarner dans leur movement, vient s’intégrer dans les
intérpretations les plus autorisées du platonisme. (Lautman, p. 230)

I have argued that this ‘réalité idéale’ does not lie beyond mathematics but
rather is the core of mathematics itself, and may be approached mathematically
in many cases on a more abstract level than via its instantiations in specific
mathematical theories.

An alternative position would want to count the treatment of ideas at this
level as philosophical. William Lawvere in his ‘Categories of Space and of Quan-
tity” (Lawvere 1992) writes:

It is my belief that in the next decade and in the next century the
technical advances forged by category theorists will be of value to
dialectical philosophy, lending precise form with disputable mathe-
matical models to ancient philosophical distinctions such as general
vs. particular, objective vs. subjective, being vs. becoming, space
vs. quantity, equality vs. difference, quantitative vs. qualitative etc.
In turn the explicit attentin by mathematicians to such philosophi-
cal questions is necessary to achieve the goal of making mathematics
(and hence other sciences) more widely learnable and useable. Of
course this will require that philosophers learn mathematics and that
mathematicians learn philosophy. (p. 16)

But it is really of little importance how we designate the kind of work done
in common by Lautman and Lawvere. What is important, on the other hand,
is that we recognise how central this work should be to the philosophical under-
standing of mathematics. Even if I am right to want to name as mathematics
the extraction of the Galoisian idea and other such ideas, Lautman has still
done us an enormous service in being such a reliable guide to mathematical re-
ality. If people want to reflect on this reality they can do no better than look at
theoretical developments, parts of whose courses appear in his case studies. For
example, the ideas encapsulated in the Langlands Program are quintessential
pieces of mathematical reality. But rather than point us to a reality superior
to mathematics, I believe we can best see the situation as a case of a discipline
dealing with its own specific reality. In other words, mathematical reality is an
instance of reality tout court.

The interest of mathematics to philosophy, then, is that it provides another
example of the notion of reality. This notion manifests itself in mathematics
one way, biology another, politics another and art yet another. Lautman’s gift
was to tap in extraordinarily early to the aesthetic sensibility which was to
come to dominate large sections of mathematics of the twentieth century. This
sensibility is nothing less than mankind’s most powerful access to mathematical
reality to date. With it the mind has become more adequate to its object.

Another philosopher who took our struggles to expand our knowledge and
the movement of our theories as indices of the real was Michael Polanyi. His
idea of reality is “that which may yet inexhaustibly manifest itself” (Polanyi
1969, p. 141). In the context of mathematics he writes,

10



...while in the natural sciences the feeling of making contact with
reality is an augury of as yet undreamed of future empirical con-
firmations of an immanent discovery, in mathematics it betokens
an indeterminate range of future germinations within mathematics
itself. (Polanyi 1958: 189)

This is a description of mathematical reality with which I can rest happy. In
some people, notaly Galois, Poincaré and Grothendieck, this feeling has shown
itself to be have been correct by the extraordinarily rich range of future germi-
nations following from their work.
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