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Abstract

The propensity interpretation of fitness (PIF) is commonly taken to be subject to a

set of simple counterexamples. We argue that three of the most important of these are

not counterexamples to the PIF itself, but only to the traditional mathematical model

of this propensity: fitness as expected number of offspring. They fail to demonstrate

that a new mathematical model of the PIF could not succeed where this older model

fails. We then propose a new formalization of the PIF that avoids these (and other)

counterexamples. By producing a counterexample-free model of the PIF, we call into

question one of the primary motivations for adopting the statisticalist interpretation of

fitness. In addition, this new model has the benefit of being more closely allied with

contemporary mathematical biology than the traditional model of the PIF.

1 Introduction

The propensity interpretation of fitness (PIF) was introduced in the late 1970s with two

articles, one by Robert Brandon (1978) and the other by Susan Finsen (née Mills) and

John Beatty (1979). These papers, among other things, provided a solution to what has

since come to be known as the “tautology problem”: If fitness is defined in terms of actual

evolutionary outcomes, fitness cannot then causally explain these outcomes – the “survival
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of the fittest” reduces to “the survival of those that survive.” These papers proposed that

fitness (or, in Brandon’s terminology, ‘adaptedness’) is a probabilistic propensity to produce

offspring. Each organism, that is, is taken to have a disposition to produce certain numbers

of offspring, with differing probabilities associated with each possible offspring number. If

the fitness of an individual organism is traceable to this propensity, then it is clear that the

tautology problem is solved: The fittest organisms will, indeed, tend to survive more often

than their less fit counterparts – just as a sturdier glass will tend to break less often than a

fragile one.

Fitness, however, fills more roles than merely the prevention of tautology. Most

models of evolutionary change employ fitness as a scalar numerical value, comparable

between organisms. In addition to providing a rank-ordering of the organisms in a population

– which can justify claims like “a is fitter than b” – these fitness values are utilized by models

such as those in population genetics to predict the future evolutionary trajectory of a given

population.

The PIF, then, has traditionally been presented alongside a mathematical model

which can serve to translate this probability distribution into a single, privileged measure on

the distribution. The primary such mathematical model of the PIF, introduced by Brandon,

has defined fitness as an organism’s expected or average number of offspring, weighted by

the associated probabilities. He described this formally as

A(O,E) = ∑P(QOE
i )QOE

i , (1)

where each QOE
i is a possible number of offspring and P(QOE

i ) is the probability of that

number of offspring being realized. As mentioned above, Brandon used the term ‘adapt-

edness’ for fitness and A(O,E) should thus be read as “the adaptedness (i.e., fitness) of

organism O in environment E.” This is the standard model of the PIF, and it is shared across

most major presentations of the PIF, including those of Mills and Beatty (1979), Beatty and

Finsen (1989), Brandon (1990), and Sober (2001).

1.1 The “Generality Problem”

When the PIF was introduced, Brandon also saw that it could be useful for the solution of

another problem in the philosophy of biology, one which we will call here the “generality

problem.” One area of work in the philosophy of biology has endeavored to theorize at a
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very abstract level about the process of evolution by natural selection – we might, consistent

with similar terminology in the philosophy of physics, call this the study of the ‘foundations’

of evolutionary theory. Explanations of evolution at this level do not focus on particular

episodes of natural selection, but rather on what it is that is common to every instance of

natural selection, across every environment, system of heredity, unit of selection, and so

forth where natural selection might be instantiated.

Returning to Brandon, in the same paper in which the PIF is introduced, he introduces

the following as a “law of nature” (which he would later call the Principle of Natural

Selection (Brandon, 1990, 11)):

If a is better adapted than b in environment E, then (probably) a will have more

(sufficiently similar) offspring than b in E. (Brandon, 1978, 187)

He argues that it is this law, or something like it, that is presupposed by all general explana-

tions of natural selection, including the three traditional Lewontin conditions for evolution

by natural selection: variation, heritability, and fitness differences (Lewontin, 1970).

It is thus crucial to the understanding of philosophical work such as this that we

provide a definition of what Brandon calls “better adapted” – which many other authors,

including Bouchard and Rosenberg (2004), call “fitter.” That is, we need a notion of fitness

that is capable of serving in the phrase “a is fitter than b” in every evolutionary system in

which a statement like Brandon’s Principle of Natural Selection holds true. This is what we

will call the generality problem: the problem of producing a notion of fitness which may be

correctly applied in explanations that encompass all possible evolutionary systems.

The generality problem does not only appear in the context of these unrestricted,

general principles of natural selection, however. Indeed, were this its only use, it would be

a matter of debate whether such a notion of fitness were really necessary at all, as some

authors have constructed frameworks for natural selection on which a PNS like that deployed

by Brandon is not necessary.1 The reason why the generality problem is so important is

that it is also central to the debate over the causal structure of natural selection, fitness, and

genetic drift – the debate between the “statisticalists” and “causalists.”

When, for example, Abrams (2007, 670) proposes as an “elaboration of the PIF” that

“if there are individual-level probabilities which are in some sense causal, natural selection
1The most prominent recent approach which discards the PNS is the spatial framework of Godfrey-Smith

(2009).
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and drift are causal in the same sense,” and Walsh (2010, 168) argues in response that

“fitness distribution explains but does not cause population change,” these authors are not

arguing over the causal forces present in some particular biological population. Rather, they

are asking us to consider what the appropriate interpretation of evolutionary theory is, again,

in every circumstance in which it applies. Does fitness reflect a causal property in all cases?

Or is it merely a method of bookkeeping, a subjective tally of objective organismic lives and

deaths? Again, it seems that a prerequisite for this debate is to find a concept of fitness and

a mathematical model of that concept which apply in all cases – to find, that is, a solution to

the generality problem.

And the generality problem is not exclusive to the philosophical domain. When

Lewontin proposes his “three principles” for describing evolution, the second of these is

that “[d]ifferent phenotypes have different rates of survival and reproduction in different

environments (differential fitness)” (Lewontin, 1970, 1). This invocation of “differential

fitness” is not relativized to any specific biological population, or even any specific model

of fitness. Later work in mathematical biology has attempted to rigorize this notion of

general fitness – Metz et al. (1992, 198) argue that “the biomathematical literature of the last

10–20 years reflects the implicit acceptance of a common evolutionary framework, the core

idea being that there exists a unique general fitness measure that concisely summarizes the

overall time course of potential invasions by initially rare mutant phenotypes.” The model

of fitness that we will propose here, as we will see later, extends this work of Metz et al. to

the level of the fitness of individuals and draws out its philosophical implications, unifying

the philosophical and biological approaches to the generality problem.

One obvious objection to this project is that it is not clear that we require a general

concept of fitness in order to solve the generality problem. Several authors have endeavored

to construct theories of natural selection that make no reference to fitness. Prominent

among these is the work of Millstein, who notes that “selection requires differences in

abilities to survive and reproduce.” She goes on to say that some would term these “‘fitness

differences’ – I avoid the term to prevent entanglement in disputes over the definition of

fitness” (2006, 643). Elsewhere, she defines selection in general as a “discriminate sampling

process whereby physical differences between organisms are causally relevant to differences

in reproductive success” (Millstein, 2006, 640), substituting causally relevant physical

differences in place of fitness differences. If such a definition of selection will suffice, why
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do we need to produce a general model of fitness at all?

We claim that this picture of selection is perfectly reasonable, but only insofar as

it smuggles in an implicit reference to a concept of fitness. It’s clear that not just any

physical difference, or even any physical difference that’s causally connected to survival

and reproduction, will suffice for being counted as taking part in selection. Each individual

mammal, for example, has a unique pattern of hair follicles, and if hair is causally relevant

to survival in some species, then a fortiori the pattern of individual hairs is as well. But it

does not therefore follow that there is a selective difference between each pair of individuals

that is due to their follicle pattern difference. We thus need some way to cash out selection

in terms of relevant physical differences between organisms. The causal connection of a

physical difference with survival and reproduction works as a basic criterion of relevance, but

(as we have seen) seems to occasionally include irrelevant features. Further, the numerical

quantification of selection – surely an important task for biology – requires a notion that can

differentiate just how relevant a given physical difference is to selection. The elaboration

of this measure (quantifying how relevant a given physical difference is to an individual’s

reproductive success) will, we argue, just consist in the elaboration of a model of individual

fitness.

Finally, one more approach to the generality problem should be mentioned here.

The “statisticalist interpretation,” as the position of Walsh, Ariew, Matthen, Lewens, and

others has come to be known, attempts to solve this problem by replacing the PIF with an

interpretation of fitness as a set of facts about the statistical distribution of evolutionary

outcomes. Walsh, for example, states that “what it is for a change in relative trait frequencies

to constitute selection (or drift) is merely for it to be susceptible to a certain kind of statistical

description” (2007, 282).2 As we will now see, one of the primary reasons for adopting such

a position is that there does not exist an account of the PIF that is free of counterexamples.

By producing such an account here, we therefore substantially weaken a key motivation for

adopting the statisticalist position along with their solution to the generality problem.

2See Matthen and Ariew (2002); Walsh et al. (2002); Krimbas (2004); Brunnander (2006); Walsh (2007);

Ariew and Ernst (2009); Walsh (2010) for other works in the statisticalist program.
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1.2 Counterexamples to the PIF

In addition to offering their own solution, the statisticalists (as well as some reluctant yet

honest propensity theorists) have offered several counterexamples that purport to demonstrate

that the PIF is not in fact suitable as an answer to the generality problem. It is notable,

as an aside, that were the PIF not taken to offer us a solution to the generality problem, a

counterexample to it that showed a particular population or set of populations to which it

did not apply would be neither surprising nor germane. Biologists model the fitnesses of

organisms in specific kinds of populations (with a particular genetic system, population size,

etc.) in different ways throughout the biological literature. But given that the PIF does claim

to offer a solution to the generality problem, these putative counterexamples are taken to

constitute a significant problem for the PIF.

Before turning to these counterexamples, however, we would like to highlight one

key distinction that is frequently overlooked. The distinction is that between the propensity

interpretation of fitness as a philosophical position or an “interpretation” in a broad sense –

the claim that the fitness of an organism is traceable to the probability distribution over its

possible numbers of offspring produced – and the mathematical model which reduces that

propensity to a scalar value (which we will henceforth call a “model of” the propensity), as

expressed, for example, by Brandon’s equation (1). Importantly, all the counterexamples

raised against the PIF are counterexamples to the mathematical model – they demonstrate

that the fitness of an organism can change without the fitness value determined by equation

(1) changing. This point will be vital when we turn to describing the different ways in

which we can respond to these counterexamples. The three most devastating such issues that

have been raised are the moments problem, the delayed selection problem, and the timing of

offspring problem. Let’s consider them briefly in turn.

The moments problem. Brandon’s equation computes the weighted average of O’s possi-

ble offspring. But individual fitness, it turns out, is sensitive not just to the average number

of possible offspring, but also to higher moments of the possible offspring distribution, like

variance, skew, and so forth. As Beatty and Finsen (1989) and others have pointed out, for

example, if two organisms have the same average number of possible offspring, but one of

them has a higher variance in possible offspring, the higher-variance organism will be less

fit, ceteris paribus.
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In light of this realization, Brandon modified his equation, introducing a correction

factor intended to compensate for the effects of the higher moments (Brandon, 1990):

A∗(O,E) = ∑P(QOE
i )QOE

i − f (E,σ2). (2)

Brandon has the new element in the equation, f (E,σ2), “denote some function of the

variance in offspring number for a given type, σ2, and of the pattern of variation” (1990, 20).

This new formalization of the PIF treats it not as a single equation, but as an equation

schema describing a “family” of models: The exact nature of the propensity in a given case

can only be specified once the details of the population are determined. This solution to the

problem of the higher moments has two shortcomings. First, it is not obvious that, if this is

the best model of the PIF, the PIF still offers a solution to the generality problem. Brandon

has traded a single equation for an infinite disjunction of equations, and it is not clear that

such an infinite disjunction can, for example, tell us anything about (or feature in) the general

causal structure of natural selection and genetic drift. Second, Brandon’s proposed solution

does not achieve the desired generality: the following counterexamples emerged, which

show that there is more to fitness than expected number of offspring corrected for the effects

of the higher moments.

The delayed selection problem. The QOE
i are possible numbers of offspring. But there

are many biological situations in which offspring production is not a good correlate for

fitness. Consider the classic case of the grandchildless mutation found in the some species

of the fruit fly Drosophila (Crow and Kimura, 1956). This mutation has no effect on the

number of offspring produced, but it causes all of an organism’s offspring to be sterile –

that is, it has a major effect on grandoffspring production. This is a counterexample to any

measure of fitness founded solely on offspring production. We might attempt to solve this

problem simply by modifying the PIF to be based on an expected number of grandoffspring

instead of offspring. This would solve the problem of the grandchildless gene, but other

species have mutations that end in sterility not one or two, but dozens of generations later

(Ahmed and Hodgkin, 2000). This is not so readily fixable, since even if the PIF were

based on the current maximal number of generations necessary for all extant species, future

evolution may increase or decrease the required number of generations. Brandon, it seems,

would have to add a second correction factor to the infinite disjunction of equations, making

its suitability as a solution to the generality problem even more dubious.
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Timing of reproduction. If two organisms have the same expected number of offspring,

but one is disposed to reproduce earlier, then it will be fitter, ceteris paribus. This, too, is an

effective counterexample to equation (2), since timing of reproduction is a component of

fitness but can change independently of expected offspring number. Brandon, again, could

add a third correction factor, one for the timing of offspring production. But this will only

make it a poorer solution to the generality problem.

1.3 The Need for a New Model

There are thus ample counterexamples to the mathematical models of the PIF expressed

by equations (1) and (2). Three different ways of responding to these counterexamples

are obvious. We could (i) abandon the PIF and adopt another solution to the generality

problem, (ii) argue that the PIF can be defended without a corresponding mathematical

model, or (iii) look for a more robust, counterexample-free model. If we choose the first

option, the statisticalist interpretation is the most obvious replacement for the PIF in this

context. It offers a solution to the generality problem by abstracting over all causal details

of the biological case at hand, and describing only the evolutionary outcomes in terms of

their statistical distribution.

Although the statistical response is not without merit, it has considerable short-

comings. Defining selection and drift merely in terms of their population-level outcomes

runs the risk of obscuring the distinction between selection and drift, as well as making

trouble for the traditional ways in which biologists understand these differing contributors

to evolutionary change (Millstein, 2002; Brandon and Ramsey, 2007; Millstein et al., 2009).

The relationship between the various accounts of causation on offer and evolutionary theory

seems to produce prima facie evidence that drift and selection are in fact causal, contra

the statisticalist position (Reisman and Forber, 2005; Millstein, 2006; Forber and Reisman,

2007; Northcott, 2010). Perhaps most worryingly, there seem to be instances where the

statisticalist interpretation simply gets the empirical data wrong – claiming that selection

and drift cannot be distinguished or that selection is not acting on a population, when in fact

the opposite is true (Brandon and Ramsey, 2007; Millstein, 2008). These claims are all the

subject of intense argument (see, e.g., Lewens, 2010; Walsh, 2010), but it is worth our while

to investigate ways in which a defender of the PIF could salvage the PIF’s basic insights.
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In order to understand and evaluate the other two possible responses to the counterex-

amples, we must begin by returning to the important distinction we made above between

the PIF and the mathematical model of this propensity. The counterexamples just described

serve as counterexamples specifically to Brandon’s mathematical models of the PIF as

expected number of offspring (possibly with a correction factor). In order, then, for them

to serve as counterexamples to the PIF itself, two additional premises are required: (i)

the formulation of a successful mathematical model of the PIF is required for the project

to go through, and (ii) Brandon’s original equation is either the only or the best possible

mathematical model of the PIF. It is open to the defender of the PIF to reject either of these

latent premises.

Perhaps the simplest way to reject the first premise would be to abandon the search

for a mathematical model of the PIF entirely. We would then focus on the correctness of the

PIF as a philosophical understanding of fitness, ignoring, or leaving to the biologists, the

matter of determining the precise mathematical details of how this interpretation of fitness

might be formalized. Alternatively, we could reject the second premise, and resume the

search for a new mathematical foundation for the propensity interpretation of fitness. It

is this latter approach, we believe, which stands the best chance of solving the generality

problem while saving the possibility of a causal interpretation of fitness, natural selection,

and genetic drift.

We must, however, defend this choice. Why is it that the correct response for a

defender of the PIF is to continue the search for a mathematical model? Might we not best

interpret many of the arguments of the statisticalists as proving to us that such a search is

likely to be fruitless? We claim that it is not. First and foremost, if a counterexample-free

model of the PIF can be developed, this implies the tenability of the PIF-as-interpretation.

While the lack of a model does not imply the incoherence of the PIF, a counterexample-free

model shows that the PIF can be formalized in a clear and explicit manner. And further, the

development of models of the propensity interpretation that are connected with biological

practice can form a bridge between philosophical theory and scientific practice. If we

can craft a model of the PIF that connects it with current work in biology, then the PIF –

which otherwise may seem esoteric and non-biological – can be shown to be directly tied to

contemporary evolutionary theory.

We argue that the lack of recognition of the complexity of the biological world
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has been one of the key mistakes made by defenders of the PIF. Beginning with expected

number of offspring one generation into the future and then adding a host of correction

factors has been, as we have seen, an ultimately fruitless path. We will instead discard this

formulation and begin afresh, offering a model that does indeed avoid these counterexamples,

and connects directly with the much more sophisticated mathematical models arising from

cutting-edge mathematical biology. Our model can thus serve as the new foundation for the

PIF.

2 A New Formalization

Let us begin by carefully considering the structure of the PIF itself – that which any

mathematical model of it is intending to capture. (Henceforth, when we refer to “the PIF,” we

intend to denote the PIF-as-philosophical-interpretation, not any particular model thereof.)

We will begin with the sketch offered by Ramsey’s “block fitness” (2006), attempting to

provide it with some mathematical rigor. This formal structure, at this point in the argument,

is not intended to capture any specific mathematical model of the PIF – that is, we are not

yet offering our own model of the PIF. Rather, the following is meant to give us a vocabulary

in which any mathematical model of the PIF might be phrased (including, as we will see

later, Brandon’s original equation (1), among others). The formalism offered here will be

quite general – containing far more terms than are required by most models of the PIF. This

would allow one to formalize models of any complexity in these terms by simply ignoring

terms for elements not required for the model.

Consider an individual organism o, in a given environment E with a given genome

G.3 Over time, o may produce a population of offspring, o1
i . And these, in turn, may produce

offspring o2
i . We say may produce because, for each organism (in each generation), there is

a set of possible reproductive outcomes for that organism’s life. These ways that organisms

might live (or “possible lives”4 for short) might include dying early of malnutrition, being

3We do not intend a particularly restrictive definition of either “environment” or “genome” here. Genome,

for example, should be taken to include all heritable factors passed on from parent to offspring, including

epigenetic and behavioral transmission.
4No particular modal ontology should be read into these “possible lives.” In fact, we believe – consistent

with the propensity interpretation – that these possible lives are best understood as the manifestation of a

probabilistic dispositional property over time, a propensity.
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preyed upon as a juvenile, or living to maturity and producing many offspring. These

possible lives reflect not just the overall reproductive output of an organism (as used in

Brandon’s equation (1)), but many other features besides, such as the timing of offspring

production. It is thus clear that mathemtical models of the PIF can, if we wish, rely on many

more theoretical resources than are utilized by standard formalizations like equations (1)

and (2).

Let us return to the further development of our theoretical vocabulary. Combining

these possible lives over generational time leads to a set of “possible daughter populations”

of o.5 There are many such possible sets, each containing all the descendants that o might

produce in some set of circumstances. Call each of these possible daughter populations ωi,

and call the totality of such possible daughter populations (the set containing all of them)

our sample space Ω.6

Now that we have our set of possible daughter populations, we need a way of

tracking how probable these various possibilities are. To do this, we define a σ-algebra and

probability measure, F and Pr, over Ω, in the traditional way. The details of this operation

need not concern us here – this is the traditional mathematical formalization that lets us

assign probabilities to the elements of our sample space. The probability Pr(ωi) assigned

to each possible daughter population is simply the probability that ωi will be the actual

daughter population of o.7

This set of possible daughter populations along with their associated probabilities

clearly gives a very thorough picture of the “success” of o. But we have yet to offer

a mathematical model of the PIF – merely a very precise, perhaps unnecessarily large,

mathematical vocabulary in which many various mathematical models of the PIF might

be phrased. These raw sets of possibilities and their associated probabilities cannot, for

example, be directly compared to produce a fitness rank-ordering. The task of constructing

5We should note here that these are not “populations” in any sense familiar from population genetics or

ecology. A more appropriate term might be “lineage,” but we wish to avoid confusion with several current

theories of “lineage fitness” (see below).
6 Equivalently, one could define Ω as the space of functions ω : R→ Rn, which take a time t ∈ [0,∞) to

a ‘state vector’ consisting of some finite number of real-valued degrees of freedom. The ‘possible daughter

population’ formulation, however, is more perspicuous, so we will use it for the remainder of the discussion.
7Note that the sample space Ω is uncountable, necessitating that we integrate with respect to the probability

measure Pr . See the appendix for information on the size of Ω, as well as a proof that Ω is well-behaved.
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our novel mathematical model of the PIF from these elements, then, is the aim of the

remainder of this section. We are searching for the measure of individual fitness that can be

extracted from this expansive set of theoretical resources which is maximally sensitive to

the features of the raw sets of possibilities, and therefore as free as possible from the sorts

of counterexamples articulated in section 1.2.

As we discussed in the introduction, the traditional way of turning the raw sets of

possibilities and their associated probabilities into scalar values, expressed in the original

formulation of the propensity interpretation (Brandon, 1978; Mills and Beatty, 1979), is

the following. First, define a function φ(ω, t) which computes the size of some particular

possible daughter population ω at time t. Then, fixing T as the time one generation into the

future, we define individual fitness as

F =
∫

ω∈Ω

Pr(ω) ·φ(ω,T )dω. (3)

This is simply the continuous analogue of the weighted average: We multiply the probability

of each possible life by the size of the daughter population for that outcome one generation

in the future, and then integrate to obtain the expected daughter-population size in the next

generation. This is precisely equivalent to the result obtained by the traditional propensity

interpretation of fitness, giving the same numerical results as equation (1) – that is, this is

just Brandon’s original formulation of the PIF expressed in our new theoretical vocabulary.

As mentioned, however, this formulation is subject to many problems. First and

foremost, we need to remove the reliance of equation (3) on T , and hence on the daughter-

population size only one generation into the future, in order to resolve the delayed selection

problem. A first attempt at removing this time-dependence might lead us to compute

something like the limit F∞ = limT→∞ F , computing individual fitness in the “infinite long

run.” This would assuredly accomplish our goal of capturing all causal influences which

might impact the future fate of an organism within a population.

There is, however, no guarantee that this infinite limit converges, is finite, connects

with biological practice, or in any way tracks other measures of individual fitness. First and

foremost, it seems quite likely that in all cases, F∞ = 0. If every possible daughter population

of o goes extinct in the infinite long run, then for every ω ∈Ω, limt→∞ φ(ω, t) = 0, and thus

F∞ = 0. On the other hand, if some possible daughter populations do not go extinct, then it

is possible that the population dynamics at infinite time are so chaotic that the limit in F∞
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does not converge to a stable value.

How can we, then, produce a long-run measure of individual fitness from Ω? As it

turns out, the problem of determining this function is equivalent to a well-studied issue in

demographics and mathematical biology – the asymptotic behavior of sequences of random,

non-negative matrices. Results in this theoretical arena (following Tuljapurkar and Orzack,

1980; Tuljapurkar, 1989; Caswell, 1989; Tuljapurkar, 1990) can guarantee the existence of a

limit much like F∞. (The details of this derivation may be found in the Appendix.) These

results allow us to define individual fitness instead as

F = exp
(

lim
t→∞

1
t

∫
ω∈Ω

Pr(ω) · ln(φ(ω, t))dω

)
. (4)

Before we consider the peculiarities of this new model (such as its infinite limit, loga-

rithms/exponents, and factor of 1/t), let’s examine how it solves the problems of extinction

and chaotic future dynamics. We must enforce three assumptions on the possible daughter

populations and their associated probabilities in order to guarantee that the limit in equation

(4) converges (Tuljapurkar, 1990, 25): (i) demographic weak ergodicity, (ii) that a random

and stationary process generates the Pr-function, and (iii) that the logarithmic moment of the

growth rate is bounded. For the sake of brevity, we will pass over the detailed mathematical

characterization of these assumptions here.8 In short, demographic weak ergodicity assures

that there exists some non-zero probability of the population’s survival at all times t, getting

us around the extinction problem mentioned above. While this assumption is biologically

unrealistic, it is quite common in mathematical demography, and can be dealt with either by

describing extinction as a threshold (that is, a population “goes extinct” when its size falls to

less than some small value n), or by introducing some random environmental sampling vari-

ation into the model (see Keiding, 1975). A guarantee that the Pr-function is generated by a

stationary random process assures that chaotic population dynamics are not permitted. (The

boundedness of the logarithmic moment of the growth rate is of purely technical interest.)

In general, however, we defer here to Cohen, who states that “under reasonable conditions,

which are likely to be satisfied in demographic applications, the stochastic process and the

matrices in Leslie form [the population analogue of our individual daughter populations and

probabilities] are such that the limits in [equation (4)] exist” (Cohen, 1979, 164).
8For demographic weak ergodicity, the reader may consult Seneta (1981, 80–91), Tuljapurkar (1990, 17),

Tuljapurkar and Orzack (1980, 319–20), and Cohen and Heyde (1985, 123). For a discussion of the stationarity

and ergodicity requirements on the random process, consult Tuljapurkar and Orzack (1980).
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These three conditions do, however, have biological significance for our model. Most

significantly, they imply that the selective pressures at work are density-independent, and

that the population dynamics are non-chaotic. These are the most substantial limitations of

our model, and because of this, equation (4) clearly cannot provide the PIF with a complete

answer to the generality problem. However, the necessary mathematical work to generalize

our derivation to cases of non-static environments and density dependence, as well as chaotic

population dynamics, has been published within a research program known as adaptive

dynamics, to which we will return shortly. We omit it in order to simplify our derivation,

as it relies on a hefty theoretical apparatus which considerations of length and accessibility

prevent us from presenting here.9 Our equation (4) is the density-independent, non-chaotic

limit of this more sophisticated work, and thus, given these restrictions, is equivalent to this

more general model. Further, and perhaps most importantly, all the counterexamples that

have been offered in the philosophical literature to the traditional mathematical model of the

PIF (equation (3)) are resolved by equation (4).

Let us take stock. We have explicated the PIF itself via a very extensive picture of

the success of an organism o, by considering all the possible daughter populations to which

it might give rise, and we have then modeled this propensity by defining a function, equation

(4), that successfully encapsulates the behavior of this sample space in the infinite limit.

But what does this function actually represent? Does it correspond to any other

known models of individual fitness, and if so, in what circumstances? And what should we

make of its peculiar mathematical features?

2.1 The New Model and Biological Theory

Although equation (4) was derived via a reflection on the philosophical thesis of the PIF,

we will now show that the same mathematical formula has been independently derived

within the field of mathematical biology. In fact, in adaptive dynamics, a variation of this

equation is argued to be the optimal predictor of the fates of populations. We therefore

suggest (and will attempt to demonstrate in the remainder of this section) that equation (4)

9The interested reader is referred to Rand et al. (1994); Grant (1997); Caswell et al. (2004); Caswell

and Takada (2004); Caswell (2009). Many of the most important conclusions for individual fitness follow

directly from Theorem 1 of Rand et al. (1994, 271). See Benton and Grant (2000) for a comparison of various

approaches to fitness in population genetics and adaptive dynamics.
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is deeply connected to biological theory and practice, and that with certain simplifying

assumptions, one can derive from equaton (4) many standard fitness measures. Thus, despite

the fact that it may seem less connected to biological theory and practice than the standard

formulation of the PIF articulated by Brandon (1978), equation (4) is much more closely

connected with contemporary biological theory and practice, and is sensitive to the advances

in mathematical work that have occurred in the decades since Brandon first published his

attempt at providing a model of the PIF.

To explore the relationship between equation (4) and other (recently-developed as

well as traditional) models of fitness, let’s begin with two different models that are precisely

equal to equation (4). First, equation (4) is equal to a model of fitness known in mathematical

biology as Tuljapurkar’s a, replacing the population-level quantities in Tuljapurkar’s original

function with equation (4)’s individual-level quantities. Indeed, many of his results have

been crucial to the derivation of our model here (Tuljapurkar and Orzack, 1980; Tuljapurkar,

1989, 1990).10 Tuljapurkar’s intent in creating this model of fitness was to produce an

expanded notion of lifetime reproductive success (LRS) which can apply to the general case

of environments that vary stochastically over time. Notably, Tuljapurkar’s a has proven to

be a successful measure of fitness in the wild – Cohen and Heyde (1985), for example, use

it to study the growth of breeding populations of striped bass in the Potomac River. They

determined that it provides a highly accurate determination of average growth rate (while

noisy data make estimation of other parameters like variance more difficult).

This model has also appeared as one of the fundamental quantities in the research

program known as adaptive dynamics, which we briefly mentioned above. Adaptive dynam-

ics endeavors to produce a highly general notion of fitness applicable in many ecological

contexts, based on two considerations: (i) the modeling of populations in variable environ-

ments, and (ii) the determination of fitness on the basis of invasion, consistent with much

work throughout evolutionary ecology. In one of the seminal articles of adaptive dynamics,

titled “How should we define ‘fitness’ for general ecological scenarios?”, Metz et al. note

that “the long-run growth rate” of a population in their framework “can be defined as the

limiting value, as (time) T approaches infinity, of the quantity T−1{ln |N(T )|− ln |N(0)|}”
(1992, 198). This quantity, again, is precisely equivalent to our model.11 As we discussed

10Technically, ln(F) = a; see the appendix for details.
11We omit the derivation here, as it is almost precisely identical – though phrased in a different theoretical
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earlier, work in this field has also produced substantially more sophisticated models which

can be used to take account of both chaotic population dynamics and density-dependent

selection. Equation (4) is the density-independent, non-chaotic limit of these more complex

models.12

To connect equation (4) to futher biological models, we must introduce some simpli-

fying assumptions. First, if we assume that multigenerational effects are absent from the

population, we may approximate equation (4) by taking its value at time T , one generation

into the future. Assuming that T ≈ 1,13 we then remove the limit and factor of (1/t) from

equation (4), resulting in

F ≈ exp
(∫

ω∈Ω

Pr(ω) · ln(φ(ω,T ))dω

)
. (5)

To further simplify equation (5), we should note that it has the form of a geometric mean.

That is, the geometric mean of a function f (x) applied to some sample space X is defined as

GM( f (x),X) = exp
(∫

x∈X
Pr(x) · ln( f (x))dx

)
,

and equation (5) thus states that F ≈ GM(φ(ω,T ),Ω).

Notably, the use of a geometric mean in fitness models in biology is by no means

a new concept (see Lewontin and Cohen, 1969; Boyce and Perrins, 1987; Sober, 2001;

Simons, 2002; Lee and Doughty, 2003). In particular, however, given the prominence of this

work in the philosophical community, geometric mean fitness is discussed extensively by

Gillespie (1977), in his summary of his earlier work. Specific translation of his work into our

arena is difficult, as he is discussing the fitness of traits, rather than the fitness of individual

organisms (see below for more discussion of this point). He notes that in general, however,

when we have stochasticity resulting from “temporal fluctuations in the environment, for

example, the best measure of fitness turns out to be the geometric mean of the offspring

number, averaged over time” (Gillespie, 1977, 1011).14 He then establishes several results

vocabulary – to the derivation of Tuljapurkar’s a presented in the appendix.
12Therefore, with arguments very similar to the ones provided here, these more complex models also reduce

to our model, Brandon’s model of the PIF, and the other standard biological fitness measures we discuss below.
13We also must assume that the function

∫
ω∈Ω

Pr(ω) · ln(φ(ω, t))dω is continuous at T , so that

limt→T (
∫

ω∈Ω
Pr(ω) · ln(φ(ω, t))dω) =

∫
ω∈Ω

Pr(ω) · ln(φ(ω,T ))dω. This should be true in effectively all

circumstances, particuarly since we have already guaranteed non-chaotic population dynamics.
14Gillespie probably has something like predictive accuracy in mind when he invokes the “best measure of

fitness,” but these details need not concern us here.
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using the series expansion of the geometric mean, to which we will now turn.

We know from standard results in statistics that the geometric mean can be expressed

as

ln(GM(X)) = ln(X)− 1

2X2 M2(X)+
1

3X3 M3(X)−·· · ,

where X is the arithmetic mean of the distribution X , and Mi(X) is the i-th central moment

of the distribution X (i.e., its variance, skewness, kurtosis, and so on, for i = 2,3,4, . . .)

(Jean and Helms, 1983). We can thus see that when the higher moments of a distribution

are negligible (i.e., when effects of variance, skew, etc. can be neglected), GM(X)≈ X . In

these cases, we may thus consider individual fitness as though it were defined in terms of an

arithmetic mean. We can therefore approximate equation (5) by an arithmetic mean, which

gives us

F ≈
∫

ω∈Ω

Pr(ω) ·φ(ω,T )dω. (6)

Equation (6), then, is just equation (3): we have reduced our new formulation to that of the

traditional model of the PIF with the aid of two relatively plausible simplifying assumptions.

(Of course, in the presence of the conditions described in the various counterexamples to

equation (3) described above, these simplifying assumptions do not hold.)

Several short-term measures of fitness are particularly common in the biological

literature, as they are easy to estimate and can be derived from readily available empirical

data. The first is the net reproductive rate (or ratio), R0, which is a common measure of the

single-generation reproductive output of a population (Murray and Gårding, 1984; Murray,

1990). Lifetime reproductive success (LRS) is the individual analogue of this population

measure. It is well-known from the literature on the original model of the PIF that equation

(6) is equal to the LRS, and thus equation (4) reduces to the LRS. Another quite common

biological fitness measure is the Malthusian parameter, the growth rate of a population given

an exponential growth model. Given the LRS, we may derive the (individual analogue of

the) Malthusian parameter as well: r = T−1 ln(F) (Charlesworth, 1970; Denniston, 1978;

Charlesworth, 1980; Murray, 1990).

To recap, then, our new model of the PIF as described by equation (4) is precisely

equivalent to several advanced models of fitness, and with two plausible simplifying assump-

tions – that (i) multigenerational effects are absent, and (ii) effects of the higher moments are

negligible – can be reduced to the original model of the PIF as well as to the most commonly
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used biological fitness measures (R0, LRS, and the Malthusian parameter). Our model thus

dovetails very tightly with contemporary work on the measurement of fitness in biology.

3 Possible Objections to F

Now that we have seen that equation (4) is closely connected with biological theory and

practice, let’s pause to consider some of the ways philosophers might object to the model. We

will, in the following section, then turn to the question of whether it successfully dodges the

counterexamples discussed in section 1.2. Our formulation is clearly a multi-generational

or long-run measure of fitness. And this long-run measure of fitness makes extensive

reference to not merely the organism itself, but to the organism and all its possible daughter

populations – that is, our definition of fitness depends crucially on the organism’s lineage.

Both long-run and lineage fitness models have been challenged in the past, and in this

section we will show that our model is not undermined by these challenges.

There is nothing novel about the concept of long-run fitness. In the philosophical

literature, the varying time-scales required in definitions of fitness have been discussed

extensively by Ramsey (2006) and Abrams (2007). In the biological literature, two prior

models of very-long-term fitness have been proposed: Thoday’s definition of fitness as “the

probability that . . . a unit of evolution will survive for a given long period of time, such as

108 years” (1953, 98), and Cooper’s definition of fitness as “expected time to extinction”

(1984).

Our new model is clearly not equivalent to either of these models and, we will argue,

neither of them can serve as a satisfactory answer to the generality problem in the context of

the PIF. To see why, let us first consider Thoday (1953). Thoday’s model simply sets a large

future time (108 years) and calculates the probability of the survival of a given organism’s

lineage to that point. The primary objection to a model like Thoday’s is simply that this

time-frame is entirely arbitrary. Why should daughter-population events at time 108− 1

years be included in an organism’s fitness, but events at time 108 +1 years be ignored? It

seems that no philosophically defensible answer to this question can be found. It is for this

reason that we have attempted to include all possible future causal influences in the scope of

our model. Further, should evolutionary dynamics be chaotic (a possibility introduced in

the last section), there is no guarantee that the probability to which Thoday refers will even
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have a definite value.

Cooper’s (1984) definition of fitness as expected time to extinction suffers from a

different, equally fatal flaw. The precise numerical expected time to extinction of a given

organism seems to have only a very loose relationship to other more commonly used models

of fitness. Expected time to extinction may well be correlated with individual fitness, and

one could obviously derive expected time to extinction from the theoretical resources offered

by our set of possible daughter populations. But for expected time to extinction to serve as a

fundamental model of fitness, this derivation would need to be reversible – one would need

to be able to derive other standard models of fitness (such as those mentioned at the end of

the last section) from expected time to extinction, which is impossible. ETE thus solves the

generality problem at the price of alienating the PIF from all other work on the concept of

fitness in both philosophy and biology. Given that our model does not suffer from this flaw,

we believe this price is too high.

Our model, despite being long-term, is multigenerational in a different manner than

either of the models of Thoday and Cooper. Its time-scale is infinite, encompassing all

possible future causal influences on organisms. At the same time, it still reduces to other

common short-term models of fitness. It thus effectively avoids the problems that Thoday

and Cooper fall prey to.

Finally, we will consider several other objections that have been raised against both

long-run and individual models of fitness.

Objection 1: Natural selection is short-term. Brandon argues, referring to Thoday

and Cooper’s long-term notions of fitness, that “they fail to explain how the process of

natural selection can be sensitive to differences in long-term probabilities of surviving

offspring.” Selection, he notes, is “the diferential reproduction of phenotypes that is due

to the differential adaptedness of those phenotypes to a common environment. Evolution

results from this process if the phenotypic differences are heritable. How could this process

be sensitive to long-term probability (i.e., over many generations) of surviving offspring?”

(Brandon, 1990, p. 25). Long-term notions of fitness are, that is, irrelevant to the process

of natural selection – since selection is short-term, individual fitness must be short-term as

well.

In response to this charge, Sober notes, quite correctly, that “the fact that selection
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occurs one generation at a time does not mean that it is wrong to define a quantity that

describes a trait’s long-term expected fate” (Sober, 2001, 313).15 To consider a similar

example, just because the half-life of a particular sample of uranium may be defined in

terms of its expected behavior thousands of years into the future, we need not say that

this somehow means that radioactive decay does not “act on” the uranium “as it currently

is.” Radioactive decay has no more foresight than natural selection – and both may make

reference to future (or even possible future16) events.

One might reply that the behavior of radioactive decay is somehow more “regular”

or “predictable” than the behavior of biological organisms, and that therefore this analogy

fails.17 But this isn’t the relevant feature of the analogy (if, in fact, the behavior of uranium

is any more “regular” than that of organisms, which is itself not obvious). The objection

as argued by Brandon seems to claim that it is a category mistake to include future events

in the definition of fitness, as selection acts only in the present. A half-life certainly does

make reference to future events for its definition, and radioactive decay certainly acts only

in the present. This facet of the anlogy thus clearly holds. This objection does not, therefore,

challenge the coherence of our model.

More importantly, however, this objection misunderstands the purpose of our model.

We are attempting to produce a model of the PIF that forms a successful solution to the

generality problem. Solutions to the generality problem require casting an expansive net,

including the extension of our model of fitness to the long term. Other models of fitness will

of course be useful in other pragmatic contexts – the generality problem is often (or even

usually) far from our minds when we work on evolutionary systems. And our demonstration

in the last section that our model reduces, in the short term (and given several other limiting

assumptions), to several well-known biological models of fitness can give us hope that this

new model of the PIF can both provide a solution to the generality problem and ground a

theoretically unified picture of fitness.

15Similarly, Abrams (2009, 751) argues that “since probabilities of long-term effects can be derived from

probabilities of short-term effects, the former are simply mathematical properties of causes acting in the short

term.”
16If there had been only one molecule of uranium in the entire universe, that molecule would still have the

same half-life as the uranium which we know, even though this half-life could be defined in terms of other

possible (not actually existing) atoms of uranium.
17We thank an anonymous reviewer for pointing out this possible reply.
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Objection 2: Descendants are only minimally related to ancestors. Another objection

to long-term fitness is offered by Ramsey. He writes that since, over time (for sexually

reproducing species), the organisms constituting the daughter population of some organism

are related less and less to that organism (a factor of 1
2 in the first generation, 1

4 in the next,

and so on), the long-term descendants of two organisms in a population may well be roughly

identically related to each of those ancestors. It is therefore a mistake to think that the fitness

of those two organisms somehow depends on the characteristics of those descendants.

Two responses can be made to this objection. First, Ramsey is at this point concerned

with the operationalization of his notion of fitness. It is true that as we move from the

short term to the long term, we begin to consider organisms that may be quite different than

the original organism we intend to study. And it also may be true that the precise fitness

difference between two organisms hinges upon an organism that we cannot measure, for it

lies many generations into the future. But we have already seen that in many relevant cases,

the long-term notion of fitness we describe here reduces to easily measurable short-term

fitness measures. Of course, these require simplifying assumptions, and will therefore

occasionally produce the wrong answers. In this case as in many others, we must assess the

common biological tradeoff between complex, accurate biological models that are difficult

to measure and simpler, less accurate models that are more empirically tractable.

Second, another way of reading this objection would confuse an accurate point about

trait fitness with an inaccurate claim about individual fitness. When we are considering the

fitness of traits, Ariew and Lewontin (among others) remind us that “the rate of reproduction

by a genetic type is not the same as the rate of reproduction of a genetic type” (2004, 352).

In measuring the long-term fitness of a trait, then, the genetic relatedness of those offspring

with their ancestors is, in fact, a crucial point. If we lose track of this relatedness, we run the

risk of inflating the fitness of ancestral types (a mistake which Ariew and Lewontin ascribe

to Fisher).

In the case of individual fitness, on the other hand, such a worry does not arise.

Individual fitness, as we have explicated the picture provided by the propensity interpretation,

is concerned with the size of the daughter population of a given individual. Membership

in a given daughter population does not come in degrees – one is either a descendant of a

given organism or one is not. If a given future organism is a descendant, then it is counted
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by our model.18 While the “coefficient of relatedness” of some arbitrary, distant descendant

to two members of the ancestral population may be both similar and very small, this gives

us no reason to think that the fitnesses of these two ancestors will be equivalently similar.

Effects of path dependence on the daughter populations in the intervening generations, for

example, may well be quite significant.

Objection 3: Evolutionary time-scale is pragmatically determined. Sober claims that

we should wish to remain agnostic over whether we should choose long-term or short-term

measures of fitness. “Long-term fitness,” he writes, “is a coherent concept that may be useful

in the context of certain problems; however, its coherence and desirability do not undermine

the concept of short-term fitness” (Sober, 2001, 313). In general, we agree. As noted above,

we have introduced our model with the intent of cementing the place of the PIF (and along

with it, the causal interpretation of fitness, selection, and drift) as one possible solution to

the generality problem. But short-term predictions, as we have seen above in our discussion

of the relationship of this model to other biological definitions of fitness, can readily be

derived from this model under various plausible sets of limiting assumptions. We thus are

fully entitled to utilize these short-term predictions when they are needed. And as we have

already noted, the solution to the generality problem – an active issue in the philosophy of

biology – requires the model to take the long-term view.

Objection 4: Long-term fitness is lineage fitness. We claim to be setting out a model of

individual or organismic fitness. Our derivation, however, seems to traffic only in lineages

or daughter populations. Isn’t this model, then, in fact a model not of individual but of

lineage fitness?

We should begin by noting that we do not intend to disparage the usefulness of

lineage fitness. Jost, who defines lineage fitness as “the number of descendants weighted

by their degree of relatedness with the ancestor of the lineage” (2003, 331), has made a

persuasive argument for lineage fitness and used it effectively to analyze the emergence of

altruism (though see Okasha (2006) for a criticism of this concept).

18Of course, there are manifold issues concerning individuality in evolutionary biology, and it thus may

not not always clear when an “organism” is to count as a “descendant” (Godfrey-Smith, 2009). Our model,

however, suffers from this problem no more acutely than any other of the many theories in evolutionary biology

that require the counting of individuals.
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It is true, however, that the objection that equation (4) represents lineage fitness

instead of organismic fitness would defeat our claim to be offering an improved model of

the propensity interpretation of fitness. But reading our model as a model of lineage fitness

misunderstands our work. Clearly, the possible future lineages of an organism are one of

the determinants of its fitness. But this is not equivalent to the claim that lineages are the

bearers of fitness. Our model, that is, is a model of individual fitness that depends on lineage

characteristics.

Objection 5: The theory of evolution by natural selection fundamentally concerns

trait fitness, not individual fitness. Our model is, as we have stated, a model of the

fitness of individual organisms. Organismic fitness plays important roles in parts of ecology

and evolutionary biology, and is the concept of fitness underlying the PIF. On the other hand,

much of the active work of biologists, as well as many of the arguments of philosophers,

relies instead upon trait fitness. Further, many counterexamples have been raised against

propensity-based models of trait fitness, including critiques by Ariew and Lewontin (2004)19

and Krimbas (2004).20 One might be concerned, then, both that our model fails to respond

adequately to these other counterexamples present in the fitness literature, and that our

model fails to offer an account of the fitness of traits.

Trait fitness, however, is commonly understood in two different ways. First, we

have trait fitness as the average fitness of all individual organisms that bear a given trait

(Sober, 2001; Walsh et al., 2002; Walsh, 2003). Second, we have trait fitness as a prediction

of future trait prevalence – the quantity that lets us predict the frequency of a trait in the

next generation given its current frequency (Matthen and Ariew, 2002; Walsh, 2003). If

the first of these two definitions is adopted, then trait fitness is straightforwardly parasitic

on individual fitness, and a model of individual fitness must be provided in order to make

sense of the fitness of traits. If the second defintion is adopted, however, then we are dealing

with quite a different quantity than the one modeled here. Trait fitness in this second sense

relies on individual fitness as well, but also includes factors like heritability. Thus, under

19Ariew and Lewontin intend their critique to be targeted at “a scalar quantity . . . which then predicts

changes in the representation of types” (2004, 350).
20Though he speaks occasionally of the fitness of individuals, Krimbas’s main concern is “the absolute or

Darwinian fitness of a certain genetic constitution of individuals of the same species in a population” (2004,

190), clearly a notion of trait fitness.
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either of the standard ways of understanding trait fitness, individual fitness is in some sense

foundational: trait fitness values are either directly derived from individual fitness values, or

individual fitness values are a component of trait fitness. Because of this, we are justified in

simply providing a model of individual fitness as the foundational concept in the PIF.

4 Response to Counterexamples

In the first section, we examined three counterexamples to the traditional model of the PIF

as expected number of offspring. In this section, we will show that our new model of the

PIF as represented by equation (4) does not fall prey to these counterexamples.

4.1 Timing of Reproduction

If two organisms, O1 and O2, have the same expected number of offspring, but O1 is

disposed to reproduce earlier than O2, then it will be fitter, ceteris paribus. The reason

for this is that O1 (and presumably its offspring, if the trait responsible for its different

reproductive behavior is heritable) will have a shorter generation time. If both O1 and O2

have two offspring, but O1 has them twice as early in life, then O1 will have twice as many

descendants as O2 when O2 finishes reproducing. If this is not a dramatic fitness difference,

then nothing is. Yet, if we measure the fitness of O1 and O2 with equation (2), we arrive at

the same value. Thus, even the revised version of the original PIF does not take this fitness

difference into account. The reason for this is that the equation is a function of possible

lifetime reproductive success. That is, it merely tallies the reproductive event outcomes

of entire life histories without being sensitive to other important properties of these life

histories, such as the temporal arrangement of reproductive events.

Equation (4), however, solves this problem. It might seem that the reason that it

does so is that the model is multigenerational – that it extends through a large number of

generations in determining fitness values. Although the multigenerational nature of our

model is important, what is crucial for solving the timing of reproduction problem is that

our model uses time instead of number of generations to determine fitness. If the model

were multigenerational but used generations instead of time to determine fitness, then O1

and O2 would be deemed equally fit, since they would both have the same number of
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grand-offspring, great-grand-offspring, etc. But using time instead of generations leads to

a higher fitness value for O1 than O2. It is important, however, that the right time scale is

used. If O1 reproduces at the age of five and O2 at ten, then defining fitness as the expected

number of offspring at one year would mistakenly compute both of their fitness values to

be zero. The time scale has to be at least as large as the longest generation time for any

individual whose fitness is being compared, but it will regularly need to go far beyond a

single generation. The fact that equation (4) is based on an infinite limit clearly provides

us with a sufficiently large time scale to account for all possible variability in reproductive

timing.

4.2 Delayed Selection

Not all offspring are created equal. Some will share the fertility of their parents, while

others will be infertile. The grandchildless (and other, longer-term) mutations mentioned in

the first section, which have been found in Drosophila and other taxa, show that a single-

generation time scale is not sufficient to capture fitness. One might, however, think that the

grandchildless mutation does not necessitate a super-generational time scale. Instead, one

could attempt to preserve single-generational fitness by simply discounting offspring based

on their fertility – infertile offspring would not be counted as offspring. This proposal, we

argue, merely smuggles in a multigenerational time scale. Consider, for example, why it is

that we must not count O’s infertile offspring. The correct answer to this, it seems, is that

they will not give O any grand-offspring. Thus, the choice to discount the fitness of infertile

offspring relies on fitness being multigenerational. Furthermore, both fertility and viability

affect fitness, and both come in degrees. Thus, not only would infertile individuals have to

be excluded, each offspring would have to be assigned a weight, depending on its relative

fertility and viability. But what is the assignment of such a weight, but an assignment of

fitness values to the offspring? There are thus two reasons why the offspring-weighting

proposal fails: First, it defines fitness in terms of fitness. Second, it defines the fitness of the

offspring in terms of the grand-offspring, and so on, making it in fact multigenerational.

Fortunately, equation (4) is sensitive to these and similar mutations. Determining the

fitness of individuals via their descendant pool “at infinity” allows us to incorporate the fact

that not all descendants are created equal. Our fitness model takes account of the unlimited
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variability of fertility and viability, since the long-term descendant pool is sensitive to these

factors.

4.3 The Moments Problem

As we saw in the introduction, fitness is a function of not only the first moment (i.e.,

arithmetic mean) of the distribution of possible offspring, but the higher moments as well

(variance, skew, etc.). This problem was not recognized in the original formulation of the

propensity interpretation of fitness, but was later recognized and solutions were offered.

The solution offered by Brandon (1990), as we saw (equation (2)), was to add a correction

factor that would discount the fitness of individuals based on the structure of the distribution

of possible offspring. But this solution was unsatisfying, since it merely offered “some”

unspecified function of this distribution.

Our model, unlike previous models, solves the moments problem through the intro-

duction of a concrete, specific function, equation (4). This function solves the moments prob-

lem by virtue of its long time scale. To see why this is the case, consider a simple example of

two organisms, O1 and O2, which reproduce asexually and clonally, and have discrete gener-

ations. Each generation, the first organism and its descendants have Pr(φ(ω,T ) = 1) = 1

(that is, the probability of having 1 offspring each generation is 1), and the second organism

and its descendants have Pr(φ(ω,T ) = 0) = 0.5 and Pr(φ(ω,T ) = 2) = 0.5 (equal probabil-

ity of having either 0 or 2 offspring). Both O1 and O2 have the same expected number of

offspring after one generation (namely, one), but O1 is fitter. To see why, consider what you

would expect the daughter population size of O1 to be as t→ ∞. Since O1 has a probability

of 1 of having 1 offspring, the daughter population size will be one. But O2, on the other

hand, will not fare so well. The probability of the population going extinct will approach 1

as t→ ∞, since extinction is all but guaranteed in the long run: in each passing generation,

each of O2’s descendants runs a 50% risk of lineage extinction. Taking the long view, as

does equation (4), correctly evinces the superior fitness of O1. We lack the space to provide

more examples of higher moments here (such as those presented in Beatty and Finsen (1989)

and Abrams (2009)), but they reveal themselves in the long term as well.
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5 Conclusion

There has long been a perception that the PIF is in dire straits. As we have seen, it

has from its earliest days purported to offer us a solution to the generality problem, yet

the mathematical model of it commonly offered is subject to a host of counterexamples.

Many or even most real-world biological populations are subject to one of the difficulties

described, making the PIF appear to be an inadequate answer to the generality problem –

and thus not able to support the causal interpretation of fitness, selection, and drift against

its statisticalist opposition. Propensity theorists have tried to save the PIF by amending

its standard mathematical model with correction factors. These amended versions have

saved the PIF from counterexamples, however, only by rendering it a poor solution to

the generality problem. Furthermore, as the statisticalists have eagerly pointed out, these

proposed correction factors do not seem to dodge all of the counterexamples. That is, there

still has not been a model of the PIF offered in the literature robust enough to withstand the

full array of philosophical difficulties with prior models.

As we argued in the introduction, however, all these counterexamples are problems

not with the propensity interpretation of fitness itself, but with the various mathematical

models of it which have been proposed. The opponents of the PIF have done nothing by

way of arguing that the extant mathematical models of the PIF are either the only or the

best ways to formalize this interpretation of fitness. We considered three possible ways for

a proponent of the PIF to respond. One could (i) jump ship and embrace the statisticalist

interpretation of fitness, selection, and drift (or something like it), (ii) abandon the search

for a mathematical model of the PIF entirely, or (iii) craft a model of the PIF that can offer

it a new mathematical foundation. In this paper, we have accomplished the third option.

We have constructed a model that retains the PIF’s purported ability to solve the generality

problem without being subject to the counterexamples that have been proposed against it.

We have not, notably, argued directly against the statisticalist position itself. As

we have argued above, the statisticalist position is not without difficulty, and has been

criticized on many fronts (Millstein, 2002; Brandon and Ramsey, 2007; Millstein et al.,

2009; Northcott, 2010; Otsuka et al., 2011; Ramsey, forthcoming). One of the seemingly

compelling arguments in its favor, however, is that it is not subject to the sorts of counterex-

amples that undermine the PIF. Since we have provided a model of the PIF that avoids these
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counterexamples (and, hence, have demonstrated that there is no reason to think that the PIF

cannot solve the generality problem), one of the main reasons for adopting the statisticalist

position has been called into question. The statisticalists, we suggest, would need to attempt

to form counterexamples to this new model, not the older formulation provided by Brandon

(1978).

While this by no means resolves the debates over the role of fitness in evolutionary

theory – one could, even taking our model into account, still reject the notion of fitness as

a causal property – we hope that the presentation of a mathematical model that resists the

now-common counterexamples to the PIF will allow for a more sophisticated debate over

the nature of fitness, natural selection, and genetic drift.
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A Appendix: Derivation of Fitness Model

Begin with the set Ω of possible daughter populations of some individual o, as defined above.

We noted that we define a σ-algebra and probability measure, F and Pr, over Ω, in the usual

way. In order to do so, however, we must demonstrate that Ω is sufficiently well-behaved

that a probability measure may be defined over it – one might plausibly think that this set

is simply too large to be suitable as a sample space. Consider our provisional definition

(from footnote 6) of Ω as the space of functions from R 7→ Rn. This set has cardinality

N(Ω) = 22ℵ0 , which makes it impossible to establish a standard probability measure over Ω

in the normal manner – by exhibiting an isomorphism between Ω and either R or [0,1].

However, as demonstrated by Nelson (1959), we are able to define a standard

σ-algebra F and a Borel probability measure Pr over certain subsets of this larger set.

Namely, we can get what we need if we restrict our attention to (1) continuous functions

ω, (2) functions ω with only point discontinuities, or (3) functions ω with only jump

discontinuities.

Though we would like to remain neutral on how the n degrees of freedom available

in the state vectors at each time t might be parameterized, it doesn’t appear out of the

question to assume that the ω functions will have at worst jump discontinuities. If this is the

case, then the proofs in Nelson (1959) demonstrate that a working probability measure can

be reasonably defined over Ω.

With the sample space suitably defined, we may now derive our model. As we did

above, define φ(t,ω) as the function that takes a particular point in the sample space ω and a

time t to the number of o’s progeny living at time t on that outcome.

Now return to the problem of constructing a long-term picture of organismic fitness.

We cannot evaluate the φ-function at time t = ∞, as we will obtain (at least potentially)

infinite values. We thus need to define some function of the φ-values which will converge

as t goes to ∞. We know, however, as stipulated above, that the φ-values are generated

by a stationary random process, that demographic weak ergodicity holds, and that the

logarithmic moment of vital rates is bounded. From this we may conclude (Tuljapurkar,

1989, p. 233–234) that the following limit exists:

a = lim
t→∞

(1/t)Ew ln(φ(t)), (7)

with Ew an expectation value weighted by the probabilities given by our σ-algebra as
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defined above, and removing the parameter ω from the φ-function when it appears inside a

mathematical expectation. If we take the exponent of both sides of equation (7), we arrive at

F = exp
(

lim
t→∞

(1/t)Ew ln(φ(t))
)
. (8)

This value F is, then, the value of fitness in our model: equation (8) is equivalent to equation

(4). It is precisely equal to the exponential of Tuljapurkar’s a (that is, equation (7) just

is Tuljapurkar’s a), and therefore roughly equal (under simplifying assumptions) to the

net reproductive rate and related to the Malthusian Parameter (r = ln(F)/T , with T the

generation time).
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