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Abstract

Here, we outline the basic structure of relativistic spacetime and
record a number of facts. We then consider a distinction between lo-
cal and global spacetime properties and provide important examples
of each. We also examine two clusters of global properties and ques-
tion which of them should be regarded as physically reasonable. The
properties concern “singularities” and “time travel” and are therefore
of some philosophical interest.

1 Introduction

The study of global spacetime structure is a study of the more foundational
aspects of general relativity. One steps away from the details of the theory
and instead examines the qualitative features of spacetime (e.g. its topology
and causal structure).

We divide the following into three main sections. In the first, we outline
the basic structure of relativistic spacetime and record a number of facts.
In the second, we consider a distinction between local and global spacetime
properties and provide important examples of each. In the third, we examine
two clusters of global properties and question which of them should be re-
garded as physically reasonable. The properties concern “singularities” and
“time travel” and are therefore of some philosophical interest.

∗I am grateful to Bob Batterman, Erik Curiel, and David Malament for comments on
a previous draft.
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2 Relativistic Spacetime

We take a (relativistic) spacetime to be a pair (M, gab). Here M is a smooth,
connected, n-dimensional (n ≥ 2) manifold without boundary. The met-
ric gab is a smooth, non-degenerate, pseudo-Riemannian metric of Lorentz
signature (+,−, ...,−) on M .1

2.1 Manifold and Metric

Let (M, gab) be a spacetime. The manifold M captures the topology of the
universe. Each point in the n-dimensional manifold M represents a possible
event in spacetime. Our experience tells us that any event can be character-
ized by n numbers (one temporal and n− 1 spatial coordinates). Naturally,
then, the local structure of M is identical to Rn. But globally, M need not
have the same structure. Indeed, M can have a variety of possible topologies.

In addition to Rn, the sphere Sn is certainly familiar to us. We can
construct a number of other manifolds by taking Cartesian products of Rn

and Sn. For example, the 2-cylinder is just R1 × S1 while the 2-torus is
S1 × S1 (see Figure 1). Any manifold with a closed proper subset of points
removed also counts as a manifold. For example, Sn − {p} is a manifold
where p is any point in Sn.

Figure 1: The cylinder R1 × S1 and torus S1 × S1.

We say a manifold M is Hausdorff if, given any distinct points p, p′ ∈M ,
one can find open sets O and O′ such that p ∈ O, p′ ∈ O′, and O ∩ O′ = ∅.
Physically, Hausdorff manifolds ensure that spacetime events are distinct. In
what follows, we assume that manifolds are Hausdorff.2

1In what follows, the reader is encouraged to consult Hawking and Ellis (1973), Geroch
and Horowitz (1979), Wald (1984), Joshi (1993), and Malament (2011).

2See Earman (2008) for a discussion of this condition.
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We say a manifold is compact if every sequence of its points has an accu-
mulation point. So, for example, Sn and Sn×Sm are compact while Rn and
Rn × Sm are not. It can be shown that every non-compact manifold admits
a Lorentzian metric. But there are some compact manifolds which do not.
One example is the manifold S4. Thus, assuming spacetime is four dimen-
sional, we may deduce that the shape of our universe is not a sphere. One
can also show that, in four dimensions, if a compact manifold does admit a
Lorentzian metric (e.g. S1 × S3), it is not simply connected. (A manifold is
simply connected if any closed curve through any point can be continuously
deformed into any other closed curve at the same point.)

We say two manifolds M and M ′ are diffeomorphic if there is a bijection
ϕ : M →M ′ such that ϕ and ϕ−1 are smooth. Diffeomorphic manifolds have
identical manifold structure and can differ only in their underlying elements.

The Lorentzian metric gab captures the geometry of the universe. Each
point p ∈ M has an associated tangent space Mp. The metric gab assigns a
length to each vector in Mp. We say a vector ξa is timelike if gabξ

aξb > 0, null
if gabξ

aξb = 0, and spacelike if gabξ
aξb < 0. Clearly, the null vectors create

a double cone structure; timelike vectors are inside the cone while spacelike
vectors are outside (see Figure 2). In general, the metric structure can vary
over M as long as it does so smoothly. But it certainly need not vary and
indeed most of the examples considered below will have a metric structure
which remains constant (i.e. a flat metric).

Figure 2: Timelike, null, and spacelike vectors fall (respectively) inside, on,
and outside the double cone structure.

For some interval I ⊆ R, a smooth curve γ : I → M is timelike if its
tangent vector ξa at each point in γ[I] is timelike. Similarly, a curve is null
(respectively, spacelike) if its tangent vector at each point is null (respectively,
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spacelike). A curve is causal if its tangent vector at each point is either null or
timelike. Physically, the worldlines of massive particles are images of timelike
curves while the worldlines of photons are images of null curves. We say a
curve γ : I → M is not maximal if there is another curve γ′ : I ′ → M such
that I is a proper subset of I ′ and γ(s) = γ′(s) for all s ∈ I.

We say a spacetime (M, gab) is temporally orientable if there exists a con-
tinuous timelike vector field on M . In a temporally orientable spacetime, a
future direction can be chosen for each double cone structure in way that
involves no discontinuities. A spacetime which is not temporally orientable
can be easily constructed by taking the underlying manifold to be the Möbius
strip. In what follows, we will assume that spacetimes are temporally ori-
entable and that a future direction has been chosen.3

Naturally, a timelike curve is future-directed (respectively, past-directed)
if all its tangent vectors point in the future (respectively, past) direction. A
causal curve is future-directed (respectively, past-directed) if all its tangent
vectors either point in the future (respectively, past) direction or vanish.

Two spacetimes (M, gab) and (M ′, g′ab) are isometric if there is a diffeo-
morphism ϕ : M →M ′ such that ϕ∗(gab) = g′ab. Here, ϕ∗ is a map which uses
ϕ to “move” arbitrary tensors from M to M ′. Physically, isometric space-
times have identical properties. We say a spacetime (M ′, g′ab) is a (proper)
extension of (M, gab) if there is a proper subset N of M ′ such that (M, gab)
and (N, g′ab|N) are isometric. We say a spacetime is maximal if it has no
proper extension. One can show that every spacetime which is not maximal
has a maximal extension.

Finally, two spacetimes (M, gab) and (M ′, g′ab) are locally isometric if,
for each point p ∈ M , there is an open neighborhood O of p and an open
subset O′ of M ′ such that (O, gab|O) and (O′, g′ab|O′) are isometric, and, corre-

spondingly, with the roles of (M, gab) and (M ′, g′ab) interchanged. Although
locally isometric spacetimes can have different global properties, their local
properties are identical. Consider, for example, the spacetimes (M, gab) and
(M ′, g′ab) where M = S1×S1, p ∈M , M ′ = M−{p}, and gab and g′ab are flat.
The two are not isometric but are locally isometric. Therefore, they share
the same local properties but have differing global structures (e.g. the first
is compact while the second isn’t). One can show that for every spacetime
(M, gab), there is a spacetime (M ′, g′ab) such that the two are not isometric
but are locally isometric.

3See Earman (2002) for a discussion of this condition.
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2.2 Influence and Dependence

Here, we lay the foundation for the more detailed discussion of causal struc-
ture in later sections. Consider the spacetime (M, gab). We define the two-
place relations � and < on the points in M as follows: we write p � q
(respectively, p < q) if there exists a future-directed timelike (respectively,
causal) curve from p to q. For any point p ∈M , we define the timelike future
(domain of influence) of p, as the set I+(p) ≡ {q : p � q}. Similarly, the
causal future (domain of influence) of p is the set J+(p) ≡ {q : p < q}.

The causal (respectively, timelike) future of p represents the region of
spacetime which can be possibly influenced by particles (respectively, massive
particles) at p. The timelike and causal pasts of p, denoted I−(p) and J−(p),
are defined analogously. Finally, given any set S ⊂M , we define I+[S] to be
the set ∪{I+(p) : p ∈ S}. The sets I−[S] and J+[S], and J−[S] are defined
analogously. We shall now list a number of properties of timelike and causal
pasts and futures.

For all p ∈M , the sets I+(p) and I−(p) are open. Therefore, so are I+[S]
and I−[S] for all S ⊆ M . However, the sets J+(p), J−(p), J+[S] and J−[S]
are not, in general, either open or closed. Consider Minkowski spacetime4

and remove one point from the manifold. Clearly, some causal pasts and
futures will be neither open nor closed.

By definition, I+(p) ⊆ J+(p) and I−(p) ⊆ J−(p). And it is clear that
if p ∈ I+(q), then q ∈ I−(p) and also that if p ∈ I−(q), then q ∈ I+(p).
Analogous results hold for causal pasts and futures. We can also show that
if either (i) p ∈ I+(q) and q ∈ J+(r) or (ii) p ∈ J+(q) and q ∈ I+(r), then
p ∈ I+(r). Analogous results hold for the timelike and causal pasts. From
this it follows that I+(p) = J+(p), I−(p) = J−(p), İ+(p) = J̇+(p), and
İ−(p) = J̇−(p).5

Because future-directed casual curves can have vanishing tangent vectors,
it follows that for all p, we have p ∈ J+(p) and p ∈ J−(p). Of course, a similar
result does not hold generally for timelike futures and pasts. But there do
exist some spacetimes such that, for some p ∈ M , p ∈ I+(p) (and therefore
p ∈ I−(p)). Gödel spacetime is one famous example (Gödel 1949).

We say the chronology violating region of a spacetime (M, gab) is the

4Minkowski spacetime (M, gab) is such that M = Rn, gab is flat, and there exist no
incomplete geodesics (defined below). See Hawking and Ellis (1973).

5In what follows, for any set S, the sets S, Ṡ, and int(S) denote the closure, boundary,
and interior of S respectively.

5



(necessarily open) set {p ∈ M : p ∈ I+(p)}. We say a timelike curve γ :
I → M is closed if there are distinct points s, s′ ∈ I such that γ(s) =
γ(s′). Clearly, a spacetime contains a closed timelike curve if and only if
it has a non-empty chronology violating region. One can show that, for all
spacetimes (M, gab), if M is compact, the chronology violating region is not
empty (Geroch 1967). The converse is false. Take any compact spacetime
and remove one point from the underlying manifold. The resulting spacetime
will contain closed timelike curves and also fail to be compact.

Figure 3: Cylindrical Minkowski spacetime containing a closed causal curve
(e.g the dotted line) but no closed timelike curves.

We define a causal curve γ : I →M to be closed if there are distinct points
s, s′ ∈ I such that γ(s) = γ(s′) and γ has no vanishing tangent vectors. It
is immediate that closed timelike curves are necessarily closed causal curves.
But one can find spacetimes which contain the latter but not the former.
Consider, for example, Minkowski spacetime (M, gab) which has been “rolled
up” along one axis in such a way that some null curves but no timelike curves
are permitted to loop around M (see Figure 3). Other conditions relating to
“almost” closed causal curves will be considered in the next section.

Finally, we say the spacetimes (M, gab) and (M, g′ab) are conformally re-
lated if there is a smooth, strictly positive function Ω : M → R such that
g′ab = Ω2gab (the function Ω is called a conformal factor). Clearly, if (M, gab)
and (M, g′ab) are conformally related, then for all points p, q ∈M , p ∈ I+(q)
in (M, gab) if and only if p ∈ I+(q) in (M, g′ab). Analogous results hold for
timelike pasts and causal futures and pasts. Thus, the causal structures of
conformally related spacetimes are identical.
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A point p ∈ M is a future endpoint of a future-directed causal curve
γ : I →M if, for every neighborhood O of p, there exists a point s′ ∈ I such
that γ(s) ∈ O for all s > s′. A past endpoint is defined analogously. For
any set S ⊆ M , we define the future domain of dependence of S, denoted
D+(S), to be the set of points p ∈ M such that every causal curve with
future endpoint p and no past endpoint intersects S. The past domain of
dependence of S, denoted D−(S), is defined analogously. The entire domain
of dependence of S, denoted D(S), is just the set D−(S)∪D+(S). If “nothing
can travel faster than light”, there is a sense in which the physical situation
at every point in D(S) depends entirely upon the physical situation on S.

Clearly, we have S ⊆ D+(S) ⊆ J+[S] and S ⊆ D−(S) ⊆ J−[S]. Given
any point p ∈ D+(S), and any point q ∈ I+[S] ∩ I−(p), we know that
q ∈ D+(S). An analogous result holds for D−(S). One can verify that,
in general, D(S) is neither open nor closed. Consider Minkowski spacetime
(M, gab). If S = {p} for any point p ∈ M , we have D(S) = S which is not
open. If S = I+(p) ∩ I−(q) for any points p ∈ M and q ∈ I+(p), we have
D(S) = S which is not closed.

A set S ⊂ M is a spacelike surface if S is a submanifold of dimension
n − 1 such that every curve in S is spacelike. We say a set S ⊂ M is
achronal if I+[S] ∩ S = ∅. One can show that for an arbitrary set S,
İ+[S] is achronal. In what follows, let S be a closed, achronal set. We
have D+(S) ∩ I−[S] = D−(S) ∩ I+[S] = ∅. We also have int(D+(S)) =
I−[D+(S)] ∩ I+[S] and the analogous result for D−(S). Finally, we have
int(D(S)) = I−[D+(S)] ∩ I+[D−(S)] = I+[D−(S)] ∩ I−[D+(S)].

We say a closed, achronal set S is a Cauchy surface if D(S) = M . Phys-
ically, conditions on a Cauchy surface S (necessarily a submanifold of M
of dimension n − 1) determine conditions throughout spacetime (Choquet-
Bruhat and Geroch 1969). Clearly, if S is a Cauchy surface, any causal curve
without past or future endpoint must intersect S, I+[S], and I−[S]. One can
verify that Minkowski spacetime admits a Cauchy surface.

We define the future Cauchy horizon of S, denoted H+(S), as the set
D+(S) − I−[D+(S)]. The past Cauchy horizon of S is defined analogously.
One can verify that H+(S) and H−(S) are closed and achronal. The Cauchy
horizon of S, denoted H(S), is the set H+(S) ∪ H−(S). We have H(S) =
Ḋ(S) and therefore H(S) is closed. Also, a non-empty, closed, achronal set
S is a Cauchy surface if and only if H(S) = ∅.

The edge of a closed, achronal set S ⊂ M is the set of points p ∈ S such
that every open neighborhood O of p contains a point q ∈ I+(p), a point
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Figure 4: Minkowski spacetime with one point removed contains a slice S but
no Cauchy surface. The region above the dotted line is not part of D(S).

r ∈ I−(p), and a timelike curve from r to q which does not intersect S. A
closed, achronal set S ⊂ M is a slice if it is without edge. It follows that
every Cauchy surface is a slice. The converse is false. Consider Minkowski
spacetime with one point removed from the manifold. It certainly admits a
slice but no Cauchy surface (see Figure 4). Of course, not every spacetime
admits a slice. For a counterexample, consider any spacetime which has a
chronology violating region identical to its manifold.

3 Spacetime Properties

We say a property P on a spacetime is local if, given any two locally isometric
spacetimes (M, gab) and (M ′, g′ab), (M, gab) has P if and only if (M ′, g′ab) has
P . A property is global if it is not local. Below, we will introduce and classify
a number of spacetime properties of interest.

3.1 Local Properties

The most important local spacetime property is that of being a “solution”
to Einstein’s equation. There are a number of ways one can understand this
property and we shall investigate each of them in what follows.

Let (M, gab) be a spacetime. Associated with the metric gab is a unique
(torsion-free) derivative operator ∇a such that ∇agbc = 0. Given a smooth
curve γ : I → M with tangent field ξa, we say a vector ηa, defined at
every point in the range of γ, is parallelly transported along γ if ξb∇bη

a = 0
(see Figure 5). We say a smooth curve γ : I → R is a geodesic (i.e. non-
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accelerating) if its tangent field ξa is such that ξb∇bξ
a = 0. Given any

point p ∈ M , there is some neighborhood O of p such that any two points
q, r ∈ O can be connected by a unique geodesic contained entirely in O. Such
a neighborhood is said to be convex normal.

p

 
ηa

γ

Figure 5: The vector ηa is parallelly transported along a closed curve γ. Note
that the vector returns to the point p orientated differently.

The derivative operator ∇a can be used to define the Riemann curva-
ture tensor. It is the unique tensor Ra

bcd such that for all ξa, Ra
bcdξ

b =
−2∇[c∇d]ξ

a.6 A metric gab on M is flat if and only if its associated Rie-
mann curvature tensor Ra

bcd vanishes everywhere on M . The tensors Ra
bcd

and Rabcd have a number of useful symmetries: Ra
b(cd) = 0, Ra

[bcd] = 0,
∇[nR

a
|b|cd] = 0, Rab(cd) = 0, Ra[bcd] = 0, R(ab)cd = 0, and Rabcd = Rcdab.

We define the Ricci tensor Rab to be Rc
abc and the scalar curvature R to

be Ra
a. The Einstein tensor Gab is then defined as Rab − 1

2
Rgab. It plays a

central role in what follows. One can verify that ∇aGab = 0.
We suppose that the entire matter content of the universe can be char-

acterized by smooth tensor fields on M . For example, a source-free electro-
magnetic field is characterized by an anti-symmetric tensor Fab on M which
satisfies Maxwell’s equations: ∇[aFbc] = 0, ∇aFab = 0. Other forms of mat-
ter, such as perfect fluids and Klein-Gordon fields, are characterized by other
smooth tensor fields on M .

Associated with each matter field is a smooth, symmetric energy-momentum
tensor Tab on M . For example, the energy-momentum tensor Tab associated
with an electromagnetic field Fab is FanF

n
b + 1

4
gab(F

nmFnm). Note that Tab

6In what follows, square brackets denote anti-symmetrization. Parentheses denote sym-
metrization. See Malament (2011).
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is a function not only of the matter field itself but also of the metric. Other
matter fields, such as those mentioned above, will have their own energy-
momentum tensors Tab.

Fix a point p ∈ M . The quantity Tabξ
aξb at p represents the energy

density of matter as given by an observer with tangent ξa at p. The quantity
T abξ

b − Tnbξnξbξa at p represents the spatial momentum density as given by
the same observer at p. We require that any energy-momentum tensor satisfy
the conservation condition: ∇aTab = 0. Physically, this ensures that energy-
momentum is locally conserved.

Finally, we come to Einstein’s equation: Gab = 8πTab.
7 It relates the

curvature of spacetime with the matter content of the universe. In four
dimensions, Einstein’s equation can be expressed as Rab = 8π(Tab − 1

2
Tgab)

where T = T aa.
Of course, any spacetime (M, gab) can be thought of as a trivial solution

to Einstein’s equation if Tab is simply defined to be 1
8π
Gab. Note that Tab

automatically satisfies the conservation condition since ∇aGab = 0. But,
in general, the energy momentum tensor defined in this way will not be
associated with any known matter field. However, if the Tab so defined is
also the energy momentum tensor associated with a known matter field (or
the sum of two or more energy momentum tensors associated with known
matter fields) the spacetime is an exact solution. We say an exact solution
is also a vacuum solution if Tab = 0. And, in four dimensions, one can use
the alternate version of Einstein’s equation to show that Tab = 0 if and only
if Rab = 0.

Between trivial and exact solutions, there are the constraint solutions.
These are spacetimes whose associated energy-momentum tensors (defined
via Einstein’s equation) satisfy one or more conditions of interest. Here,
we outline three. We say Tab satisfies the weak energy condition if, for any
future-directed unit timelike vector ξa at any point in M , the energy density
Tabξ

aξb is not negative.
We say Tab satisfies the strong energy condition if, for any future-directed

unit timelike vector ξa at any point in M , the quantity (Tab − 1
2
Tgab)ξ

aξb

is not negative. The strong energy condition can be interpreted as the re-
quirement that a certain effective energy density is not negative. Note that,
in four dimensions, the strong energy condition is satisfied if and only if the

7Here, we drop the cosmological constant term −Λgab sometimes added to the left side
of the equation for some Λ ∈ R. For more on this term, see Earman (2001).
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(timelike) convergence condition, Rabξ
aξb ≥ 0, is also satisfied. This latter

condition can be understood to assert that gravitation is attractive in nature.
Finally, we say Tab satisfies the dominant energy condition if, for any

future-directed unit timelike vector ξa at any point in M , the vector T abξ
b is

causal and future-directed. This last condition can be interpreted as the re-
quirement that matter cannot travel faster than light. Indeed, if Tab vanishes
on some closed, achronal set S ⊂ M and satisfies the dominant energy and
conservation conditions, then Tab vanishes on all of D(S) (Hawking and Ellis
1973). Clearly, the dominant energy condition implies (but is not implied
by) the weak energy condition.

One can show that being a trivial, exact, or vacuum solution of Einstein’s
equation is a local spacetime property. In addition, being a constraint solu-
tion is also a local spacetime property if the constraint under consideration
is one of the three energy conditions considered here.

3.2 Global Properties

A large number of important global properties concern either “causal struc-
ture” or “singularities”. Here we investigate them.

There is a hierarchy of conditions relating to the causal structure of space-
time.8 Each condition corresponds to a global spacetime property (the prop-
erty of satisfying the condition). We say a spacetime satisfies the chronology
condition if it contains no closed timelike curves (equivalently, p /∈ I+(p)
for all p ∈ M). A spacetime satisfies the causality condition if there are no
closed causal curves (equivalently, J+(p) ∩ J−(p) = {p} for all p ∈ M). As
mentioned previously, causality implies chronology but the implication does
not run in the other direction (see Figure 3). The next few conditions serve
to rule out “almost” closed causal curves.

We say a spacetime (M, gab) satisfies the future distinguishability condi-
tion if there do not exist distinct points p, q ∈ M such that I+(p) = I+(q).
The past distinguishability condition is defined analogously. One can show
that a spacetime (M, gab) satisfies the future (respectively, past) distinguisha-
bility condition if and only if, for all points p ∈M and every open set O con-
taining p, there is an open set V ⊂ O also containing p such that no future
(respectively, past) directed causal curve that starts at p and leaves V ever

8Although we only consider a small handful here, there are an infinite number of con-
ditions in the causal hierarchy (Carter 1971).

11



returns to V . We say a spacetime satisfies the distinguishability condition if
it satisfies both the past and future distinguishability conditions.

Future or past distinguishability implies causality. But the converse is not
true. Of course, distinguishability implies past (or future) distinguishabil-
ity. But one can certainly find spacetimes which satisfy future (respectively,
past) distinguishability but not past (respectively, future) distinguishability
(Hawking and Ellis 1973).

Consider two distinguishing spacetimes (M, gab) and (M ′, g′ab) and a bi-
jection ϕ : M → M ′ such that for all p, q ∈ M , p ∈ I+(q) if and only if
ϕ(p) ∈ I+(ϕ(q)). One can show (Malament 1977) that ϕ is a diffeomorphism
and ϕ∗(gab) = Ω2g′ab for some conformal factor Ω : M ′ → R. Thus, if the
causal structure of spacetime is sufficiently well-behaved, that structure alone
determines the shape of the universe as well as the metric structure up to a
conformal factor.

We say a spacetime satisfies the strong causality condition if, for all points
p ∈ M and every open set O containing p, there is an open set V ⊂ O also
containing p such that no causal curve intersects V more than once. If
a spacetime (M, gab) satisfies strong causality, then, for every compact set
K ⊂ M , a causal curve γ : I → K must have future and past endpoints
in K. Thus, in a strongly causal spacetime, an inextendible causal curve
cannot be “imprisoned” in a compact set. Clearly, strong causality implies
distinguishability. One can show that the implication does not run in the
other direction (Hawking and Ellis 1973).

A spacetime (M, gab) satisfies the stable causality condition if there is a
timelike vector field ξa on M such that the spacetime (M, gab + ξaξb) satisfies
the chronology condition. Physically, even if the light cones are “opened” by
a small amount at each point, the spacetime remains free of closed timelike
curves. We say a spacetime (M, gab) admits a global time function if there is
a smooth function t : M → R such that, for any distinct points p, q ∈ M ,
if p ∈ J+(q), then t(p) > t(q). The function assigns a “time” to every point
in M such that it increases along every (non-trivial) future-directed causal
curve. An important result is that a spacetime admits a global time function
if and only if it satisfies stable causality (Hawking 1969). One can also show
that stable causality implies strong causality but the converse is false (see
Figure 6).

The remaining causality conditions not only require that there be no
almost closed causal curves but, in addition, that there be limitations on the
kinds of “gaps” in spacetime (Hawking and Sachs 1974).
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Figure 6: Cylindrical Minkowski spacetime with three horizontal lines re-
moved as shown. The spacetime is strongly causal but not stably causal.

We say a spacetime (M, gab) satisfies the causal continuity condition if it
satisfies distinguishability and, for all p, q ∈M , I+(p) ⊆ I+(q) if and only if
I−(q) ⊆ I−(p). Physically, causal continuity ensures that points which are
close to one another do not have wildly different timelike futures and pasts.
One can show that causal continuity implies stable causality. The converse
is not true. A counterexample can be constructed by taking Minkowski
spacetime and excising from the manifold a closed proper subset with non-
empty interior. The resulting spacetime satisfies stable causality but not
causally continuity.

A spacetime (M, gab) satisfies the causal simplicity condition if it satisfies
distinguishability and, in addition, for all p ∈ M , the sets J+(p) and J−(p)
are closed. One can show that causal simplicity implies causal continuity.
The converse is false since Minkowski spacetime with a point removed from
the manifold satisfies causal continuity but not causal simplicity.

Finally, we say a spacetime (M, gab) satisfies global hyperbolicity if it satis-
fies strong causality and, in addition, for all p, q ∈M , the set J+(p)∩J−(q) is
compact. A fundamental result is that a spacetime satisfies global hyperbol-
icity if and only if it admits a Cauchy surface (Geroch 1970b). In addition,
one can show that the manifold of any spacetime which satisfies global hyper-
bolicity must have the topology of R× Σ for any Cauchy surface Σ. Global
hyperbolicity implies causal simplicity but the converse is not true. Anti-de
Sitter spacetime is one counterexample (Hawking and Ellis 1973).

In sum, we have the following implications (none of which run in the other
direction): global hyperbolicity ⇒ causal simplicity ⇒ causal continuity ⇒
stable causality ⇒ strong causality ⇒ distinguishability ⇒ future (or past)
distinguishability ⇒ causality ⇒ chronology.

There are a number of senses in which a spacetime may be said to contain
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a “singularity”.9 Here, we restrict attention to the most important one:
geodesic incompleteness. We say a geodesic γ : I → M is incomplete if it is
maximal and such that I 6= R. We say a future-directed maximal timelike or
null geodesic γ : I → M is future incomplete (respectively, past incomplete)
if there is a r ∈ R such that r > s for all s ∈ I. A past incomplete geodesic
is defined analogously.

Naturally, a spacetime is timelike geodesically incomplete if it contains a
timelike incomplete geodesic. In a timelike geodesically incomplete space-
time, it is possible for a non-accelerating massive particle to experience only
a finite amount of time. We can define spacelike and null geodesic incomplete-
ness analogously. Finally, we say that a spacetime is geodesically incomplete
if it is either timelike, spacelike, or null geodesically incomplete.

If a spacetime has an extension, it is geodesically incomplete. The con-
verse is false. Consider Minkowski spacetime (M, gab) and let M ′ be the
manifold M − {p} for any p ∈ M . Let Ω : M ′ → R be a conformal factor
which approaches zero as the missing point p is approached. The resulting
spacetime (M ′,Ωgab|M ′) is maximal but contains timelike, spacelike, and null
incomplete geodesics. Other maximal spacetimes exist which are geodesically
incomplete and have a flat metric.10 In other words, one can have singular-
ities without any spacetime curvature at all. Since there are certainly flat
spacetimes which are geodesically complete (e.g. Minkowski spacetime), it
follows that geodesic incompleteness is a global property. We mention in
passing that the property of being maximal is also global.

Finally, one can show that timelike, spacelike, and null incompleteness
are independent conditions in the sense that there are spacetimes which are
incomplete in any one of the three types and complete in the other two
(Geroch 1968). Additionally, one can show that compact spacetimes are not
necessarily geodesically complete (Misner 1963). These two results suggest
that geodesic incompleteness fails to mesh completely with our notion of a
“hole” in spacetime.

9See Ellis and Schmidt (1977), Geroch, Liang, and Wald (1982), Clarke (1993), and
Curiel (1999) for details.

10Here is one example. Remove a point from R2 and take the universal covering space.
Let the resulting spacetime manifold have a flat metric.
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4 Which Properties are Reasonable?

So far, we have provided examples of a number of spacetime properties. In
this section, we ask: Which properties are “physically reasonable”?

It is usually taken for granted that “the normal physical laws we determine
in our spacetime vicinity are applicable at all other spacetime points” (Ellis
1975). This assumption allows us to stipulate that the local property of
being a solution to Einstein’s equation is a physically reasonable one. And
often this means that we take the energy conditions as necessarily satisfied.
However, some have argued that even the energy conditions can be violated
in some physically reasonable spacetimes (Vollick 1997).

One global property which is usually taken to be physically reasonable is
that spacetime be maximal. Metaphysical considerations seem to drive the
assumption. One asks (Geroch 1970a), “Why, after all, would Nature stop
building our universe...when She could just as well have carried on?” Of
course, such reasoning can be questioned (Earman 1995).

What about the global properties concerning singularities and causal
structure? Which of them are to be considered physically reasonable?

4.1 Singularities

Much of the work in global structure has concerned singularities. The task
has been to show, using fairly conservative assumptions, that all physically
reasonable spacetimes must be (null or timelike) geodesically incomplete.
The project has produced a number of theorems of this type. Here, we
examine an influential one due to Hawking and Penrose (1970).

Three preliminary conditions are crucial and each have been taken to be
satisfied by all (or almost all) physically reasonable spacetimes. We shall
temporarily adopt these background assumptions in what follows. The first
is chronology (no closed timelike curves). The second is the convergence con-
dition (Rabξ

aξa ≥ 0 for all unit timelike vectors ξa). Recall that the conver-
gence condition is satisfied in four dimensions if and only if the strong energy
condition is. In this section, we will restrict attention to four dimensional
spacetimes. The third is the generic condition – that each causal geodesic
with tangent ξa contains a point at which ξ[aRb]cd[eξf ]ξ

cξd 6= 0. Physically,
the generic condition requires that somewhere along each causal curve a cer-
tain effective curvature is encountered. Although highly symmetric space-
times may not satisfy the generic condition (e.g. Minkowski spacetime) it is
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thought to be satisfied by all sufficiently “generic” ones. Now, consider the
following statement.

(S) Any spacetime which satisfies chronology, the convergence condition,
the generic condition, and , must be timelike or null geodesi-
cally incomplete.

We seek to fill in the blank with physically reasonable “boundary” con-
ditions which make (S) true. Hawking and Penrose (1970) considered three
of them (see also Earman 1999).

First, if the boundary condition is the requirement that there exist a
compact slice, (S) is true. So, a “spatially closed” universe is singular if it is
physically reasonable. One can show that the existence of a compact slice is
a necessary condition for predicting future spacetime events (Manchak 2008).
Thus, we have the somewhat counterintuitive result that prediction is possi-
ble in a physically reasonable spacetime only if singularities are present.11

Second, (S) is true if the boundary condition is the requirement that
there exist a trapped surface. A trapped surface is a two-dimensional com-
pact spacelike surface T such that both sets of “ingoing” and “outgoing”
future-directed null geodesics orthogonal to T have negative expansion at
T .12 Physically, whenever a sufficiently large amount of matter is contained
in a small enough region of spacetime, a trapped surface forms (Schoen and
Yau 1983).

Third, (S) is true if the boundary condition is the requirement that there
is a point p ∈M such that the expansion along every future (or past) directed
null geodesic through p is somewhere negative. Physically, a spacetime which
satisfies this condition contains a contracting region in the causal future (or
past) of a point. It is thought that the observable portion of our own universe
contains such a region (Ellis 2007).

Additional examples of boundary conditions which make (S) true could
be multiplied (Senovilla 1998). And instead of boundary conditions, one can
also find causal conditions which make (S) true. We mention one here. It
turns out that (S) is true if the causal condition is the requirement that
stable causality is not satisfied (Minguzzi 2009). Thus, physically reasonable

11For a related discussion, see Hogarth (1997).
12The (scalar) expansion of a congruence of null geodesics is a bit complicated to define

(see Wald 1984). But one can get some some idea of the quantity by noting that the
expansion of a congruence of timelike geodesics with unit tangent field ξa is ∇aξ

a.
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spacetimes (which are assumed to be causally well behaved in the sense that
they satisfy chronology) are singular if they are not too causally well behaved.
One naturally wonders if it is possible for physically reasonable spacetimes
to avoid singularities if the chronology condition is dropped. But this seems
unlikely (Tipler 1977, Kriele 1990).

A large number of physically reasonable spacetimes (including our own)
seem to satisfy at least one of the above mentioned boundary conditions and
hence contain singularities. And the worry has been that these singularities
can be observed directly – that they are “naked” in some sense. So, one
would like to show that all (or almost all) physically reasonable spacetimes do
not contain naked singularities. This is the “cosmic censorship” hypothesis.
There are a number of ways to formulate the hypothesis (Joshi 1993, Penrose
1999). Here, we consider one.

γ

p

Figure 7: Minkowski spacetime with one point removed is nakedly singular.
The future incomplete geodesic γ, contained in the timelike past of p, ap-
proaches the missing point.

We do not wish to count a “big bang” singularity as naked and therefore
restrict attention to future (rather than past) incomplete timelike or null
geodesics. We say a spacetime (M, gab) is nakedly singular if there is a point
p ∈ M and a future incomplete timelike or null geodesic γ : I → M such
that the range of γ is contained in I−(p) (see Figure 7).

One can show that a nakedly singular spacetime does not admit a Cauchy
surface (Geroch and Horowitz 1979). Thus, if all physically reasonable space-
times are globally hyperbolic, then the cosmic censorship hypothesis is true.
And Penrose (1969, 1979) has suggested that one might be able to show the
antecedent of this conditional. The idea would be to show that spacetimes
which fail to be globally hyperbolic are unstable under certain types of per-
turbations. However, such a claim is difficult to express precisely (Geroch
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1971). And although some evidence does seem to indicate that instabilities
are present in non-globally hyperbolic spacetimes (Chandrasekhar and Hartle
1982), still other evidence suggests otherwise (Morris, Thorne, and Yurtsever
1988).

There is also an epistemological predicament at issue. An observer never
can have the evidential resources to rule out the possibility that his or her
spacetime is not globally hyperbolic – even under any assumptions concerning
local spacetime structure (Manchak 2011b). And how could we ever know
that all physically reasonable spacetimes are globally hyperbolic if we cannot
even be confident that our own spacetime is?

4.2 Time Travel

If the cosmic censorship hypothesis is false, there are physically reasonable
spacetimes which do not satisfy global hyperbolicity. Might there be some
physically reasonable spacetimes which do not even satisfy chronology? We
investigate the question here.

One way to rule out a number of chronology-violating spacetimes con-
cerns self-consistency constraints on matter fields of various types. Here, we
examine source free Klein-Gordon fields. Let (M, gab) be a spacetime. We say
an open set U ⊂M is causally regular if, for every function ϕ : U → R which
satisfies ∇a∇aϕ = 0, there is a function ϕ′ : M → R such that ∇a∇aϕ

′ = 0
and ϕ′|U = ϕ. We say (M, gab) is causally benign if, for every p ∈M and every
open set U containing p, there is an open set U ′ ⊂ U containing p which is
causally regular.

It has been argued that a spacetime which is not causally benign is
not physically reasonable. We certainly know that every globally hyper-
bolic spacetime is causally benign. But although some chronology violating
spacetimes are not causally benign, a number of others are (Yurtsever 1990,
Friedman 2004).

Given the existence of causally benign yet chronology violating space-
times, another area of research seems fruitful to pursue. One wonders if
chronology violating region can, in some sense, be “created” by rearrang-
ing the distribution and flow of matter (Stein 1970). In other words, can a
physically reasonable spacetime contain a “time machine” of sorts? Here, we
examine one way of formalizing the question given by Earman, Smeenk, and
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Wüthrich (2009).13

First, in order to count as a time machine, a spacetime (M, gab) must
contain a spacelike slice S ⊂ M representing a “time” before the time ma-
chine is switched on. Second, the spacetime must also have a chronology
violating region V after the machine is turned on. So we require V ⊂ J+[S].
Finally, in order to capture the idea that a time machine must “create” a
chronology violating region, every physically reasonable maximal extension
of int(D(S)) must contain a chronology violating region V ′.14 Consider the
following statement.

(T) There is a spacetime (M, gab) with a spacelike slice S ⊂ M and a
chronology violating region V ⊂ J+[S] such that every maximal exten-
sion of int(D(S)) which satisfies contains some chronology
violating region V ′.

We seek to fill in the blank with physically reasonable “potency” condi-
tions which make (T) true. And we know from counterexamples constructed
by Krasnikov (2002) that (T) will be false unless there is a potency condition
and this condition limits spacetime “holes” in some sense.

But Hawking (1992) has suggested that limiting holes may not be enough.
Indeed, he conjectured that all physically reasonable spacetimes are “pro-
tected” from chronology violations and provided some evidence for the claim.
We say H+(S) is compactly generated if all past directed null geodesics
through H+(S) enter and remain in some compact set. Any spacetime with
a slice S such that H+(S) is non-empty and compactly generated does not
satisfy strong causality. And Hawking showed there is no spacetime which
satisfies the weak energy condition which has a non-compact slice S such
that H+(S) is non-empty and compactly generated.

But some have argued that insisting on a compactly generated Cauchy
horizon rules out some physically reasonable spacetimes (Ori 1993, Krasnikov
1999). And of course, a slice S need not be non-compact to be physically
reasonable. Thus, Hawking’s chronology protection conjecture remains an
open question.

Are there any potency conditions which make (T) true? We say a space-
time (M, gab) is hole-free if, for any spacelike surface S in M there is no

13See also Earman and Wüthrich (2010) and Smeenk and Wüthrich (2011).
14Here we abuse the notation somewhat. Properly, we require that every physically rea-

sonable maximal extension of (int(D(S)), gab|int(D(S))) must contain a chronology violating
region V ′.
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isometric embedding θ : D(S) → M ′ into another spacetime (M ′, g′ab) such
that θ(D(S)) 6= D(θ(S)). Physically, hole-freeness ensures that, for any
spacelike surface S, the domain of dependence D(S) is “as large as it can
be”. And one can show that any spacetime with one point removed from
the underlying manifold fails to be hole-free. It has been argued that all
physically reasonable spacetimes are hole-free (Clarke 1976, Geroch 1977).
And it turns out that (T) is true if the potency condition is hole-freeness
(Manchak 2009b). The two-dimensional spacetime of Misner (1967) can be
used to prove the result (see Figure 8).

S

Figure 8: Misner spacetime. Every maximal, hole-free extension of int(D(S))
(the region below the dotted line) contains some chronology violating region.

However, hole-freeness may not be a physically reasonable potency condi-
tion after all. Indeed, some maximal, globally hyperbolic models, including
Minkowski spacetime, are not hole-free (Manchak 2009a, Krasnikov 2009).
But, another more reasonable “no holes” potency condition can be used to
make (T) true: the demand that, for all p ∈M , J+(p) and J−(p) are closed
(Manchak 2011a). Call this condition causal closedness and recall that causal
closedness is used, along with distinguishability, to define causal simplicity.

Not only is causal closedness satisfied by all globally hyperbolic models,
including Minkowski spacetime, but it is also satisfied by many chronology
violating spacetimes as well (e.g. Gödel spacetime, Misner spacetime). In
this sense, then, it is a more appropriate condition than hole-freeness. But
is causal closedness satisfied by all physically reasonable spacetimes? The
question is open. So too is the question of which other potency conditions
make (T) true.
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5 Conclusion

Here, we have outlined the basic structure of relativistic spacetime. As we
have seen, general relativity allows for a wide variety of global spacetime
properties – some of them quite unusual. And one wonders which of these
properties are physically reasonable.

Early work focused on singularities. Initially, a number of results estab-
lished that all physically reasonable spacetimes are geodesically incomplete.
Next, the relationship between these singularities and determinism was inves-
tigated: Can a physically reasonable (and therefore geodesically incomplete)
spacetime fail to be globally hyperbolic? The question remains open.

Recently, focus has shifted somewhat toward acausality: Can physically
reasonable spacetimes contain closed timelike curves? If so, can these closed
timelike curves be “created” in some sense by rearranging the distribution
and flow of matter? Again, these questions remain open.
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