
THE FORGOTTEN TRADITION. HOW THE LOGICAL

EMPIRICISTS MISSED THE PHILOSOPHICAL SIGNIFICANCE

OF THE WORK OF RIEMANN, CHRISTOFFEL AND RICCI

Abstract. The paper attempts to show how the Logical Empiricists' inter-
pretation of the relation between geometry and reality emerges from a �col-
lision� of mathematical traditions. Considering Riemann's work as the ini-
tiator of a 19th century geometrical tradition, whose main protagonists were
Helmholtz and Poincaré, the Logical Empiricists neglected the fact that Rie-
mann's revolutionary insight �ourished rather in a non-geometrical tradition
dominated by the works of Christo�el and Ricci-Curbastro roughly in the same
years. I will argue that in the attempt to draw the line Riemann-Helmholtz-
Poincaré-Einstein Logical Empiricists were led to argue that General Relativity
raised mainly a problem of mathematical under-determination, i.e. the discov-
ery that there are physical di�erences that cannot be expressed in the relevant
mathematical structure of the theory. However, a historical reconstruction of
the alternative line of development Riemann-Chrito�el-Ricci-Einstein shows
on the contrary that the main philosophical issue raised by Einstein's the-
ory was rather that of mathematical over-determination, i.e. the recognition
of the presence of redundant mathematical di�erences that do not have any
correspondence in physical reality.

In Logical Empiricists' philosophy of space and time, Einstein's conception of the
relations between �geometry and experience� appears to be the heir of a 19th cen-
tury philosophical and scienti�c tradition, whose main protagonists were Riemann,
Helmholtz, and Poincaré. The result of such a tradition appeared to be at best
framed in Reichenbach's celebrated theory of �equivalent descriptions�. Riemann,
Helmholtz and Poincaré discovered the �principle of the relativity of geometry�, i.e.
our freedom to chose among di�erent metric geometries in as much as they can be
transformed into one another by unique and continuous transformations, that is in
as much as they are, in the Logical Empiricists' parlance, �topologically equivalent�.

It is probably the merit of Michael Friedman to have convincingly shown that
such a tradition simply never existed (Friedman, 1995). Helmholtz's and Poincaré's
philosophy of geometry presupposes homogenous spaces, which can be covered by
congruent tiles without gaps and overlappings. In such geometries there is a unique
set of congruence relations, on which all observer can agree, or, more technically,
a group of self-mappings with the properties of rigid motions can be de�ned. Rie-
mann, on the contrary, left open the possibility of highly non-uniform spaces, where
no group of motion can be de�ned and thus no unique conventional agreement can
be made as to which tiles are congruent.

Logical Empiricists were of course aware of the elementary fact that there are no
rigid bodies in spaces of variable curvature. However, by stripping Helmholtz and
Poincaré philosophy of geometry from their group-theoretical implications (Fried-
man, 1995), they believed it was simply possible to shift the attention from ��nite
rigid bodies� to �in�nitesimal rigid rods�. As Roberto Torretti has shown, however,
this strategy is hardly compatible with conventionalism. In a Riemannian manifold,
an in�nitesimal rod is considered rigid as long as it has an Euclidean behavior; one
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does not set by convention, which rods are rigid, but instead checks it under the
hypothesis that the space is Euclidean in its smallest parts (Torretti, 1983).

In Riemannian geometry adopted in General Relativity, once a unit of measure
as been arbitrarily �xed, the length of an the in�nitesimal measure rod turns out
to possess an absolute value, so that two intervals at a �nite distance can be imme-
diately compared. Einstein, it is true, refers, rather sporadically, to Helmholtz and
Poincaré in his writing on the philosophy of geometry (Friedman, 2002). However,
Einstein's reference should be rather understood in the context of the so called
�measuring rod objection� against Hermann Weyl's attempt at unifying electricity
and gravitation by dropping the length comparison �at-distance�, rather then as a
defense of conventionalism (Fogel, 2008, ch. 5).

Thus it has been abundantly shown that the Logical Empiricists' attempt to
read Einstein's general theory as the heir of a geometrical tradition that start-
ing with Riemann was developed into the epistemological works of Helmholtz and
Poincaré was substantially �awed. In my opinion, however, an even more simple
historical point has escaped recent historical literature. It is even more signi�cant
that the Logical Empiricists were not able to philosophically appreciate the fact
that Riemann's work, roughly in the same years, was mainly developed in a non-
geometrical tradition in the work of authors such as Elwin Bruno Christo�el and
Gregorio Ricci-Curbastro, the father of the so called �absolute di�erential calcu-
lus� (our tensor calculus). Of course Einstein himself explicitly considered General
Relativity precisely as the heir of this tradition, or, as he famously put it, �a real
triumph of the method of the general di�erential calculus�.

Riemann's work, considered from the point of view of Helmholtz's and Poincaré's
philosophical re�ections on geometry, appeared to the Logical Empiricist as con-
cerned with the question of the choice among alternative physical geometries. Inter-
preted under the light of Christo�el's and Ricci-Curbastro's work, Riemann's main
concern appears to be that of discerning the objective geometrical properties of the
same physical geometry � those that are independent of the particular coordinate
system we choose � from those properties that are a mere artifact of the coordinate
system used.

As far I can see, the names of Christo�el and Ricci are not even mentioned by
the Logical Empiricists. I would like to venture that this at least partially may
have to do with the fact, that they never intervene in the philosophical debate on
the foundation of geometry. In order to show that some quantity has geometrical
substance and is not just an artifact of some arbitrary choice of coordinates, they
merely invoked the abstract study of the law of transformation of the quadratic
di�erential forms. However, it is only from this point of view that the mathematical
apparatus of Riemannian geometry and most of all its role in General Relativity �
in the form of the requirement of �general covariance� � can be understood.

The aim of this paper is to show that the inadequacy (Friedman, 1983; Ner-
lich, 1994; Ryckman, 2007, 2008) of the Logical Empiricists' interpretation of Gen-
eral Relativity is in many respects the consequence of their failure to recognize
the philosophical signi�cance of this mathematical tradition. Logical Empiricists
tried to interpret the role of Riemannian geometry in Einstein's General Relativ-
ity through the lenses of the epistemological problems raised by Helmholtz and
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Poincaré. Historically and systematically however Riemann's revolutionary ap-
proach became part of Einstein's theory of gravitation through the mediation of
the analytical work of Christo�el and Ricci.

After a brief description of how the Riemann's insight was developed analyti-
cally (mainly, even if of course not only) by Christo�el and later by Ricci in the
so called �absolute di�erential calculus� (�1) and then implemented in the General
Theory of Relativity (�2),; the paper concentrates on Reichenbach's famous �con-
version� to conventionalism and on the emergence of the standard logical empiricist
interpretation of the relation between geometry and physics (�3).

The case of Reichenbach's appears particularly signi�cant. Reichenbach's insis-
tence on the �relativity of coordinates� in his �rst �Kantian� monograph (Reichen-
bach, 1920b) appears much more e�ective in hindsight than his later appeal to
the �relativity of geometry� (Reichenbach, 1928). Reichenbach's deep knowledge of
the mathematical apparatus of General Relativity shows that this change of posi-
tion was not the consequence of a trivial �blunder�, but the conscious pursuit of a
philosophical program. The philosophical inadequacy of his reading emerges para-
doxically by following the more expository/semi-technical parts his work, rather
than concentrating on his philosophical interpretation (�4).

Recent historically oriented philosophy of science has insisted on the importance
of the 19th century debate on the foundation of geometry in order to understand
the emergence of Logical Empiricism and, in particular, of its interpretation of the
Theory of Relativity (Ryckman, 1992; Co�a, 1991; Friedman, 1999; Howard, 1994;
Friedman, 2008, only to mention some titles). However, in my opinion, even recent
well-informed and in�uential works (see of instance DiSalle, 2006) have not given
su�cient attention to the implicit philosophical signi�cance of the development of
the Riemann's ideas in the work of Christo�el and Ricci. This investigation was
therefore left exclusively to the history of mathematics (see for instance the classical
Reich, 1994), rather than being considered a part of that �synthetic� history (Dick-
son and Domski, 2010) that eventually led to the emergence of modern philosophy
of science.

The �lling of this lacuna in the historical literature on Logical Empiricism could
help to clarify a more general philosophical misunderstanding, which seems to char-
acterize early philosophical interpretations of General Relativity. General Relativ-
ity, considered as the heir to the 19th century conventionalism of Helmholtz and
Poincaré, seemed to raise the problem of mathematical under-determination; it
shows the existence of mathematically equivalent, but di�erent physical geometries,
among which we can only make a pragmatic choice. Considered as the heir to the
work of Riemann, Christo�el and Ricci, General Relativity appears mainly to raise
a problem of mathematical over-determination; it shows that it is possible to rep-
resent the same physical geometry in di�erent coordinate systems, using di�erent
mathematical functions. General Relativity shows the existence of a �redundancy�
in the mathematical description, rather than �reducing� the mathematical structure
which is physically relevant.
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1. Riemann's �Äquivalenzproblem� and its Analytical Development in
the Work of Christoffel and Ricci-Curbastro

1.1. Riemann: from Habilitationsvortrag to the Commentatio Mathe-
matica. On June 10 1854, before the Philosophical Faculty at Göttingen, Rie-
mann delivered his celebrated Habilitationsvortrag, Ueber die Hypothesen, welche
der Geometrie zu Grunde liegen. This short address will turn out to be one of the
most in�uential (even if only partially understood) papers in the second half of the
nineteenth century.

Riemann famously considered space as a special case of �n-dimensioned mani-
foldness� (Riemann 1854/1868, 138; tr. Riemann, 1873; cf. Scholz, 1982), expressed
by means of �n variables x1, x2, x3, . . . , xn� (Riemann, 1854/1868, 139; tr. 1873,
15). Inspired by Gauss's theory of curved surfaces (Gauss, 1827), Riemann assumed
as an hypothesis (as the simplest among other possible alternatives) that space is
distinguished from other �manifoldnesses� by the fact that the so called line element
ds, �is the square root of an always positive integrable homogeneous function of the
second order of the quantities dx, in which the coe�cients are continuous functions
of� the quantities x�, (Riemann 1854/1868, 140; tr. 1873, 15; cf. Libois, 1957;
Scholz, 1992). As is well known, Riemann's abstract approach turned out to be ex-
tremely powerful, allowing an in�nity of possible geometries. Di�erent geometries
correspond to di�erent expressions for the line element endowed by di�erent sets of
coe�cients.

The opposite, however, is not necessarily true. Riemann observed that every
such expression can be transformed �into another similar one if we substitute for
the n independent variables functions of n new independent variables� (Riemann
1854/1868, 140; tr. 1873, 16), x1, . . . xn. The coe�cients of the quadratic expres-
sion will depend on the variable used, but it is possible to show how the coe�cients
transform under a change of the independent variables in such a way as to make
ds2 remain unchanged.

However, as immediately Riemann made clear, �we cannot transform any ex-
pression into any other� (Riemann 1854/1868, 140; tr. 1873, 16). The fact that a
sphere cannot be projected onto a plane without distortion can be expressed ana-
lytically by the fact that it is impossible to convert the quadratic di�erential form,
which holds on a sphere by means of a mere transformation of the independent
variables, to one �in which the square of the line-element is expressed as the sum
of the squares of complete di�erentials�, that is to one �in which the line-element
may be reduced to the form

√∑
dx2� (Riemann 1854/1868, 141, tr. 1873, 16); for

more details Portnoy, 1982; Zund, 1983).
Di�erent geometries are expressed analytically by di�erent line elements, but the

di�erence in the appearance of the line element does not necessary imply a geomet-
rical di�erence. One of the main problems raised by Riemann's inquiry was that
of discerning the geometrical properties that do not depend on a particular choice
of the independent variables, from those that are a mere deceptive appearance
introduced by the mathematical formalism.

Riemann's speech, which was supposed to be held in front of an audience of
non-mathematicians, was intentionally scarce in the use of mathematical formu-
las. However, Riemann's somehow cryptic parlance becomes more familiar to the
modern reader, if one considers the notation that he introduced in the so called
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Commentatio mathematica (Riemann, 1861/1876, tr. Farwell, 1990, 240-253) a pa-
per submitted to the Paris Academy in 1861, to compete for a prize relating to
the conduction of heat in homogeneous bodies with constant conductivity coe�-
cients (the prize was not assigned), but that remained unknown until 1876, when
Richard Dedekind � who has found it in Riemann's Nachlaÿ together with the
Habilitationsvortrag � published it in the �rst edition of Riemann's work.

In order to address the question posed by the academy, Riemann had to bring a
system of partial di�erential equations into its simplest form. The problem turned
out to be equivalent to that of reducing a quadratic di�erential from

∑
ai,i′dxidxi′

(where ai,i′ represent conductivity coe�cients), into the form
∑
dx2i with constant

coe�cients, by a mere change of the independent variables xi (where i = 1, 2, 3)
(Riemann, 1861/1876, 392, tr. Farwell, 1990).1

Since it would be tedious to try various transformations of variables to establish
the possibility of such a reduction, Riemann wanted to �nd a general criterion of
transformability (see Farwell, 1990). For this purpose he introduced a four-index
symbol (ιι′, ι′′ι′′′) containing the �rst and and the second partial derivatives of the
functions ai,i′ respect to the xi. Then he showed that a quadratic di�erential form
can be transformed in one with constant coe�cients if the four-index symbol van-
ishes: (ιι′, ι′′ι′′′)= 0 (Riemann, 1861/1876, 402, tr. Farwell, 1990). Riemann found
a criterion for distinguishing between the case in which the non-constancy of the
conductivity coe�cients ai,i′ is a mere appearance of the mathematical description
and the case in which it corresponds to a real physical di�erence, i.e. to a thermally
non-homogeneous body.

Riemann hints, although vaguely, at a geometrical interpretation of this mathe-

matical apparatus. The quadratic form
√∑

ι,ι′ bι,ι′ dsι dsι′ can be regarded as the

�line element in a more general space of n dimensions extending beyond the bounds
of our intuition� (Riemann, 1861/1876, 435, tr. Farwell, 1990, 240-253). A ��at
space� can be represented by a quadratic di�erential form, whose coe�cients are
non-constant, such as polar coordinates or more complicated curvilinear coordi-
nates. This di�erence however does not have any geometrical meaning; it is always
possible to �nd a transformation of variables with which the form

∑
bι,ι′ dsι dsι′ can

be transformed into one constant coe�cients
∑
ι
d2ι (Riemann, 1861/1876, 435, tr.

Farwell, 1990, 240-253). In a non-�at space, on the contrary, such a transformation
cannot be found.

The four-index symbol furnishes a precise mathematical criterion: when it van-
ishes the non-constancy of the coe�cients is merely an artifact of the system of
variables used, if not, the non-constancy has, so to say, geometrical substance. Ge-
ometrically the four-index symbol corresponds then to the �measure of the curvature
of this surface at the point (s1, s2, . . . , sn)� (Riemann, 1861/1876, 435, tr. Farwell,
1990). In his 1854 lecture Riemann had famously shown that this is not necessar-
ily constant, opening the possibility of space with a variable curvature. Spaces of
constant curvature are merely a special case, where �independence of bodies from
position� is assured (Riemann, 1854/1868, 149; tr. 1873, 36).

The Commentatio seems however to make clear that Riemann's main concern
was capable of being expressed in a purely analytical way � i.e. independently

1For sake of historical accuracy along the paper we will try to remain faithful to the original
notations used by the various authors considered.
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from its possible physical or geometrical interpretation � as the problem of the
equivalence of di�erential quadratic forms. This problem, which is best known
as the Äquivalenzproblem, exerted a profound in�uence on the later development
of mathematics and physics, as the development of absolute di�erential calculus
(Tonolo, 1961; Struik, 1993) as its implementation in Einstein's theory of relativity
shows. In my opinion, however, this was not fully appreciated in the philosophical
debate raised by the appearance of Einstein's theory of gravitation. The work of
Riemann, on the contrary, was read uncritically under the light of Helmholtz's and
Poincaré's philosophy of geometry, who, as we shall see, were concerned by quite
di�erent philosophical questions.

1.2. A Very Brief History of the Emergence of the Absolute Di�erential

Calculus: Christo�el, Ricci and Levi-Civita. Riemann's Habilitationsvortrag
was discovered in the late 1860s by Richard Dedekind, who had been entrusted
with Riemann's Nachlaÿ, and published in the �Abhandlungen der Königlichen Ge-
sellschaft der Wissenschaften zu Göttingen,� vol. 13, 1868 (Riemann, 1854/1868).
Immediately afterwords, Helmholtz, who had known of the existence of Riemann's
paper in 1868 from Ernst Schering (Koenigsberger, 1906, 139), published his famous
Über die Tatsachen, die der Geometrie zu Grunde liegen, which appeared a little
later in the �Göttinger gelehrte Nachrichten,� vol. 15, 1868 (Helmholtz, 1868).

Helmholtz famously derived Riemann's hypothesis that metric relations are given
by a quadratic di�erential form (and not, for instance, by a quartic di�erential
form) from the fact that there are rigid bodies, whose translations and rotations
� expressed analytically by a set of di�erential equations � necessarily leaves a
quadratic di�erential form unchanged. As is well known, Helmholtz's approach
based on the notion of rigid body was enormously successful in the history of the
philosophy of geometry.

As early as 1870, Helmholtz himself discussed the epistemological implications
in the less technical and widely read talk Über den Ursprung und die Bedeutung der
geometrischen Axiome (Helmholtz, 1870/1883) and in other philosophical papers
that followed (Helmholtz, 1878, 1879). In 1886 Sophus Lie (Lie, 1886), stimulated
by Felix Klein, reinterpreted and corrected Helmholtz's result on the basis of his
theory of continuous groups. In 1887 Henri Poincaré (who already insisted on the
group-theoretical approach on rigid motions in the early 1880s; Poincaré, 1882, �2),
referred to Lie's results in his �st paper on the foundations of geometry (Poincaré,
1887, 214). At the end of the paper, Poincaré hints to the �celebrated Memoire of
Riemann�, in which every geometry is characterized �through the expression of the
arc element as a function of the coordinates� (Poincaré, 1887, 214). However, he
discarded it as geometrically irrelevant, because it allows for spaces which exclude
�the existence of a group of motion which does not alter distances� (Poincaré, 1887,
214, see also Poincaré, 1891, 773).

In general, Riemann's speculations about variably curved spaces (with the noto-
rious exception of Cli�ord, 1876) were either ignored or dismissed (Hawkins, 1980,
2000). Rather, Riemann's paper triggered developments in the non-geometrical
branch of mathematics concerned with the study of quadratic di�erential forms.
Dedekind had mentioned Riemann's unpublished Habilitationsvortrag to Erwin
Bruno Christo�el, which in 1862 �lled Dedekind's post at ETH in Zurich (Butzer,
1981).
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In the last paragraph of the paper published in 1869 on �Journal für die reine
und angewandte Mathematik� (the celebrated Crelle's Journal), Über die Trans-
formation der homogenen Di�erentialausdrücke zweiten Grades (Christo�el, 1869),
Christo�el in fact referred brie�y to �an essay [Abhandlung] in Riemann's Nachlass�
(Christo�el, 1869). Christo�el's paper addressed the equivalence problem for two
quadratic di�erential forms in the most general way, without focusing on special
case the reducibility to an expression with constant coe�cients (Ehlers, 1981).

Christo�el wanted to establish which �conditions are necessary [erforderlich]�
(Christo�el, 1869), for transforming a quadratic di�erential form F =

∑
ωikϑxiϑxk

into another such form F ′ =
∑
ω′
ikϑx

′
iϑx

′
k by means of a smooth, invertible sub-

stitution of the independent variables. In order to answer this question, Christo�el
was led �to a better overview [zur besseren Übersicht]� (Christo�el, 1869) to express
the recurrent combination of the ωik and their �rst partial derivatives ∂ωgk∂xh

through

two kinds of three-index symbols

[
gh
k

]
and

{
il
r

}
=
∑ Erk

E

[
gh
k

]
2 (the now famous

Christo�el symbols respectively of �rst and second kind; Reich, 1994; Herbert,
1991).

The purely �algebraic� criterion for the equivalence of two di�erential forms is
then obtained by introducing a four-index symbol (ghki), that can be constructed
from the �Christo�el symbols� and their derivatives (that is from the �rst and second
partial derivatives of the ωik). It corresponds to Riemann's four-index symbol in
the Commentatio (which Christo�el could not know). Two quadratic form can be
transformed into one another only if (locally) (ghki)=(ghki)′.

No reference to the geometrical concept of �curvature� can be found in Christof-
fel's paper, which follows a purely algorithmic approach. This attitude was taken up
by Gregorio Ricci-Curbastro, who in six papers published between 1883-1888 was
able to develop systematically Chrito�el's solution of the Äquivalenzproblem into a
new calculus (Dell'Aglio, 1996; Bottazzini, 1999). In his �rst paper on the argu-
ment, Principii di una teoria delle forme di�erenziali quadratiche (Ricci-Curbastro,
1883), Ricci recognized his debts to Riemann (Ricci could now refer to Riemann's
Commentatio), Rudolf Lipschitz (Lipschitz, 1869) and most of all Christo�el.

As Christo�el, Ricci did not want to give a contribution to geometry. According
to Ricci �mathematicians have usually considered quadratic di�erential forms . . . as
representing line elements of n-dimensional spaces� (Ricci-Curbastro, 1883, 140).
This, however, has often led to confusion. Ricci explicitly emphasized that his
own investigations are based �on purely analytical concepts�, letting apart �the
rather vacuous [oziose] discussions about the existence of spaces on more than
three dimensions� (Ricci-Curbastro, 1883, 140).

Ricci's aim was a purely abstract theory of di�erential invariants, a calculus of
quadratic di�erential forms, such as �ϕ =

∑
rs
arsdxrdxs where ars are functions

of x1, x2, .., xn.� (Ricci-Curbastro, 1886, 3). The problem was then to establish
the laws according to which the coe�cients would, by a change of the indepen-
dent variables when �one substitutes the variables x1, x2, .., xn with the variables
u1, u2, .., un� (Ricci-Curbastro, 1886, 4) (which are smooth functions of the �rst
ones) under the condition that ϕ = ϕ′.

2Erk
E

corresponds to the inverse matrix of ωik
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Ricci showed that the coe�cients ars transform according to certain rules into
the new coe�cients (apq), so that the new form is called �covariant� respect to
the �rst; the reciprocal form a(rs) transformed �contravariantly� into a(pq) (Ricci-
Curbastro, 1889, 113). Hence in Ricci's parlance ars and a(rs) form respectively a
covariant and contravariant �system� of second rank (because of the two indeces).

To establish the conditions of tranformability, Ricci followed Christo�el's path
introducing the three index-symbol ars,i (for the Christo�el symbols of �rst kind),
and the four index-symbol ahi,jk which he later called �the system of Riemann�
(Levi-Civita and Ricci-Curbastro, 1900, 142). However, Ricci, starting from his
1887 paper Delle derivazioni covarianti e controvarianti e del loro uso nella analisi
applicata (Ricci-Curbastro, 1888) interpreted Christo�el's algorithms as a di�eren-
tiation of a more general kind that he labeled as �covariant (contravariant) di�eren-
tiation�. (Ricci-Curbastro, 1888, 4). With the repeated application of the covariant
di�erentiation, starting from a covariant (or contravariant) primitive system, others
can be obtained (Ricci-Curbastro, 1888, �2).

This was the necessary step which allowed Ricci to traduce Christo�el's still
unsystematic approach into a new �calculus�. In 1893 Ricci called it for the �rst
time �absolute di�erential calculus,� where the word �absolute� expresses the fact
the calculus can be applied �independently of the choice of the independent vari-
ables� and requires �that the latter are completely general and arbitrary� (Ricci-
Curbastro, 1893). Ricci made his results known outside of Italy with a summary
published in French in Georges Darboux's �Bulletin des Sciences Mathématiques�
in 1892 (Ricci-Curbastro, 1892). Only in 1901, with the assistance of his student
Tullio Levi-Civita, did he publish a memoir in French, which can be considered the
manifesto of Ricci's calculus, �Méthodes de calcul di�érentiel absolu et leurs ap-
plications� in Klein's journal, �Mathematische Annalen� in 1900 (Levi-Civita and
Ricci-Curbastro, 1900),

2. �A Real Triumph of the Method of the General Differential
calculus�: Einstein's General Relativity

Ricci's calculus apparently failed in �nding his audience among di�erential ge-
ometers, who were probably its main target (Roth, 1942, 266; Reich, 1994, 77,
but see Bottazzini, 1999). Ricci's algorithms appeared incapable of providing any
substantially new geometrical results that could not have been reached through
a more traditional approach. This was what Luigi Bianchi, author of celebrated
handbook on di�erential geometry (Bianchi, 1894), meant when, reviewing Ricci's
work for the royal prize of the Accademia dei Lincei, characterized it as �useful but
not indispensable� (Bianchi, 1902, 149; on the relations Bianchi-Ricci see Toscano,
2001).

It is usually argued that only General Relativity eventually did justice to Ricci's
work. Einstein's progressive appropriation of the work of Riemann, Christo�el,
Ricci, and Levi-Civita has been of course discussed several times in historical lit-
erature (see for instance: Earman and Glymour, 1978; Stachel, 1980/2002; Norton,
1984; Janssen and Renn, 2007; Pais, 1982, 212�.)). We will here only give a very
super�cial presentation in order to emphasize some elements that will be relevant
to understanding the subsequent philosophical discussion.

2.1. Einstein, Grossmann and the Absolute Di�erential Calculus. In 1907
Einstein put forward the Principle of Equivalence as an extension of the Relativity
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Principle to uniformly accelerated systems (Einstein, 1907). After having embraced
Minkowski's geometrical interpretation of special relativity, in 1912 Einstein, as he
later recalled (Einstein, 1922), had grasped the �decisive idea�: the analogy between
his work on extending the principle of relativity to accelerated motion with Gauss's
theory of surfaces, �without being aware at that time of the work of Riemann, Ricci,
and Levi-Civita� (Einstein, 1922).

It was famously Marcel Grossmann, who in August 1912, introduced Einstein
to this mathematical tradition: �never before in my life� � as Einstein wrote in a
famous letter to Arnold Sommerfeld in the October of same year � �have I gained
enormous respect for mathematics, whose more subtle parts I have considered until
now, in my ignorance, as pure luxury� (CPAE, Vol. 5, Doc. 421)

Einstein and Grossmann jointly published the Entwurf einer verallgemeinerten
Relativitätsheorie und einer Theorie der Gravitation (Einstein and Grossmann,
1913). Einstein's �Entwurf� theory (just as his �nal general theory of relativity)
is built around a quadratic di�erential form ds2 =

∑
gµνdxµdxν that assumes the

name of �metric tensor� or �fundamental tensor� (which corresponds to Ricci's �co-
variant system of second rank� Einstein and Grossmann, 1913, 25, n.). The physical
novelty consisted of course in the fact that the coe�cients gµν of the quadratic dif-
ferential form represent the behavior of measuring-rods and clocks with reference to
the coordinate system, as well as the potentials of the gravitational �eld. The ge-
odesic trajectories of particles can be considered as the solutions to the variational
problem δ

{´
ds
}

= 0.
Grossman/Einstein's problem can be formulated as follows: �What di�erential

equations permit us to determine the quantities gµν i.e., the gravitational �eld?�
(Einstein and Grossmann, 1913, 11) Einstein's strategy was famously to seek for a

�generally covariant� analogon of the Poisson's equation ∂2ϕ
∂x2 + ∂2ϕ

∂y2 + ∂2ϕ
∂z2 = 4πkρ.

The ten potentials gµν = gνµ play the role of the single potential ϕ, whereas the
density ρ corresponds to the ten components of a second rank tensor Θµν , the
so-called stress-energy tensor. The problem was to �nd a second rank tensor Γµν ,
constructed only from the gµν and their �rst and second derivatives with respect
to the coordinates (just like the Poisson's equation equation involves the second
derivative of the potential), which should then play the role of the gravitational
tensor: Thus the �eld equations �would likely have the form κ ·Θµν = Γµν where κ
is a constant� (Einstein and Grossmann, 1913, 11).

As the Zurich Notebook reveals, Grossman had immediately found a �tensor of
fourth manifold� (Tensor vierter Mannigfal�gkeit) � (ik, lm) using the four-index-
symbol notation � as the only tensor that can contains only the metric tensor
and its �rst and second derivatives (Sauer, 2005). It turned out to be much more
complicated to �nd the exact form of the �covariant di�erential tensor of second
rank and second order� (Einstein and Grossmann, 1913, 36), obtained from the
Riemann-Christo�el tensor by contraction (that is by setting unlike indices equal)
that could play the role of the gravitational tensor (having the same valence and
rank of the matter tensor).

Einstein and Grossman discarded the natural candidate, the so called Ricci-
Tensor (Maltese, 1991), since �it does not reduce to ∆φ�, that is to the Newtonian
limit (assumed erroneously as spatially �at), �in the case of weak static �eld� (Ein-
stein and Grossmann, 1913, 337). In the subsequent years Einstein gave up general
covariance for the equations of gravitational �eld. An argument, which came to be
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known as the �hole argument�, even convinced Einstein that, as he wrote to Paul
Ehrenfest in early 1914, �generally covariant �eld equations that determine the �eld
completely from the matter tensor cannot exist at all� (CPAE, Doc. 512, 5, 563).3

In March of the same year Einstein even wrote to Michele Besso that �[t]he general
theory of invariants only acted as a hindrance� (CPAE, 5, Doc. 514, 604).

In October 1914, Einstein, who in the meantime had moved to Berlin, presented
a systematic exposition of the Entwurf theory to the Berlin Academy Die for-
male Grundlage der allgemeinen Relativitätstheorie (Einstein, 1914). �7, �Geodesic
line or equations of the point motion�, introduced a fundamental formal innova-
tion, using the absolute di�erential calculus to express the equation of the geodesic
line independently of the coordinate using the Christo�el symbols (Einstein, 1914,
1044�.):

d2xτ
ds2

=
∑
µν

{
µν
τ

}
dxµ
ds

dxν
ds

After giving presentation of the hole argument in �12, in �13 Einstein still re-
stricts the covariance only to linear transformations in order to ensure a unique
relation between gµν and Tµν (Einstein, 1914, 1066�.).

2.2. Generally Covariant Field Equations. In the meantime the theory, that
had initially received rather suspiciously by physicists, began to attract the interest
of mathematicians such as Levi-Civita himself (Cattani and De Maria, 1989) and
David Hilbert (Corry, 2003). Under the pressure of a hasty competition with the
latter, by November of 1915 Einstein regained general covariance for its �eld equa-
tions, which he had abandoned �with a heavy heart� (Einstein, 1915d, 778) three
years before and presented them in four communications to the Prussian Academy
(Einstein, 1915c,d,a,b). In the �rst of three papers presented to the Berlin Acad-
emy he famously described General Theory of Relativity: as �a real triumph of the
method of the general di�erential calculus founded by Gauss, Riemann, Christo�el,
Ricci, and Levi-Civiter [sic]� (Einstein, 1915d, 778).

Einstein came �rst to consider again the �Ricci tensor,� Rµν as the left-side
of his equations, that had to be equated to the matter tensor Tµν . The matter
tensor is however divergence-free, expressing the conservation of energy, stress,
and momentum, whereas the divergence of the Ricci tensor is generally non-zero.
Einstein discovered that the combination Gµν = Rµν− 1

2Rgµν (where R = gµνRµν)
is divergence-free. The tensor Gµν (later labeled �Einstein tensor�) has all the
required properties is therefore suitable for a role of the gravitation tensor of the
�nal �eld equations: Gµν = −κTµν (Mehra, 1974; Pais, 1982, 20). As Einstein
explained to Hilbert in November 1915:

The di�culty was not in �nding the generally covariant equations from
the gµν for this is easily achieved with the aid of the Riemann's tensor.

3Einstein discovered that generally covariant �eld equations it is impossible to achieve �a
univocal determination of the gµν out of the Tµν � (CPAE 5, Doc. 484; Einstein to P. Ehrenfest,
second half of November 1913), the tensor representing the matter source. Not only general
covariance allows to construct two solutions of the gravitational �eld equations gµν(x) the g′µν(x′)
in di�erent coordinate systems x and x′ (which very �rst thing that one learn from absolute
di�erential calculus), but also two solutions gµν(x) and g′µν(x) in the same coordinate system x;
the �eld equations seem to attribute di�erent �eld values of the �eld quantities for the same point
(identi�ed through unprimed coordinate system), violating the law of causality (see for instance
Norton, 1987).
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Rather, it was hard to recognize that these equations are a generalization,
and precisely, a simple and natural generalization of Newton's law. It
has just been in the last few weeks that I succeeded in this (I sent you my
�rst communication)4 whereas 3 years ago with my friend Grossmann, I
had already taken into consideration the only possible generally covariant
equations, which have now been shown to be the correct ones (Einstein
to Hilbert, November 18, 1915; CAPE 8a, Doc. 148, 201).

An important step toward the �nal breakthrough is usually considered the over-
coming of what Einstein famously called a �faithful prejudice� [ein verhängnisvolles
Vorurteil] (Einstein, 1915d, 782) �The key to this solution�, was found, as he wrote
in a letter to Sommerfeld, when Einstein (starting from November 1915) came to

realize that the negative Christo�el-symbols (of the second kind) Γτµν = −
{
µv
τ

}
are �to be regarded as the natural expression of the gravitational �eld `components� '
(28.11.1915; CPAE, 8a, Doc. 153, 207-208; Norton, 2003; Janssen, 2008).

A free material point moves with uniform motion in a straight line, relative to a
system in which the gµν are constant (Γτµν = 0). If a new co-ordinates is smoothly
introduced, the gµν will no longer be constant, but functions of the coordinates
(Γτµν 6= 0); the motion of the free material point will present itself in the new co-
ordinates as curvilinear non-uniform motion. Via the principle of equivalence, we
can equally interpret this motion as a motion under the in�uence of a gravitational
�eld.

As Einstein summarizes in the �nal 1916 �polished� presentation of the theory,
published in the Annalen der Physik (Einstein, 1916b), it is then natural to extend
this reasoning to the case �when we are no longer able by a suitable choice of co-
ordinates to apply the special theory of relativity to a �nite region�, that is when the
Γτµν cannot be made to vanish identically, since Riemann-Christo�el tensor Rρµντ
does not vanish (Norton, 1985).

Interestingly, even if Einstein does refer to the non-Euclidean geometry, in the
1916 paper the Riemann-Christo�el tensor Rρµντ does not carry most of the geo-
metrical implications that we take for granted today; in particular Einstein does
not refer to the �curvature of spacetime� (Reich, 1994, 204f.). The Riemann tensor
is introduced in so far that it is the only tensor that can be constructed solely from
the fundamental tensor without going beyond the second derivatives of the gµν (as
the analogy with the Poisson's equations requires).

A �geometrical� issue emerges rather when one has to compare the values of the
gµν predicted by the �eld equations (let say the Schwarzschild-solution) with the
observed values. Till the end of his life Einstein insisted on assuming �provisionally�
(Howard, 1990, 2005) that these can be obtained by direct measurement using small
rods and atomic clocks whose length and rate are independent of the gravitational
�eld they are embedded in (Stachel, 1989). Roughly, the gµν are the numbers
to which we have to multiply the coordinate distances so that ds2 has the same
absolute value (up to the global choice of unit of measure) everywhere on the
manifold.

2.3. Critique and Geometrical Development of Absolute Di�erential Cal-
culus. As early as 1916 the Austrian physicist by Friedrich Kottler, criticized Ein-
stein for referring to the Christo�el symbols as the components of the gravitational

4Einstein, 1915d
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�eld (Kottler, 1916). Christo�el-Symbols are not tensors, and they can be non-
zero in a �at spacetime simply by virtue of curvilinear coordinates. Responding
to Kottler, Einstein suggested that the equation d2xτ

ds2 = Γτµν
dxµ
ds

dxν
ds �as a whole is

generally covariant� (Einstein, 1916a, 641), but the two terms taken separately are
not. In particular the �rst term of the geodesic equation can be taken as repre-
senting �the Galilean inertia�, and the second term with the Christo�el symbols,
as �representing in�uence of the gravitational �eld upon the mass point� (Einstein,
1916a, 641). Neither of these per se has physical meaning, only their �sum� does.

In Einstein's eyes the covariance principle and the equivalence principle appear
then as deeply connected: the variability of gµν and the non-vanishing of the Γτµν
introduced by a coordinate transformation can be interpreted arbitrarily as an
acceleration �eld or as a (homogeneous) gravitational �eld: �the requirement of
general covariance of equations embraces the principle of equivalence as a quite
special case� (Einstein, 1916a, 641). Einstein explicitly embraced the view that the
gravitational �eld is a coordinate-dependent quantity (Einstein, 1918a, 699f.; see
Janssen, 2011).

The most famous objection against Einstein's use of the absolute di�erential cal-
culus was of course that which was raised by Erich Kretschmann in 1917 (Kretschmann,
1917). The principle of �general covariance� as complete coordinate generality in
the formulation of a physical theory, has no particular physical content, and thus
it has nothing to do with a principle of relativity. In fact �according to Ricci and
Levi-Civita's investigations� (Kretschmann, 1917, 579) every space-time theory can
be formulated in a general co-variant way, only by inserting the gµν ad the Γτµν into
the equations of the theory (more on this topic Rynasiewicz, 1999; Norton, 2003).
In a 1918 paper, Einstein agreed with Kretschman's claim, emphasizing neverthe-
less the heuristic value of general covariance when combined with a principle of
simplicity (Einstein, 1918c).

A more compelling answer was provided by Hermann Weyl in the �rst edition
of Raum-Zeit-Materie (Weyl, 1918b). Even if every theory can be rewritten in a
general covariant form, in pre-general-relativistic theories such as special relativity,
the metric displays the pre-asseigned Minkowski values gik and the Γihl vanish
everywhere; in General Relativity one �nds these values only after having solved
the �eld equations: �This seals the doom of the Idea that a geometry may exist
independently of physics in the traditional sense� (Weyl, 1918b, 174).

Weyl could make this point clear exploiting the geometrical implications of ten-
sor calculus which were developed in those years under the stimulus of General
Relativity. In 1916/1917, Levi-Civita (Levi-Civita, 1916, but see also Hessenberg,
1917/18 and Schouten, 1919) had famously recognized the geometrical meaning of
the Christo�el symbols as determining the parallel displacement of vectors (Struik,
1989; Reich, 1992). A displacement preserving the direction of a vector can be
expressed in general coordinates precisely by the fact that the Christo�el Symbols
can be made to vanish along the path; thus roughly, referring to the displacement
operation, the Γihl turned out to be expressible without referring to gik.

The absolute di�erential calculus can then be the founded �geometrically�. When
a vector in a Euclidean space is parallel-transported around a loop, it will always
return to its original position (Γihl vanish overall on the manifold). However, this
property does not hold in the general case. The Riemann curvature tensor measures
precisely the change in the direction (but not in magnitude as in Weyl's more general
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non-Riemannian geometry Weyl 1918s) of a vector after it is transported around
a closed loop (Weyl, 1918b, �16). Along a geodesic path the vector will remain
`unchanged', so that a geodesic line can be de�ned in a non metrical-way as the
straightest line rather than the line of extremal length (Weyl, 1918b, �17).

In the third revised edition of Raum-Zeit-Materie published in 1919, the Christof-
fel Symbols Γisr = Γirs are considered as the �components of an a�ne connection�
(Weyl, 1919, 101). Exactly because it is not a tensor, the a�ne connection pro-
vides an adequate representation of the fact required by Einstein's interpretation
of the equivalence principle: there is no unique decomposition of the connection
into an inertial background plus a gravitational �eld (Stachel, 2007). In 1920 Weyl
introduced the celebrated expression �guiding �eld� (Führungsfeld) for the a�ne
connection: General Relativity does make every motions relative, eliminating the
structure responsible for the distinction between geodesic and non geodesic world-
lines; Einstein's theory rather transformed such a constraining �guidance�, in a
physical force-�eld, in which �according to Einstein, inertia and gravitation consti-
tute a inseparable unity� (Weyl, 1920). Motion along a geodesic path or de�ection
from a geodesic path, are absolutely di�erent, but can be interpreted arbitrarily as
the e�ect of inertia or gravitation.

In 1920, in the unpublished paper Grundgedanken und Methoden der Relativi-
tätstheorie in ihrer Entwicklung dargestellt (CPAE 7, Doc. 31). Einstein, using
a celebrated analogy with electromagnetic �eld which can be split di�erently into
electric and magnetic components by di�erent observers, came to recognize that
the crucial point of General Relativity is the fact that �the gravitational �eld only
has a relative existence� (CPAE 7, Doc. 31, p. 21; Janssen, 2005, 2008).

In the Princeton Lectures, published in the same year, Einstein emphasized again
that this is well represented by the fact that �the intensity of the gravitational �eld�
is expressed by the quantities Γikl, which �do not have a tensor character� (Einstein,
1921b) and thus are coordinate-dependent. Moreover, Einstein recognized that this
could become completely clear only after �Levi-Civita rightly pointed out� that it
is �the in�nitesimal displacement �eld Γikl that should be considered as primary�
and not to the metric gik (Einstein, 1921b; see Stachel, 2007).

In the early 1920s, Élie Cartan, starting from the Levi-Civita's geometrical no-
tion of parallel displacement, considered gravity, mathematically represented by
the a�ne connection, as the structure reconciling the di�erent orientations of local
inertial frames (Cartan, 1923, 1924b, 1925). From this point of view, according to
Cartan, �relativity faces the paradoxical task of interpreting, in a non-homogeneous
universe, all the results of so many experiences by observers who believe in homo-
geneity of the universe� (Cartan, 1924a, 81). At this point, it might be said, the
connection of Ricci's calculus with Riemann's original geometrical approach is re-
stored. With General Relativity, as Levi-Civita noticed some years later, clearly
hinting to Bianchi's words, �Ricci's calculus revealed itself to be not only useful but
truly indispensable� (Levi-Civita, 1925, 11, tr. 1927, VII).

3. Relativity of Coordinates vs. Relativity of Geometry: The Young
Reichenbach's Conversion to Conventionalism

On the philosophical side as early as March 1917 Schlick had published the
article version of his classical Raum und Zeit in der gegenwärtigen Physik (Schlick,
1917a). The work appeared in the same year in the book (Schlick, 1917b), which
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received four di�erent editions up till 1922 (see Schlick, 1922/2006). Schlick, as
is well-known, exploited the geometrical implication of General Relativity in quite
di�erent way, by casting General Relativity in a conventionalist tradition, which
Schlick had allegedly found in the work of Riemann, Helmholtz and, most of all,
Poincaré. Spacetime is in itself metrically �amorphous [gestaltlos]�, as Poincaré has
argued (Schlick, 1917a, 167); a certain space or spacetime is indistinguishable from
every other that by a continuous and one to one transformation, that preserves the
neighborhood relations among points or events. Hence the choice among them can
only be made by an arbitrary stipulation, an implication which Schlick called �the
geometrical relativity of space� (Schlick, 1917a).

Einstein, as it is well known, was very pleased by Schlick's paper and his opinion
was as well very positive for the book version (Howard, 1984). However, as early as
1920 in his �rst monograph on relativity, Hans Reichenbach, who had attended Ein-
stein's lectures on General Relativity in Berlin in the late 1910s, had raised a rather
convincing objection against a conventionalist approach to General Relativity.

Conventionalism, Reichenbach argued, works only for spaces of constant cur-
vature. In every of such spaces there is the a unique (up to a constant positive
factor � i.e. up to the choice of a �unit of length�) set of congruence relations so
that each such set of congruence relations is inconsistent with any other such set.
Conventionalism is then based precisely on the idea that one can make an arbitrary
choice among one of such sets, that is as to which �gures all observers agree on as
being congruent.

In Riemannian geometry of variable curvature no unique set of congruence rela-
tions can be de�ned all over the space, so the very idea of a unique conventional
choice among alternative congruent relations does not make sense. For this reason,
Reichenbach points out, Poincaré �excludes from the beginning Riemannian geome-
try, because it does not permit the displacement of a body without change of form�
(Reichenbach, 1920b, 104, n. 1; tr. 1965, 109, 1; translation modi�ed). In the
general case only the unit of length is globally available on a Riemannian manifold
(all observers can agree per convention of using, for instance, the centimeter as
unit of measure), in contrast to a non-Riemannian is Weyl's geometry that where
a separate unit of length at every point of space may be de�ned.

According to Reichenbach, Einstein's general theory, adopting the Riemannian
approach, leads rather �to an absolutely objective determination of the structure
of space� (Reichenbach, 1920a, 405; tr. 2006, 29). Even if we are free to choose
the coordinate system, only the properties which are independent of a particular
coordinate system are physically meaningful: �Relativity does not mean the aban-
doning of a judgment, but the liberation of the objective sense of knowledge from
its distortion through our subjective nature� (Reichenbach, 1920a, 405; tr. 2006,
29).

In these few words Reichenbach seemed to catch what General Relativity had
inherited from the Riemannian tradition: Riemannian geometry is formulated in
such a way that it works in arbitrary coordinates. Whereas Schlick tried to cast
the contribution of Riemannian geometry to General Relativity under the light
of Helmholtz's and Poincaré's philosophy of geometry as the freedom of choos-
ing among di�erent physical geometries; Reichenbach insisted that Riemann had
showed under which condition it was possible to express the same physical spacetime
by di�erent mathematical functions depending on which coordinates were used.
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3.1. Relativity of Coordinates: Reichenbach's Early Interpretation of

Riemannian Geometry and of its role in General Relativity. Reichenbach's
early approach reproduces quite well Einstein's original reasoning. As Einstein
wrote to Schlick, �in principle there can exist �nite (matter-free) parts of the world�
(Einstein to Schlick, March 21, 1917; CPAE 8a 305) that can be covered by a rect-
angular grid of unit rods and clocks. The four-dimensional line element is expressed

as the sum of the squares of the coordinate di�erential ds2 =
4

Σ
1
dx 2

ν . If one intro-

duces new curvilinear coordinates by means of an arbitrary smooth substitution of
the independent variables, the line element will not preserve its simple form but

will change into a mixed quadratic expression: ds2 =
4

Σ
1
gµνdxνdxν :

The coe�cients gµν occurring in [the mixed quadratic di�erential form]
manifest themselves in the acceleration of the second coordinate system
relative to the inertial system; since this acceleration directly character-
izes the gravitational �eld of the second system, we may regard it as a
measure of this gravitational �eld. We notice, therefore, that the tran-
sition from a gravity-free �eld to a gravitational �eld is connected with
a transition to non-Euclidean coordinates, and that the metric of these
coordinates is a measure of the gravitational �eld (Reichenbach, 1920b,
23; tr. 1965, 24).

Reichenbach is however careful to emphasize that �[s]uch a space is only appar-
ently non-Euclidean; actually it does not di�er structurally from Euclidean space�
(Reichenbach, 1920b, 23; tr. 1965, 25). It is, on the contrary, the very same �at
spacetime that �can be expressed in terms of non-Euclidean coordinates� (Reichen-
bach, 1920b, 23; tr. 1965, 25), where the gµν are not constant but functions of the
coordinates.

Einstein identi�ed the presence of the gravitational �eld with the non-constancy
of gµν . As Reichenbach observes, the �transition is made from the special theory to
the general theory of relativity�, can be considered as �a far reaching extrapolation�
(Reichenbach, 1920b, 24; tr. 1965, 26; my emphasis). Einstein �inferred from this
that every gravitational �eld, not only that which is produced by transformation,
manifests itself by a deviation from Euclidean geometry� (Reichenbach, 1920b, 23;
tr. 1965, 24). The presence of gravitation manifests itself in the non-constancy
of the gµν , also in the case where it is not possible �to choose the coordinates in
such a way that the line element becomes Euclidean at all points simultaneously�
(Reichenbach, 1920b, 27; tr. 1965, 29). This is the signi�cance of the introduction
of a quadratic form with variable coe�cients:

The special position of the mixed quadratic form of the line element can
also be characterized in the following way. The ten functions gµν deter-
mining the metric are not absolutely �xed, but depend on the choice of
the coordinates. They are not independent of one another, however, and
if four of them are given, the coordinates as well as the other six func-
tions are determined. This dependence expresses the absolute character

of the curvature of space. The metric functions gµν are not relative; that
is, their choice is not arbitrary (Reichenbach, 1920b, 27; tr. 1965, 29;
my emphasis).

If one covers a �at space with any �any curved oblique coordinates, then the line
element will become a mixed quadratic expression. Even the ordinary polar co-
ordinates furnish an expression di�ering from the pure quadratic sum for the line
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element� (Reichenbach, 1920b, 24; tr. 1965, 25). Thus, even the very simple �rep-
resentation of Euclidean space by means of polar coordinates can be conceived as a
projection upon a non-Euclidean space� (Reichenbach, 1920b, 24; tr. 1965, 25). In
polar coordinates the gµν are not constant. However �the Riemannian measure of
curvature of this system will be zero at every point� (Reichenbach, 1920b, 23; tr.
1965, 25). The lines of the co-ordinate grid are curved, but not the surface itself.
Cartesian coordinates, where the gµν has constant values, can be reintroduced by
simple coordinate transformation. By contrast, on a non-�at non-Euclidean space
�it is impossible to preserve its simple Euclidean form� (Reichenbach, 1920b, 94; tr.
1965, 99). Cartesian coordinates simply do not exist:

the four space-time coordinates can be chosen arbitrarily, but that the ten
metric functions gµν may not be assumed arbitrarily ; they have de�nite
values for every choice of coordinates . . . If the metric were a purely
subjective matter, then the Euclidean metric would have to be suitable
for physics; as a consequence, all ten functions gµν could be selected
arbitrarily. However, the theory of relativity teaches that the metric is
subjective only insofar as it is dependent upon the arbitrariness of the
choice of coordinates, and that independently of them it describes an

objective property of the physical world (Reichenbach, 1920b, 86-87; tr.
1965, 90-91)

As Reichenbach recognizes, the mathematical apparatus of Riemannian geometry
is mainly concerned with the problem of establishing when di�erent sets of gµν
represent di�erent geometries, and when they are merely the consequence of the
coordinate system used. As we have seen, Riemann, Christo�el and Ricci had found
in the so called Riemann-Christo�el tensor an absolute criterion for distinguishing
the class of di�erent gµν-systems that di�ers only by a coordinate transformation
from other classes.

Hence, the freedom in the choice of the coordinate system has of course nothing
to do with the freedom in the choice of geometry:

It is true that the metric contains a subjective element, and depending
on the choice of the system of reference, the metric coe�cients will vary;
this indeterminacy [Unbestimmtheit] still holds in the gravitational �eld.
But there exist dependency relations among the metric coe�cients, and
if four of them are arbitrarily given for the whole space, then the other
six are determined by transformation formulas. . . . That something
exists manifests itself in the dependency relations between the metric
coe�cients; since we can discover these relations by means of measure-

ments�and only by means of them�we can discover the real. It is the
essence of the general theory of relativity that the metric is much more
than a mathematical measurement of bodies; it is the form by means of
which the body is described as an element in the material world. (Re-
ichenbach, 1920b, 96-97; tr. 1965, 102; my emphasis)

The existence of such indeterminacy raised a major philosophical problem that lies
in the background of Einstein's hole argument and that rapidly came to appear
most often in the literature of (Pauli, 1921, 56) in Hilbert's version as the �rst
treatment of the Cauchy problem in General Relativity. Reichenbach seems here to
insist rather on the fact that the existence of such non-physical degrees of freedom
does not re�ect any lack of determinacy of the geometrical structure of the world.
Reichenbach came then to the conclusion that the metric contains a subjective aspect
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which depends on the choice of the coordinate system and objective one, which is
expressed in the dependencies among the metric coe�cients.

In a way somehow similar to that of Arthur Eddington (Eddington, 1920), the
still �Kantian� Reichenbach emphasizes the epistemological signi�cance of the use
of tensor calculus. The philosophical meaning of the �Riemannian analytic metric�
is that it presents the mathematical technique to isolate those elements which have
objective physical signi�cances, from those which are merely artifacts of the coor-
dinates: �invariance with respect to the transformations characterizes the objective
content of reality, the structure of reason expresses itself in the arbitrariness of
admissible systems� (Reichenbach, 1920b, 86; tr. 1965, 90; my emphasis).

3.2. Relativity of Geometry: Reichenbach's Last Step to Convention-

alism. Having the possibility to give a �rst look to Reichenbach's book, Schlick
immediately wrote to Einstein: �Reichenbach does not see to me to be fair [nicht
gerecht zu sein] toward Poincaré's conventionalism [Konventionslehre]� (Schlick an
Einstein, 9.10.1920; CPAE 10, Doc. 171). Writing to Reichenbach some weeks
later, Schlick tried to the debunk Reichenbach's critique of conventionalism by ar-
guing that Poincaré in later writings included geometries of variable curvature in his
approach (Reichenbach to Schlick 26.11.1920; Schlick and Reichenbach, 1920-22).
Reichenbach answered agreeing on the fact that in principle one could chose between
keeping relativity and abandoning Euclidean geometry or vice-verse: �physics, how-
ever, makes the �rst decision . . . you, and Poincaré, would say for the sake of
simplicity [um der Einfachheit halber] . . . But I have an instinctive disinclination
[Abneigung] for this interpretation� (Reichenbach to Schlick 29.11.1920; Schlick and
Reichenbach, 1920-22).

Schlick's arguments must have been very persuasive. Reichenbach very rapidly
overcame his �instinctive disinclination� for conventionalism (on this point see: Par-
rini, 2005). Einstein's epistemological achievement becomes precisely the fact that
he has shown that it would have been possible in principle for physics to make the
second decision, that is to get rid of non-Euclidean geometry by preserving gravi-
tation as a real force. A signi�cant step in this direction can be observed already in
a passage of Reichenbach's 1921 review article Der gegenwärtige Stand der Relativ-
itätsdiskussion. Eine kritische Untersuchung. In commenting on Schlick's position
Reichenbach notices:

Only with regard to the arbitrariness of the co-ordinates is space as an
ideal structure; metric, however, expresses an objective property of real-
ity. This conception does not contradict conventionalism. Schlick must
not be interpreted as saying that a certain metric has been prescribed;
a metric emerges only after the physical laws have been established (the
P of Einstein's formula). One can also change the metric, provided one

changes the laws of physics correspondingly (Reichenbach, 1921, 356; tr.
1878, I, 34f.; my emphasis)

Reichenbach considered Schlick's position (see Schlick's commetary in Helmholtz,
1921) as correctly reproducing Einstein's famous claim (Einstein, 1921a) that �only
the sum G + P of geometry and physics is testable by experience� (Reichenbach,
1921, 355; 1878, I, 33).

As we have mentioned, Logical Empiricists failed to notice Einstein's reference
to Poincaré (Einstein, 1921a) and Helmholtz (Einstein, 1925) should be read in the
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context of Einstein's �measuring rod objection� against Weyl's theory of electro-
magnetism (Weyl, 1918a; Einstein, 1918b), rather as an argument for geometrical
conventionalism. However, the joint authority of Einstein and Schlick was su�-
cient to induce Reichenbach to conclude, already in a paper published in French in
1922 (Reichenbach, 1922, tr. 2006 ), that �[t]he solution to the problem of space
is therefore found only in this conception we call conventionalism and which goes
back to Helmholtz and Poincaré� (Reichenbach, 1922, 40; tr. 2006; 135).

Reichenbach's position is well-known. If the measurements with rigid rods yield
a non-Euclidean geometry, one could, alternatively, maintain that the geometry
of space-time was Euclidean holding that measuring instruments are actually non
rigid, deformed by a non-detectable force of type X, which causes uniform shrink-
ages and expansions in all materials. According to Reichenbach, the �the real
problem lies in deciding between these alternatives: either Euclidean geometry and
a �eld X or the geometry determined by experience and no �eld X� (Reichen-
bach, 1922, 40; tr. 2006; 135) The empirical facts can force us to select either the
Euclidean or the non-Euclidean description as the uniquely correct description.

Of course, gravitation, in Reichenbach's terminology is �a force of type X,� (Re-
ichenbach, 1922, 41; tr. 2006; 132); as consequence of the identity of inertial and
gravitational mass, it a�ects all bodies in the same way. Einstein's choice �to set
X = 0� (Reichenbach, 1922, 43; tr. 2006; 129) and abandon Euclidean geometry was
the most simple choice, but not the only one possible. In principle, another more
complicated alternative would have been plausible. According to Reichenbach, the
very existence of this alternative represent the �characteristic of the epistemological
solutions for which we are indebted to the theory of relativity� (Reichenbach, 1922,
40; tr. 2006; 135).

When, however, Reichenbach describes in some detail why gravitation is is force
of type X a di�erent �alternative� comes to fore:

It is also in this fashion that we can obtain the remarkable identi�cation
of gravitation with certain �ctitious forces that result from a change in
coordinates. Imagine a gravitation-free space in which we �nd a system
of coordinates formed by a network of congruent rigid rods. In this space
the metric is Euclidean; that is to say the gµν possess the well-known
special form [ds2 =

∑
dx2ν ]. If we now introduce new coordinates such

that the rods get progressively shorter the farther to the exterior a rod
is, so that the network will be considered to be curved, then the new gµν
take a form di�erent from the special form. This can be conceived of in
the following way: there exists a force which shrinks the rods and this
force is represented by the deviation of the gµν from the special form; it
is therefore considered to be a correction in the establishment of the ds2.
It is clear that this force . . . is only a �ctitious force produced by the
anomaly of the rods. All of the magnitudes that, in an element of the
network, are measured with a local unit undergo the same correction;
this is precisely the motivation for considering this �ctitious force to be
interpreted as a gravitational �eld (Reichenbach, 1922, 39; tr. 2006; 134;
my emphasis).

In the example considered by Reichenbach, one is not in front of alternative geome-
tries; it is the very same �at geometry in di�erent coordinate systems. A matter
free region of spacetime appears as devoid of gravitation from the perspective of
one coordinate system and endowed with a gravitational �eld when considered from
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another coordinate system: the di�erence is one of description. Gravitation is a
��ctitious force� because it is coordinate-dependent: as Reichenbach's writes �the
gravitational �eld and the corrections resulting from a simple change in coordinates
can be brought together in a single concept� (Reichenbach, 1922, 39; tr. 2006; 134).

This of course the very core of the equivalence principle as Einstein originally
presented it. As Reichenbach explains, although only in a brief footnote, �it is
necessary here to draw a distinction between the gravitational potential and the
gravitational �eld�, that is between �the gravitational potentials (the gµν)� and �[i]ts
gradient, the �eld � (Reichenbach, 1922, 39, n.; tr. 2006; 134, n.). The components
of the metric represents the �gravitational potentials�, whereas, as in other �eld
theories, the �gradient of the potentials� is the natural candidate for representing
the gravitational �eld.

What distinguishes the gravitational �eld from other �elds is the fact that in
a �at region of space-time non-constant potentials gµν can be introduced by �a
simple change in coordinates�. The transition to the General Theory of Relativity
is realized by the assumption that such a representation of the �eld by the non-
constancy of the functions gµν , is also justi�ed in the general case in which the
metric cannot be reduced to quasi-Euclidean form of the special theory of relativity
by �a simple change in coordinates�.

In his more technical writing Axiomatik der relativistischen Raum-Zeit-Lehre
(Reichenbach, 1924), Reichenbach emphasizes that what characterizes a local iner-
tial system is the fact that the gradient of the metric ∂gµν

∂xσ
can be made to vanish

by a coordinate transformation , whereas in a general gravitational �eld this is

impossible , as the gradient of the metric ∂2gµν
∂xσ∂xρ

does not vanish. However Re-
ichenbach's philosophical conclusion is stunningly di�erent (cf. Reichenbach, 1924,
106; tr. 1965, 133).

Focusing on what he now calls �metrical forces� (Reichenbach, 1924, 68; tr. 1965,
87) (because they depend on the choice of the metric), Reichenbach is convinced
that �space and time in the General Theory of Relativity mean the same as in
the special theory although without any metric� (Reichenbach, 1924, 155; tr. 1965,
195); the �topological properties turn out to be more constant that the metrical one�,
so that Reichenbach famously argues that �the transition from the special theory
to the general one represents merely a renunciation of metrical characteristics,
while the fundamental topological character of space and time remains the same.�
(Reichenbach, 1924, 155; tr. 1965, 195)

In the immediately subsequent years, Logical Empiricists came rapidly to agree
on the fact that such an opposition between the topological and the metrical prop-
erties of spacetime is the relevant innovation introduced by General Relativity. Car-
nap, in his �rst post-doctoral writings (Carnap, 1923, 1925), could easily translate
into an empiricist framework his early �Kantian� conventionalism (Carnap, 1922).
Only topological space reproduces what is present in experience uni-vocally. By
contrast, all post-topological structure depends upon a stipulation.

It is undeniable that the idea was philosophically appealing. In every physi-
cal theory we can distinguish on the one hand a factual element determined by
experience on which a class of empirically equivalent theories agree and on the
other a conventional element determined pragmatically as the �simplest� theory in
the class. �Simplicity� has of course no intrinsic connection with �truth�. In the
standard Logical Empiricist view, the development of science appeared then to be
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marked by the progressive discovery that there �are certain elements of knowledge
. . . which are not governed by the idea of truth, but which are due to volitional
resolutions� (Reichenbach, 1938, 9; my emphasis).

4. Reichenbach's Mature Conventionalism and the �Analytic
Treatment of Riemannian Spaces�

In 1926, Reichenbach had already �nished his semi-popular Philosophie der
Raum-Zeit-Lehre (1926, but published only as Reichenbach, 1928, tr. Reichenbach,
1958), which furnishes a very elegant and e�ective presentation of this doctrine and
of the noble tradition from which it emerges:

This conception of the problem of geometry is essentially the result of
the work of Riemann, Helmholtz, and Poincaré and is known as conven-
tionalism. While Riemann prepared the way for an application of ge-
ometry to physical reality by his mathematical formulation the concept
of space, Helmholtz laid the philosophical foundations. In particular,
he recognized the connection of the problem of geometry with that of
rigid bodies . . . It is Einstein's achievement to have applied the theory
of the relativity of geometry to physics. The surprising result was the
fact that the world is non-Euclidean, as the theorists of relativity are
wont to say; in our language this means: if F = 0, the geometry G
becomes non-Euclidean. This outcome had not been anticipated, and
Helmholtz and Poincaré still believed that the geometry obtained could
not be proved to be di�erent from Euclidean geometry. Only Einstein's
theory of gravitation predicted the non-Euclidean result which was con-
�rmed by astronomical observations (Reichenbach, 1928, 48; tr. 1958,
35).

According to what Reichenbach calls theorem θ, a non-Euclidean geometry G is
equivalent to an Euclidean geometry G′ with a �eld of �universal forces� F . Only
the combination G + F is testable by experience, after a conventional choice has
been made. Einstein chose the most simple convention by setting F = 0.

The action of such a force is not completely arbitrary. In order to avoid causal
anomalies (Reichenbach, 1928, �12) the original geometry G must be mapped into
the new one G′ uniquely and continuously. The very lesson that we can are draw
from Einstein's theory is that we are free to chose among topologically equivalent,
but metrically di�erent spaces, that can be smoothly deformed into one-another,
by some �force� F that a�ect all bodes. The �metrical relations are distorted�
(Reichenbach, 1928, 48; tr. 1958, 35), whereas the �topological� structure remained
untouched. According to Reichenbach, the world as it is in-itself does not have a
unique metric; it does, however, have a unique topology, and this is de�ned in terms
of the causal relations.

Reichenbach believes that Riemann had set the mathematical framework for this
philosophical conclusion. Riemann's �mathematical achievement� is �of greatest
signi�cance for the epistemological problem of space� (Reichenbach, 1928, 244; tr.
1958, 279f.). �The mathematical treatment� divides the description of a space
�into a topological and a metrical part�: �the function of numbering� is assigned�
to the coordinate system; whereas �the metrical functions of measuring lengths�
that are assigned �to the metrical coe�cients gµν� (Reichenbach, 1928, 244; tr.
1958, 280) on the other. In Riemannian geometry the �metrical function of the gµν
plays a subordinate role. It cannot change the topological foundation determined by
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the coordinate system. It merely adds to it a metrical superstructure [Überbau]�
(Reichenbach, 1928, 244; tr. 1958, 280).

4.1. Reichenbach's Technical Presentation of Riemannian Geometry and

its Incompatibility with his own Conventionalism. In Reichenbach's view
Riemann deprived the coordinate system of all but topological properties. This
interpretation seems however to be based on a fundamental misunderstanding. In-
deed, in Riemannian geometry coordinates have per se no metrical signi�cance;
they are only a set of markers that serve to distinguish the points. Yet such a
signi�cance is regained by the introduction of a quadratic di�erential form with
variable coe�cients gµν as function of the coordinates. Instead of separating the
metric and topological signi�cance of the coordinate system, Riemannian geometry
shows that there is no other source of information about the coordinates apart from
the gµν .

One is free to introduce any coordination of the physical space that is produced
by an arbitrary, if only, smooth transformation from the original. However, this
transformation is accompanied by a suitable change of the gµν , so that that the
ds2 are unchanged; all measured relations can be �recovered� in the new coordinate
system by using the new g′µν to get real distances from coordinate distances. �The
numbers gµν indicate how, at a given place, the length of the line element is to
be calculated from the coordinate di�erentials� (Reichenbach, 1928, 243; tr. 1958,
279).

As Reichenbach has explained in his 1920 monograph, the coordinate system is
arbitrary, however the dependency of the gµν from the coordinate system has an
objective meaning. This still emerges clearly from Reichenbach's own presentation
of the �Analytic Treatment of Riemannian Spaces� in his 1926/1928 book:

This fact is expressed analytically by a property of the gµν , as we shall
see when we investigate transformations to other coordinate systems.
Let us imagine that a second coordinate system has been introduced
and that the position of the new family of lines is given as a function of
the old coordinates, . . . We now add the restriction that the transition
to the new coordinates must not change any of the metrical relations;
this transition, therefore, leads only to a di�erent form of description.
We must then specify a new system g′µν of metrical coe�cients relative
to the new coordinates x′µ such that the old relations of congruence are
preserved. If two line segments are equally long when measured by the
old gµν in the old coordinate system, they must still be equally long
when measured by the new g′µν in the new coordinate system. This
requirement leads to the condition that

ds2 = gµνdxµdxν = g′στdx
′
σdx

′
τ

We can therefore say that ds2 is an invariant of the transformation, and
we can show from (8) how the new gµν are to be calculated from the old
ones. (Reichenbach, 1928, 281; tr. 1958, 245; my emphasis)

As we have seen, a classical example is of course the passage from using Cartesian
(rectangular) coordinates to polar coordinates. The points are relabeled, that is
labeled with di�erent numbers (for instance, in a surface the point whose Cartesian
coordinates are (1, 1) has polar coordinates

√
2, π/4). However, regardless of the

coordinate system used, the distances between any two pairs of point are assigned
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the same value. The same �at Euclidean metric is expressed in a di�erent coordinate
system.

Geometrical conventionalism, violated exactly the condition, which in Riemann's
approach should be considered as fundamental. This emerges clearly from Reichen-
bach's attempt to cast the loose language of universal forces in a more formal frame-
work: if the results of measurement yield a metric gµν which is not-Euclidean, then
one can infer that the geometry is actually given by the normal matrix gµν , if one
stipulates that our measuring rods were under the in�uence of a universal force F.

Generally the force F is a tensor. If the g′µν are the metrical coe�cients of
the geometry G′ and gµν those of G, the potentials Fµν of the force F are
given by g′µν + Fµν = gµν . The measuring rods furnish directly the g′µν ;
the Fµν are the �correction factors� by which the g′µν , are corrected so
that gµν results. The universal force F in�uencing the measuring rod is
usually dependent on the orientation of the measuring rod (Reichenbach,
1928, 44, n.; tr. 1958, 33).

Let the g′µν represent some non-�at geometry;then the introduction of the arbitrary
potentials Fµν of a universal force �eld leads us to conclude that the metric of the
space can be reduced to an Euclidean �at one gµν : ds2 = gµνdxµdxν = (g′µν +
Fµν)dx′µdx

′
ν (Norton, 1994). The equation deals precisely with a gµν system which

cannot be transformed into g′µν by a coordinate transformation if the line element
has to be preserved. In fact, if this equation is valid, than trivially the quadratic
form is not an invariant ds2 = gµνdxµdxν 6= g′µνdx

′
µdx

′
ν . If two tracts are congruent

when measured by the old gµν in the old coordinate system, then they are not
equally long when measured by the new g′µν in the new coordinate system. Thus
the two geometries can be transformed into one another only if one renounces
the invariant character of ds2; in other words,one deprives space of its metrical
properties i.e. the structure which tells how much space or time lies between point-
events.

4.2. Reichenbach on Riemann's Äquivalenzproblem. There is a sort of con-
�ict between Reichenbach's philosophical intentions and Reichenbach's own popu-
larization of the mathematical apparatus of Riemannian geometry. Philosophically
Reichenbach attempted to interpret Riemann's approach from the perspective of
Helmholtz's and Poincaré's problem of �nding a criterion for making a choice among
di�erent metrical geometries which only agree on the �topological order of all space-
points determined through the coordinate system� (Reichenbach, 1929b, 683). Rie-
mann's main concern, however, was on the contrary thereof, namely that of �nding
a criterion to discern the properties of the same metrical geometry that depend
on the choice of a coordinate system from those that are coordinate independent.
This can be understood only if one considers Riemann's geometrical insight from
the perspective of the non-geometrical development put forward by Christo�el and
Ricci.

From this vantage point, as again Reichenbach explains very clearly in the less
philosophical parts of the book, it appears that Riemann wanted to investigate
di�erent classes of quadratic di�erential forms. Each class, insofar that the line
element may be transformed into one another by simple coordinate transformation,
represents the same geometry. On the contrary gµν-systems which cannot be trans-
formed into one-another by any change of the coordinates represents a di�erent
geometries:
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We may restate our results as follows: any given system gµν can be
transformed into another system gστ , by means of [a smooth change of
variables]. Transformations of this kind, starting with a de�nite set gµν
do not give us all conceivable systems, however, but merely a limited

class. The systems of this class are geometrically equivalent to the initial
gµν , and the class as a whole characterizes a de�nite geometry. Other
classes similarly constructed, would characterize another geometry. A
special class is the class which contains the normal system; it is the class
of Euclidean geometry (Reichenbach, 1928, 282f.; tr. 1958, 246).

The very purpose of Riemann's investigation was to decide when two gµν-systems
di�er only by a coordinate transformation and are therefore geometrically equiva-
lent. Two metrics are equivalent, if and only if there is a coordinate transformation
that transforms gµν into g′µν so that ds2 = ds′2. This is of course precisely the
Äquivalenzproblem. As we have seen, it is mainly the merit of Christo�el and Ricci,
having developed the mathematical technique for dealing with this problem. Re-
ichenbach describes it once again very accurately:

The question now arises whether there exists a special characteristic of
the class of Euclidean Geometry. Mathematicians have shown that it is
possible to formulate such a criterion. For this purpose one has to form

a certain mathematical combination of the gµν and gµν ,
∂gµν
∂xσ

,
∂2gµν
∂xτ∂xσ

which is called Rµνστ . . . Rµνστ and is therefore a tensor of rank 4.
We can recognize directly . . . a very important property of all tensors,
namely, that if all components of a tensor are zero in one coordinate
system, they will all be zero in every other coordinate system. . . . Since
it can be shown that Rµνστ , vanishes for the normal system, it follows
that every system of the Euclidean class is characterized by the condition

Rµνστ = 0

Rµνστ is called the Riemannian curvature tensor. It is a measure of
curvature. (Reichenbach, 1928, 283; tr. 1958, 246)

As we have seen, Rµνστ entails the �rst and second derivatives of the gµν . Since it is a
tensor, if it vanishes in one coordinate system, it vanishes in all coordinate systems.
All inter-transformable gµν-systems represent the same Euclidean geometry, since
in all these cases, even if the gµν can be variable, the Riemann tensor vanishes. On
the contrary the Christo�el symbols Γτµν , which entail the �rst derivatives of the
gµν , are not tensors. If they vanish in one coordinate system, they do not vanish in
another. Hence we cannot expect that the gµν , or the Γτµν , should give something
of absolute signi�cance. We have to di�erentiate the gµν twice before we arrive at
something that has a signi�cance independent of any special coordinate system.

5. Relativity of Geometry vs. Relativity of Gravitation

Reichenbach is philosophically convinced the that �metrical properties of the
space-time continuum are destroyed by gravitational �elds� (Reichenbach, 1928,
269; tr. 1958, 308); since an alternative to Einstein-stipulation would have been
in principle possible, space-time has no de�nite metrical structure. However, once
again, following Reichenbach's semi-technical presentation of General Relativity,
rather than his philosophical interpretation, one �nds a more humble truth: the
gravitational �elds, merely �destroy the orthogonal form of the line element� (Re-
ichenbach, 1928, 289; tr. 1958, 253).
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Let consider again an inertial frame K without a gravitational �eld, that is
where �the g′στ will satisfy the normal matrix. If we now describe the same local
world region from an accelerated system K, the gµν of this system can no longer
satisfy the normal matrix �; hence �the gµν will characterize the acceleration of K�
(Reichenbach, 1928, 288; tr. 1958, 253); but, because of the equivalence principle
�[i]f they characterize the state of acceleration of K,� (Reichenbach, 1928, 289; tr.
1958, 253), �they must also characterize the gravitational �eld which exist for K�.
Of course the geometry of space has not changed in passing from g′στ to gµν rather
it is the same �at Minkowski geometry, represented in di�erent coordinate systems
(Reichenbach, 1928, 289; tr. 1958, 253).

5.1. The Equivalence Principle and the Christo�el-Symbols. As Reichen-
bach already brie�y explained in a footnote in his 1922 article, Einstein identi�ed
the gravitational �eld with the gradient of the potentials gµν , that is with the non-
vanishing of the Christo�el symbols Γτµν . As in every �eld theory also in gravita-
tional theory one distinguishes the �concepts of potential and gradient�; in electricity
theory, the force �eld is the gradient of the electric potentials; analogously in Gen-
eral Relativity �the gravitational force will . . . be characterized by the potential
gradient [Potentialgefälle] which can be calculated for every point from the potential
�eld � (Reichenbach, 1928, 268; tr. 1958, 233).

According to Reichenbach �[t]his representation explains why the gravitational
�eld can be transformed away� (Reichenbach, 1928, 271; tr. 1958, 236). As we have
seen, in Einstein's original approach, within a small enough region of spacetime,
one can introduce an �arti�cial gravitational� �eld by a simple change of coordinate
system, in which the gµν are not constant, but become functions of the coordinates.
For the very same reason one can make this gravitational �eld disappear through
a coordinate transformation: we can set �the metrical �eld in such a manner that
the components, the gravitational potentials [gµν ] become constants (this is always
possible at least for local regions); then there exists no gravitational gradient. The
disappearance of the gradient is then called `the disappearance of the gravitational
�eld.' � (Reichenbach, 1928, 271; tr. 1958, 236; second emphasis mine).

Reichenbach suggested then to distinguish among the tensor as gµν �as a whole
or the metrical �eld�, �the particular sets of tensor components�, in a certain coor-
dinate system and ��nally the particular set of gradient coe�cients of the tensor
components� (Reichenbach, 1928, 271; tr. 1958, 236):

In the mathematical representation, the metrical �eld is given by the
tensor gµν the gravitational potential �eld by the particular set of com-
ponents gµν , and the gravitational gradient �eld through the Riemann-

Christo�el symbols Γτµν , which are obtained from the
∂gµν
∂xτ

. The Γτµν ,
do not form a real tensor, only a linear tensor, and can therefore all
at once be transformed to zero by nonlinear transformations. A fourth
concept has occasionally been introduced. We set gµν + γµν , where gµν
are the normal orthogonal values of the gµν , and we refer to the gµν as
the inertial �eld and only to the γµν as the gravitational potential �eld.
The Γτµν may then be considered as the derivatives of the γµν , since the
gµν as constants do not contribute to the gradient �eld. This resolution
into inertial and gravitational �eld is an adaptation to the terminology
of Newtonian mechanics, however, and is therefore hardly appropriate.
(Reichenbach, 1928, 272; tr. 1958, 237)
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This passage is curiously written in smaller characters; Reichenbach's intention is
simply to introduce some mathematical technicalities. This is revealing of Reichen-
bach's philosophical attitude. From today's point of view, the passage just quoted
in fact seems to describe the very conceptual core of Einstein's path to the Theory
of General Relativity. The conceptual di�erence between gravitational ��elds� and
the other ��elds� is that the latter, according to Einstein, should be represented by
a non-tensorial, coordinate-dependent quantity, the Christo�el symbols Γτµν . Lo-
cally, the phenomena of gravity and acceleration were, in Einstein's view, two ways
of looking at the same space-time in terms of di�erent coordinate systems.

Reichenbach is so aware of the importance of this point, that he even addresses
the problems which arise following Einstein's original approach: �If we change to
three-dimensional polar coordinates, for example, while the time coordinate remains
unchanged, the gµν will assume a non-standard from. For these coordinates there
must therefore exist a gravitational �eld�, since in polar coordinates �the partial
derivatives [∂gµν∂xτ

] do not vanish throughout� (Reichenbach, 1928, 290, n.; tr. 1958,
253). This is however rather counter-intuitive since no change in the state of motion
is provided by a mere spatial transformation, which leaves the g44 unchanged (see
for instance Reichenbächer, 1923). This �says more than was originally expressed
by the principle of equivalence.� (Reichenbach, 1928, 289; tr. 1958, 253.)

It would therefore be advantageous to express the gravitational �eld in a coor-
dinate invariant form (on this point see Eddington, 1923, 39f.): �all gµν-systems
derived from a g′στ -system by means of coordinate transformations are merely dif-
ferent resolutions of the same tensor into di�erent sets of components. This tensor,
the metrical �eld, is therefore independent of speci�c coordinate systems� (Re-
ichenbach, 1928, 289; tr. 1958, 253). A physical magnitude expressed by a tensor
has de�nite components once a basis is given in a chosen coordinate system, but
abstractly considered, it stands for its components in all coordinate systems. All
transformable systems should represent the same gravitational �eld, whose pres-
ence should be better expressed by the non-vanishing of Riemann-Christo�el tensor
Rµνστ . However, this would mean �to accept the consequence that transformations
of the state of motion will not change the gravitational �eld either, since they too
leave the metrical �eld invariant� (Reichenbach, 1928, 291; tr. 1958, 254). In this
way the �principle of equivalence� (that is the possibility of interpreting locally an
acceleration �eld as gravitational �eld) would become useless.

5.2. Co-variant and Invariant. As Reichenbach notices in the popular book Von
Kopernikus bis Einstein. Der Wandel unseres Weltbildes (Reichenbach, 1927) all
of this can be understood precisely because Einstein �had to introduce in physics
a new mathematical method, the so-called tensor calculus�. �The essence of the
new method of calculation resides in two basic concepts, the invariant and the co-
variant� (Reichenbach, 1927, 105). In particular Reichenbach suggests to interpret
the gravitational �eld as a covariant magnitude, which depends on the coordinate
system, and the metric �eld as an invariant magnitude:

This consideration leads to a distinction which we have touched upon
several times before and which expresses a basic idea of modern science.
The system of the tensor components is covariant, i.e. it has a di�erent

numerical composition for each coordinate system. Yet we express in
this fashion a state that is independent of the coordinate system, i.e., an
invariant state. The tensor as a whole is an invariant magnitude. We can
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recognize this property from its representation by means of components,
since the components can be calculated for every coordinate system, if
they are known for one. It is unfortunate that the physical terminology
does not re�ect this well-de�ned mathematical distinction. By �gravi-

tational �eld� we understand the system of components of the tensor
in each case; this makes the gravitational �eld a covariant magnitude.
No particular term has been accepted for the invariant tensor �eld as
a whole. It might best be called the metrical �eld, in accordance with
some ideas which we shall discuss later; in fact, this term has occasion-
ally been used with this meaning. In this terminology the gravitational
�eld is the particular system of components into which the metrical �eld
has been resolved (Reichenbach, 1928, 271; tr. 1958, 236).

Reichenbach's terminology is surely non-standard. As we have seen, Reichenbach
himself notices that the gravitational �eld is represented by the Christo�el symbols,
that is, by a non-tensorial, i.e. non-covariant quantity (cf. above p. 12). However,
the point Reichenbach wants to make is clear enough: The values of the compo-
nents gµν depend on a particular coordinate system, they are covariant quantities.
However, regardless of the coordinate system used, the lengths of lines are assigned
the same value, that is the length between a pair of spacetime points is an invariant
quantity.

According to Reichenbach �[t]he coordinate systems themselves are not equiv-
alent�, in the sense that in every system a di�erent set of tensor components gµν
is de�ned; however �every coordinate system with its corresponding gravitational
�eld is equivalent to any other coordinate system together with its corresponding
gravitational �eld� (Reichenbach, 1928, 272; tr. 1958, 237 ). The ensemble of all
inter-transformable gµν-systems represent the same metric �eld and thus the same
geometry of space-time: �Each of these covariant descriptions is an admissible rep-
resentation of the invariant state of the world� (Reichenbach, 1928, 272; tr. 1958,
237 ). Similarly an electromagnetic �eld as whole transforms as a tensor, but not
the electric and the magnetic �eld separately: an electric �eld for one observer
could be a superposition of an electric and a magnetic �eld for the other.

Surprisingly from Reichenbach semi-technical presentation of the General The-
ory of Relativity one learns that �the gravitational �eld is deprived of its absolute
character and recognized as a covariant magnitude� (Reichenbach, 1928, 248; tr.
1958, 214), that is (in Reichenbach's parlance) a coordinate-dependent magnitude,
represented by Γτµν . In a �at Minkowski spacetime, an �arti�cial� gravitational �eld
can be introduced by a mere coordinate transformation. On the other hand, the
geometry of space-time has an absolute character in the sense that it is coordinate
independent, it does not change if one represents it in di�erent coordinate systems;
for instance, Minkowski space-time is �at, which means that the Riemann tensor
Rµνστ vanishes everywhere regardless of the coordinate system used.

Following the more expository parts of Reichenbach's book one discovers that
there is indeed a conventional element in the General Theory of Relativity; however
this is not the geometry, but rather the gravitational �eld. The same space-time
geometry, which in a coordinate system only has an inertial component, whereas
in another coordinate system it has both an inertial and a gravitational. Since
the Christo�el-symbols are not tensors, if they have zero components, that is only
inertial components, in one coordinate-system, there exists a coordinate system in
which the components are non-zero and a gravitational �eld appears
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The consequence is that the distinction between inertia and gravitation is a
mathematical artifact which depends on the choice of the coordinates and therefore
does not re�ect a real physical di�erence: only the sum of the two pieces, represents
something physical. Following this line of thought, which has remained somehow
hidden behind the curtains of Reichenbach's �o�cial� philosophy, one discovers, that
the core of Einstein's original approach should not be found in the discovery of the
relativity of geometry, but rather in the discovery of relativity of the gravitational
�eld (Janssen, 2005).

5.3. �Displacement Space� vs. �Metrical Space�. From this point of view
Reichenbach's idea that the gravitational force has to be set equal to zero, is at
least ambiguous (Torretti, 1983, 237). The best way to understand the fact gravity
is a �universal force� is precisely to recognize that the gravitational �eld Γτµν(xν) is
not a tensor �eld on spacetime, whereas the potential �eld gµν(xν) is. This distinc-
tion of course gets lost using the conceptual resources of the Hemholtz/Poincaré's
debate on the foundation of geometry; it is only �accessible to the mathematical
treatment by means of Riemannian geometry� (Reichenbach, 1928, 290; tr. 1958,
253). In particular, as Reichenbach knows very well of course, Christo�el and Ricci
furnished Einstein the mathematical tools to express this distinctive feature of the
gravitational �eld.

The conventionalist approach to understand Einstein's theory in terms of relativ-
ity of geometry, of a renunciation of metrical characteristic, appears then curiously
at odds with Reichenbach's own exposition. On the contrary, one has to go, so to
say, beyond the metrical aspect in order to capture Einstein's conception of what
has been called the relativity of the gravitational �eld.

The nature of Einstein's original formulation of the equivalence principle emerges
in fact much more clearly by following Weyl's recognition (see above p. 12) of �the
independence of the displacement operation [Verschiebungsoperation] is given by
the Γτµν from the metric that is given by the gµν� (Reichenbach, 1929b, 683). Fol-
lowing Lev-Civita, Weyl �discovered� the independence of what Reichenbach's calls
�displacement space� (Verschiebungsraum, what Weyl called �a�ne connection�),
based on the comparison of the direction of two vectors (dAτ = −ΓτµνA

µdxν) in
respect to the �metric space�, based on length comparison (l2 = gµνA

µAν) (Re-
ichenbach, 1929b, 684).

From this point view it becomes particularly clear that the displacement space,
the �guiding �led� that tells particles how to go is not arbitrary. What is arbitrary
is the splitting of the displacement space into gravitational and inertial parts. The
same path of particles can be interpreted as a consequence of the e�ect of iner-
tia or of gravitation, depending on the coordinate system chosen. The di�erence
between inertial and gravitation is a mere mathematical di�erence, that has no
correspondence in physical realty.

However, as the last part of Reichenbach's book (which was not translated into
English) was dedicated to a very careful discussion of Weyl's theory of electromag-
netism, Reichenbach seems to consider this step from the metrical to the displace-
ment �eld as philosophically irrelevant. The quantities Γτµν cannot be measured
directly by rods and clocks, but must be obtained from the directly measured
quantities gµν by calculation: they are a �product of fantasy, mere illustration�
(Reichenbach, 1928, 352; on this point see Co�a, 1979).
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Contrary to Reichenbach's opinion, however, it cannot be denied that here one
is confronted with one of the most relevant conceptual issues raised by General
Relativity. It is well-known that modern relativists usually prefer to identify the
presence of a gravitational �eld with the non-vanishing of the Riemann-Christo�el
tensor, that is with the �curvature� (Synge, 1970) because of its independence from
the coordinate system (on this topic see Lehmkuhl, 2008). The equivalence principle
is then reduced to a sort of �midwife� (Synge, 1960) at the birth of General Relativity
(see also Ohanian, 1977).

On the contrary, Einstein till the end of his life famously insisted that �what
characterizes the existence of a gravitational �eld . . . is the non-vanishing of the
Γlik, not the non-vanishing of the Riklm� (Einstein to Max von Laue, September
1950; translated in Stachel, 1986, 1858). In one of his last letters to Michele Besso
in 1954, Einstein summarizes:

(This was still not so clear at the time of the setting up of the G.R., but
was subsequently recognized principally through Levi- Civita). In the
setting up of the theory, I chose the symmetric tensor gik as the starting
concept. It provided the possibility of de�ning the �displacement �eld�
Γlik, which determines to every vector in the in�ntesimal point P another
vector in every in�nitesimally near point P ′ (δAν = −ΓνστA

σdxτ )
This concept of the displacement �eld is in-itself independent from the
existence of a metric �eld gik; that it was at �rst introduced only in
connection to the metric �eld, is only the consequence of the fact that
Riemann moved from Gauss's theory of surfaces . . . if the displacement
�eld is introduced as a fundamental quantity, the curvature tensor is
determined thorough the invariant act of displacing a vector along the
boundary of in�nitesimal surface-element. To theΓ-�eld pertains then
the curvature tensors Riklm and Rkl (Einstein, 1972, 525-527; partially
translated in Norton 2002)

The vanishing of Christo�el symbols does not mean that there is no displacement
�eld/gravitational (Giulini, 2001, �9). A gravitational �eld can always be intro-
duced, even in a �at Minkowski space-time, by a simple change in coordinates.
Thus the �at metric of spacetime can be regarded as a special case of a gravita-
tional �eld, rather than the absence of a gravitational �eld (see also Einstein to
Becquerol, August 16, 1951, cited by Norton, 1985). This seems to be in harmony
with Einstein's famous claim that there is no �space without a �eld�. If we imagine
the gravitational �eld to be removed, there remains �absolutely nothing, and also
no `topological space� ' (Einstein, 1952, 155).

6. Conclusion. Over-determination versus Under-determination

Reichenbach's idea that �the topology of space is to be regarded as a more funda-
mental determination than the metric� (Reichenbach, 1929a) seems to derive from
the observation, that the metric relations, the lengths of worldlines do not remain
invariant under a deformation of spacetime (induced for instance by a universal
force) that preserve smoothness of the coordinate system and the uniqueness of the
labeling of the points, that is, that which deprives the coordinate system of all but
is topological properties.

However distances do remain invariant under a transformation which represents
a mere recoordinization, that is, under the condition that the coe�cients of the
quadratic form also change. Of course this is exactly the relevant point. The
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geometry of a given space-time is characterized by the invariant interval between
any two world points; once a unit of measure has be chosen, the numerical value of
this interval remain unchanged under coordinate transformations.

What is relevant in GeneralRelativity, as Reichenbach had shown in his 1920, is
precisely the �relativity of coordinates� and not the �relativity of geometry� as in
Rechenbach's mature philosophy: �The relativity of geometry is a consequence of
the fact that di�erent geometries can be represented by one another with a one-
to-one correspondence� (Reichenbach, 1929a). The relativity of coordinates is that
the same geometry can be represented in di�erent coordinate systems.

As we have tried to show, the origin of Reichenbach's �conversion� can be re-
garded as the result of a �collision� of mathematical traditions. Instead of following
the line Riemann-Christo�el-Ricci-Einstein, as he seemed to do in his �rst mono-
graph, Reichenbach, probably under the in�uence of Schlick, tried to create the
tradition Riemann-Helmholtz-Poincaré-Einstein:

The solution to the problem of space described here is to be attributed
principally to the work of Riemann, Helmholtz, Poincaré, and Einstein,
Helmholtz. The �rst to acknowledge the signi�cance of Riemann's idea
for physics, indisputably deserves the major credit for the recognition
of the de�nitional character of congruence in physical space. Poincaré
coined the term conventionalism, which refers to the de�nitional charac-
ter of the congruence of line segments and designated the de�nition in
question as a convention. At the time he introduced this idea, Poincaré
still believed that the convention of the rigid body led to Euclidean
geometry, not knowing that Einstein was soon to take up the idea of
conventionalism in all seriousness and apply non-Euclidean geometry to
physics, �nal clari�cation came about with the philosophical discussion
of Einstein's general theory of relativity (Reichenbach, 1929a, 60; tr.
Reichenbach, 1978, 179)

As recent literature has abundantly shown, General Relativity cannot be the heir
of this philosophical/mathematical tradition simply because such does not exist.
Poincaré excluded explicitly the Riemanniann geometries of variable curvature from
his conventionalism, precisely because they were at odds with the Helmholtzian ap-
proach based on the existence of rigid bodies. As we have tried to point out,
Riemann's geometrical approach to geometry remained actually dormant and de-
veloped in a rather non-geometrical tradition, whose main protagonists can be
considered to be Christo�el and Ricci. The geometrical implication of the calculus
that developed mainly after the emergence of General Relativity by Levi-Civita and
others.

A much more plausible line of development of Riemann's work in the 19th century
is for instance that which was suggested by Cartan in a non-technical paper of 1931:

Euclidean geometry itself also uses analytic methods lying on the use of
coordinates, but these coordinates (Cartesian, rectangular, polar, etc.)
have a precise, quantitative geometric signi�cance, which is why they can
be introduced only after the geometry is founded by its own methods.
In Riemannian geometry, on the contrary, coordinates, introduced from
the beginning, serve simply to relate empirically the di�erent points of
space, and geometry has precisely the object of extricating the geometric
properties that are independent of this arbitrary choice of coordinates.
. . . The necessity of using systems of arbitrary coordinates exerted a
profound in�uence on the later development of mathematics and physics.
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It led to the admirable creation of an absolute di�erential calculus by
Ricci and Levi-Civita, which was the instrument that helped to elaborate
general relativity (Cartan, 1931, 397f., tr. Pesic, 2007, 182).

We are dealing with two mathematical traditions which seem to be interested in
di�erent philosophical problems. Helmholtz and Poincaré tried to determine under
which condition it is possible to make a choice among alternative physical geome-
tries, which shares some weaker mathematical structure. Riemann raised rather
the problem of distinguishing the intrinsic features of a given physical geometry,
from the apparent di�erences introduced by the choice of a particular coordinate
system.

There is a broader philosophical lesson that we can draw from the historical
reconstruction we have outlined. Considered under the light of he 19th century
philosophy of geometry the Logical Empiricists could interpret General Relativity
as a case of mathematical undertermination: the relevant geometric structure that
General Relativity has at its disposal (what the Logical Empiricist call the �topo-
logical� structure) is not �rich enough� to allow a choice among di�erent possible
physical geometries. Considered under the historical perspective we have suggested,
the requirement of general covariance, if it is not be considered trivial, seems to raise
rather a problem of overdetermination; that is, the physical system is described by
a surplus of mathematical structure (Norton, 2003; more in general on this topic
Redhead, 2001).

The Logical Empiricists' strategy was to introduce some redundant physical ele-
ments (the universal forces) in order to extract the mathematically relevant content
of the theory. From a contemporary prospective, by the contrary, General Relativity
seems rather to introduce redundant mathematical structure in order to extract the
physically relevant content of the theory, as the invariant content (Giulini, 2007).

Einstein's notorious �hole argument�, Hilbert's version of the argument in terms
of Cauchy initial conditions (Stachel, 1988/1992), are precisely the consequence of
the existence of mathematical degrees of freedom that do not have any correspon-
dence in physical reality. The covariance of Einstein's equations leave undetermined
the evolution of four out of the ten components of gµν . Instead of being a trivial con-
sequence of the application of the �absolute di�erential calculus� as in �Kretschmann
objection�, such a �redundancy� in mathematical formalism appears rather to be
one of the main philosophical issues raised by General Relativity (Norton, 2003).

Historically, this problem was �rediscovered� in the late 1950's by Peter Bergmann
(Bergmann, 1956, 1961b; Bergmann and Komar, 1960; Bergmann, 1961a), Ein-
stein's assistant in Princeton, who was led to re-discuss the question of what is
observable in General Relativity. From this vantage point, the Logical Empiri-
cists' idea that the metric is not an �observable�, wheres the neighborhood relations
encoded in the coordinate system are, appears then utterly inadequate to grasp
the relevant philosophical issue; General Relativity shows rather, that because of
�the mathematical ambiguity of the coordinate system� (Bergmann, 1956, 491), the
values of the metric at a particular world-point are not an observable (Bergmann,
1961b, 1968, �27).

While Reichenbach still in his last writings insisted that the main philosophical
issue of Einstein's general theory was the existence of a �class of equivalent descrip-
tions� (Reichenbach, 1953, 133) of di�erent physical situations; after Reichenbach's
death it began to become clear that the real problem, as Bergmann put it, is then in
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General Relativity, there is an �equivalence class of solutions� that describes �same
physical situation� (Bergmann, 1961b). Only the equivalence class is physically
real.
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