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Abstract: For over a decade several workers have argued for the existence of quantum 
deviations from the classical, Einstein dilation of the decay evolution of moving or 
Lorentz boosted unstable particles. While the general claim is correct, the discussions 
have been incomplete and, sometimes, misleading. The discussions have been of three 
kinds. Type 1 examines the time dependence of the survival probability for 3-momentum 
eigenstates of the unstable quanton (Khalfin). Type 2 does the same for velocity 
eigenstates, obtaining an outrageous result which then discredits velocity eigenstates 
(Shirokov / Hegerfeldt). Type 3 examines arbitrary boosts of 3-momentum eigenstates 
(Stefanovich). Type 1 is incomplete since the momentum eigenstates are not the boosts of 
one another. Type 2 is misleading since the outrageous result is due to misinterpreting the 
initial conditions of the velocity eigenstates (as I have previously argued). Type 3 is the 
most satisfactory, but has failed to recognize and implement the unification of all three 
types of discussion that can be achieved. In this paper I will provide that unified 
treatment, beginning with a recapitulation of Type 1 and offering further clarification of 
Type 2 in the process. The unified treatment fully reinstates velocity eigenstates as 
essential contributors to unstable quanton states. Besides discussing the time evolution of 
survival probabilities I also focus on the concept of lifetime defined as the average time 
of decay. This quantity is helpful in order to display the inequivalent dependence of 
dilation on momentum and boosts most sharply and the deviation from Einstein dilation 
most cleanly. 
 
 
 
 
 
 
 
*I follow Jean-Marc Levy-Leblond’s proposed terminology [Le 88, 99]. 
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1. Introduction:  
 
It is well known that if unstable quantons (UQs) are modeled within the 
framework of the standard quantum formalism, then the time evolution of 
such quantons in the form of exponential decay is, at best, an approximation 
[Ma 45; Hö 58; Kh 58; Pet 59a, b; Le 59; Ne 61; Fl 73; Fo 78; Pe 80]. 
Deviations occur at least at very long times due to the finite lower bound on 
the mass spectrum of the quanton and at short times if the initial state has a 
finite rms deviation of the energy spectrum or even a finite energy 
expectation value [Fo 78]. Another instance, but not so well known, of 
widespread use of what is only an approximation in the theory of unstable 
quanton decay is the classical, Einstein form of lifetime dilation.  
 
In classical relativity the lifetime of an un-accelerated unstable particle is 
shortest relative to that inertial reference frame in which the particle is at 
rest. Relative to a boosted frame the lifetime is longer or ‘dilated’ as we 
customarily say. Equivalent to an account of how the lifetime varies with 
relatively moving inertial frames is an account of how the lifetime lengthens, 
or dilates, with increasing velocity or momentum of the particle. For a 
particle with mass, m, velocity,  

!
v , or momentum,  

!
k , the form taken by 

lifetime dilation is given by, 
 
                                                    T

v
=

T
0

1! v
2

 ,                                            (1.1) 

or, 

                                                T
k
= T

0

m
2
+ k

2

m
 ,                                         (1.2) 

 
respectively, where T0 is the lifetime at zero velocity or momentum. 
 
It has been shown, however, that in Lorentz covariant quantum theory the 
dependence of the decay evolution of an UQ on boost velocities and on 
momentum are, first of all, not equivalent to one another [St 96, 08] and 
second, are different in form, to one degree or another, from the classical 
case [Kh 97; St 96, 08; Sh 04]. These works focused on the time dependence 
of the survival probabilities rather than the lifetimes per se. While we will 
consider  those time dependencies, our focus will be on the lifetimes which 
follow from them. Those lifetimes, defined in a manner independent of any 
presumptions about the form of the survival probabilities, will display the 
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distinction between variation with momentum and boost velocities very  
sharply and the deviation from Einstein dilation very cleanly. 
 
Briefly, the inequivalence between lifetime dilation due to momentum 
dependence and due to active boosting is a consequence of UQ 3-momentum 
eigenstates not transforming into one another under Lorentz boosts; which 
in turn is a consequence of the indefinite mass spectrum of the quanton. The 
deviation from Einstein dilation is also due to the indefinite mass spectrum 
for space-like momentum eigenstates and further due to the indefinite 
momentum spectrum for states of finite norm. 
   
Besides the aforementioned studies there have also appeared claims [Sh 06, 
09; He 06] to the effect that if one examines the survival probabilities of 
velocity eigenstates (which do transform into one another under Lorentz 
boosts) rather than 3-momentum eigenstates (they are not the same for 
UQs), the lifetimes contract with increasing velocity rather than dilate! This 
outrageous result then places in question the status, as basis vectors, of the 
velocity eigenstates. In my previous analysis of this work [Fl 09b] I argued 
that while the mathematics was correct, the interpretation of just what was 
being calculated was erroneous. Further clarification of that argument will 
be presented here. It turns out that the velocity eigenstates in question, far 
from constituting an alternative to the 3-momentum basis, are quite naturally 
seen as special cases of the generalized space-like momentum eigen-bases in 
the covariant formalism employed in [Fl 09b] and in this.  
 
Practicing physicists may well ask why these issues have not arisen much 
earlier in the by now long history* of the theoretical and experimental study 
of unstable quanton decay. The answer lies in the empirical adequacy of 
simplifying approximations in the traditional approaches to decay; whether 
low order perturbation theory for metastable decays or Breit-Wigner 
resonance analysis for broad, unstable ‘resonances’. In the former case one 
ignores the indefiniteness of the sharply peaked mass spectrum and in the 
latter one does not examine lifetimes because of their extreme brevity. Some 
have even suggested that the concept of lifetime is meaningless in the latter 
context [Lu 68]. 
 
 
*For a bibliography on some of that history see [Fo 78] and [Fl 09a]. 
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The present paper, therefore, is an exercise in the careful analysis of these  
concepts and their relationships, predicated on the assumption of their joint 
meaningfulness, in principle, in all contexts notwithstanding the rarity of 
contexts in which they are all jointly and practically measureable, 
physically. 
 
In section 2 we will declare and, perhaps, belabor somewhat our basic 
conceptual assumptions. These concern the space-time circumstances under 
which UQs can be isolated with unit probability and various aspects of their 
state vector representation. In section 3 we spell out the mathematical 
structure and time dependence of the survival probability for UQ states with 
definite no-decay times, defined in section 2. In section 4 we will introduce  
the definition of lifetime that is logically prior to the exponential decay 
approximation, but which reduces to the standard usage if exponential decay 
is dominant. That prior definition is simply that the lifetime of an UQ is the 
average time of decay [Fl 73, 78]. Using that definition, we will, in sections 
4 and 7, come to see that the deviation of the quantum form of lifetime 
dilation from the classical Einstein form will be, after all, what we might 
have expected, intuitively, on quantum mechanical grounds. But a number of 
interesting and instructive surprises occur on the way to the final quantum 
form in 7. Section 5 introduces the boosts of the previously considered states 
and develops a covariant formalism for their discussion. For these boosted 
states the no-decay times are replaced by no-decay hyperplanes which are 
not instantaneous. In section 6 we examine the survival probabilities for the 
general boosted states. We see that in the general case the space-like 
momentum eigenstate survival probabilities do not usually have 
corresponding survival amplitudes and display only kinematically trivial 
dependence on their “time” variables. Resolution of this puzzle is 
established only with the consideration of the generalized survival 
probability for finite norm states. Finally, in section 7 we obtain the 
generalized “lifetimes” for finding the boosted UQ states on arbitrary 
survival hyperplanes. The specialization of these “lifetimes” to 
instantaneous survival hyperplanes, albeit with non-instantaneous no-decay 
hyperplanes, yields the general physical lifetime for direct comparison with 
classical, Einstein dilation.  
 
The results of the paper to which the author would particularly like to draw 
the readers attention are centered around the relations, (4.3, 4, 6), (6.4, 9, 15, 
19) and (7. 5, 8, 10, 11). 
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To enhance the accessibility of this paper many calculational details, which 
the expert may regard as unnecessary, have been included in appendices. 
 
Finally, for the comparison, in section 7, of the general quantum lifetime 
dilation with the classical case it will be of use to consider the classical 
expression for the dilation, due to a boost velocity,  

!
u , of the lifetime of an 

unstable particle already in motion with velocity,  
!
v , or momentum,  

!
k . The 

final velocity,  
!
w ,  is compounded of  

!
u  and  

!
v  in the standard relativistic 

form,  
 

                                         
 

!
w =

!
v
!
1" u

2

1+
!
u #
!
v

+

!
v
"
+
!
u

1+
!
u #
!
v

,                             (1.3) 

 
where the subscripts ⊥  and || denote components perpendicular and parallel 
to  
!
u , respectively. It then follows that, 

  

                                           
 

1

1! w
2

=
1+
!
u "
!
v

1! u
2
1! v

2
,                               (1.4) 

 
from which we infer, 
 

                      
 

T
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=

T
0
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=

T
v

1! u2
[1+
!
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!
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T
k
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!
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#
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&

'
(  ,              (1.5) 

 
where, T

v
= T

k
, is the lifetime of the particle with velocity,  

!
v , or momentum, 

 

!
k . As we will see in 7, the algebraic form of (1.5) acquires enhanced 
significance in the quantum domain. 
 
Throughout the paper quantum mechanical operators are identified by a 
circumflex as in P̂ µ . 
 
2. Quantons undecayed at definite times  
 
UQs are distinguished both from unstable classical particles and from stable 
quantons. The modes of distinction are different in each case and both are 
important. 
 
The quantum states of isolated stable quantons are identified as being 
discrete spectrum eigenstates of two Casimir invariants of the Poincare 
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space-time symmetry group, the squared rest mass and the squared internal 
angular momentum, or spin. For a given quanton both eigenvalues are fixed 
throughout the range of its possible states. While an UQ can not have a 
definite rest mass, we will here keep the distinction between stable and 
unstable quantons at a minimum by retaining a definite spin* and having the 
rest mass spectral function for a given UQ type be independent of the varied 
quantum states which the quanton type can assume. These conditions, which 
are employed by Khalfin, Stefanovich, Shirokov and Hegerfeldt will be 
implemented explicitly below.  
 
Unstable classical particles, being particles, have their existence confined to 
or within a small neighborhood of a world line of finite extent. Every point 
of that world line has a definite time coordinate in every inertial frame. In 
particular, the initial point at which the unstable particle has unit probability 
of being undecayed corresponds to a definite time in each inertial frame. 
 
Quantons, however, stable or unstable, do not have their existence confined 
to the neighborhoods of worldlines. Unit norm states are of necessity, and in 
position representation explicitly, space-like extended and with infinite tails 
in the more realistic examples. Momentum eigenstates and normed  
approximate momentum eigenstates, which play such an important role in 
our analyses of dynamical processes, are emphatic examples of the space-
like extension of quanton states. Consequently, the analogue, for quantons, 
to particles existing at space-time points of a world line, will here be taken to 
be existence on space-like hyperplanes. For stable quantons, isolation on one 
hyperplane, i.e., at one time in one inertial frame, entails isolation at any 
time in any inertial frame, i.e., on all hyperplanes. For an UQ, however, 
being isolated, i.e., being alone and undecayed with unit probability, can 
hold at only one instant of time in some inertial frame, i.e., on only one 
space-like hyperplane.  
 
Working in the Heisenberg picture, we begin with a pure state for a system 
which, at the time, t  = 0, consists, along with the vacuum, of one 
undecayed, UQ in the momentary single quanton state labeled by ψ . At any  
other time the probability for finding decay products or formation 
 
 
*Relaxations of the spin constraint have been considered in [Be 62] and [Fl 72, 79]. 
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precursors instead of the UQ will be greater than zero. That unique time 
when the probability for finding the UQ is unity will be called the no-decay 
time. The unit norm, Heisenberg picture state vector for this system will be 
denoted by, |! ; 0 > , or, for brevity, |! > . 
 
Upon applying the unitary operators representing Euclidean transformations 
and time translations to this state vector we will write, 
 
                                   

 
Û(b)Û(

!
a)Û(R) |! ;0 > = |!

R,
!
a
; b > ,                              (2.1) 

 
where R denotes the rotation and,  

!
a , the spatial translation of the Euclidean 

transformation and b denotes the time translation. In the resulting state, 

 
|!

R,
!
a
; b > , the time translation parameter, b, denotes the new no-decay time 

at which the UQ is certain to be found undecayed. The momentary state for 
the quanton that holds at the time, t = b, is the Euclidean transformed state, 

 
!

R,
!
a
. If b ≠ 0, then at t = b in the original state, |! ; 0 > , decay products (b > 

0) or formation precursors (b < 0) can be found with non-zero probability 
and the probability for finding the parent quanton is less than unity. 
Similarly, in the transformed state, 

 
|!

R,
!
a
; b > , the probabilities for finding 

decay products/formation precursors or the single parent at t = 0 are greater 
than zero and less than unity, respectively. Unlike the time translation, 
which has these dynamical consequences, the Euclidean transformation is 
dynamically innocuous in the sense that it leaves the no-decay time 
unchanged and only modifies the momentary state of the undecayed parent. 
When, in section 5, we consider Lorentz boosts of UQ states with no-decay 
times, we will be dealing with UQ states that do not have no-decay times 
but, instead, non-instantaneous, space-like no-decay hyperplanes. This 
motivates distinguishing our present subclass of UQ states by the name of 
Instantaneous Single Parent (ISP) states. For each no-decay time, t, the 
ISP states for a single type of UQ comprise a linear state space that is 
invariant under the Euclidean group. 
  
One consequence of the dynamical innocuousness of spatial translations for 
ISP states is that the latter include and are spanned by 3-momentum 
eigenstates. The construction of such eigenstates entails only the 
superposition of spatial translations of a single state with a definite no-decay 
time. Thus we have, 
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|! ,
!
k; t > = " 3(

!̂
P #
!
k ) |! ; t > = (2$")#3 d

3% exp[(i / ")(
!̂
P #
!
k ) &
!
%] |! ; t >' .       (2.2) 

 
Since, 
                                                

 
|! ; t > = d

3
k |! ,

!
k; t >" ,                                (2.3) 

 
the result, 

 
|! ,
!
k; t > , must be non-vanishing for some  

!
k .  

 
On the other hand, the ISP states can not include any energy eigenstates at 
all, since the spontaneous decay evolution that defines an UQ demands, via 
the energy-time uncertainty relation, an energy spectrum of non-zero width.  
That spectrum stems from the rest-mass spectrum defined by the rest-mass 
spectral function, 
 
                             !" (µ) := 2µ <" ; t |# (P̂2 $ µ2

) |" ; t > / ||" ||
2  ,                    (2.4) 

 

independent of t due to P̂ 0 commuting with 
 
P̂

2
= (P̂

0
)
2
! (
!̂
P)

2 . But what of the 
dependence on the state, ψ ? As indicated above we minimize the deviation 
from stability by following the lead of the works we are commenting on and 
assuming the invariance over the state space of the mass spectral function, 
i.e..  
                                                    !" (µ) = ! (µ) .                                           (2.5) 
 
We will explicitly extend (2.5) to the 3-momentum eigenstates below. We 
might well have derived this result from a specification of how the various 
3-momentum eigenstates are related to one another. If the transformation 
between such eigenstates (which can not be, as mentioned above, a Lorentz 
boost, due to the indefinite energy spectrum) commutes with the invariant 
mass operator, the state independence of the mass spectral function follows.  
 
But first we must comment on the degeneracy of the 3-momentum 
eigenvalues. In accordance with our opening assumption we will have a 
degeneracy of  2s +1  for each eigenvalue due to the UQ having a definite 
spin, s. Thus we have a translationally invariant, 3-vector operator,  

!̂
S , such 

that, 
                                     

 

!̂
S
2
|! ,
!
k; t > = |! ,

!
k; t > "

2
s (s +1)  ,                            (2.6) 
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for arbitrary ψ  and  
!
k , where ( 

!̂
J is the total angular momentum and 

generator of rotations), 
 
                                             

 
[ Ĵ

m
, Ŝ

n
] = [Ŝ

m
, Ŝ

n
] = i!!

mnl
Ŝ
l  .                           (2.7) 

 
and which is otherwise related to the ISP states with a given no-decay time 
in exactly the same way it would relate to the states of a stable quanton with 
spin s (For details see App. 1). 
 
From (2.6, 7) it follows that we can write, 
 

                                               
 

|! ,
!
k; t > = |

!
k , m; t >!

m
(
!
k )

m=" s

s

# ,                                 (2.8) 

 
where, with appropriately chosen Cartesian axes, we have, 
 
                                        

 
Ŝ
3
|
!
k ,m; t > = |

!
k ,m; t > "m .                                    (2.9) 

 
If we normalize these basis vectors according to, 
 
                                    

 
<

!
k ', m '; t |

!
k , m; t > = !

3
(
!
k '"
!
k )!

m 'm
 ,                         (2.10) 

 
then, from (2.3, 4, 5, 8), we have, 
 
                     

 
2µ <

!
k ', m '; t |! (P̂

2
" µ2

) |
!
k , m; t > = !

3
(
!
k '"
!
k )!

m 'm
# (µ) .            (2.11) 

 
All the equations, (2.8-11), leave a phase factor undetermined in the 
definition of the momentum-spin eigenstates, 

 
|
!
k ,m;t >  . The phase factor can 

always be chosen so that, 
 

                                
 

!̂
J |
!
k ,m; t > = i"

!
k !

"
"
!
k

#
$%

&
'(
|
!
k ,m; t > +

!̂
S |
!
k ,m; t > .            (2.12a) 

 
With that choice, then, we can, in the ISP state space, 

 
Span!

k ,m
{|
!
k ,m;t >} , 

employ an operator, 
 

!̂
X( t) , defined by, 

 
                                        

 

!̂
X(t) |

!
k , m; t > = ! i"

"

"
!
k
|
!
k , m; t > ,                        (2.12b) 
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to obtain (App. 1), 
                                                    

 

!̂
J =
!̂
X( t) !

!̂
P +
!̂
S .                                     (2.13) 

 
After we turn to a consideration of Lorentz boosts in section 5  we will be 
able to complete the definition of this position operator without the 
restriction to the single quanton subspace. We will then recognize it as the 
generalized Newton-Wigner position operator [New 49] which, because of 
its relation to spin in the correspondingly generalized version of (2.13), can 
equally well be characterized as the center of spin position operator [Fl 99]. 
 
Finally, the projector onto the state space for ISP states with no-decay time, 
t, is given by, 

                                   
 

!̂( t) = d
3
k |
!
k , m; t ><

!
k , m; t |"

m=# s

s

$ .                            (2.14) 

 
3. The survival probability for ISP states  
 
The 3-momentum eigenstates, 

 
|
!
k , m; t > , are, themselves, linear 

superpositions of 4-momentum eigenstates, | q, m > . Explicitly we have [St 
08]  (App. 2), 
                       

 
|
!
k , m; t > = d

4
q | q, m > ! 3(

!
q "
!
k ) 2q0# r(q)exp[(i / ")q0 t] ,          (3.1) 

where, 
                                              | r(q) |2 = ! q

2( ) / 2 q
2 ,                                  (3.2) 

and, 
                                            < q ', m ' | q, m > = !

4
(q '" q)!

m 'm
.                                 (3.3) 

 
A more detailed examination of the 4-momentum-spin eigenstates, | q, m > , 
would find them to contain the information concerning the number, type and 
angular distribution of the decay products of the UQ in the asymptotic future 
or the formation precursors of the UQ in the asymptotic past. As our focus in 
this paper is on the time-like evolution of the UQ survival probability and 
the momentum and boost dependence of the UQ lifetime, we will not 
examine the deeper structure of the | q, m >  basis states here. 
 
We are now in the position to examine the time dependence of the survival 
probability,P

k
(t) , for an ISP 3-momentum eigenstate. The definition of that 

probability is given by, 
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<

!
k ', m '; 0 | !̂( t) |

!
k , m; 0 > = "

3
(
!
k '#
!
k )"

m 'm
P
k
(t) ,                      (3.4) 

 
where the rotational invariance of the projector, !̂( t) , (2.14), guarantees that 
the survival probability will be independent of the direction of the 3-
momentum or the value of the spin component number, m. 
 
Because of the conservation of 3-momentum through time, only an 
infinitesimal range of the momentum integral that defines the projector, 
(2.14), contributes to the survival probability and, consequently, that 
probability is the absolute square of the survival amplitude, I

k
(t) , defined by, 

 
                                 

 
<

!
k ', m '; t |

!
k , m; 0 > = !

3
(
!
k '"
!
k )!

m 'm
I
k
( t) .                        (3.5) 

 
The only reason for drawing attention to this relation between probability 
and amplitude, which is so ubiquitous throughout quantum theory, is that we 
will see instances where it does not hold when we turn to consider Lorentz 
boosted UQ states. 
 
From (3.1-3, 5) the survival amplitude is given by, 
 

                               
 

I
k
( t) = dµ! (µ)exp " (i / !) µ2

+ k
2
t#

$
%
&

µmin

'

( ,                       (3.6) 

 
and the survival probability by, 
 

 
 

P
k
( t) = dµ! (µ)exp " (i / !) µ2

+ k
2
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$
%
&
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'

(
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= dµ '
µmin

!

" dµ
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!
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(
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= 2 dµ '! (µ ')
µmin

"

# dµ
µmin

µ '

# ! (µ)cos dµ ''
µ ''

µ ''2+ k2µ

µ '

#
$

%
&

'

(
)
t

!

*

+
,
,

-

.
/
/
 .             (3.7) 

 
In the last form of (3.7) we most easily discern the influence of the factor, 
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                                                       µ ''

µ ''2+ k2
 ,                                            (3.8) 

 
which slows down the evolution as k , the magnitude of momentum, 
increases. But in this instance the slowdown, although of the intuitively 
expected form, at least on average, and leading to lifetime dilation, has no 
immediate connection with Lorentz boosts. The increase in the value of k 
does not arise by Lorentz boosting the UQ state from k =0, but by a unitary 
transform generated, via (2.12b), by the position operator, 
 
                                  

 
|
!
k , m; t > = exp[(i / ")

!̂
X(t) !

!
k ] |
!
0, m; t > .                          (3.9) 

 
Of course the form of the dependence on momentum of the slowing of decay 
comes from the form of the dependence of the energy on the momentum for 
the mass eigenstates, | q, m > , that contribute to the UQ state. Those mass 
eigenstates do arise by boosting from 

 

!
q =
!
0 . But those boosts, in order to 

contribute to a given 3-momentum,  
!
k , require different velocities for 

different mass eigenvalues and do not coalesce into any single boost for the 
UQ state as a whole.  
 
For a unit norm ISP state, (2.8), with no-decay time, t =0, the survival 
probability is given by, 
 

                     
 

P! ( t) = <! ; 0 | "̂(t) |! ; 0 > = d
3
k# |!

m
(
!
k ) |

2

m=$ s

s

%&'(
)
*+
P
k
(t) ,             (3.10) 

 
and here the deviation from classical, Einstein retardation of the time 
evolution results from integration over both the indefinite mass spectrum 
and the indefinite momentum spectrum. In effect, these are the deviations 
reported by Khalfin [Kh 97], Stefanovich [St 96, 08] and Shirokov [Sh 04].  
 
4. The lifetime for ISP states:  
 
The survival probabilities (3.4, 7) and (3.10) can approximate exponential 
decay rather well over a wide range of circumstances (however, see [Ke 
10]), but they can never be exactly exponential in form. As indicated by 
(3.7) the exact time dependence is determined by the mass spectral function, 
(2.4, 11), and any deviation in that from the Breit-Wigner resonance formula 
with unconstrained support (which deviations are always present) yields 
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deviations from exponential decay. In fact, as Khalfin showed [Kh 97] even 
if the mass spectral function were exactly Breit Wigner in form and P

0
(t)  

were exactly exponential, it follows from (3.7) that P
k
(t) , for k > 0 , would 

not be so and, from (3.10), that P! (t)  would not be so. Nevertheless, we are 
so accustomed to associating the concept of lifetime with exponential decay 
that we tend to think of the definition of lifetime as that parameter in the 
denominator of the exponent of the exponential decay form, exp[– t / T ]. 
But, as mentioned in the introduction, the definition of lifetime is simply the 
average time of decay.  
 
The probability for decay to occur in the time interval between t  and t + dt 
is taken to be the product of the rate of decay and dt. For 3-momentum 
eigenstates this is just, 

 
! !P

k
( t)dt , except that quantum mechanically, P

k
(t) , 

need not be monotonically decreasing with time. It can, occasionally, display 
regeneration and briefly increase with time, thereby briefly yielding a 
negative “rate of decay”. Nevertheless, we will employ the standard 
expression for the average time of decay [Fl 73, 78; Fo 78], 
 

                                                  
 

T
k
= ! t !P

k
(t)dt

0

"

# ,                                       (4.1a) 

 
to define the lifetime, Tk. Integration by parts converts this into, 
 

                                                    T
k
= P

k
(t)dt

0

!

" .                                         (4.1b) 

 
If the survival probability is dominated by the exponential form, then (4.1b) 
will yield a result correspondingly close to the parameter in the denominator 
of the exponent. An awkwardness with this lifetime formula is that the 
integral can diverge to infinity if the survival probability does not vanish 
asymptotically more rapidly than t -1. But it has long been known [Lé 59] 
that if the threshold dependence of the spectral function satisfies, 
 
                                                ! (µ) " (µ # µ

min
)
$                                         (4.2a) 

with ! > 0  then, 
                                                   P

k
(t) ! t

"2(1+# )                                            (4.2b) 
asymptotically as t!" . 
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If we now substitute (3.7) for P
k
(t)  we find (App. 3), 

 

 
 

T
k
= dt

0

!

" dµ# (µ)
µmin

!

" exp $(i / !) µ2
+ k

2
t%

&
'
(

2

 

 

                                        
 

= !! dµ" (µ)2 µ2 + k2 / µ( )
µmin

#

$  .                             (4.3) 

 
We immediately see the dilation of the lifetime with increasing momentum 
in accordance with the relativistic energy factor, µ2

+ k
2
/ µ , but as with the 

survival probability (3.7) and unlike the classical case, this energy factor is 
integrated over all the contributing mass values represented in the mass 
spectral function. The lifetime is not dilated via one multiplicative energy 
factor for some definite mass as in (1.2). Furthermore, as mentioned above 
after (3.8), we have yet to consider any Lorentz boost of an UQ state! The 
contributing relativistic energy factors do not arise from a single Lorentz 
transform but from the family of Lorentz transforms correlated to each 
contributing mass and tailored to boost that mass contribution to the same 3-
momentum,  

!
k .  

 
If we now consider a unit norm ISP state, |! ;0 > , with no-decay time, t = 0, 
and survival probability given by (3.10) we find the lifetime, 
 

       
 

T! = dt P! (t) = d
3
k" |!

m
(
!
k ) |

2 #" dµ$ (µ)2 µ2 + k2 / µ( )
µmin

%

"
&

'
(
(

)

*
+
+m=, s

s

-
0

%

"  ,            (4.4) 

   
with a lifetime dilation factor integrated over all contributing 3-momenta as 
well as all contributing masses. Needless to say, these deviations, aside from 
being quantitatively small in practice, in no sense constitute a conflict with 
Lorentz covariance, but are exactly to be expected from quantum mechanical 
states of indefinite mass and 3-momentum. 
 
By considering (2.4, 5, 11) and the operator identity, 
 

                          
 

dµ 2µ! (µ2 " P̂2 )# (µ)
µ2 +

!̂
P
2

µ$ = # P̂
2( ) P̂

0

P̂
2

 ,                 (4.5) 
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we obtain the following compact expression for the lifetime (4.4), 
 

                                       
 

T! = "!<! |# P̂
2( ) P̂

0

P̂
2

|! >  .                               (4.6) 

 
5. Boosting ISP states:  
 
We now turn to the examination of UQ states obtained by Lorentz boosting 
ISP states, i.e., states of the form, Û(B) |! ;t > , where B is a Lorentz boost. 
We begin with the consideration of boosts of 3-momentum-spin eigenstates. 
 
From the principle of Lorentz covariance such boosted states must present 
the same features as the original ISP, 3-momentum-spin eigenstate would 
present to an inertial frame, F’, obtained via the inverse boost. Relative to 
such an inertial frame the original state would not be a 3-momentum 
eigenstate, but would rather be an eigenstate of appropriately defined space-
like momenta. The state would also not have any no-decay time in F’, i.e., a 
definite time for which the probability for finding the undecayed parent 
quanton is unity. Instead, the no-decay time would be replaced by a non-
instantaneous no-decay hyperplane; namely that same hyperplane which 
was labeled by the no-decay time in the original frame. For an active boost 
of an ISP state (with no-decay time, t ) by velocity,  

!
u , 

 
B(
!
u) , the no-decay 

hyperplane will be orthogonal to the time-like unit 4-vector, 
 

                               
 

!µ
= (!0

,
!
!) = B(

!
u)(1,

!
0) =

1

1" u2
,

!
u

1" u2
#

$%
&

'(
,                   (5.1) 

 
and will contain the point with Minkowski coordinates, xµ

= !
µ
" = !

µ
ct . We 

will label such hyperplanes with the ordered pair, (!, " )  .The space-like 
momentum eigenvalue for the boosted state will be, pµ , where, 
 

                         
 

p
µ
= (p

0
,
!
p) = B(

!
u)(0,

!
k ) =

!
u !
!
k

1" u2
,
!
k# +

!
k
"

1" u2
$

%&
'

()
,               (5.2) 

 
(the subscripts ⊥ and || denoting components orthogonal and parallel, 
respectively, to the boost velocity) satisfying, !p = 0  and 

 
p
2
= !

!
k
2 . Thus we 

can write, 
                                    

 
Û(B(

!
u))|
!
k , m; t > = | p, m;!, " = ct > ,                           (5.3) 
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where, 
                                 (P̂µ

!"
µ
("P̂)) | p, m;", # > = | p, m;", # > p

µ .                   (5.4) 
 
The boosted spin eigenvalue, m, is to be understood as follows: From, 
 
                 

 
Û
†
(B(
!
u)) Ŝ

µ
(!)Û(B(

!
u)) = Û

†
(B(
!
u))(Ŝ

0
(!),
!̂
S(!))Û(B(

!
u)) ,                   

 

   

 

= B(
!
u)(Ŝ

0
((1,
!
0)),
!̂
S((1,

!
0))) = B(

!
u)(0,

!̂
S) =

!
u !
!̂
S

1" u2
,
!̂
S# +

!̂
S
"

1" u2

$

%
&
&

'

(
)
)

,           (5.5) 

 
it follows that (App. 4), 
 

                 
 

!̂
S(!) "

!
!

!0
+1

Ŝ
0
(!)

#

$
%

&

'
(Û(B(

!
u)) = Û(B(

!
u))
!̂
S((1,

!
0)) = Û(B(

!
u))
!̂
S .            (5.6) 

 
Consequently, from (2.9), (5.3) and (5.6), we have, 
 

                       
 

Ŝ
3
(!) "

!3

!0
+1

Ŝ
0
(!)

#

$
%

&

'
( | p, m;!, ) > = | p, m;!, ) >!m  .                (5.7) 

 
For a general homogeneous Lorentz transformation, ! , we must have, 
 

                     Û(!) | p, m;", # > = | ! p, m ';!", # >Y
s

m ',m
(R)

m '=$ s

s

% ,                      (5.8) 

where, 
                                          

 
R = B

!1
(
!
" ' /" ' 0 )#B(

!
" /"0

) ,                                  (5.9)  
 
is, for ! ' = "! , a rotation (since, from (5.9), 

 
R(1,
!
0) = (1,

!
0) ) and the Y s

m ',m
(R)  

are spherical harmonic functions.  
 
Accordingly, for unit norm states we have, 
 

 
 

|!
B
;",# > = Û(B(

!
u)) |! ;t > = d

3
k Û(B(

!
u)) |
!
k ,m; t >!

m
(
!
k )$

m=% s

s

&  

 

                                       = d
3

! p | p,m;!," ># B,m (p)$
m=% s

s

& ,                             (5.10) 
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where, 
                                   d 3! p = d 4 p " (!p) = d 4k " (k0 ) = d 3k  ,                         (5.11a) 
and 
                                  

 
! B,m (p) =! m (B

"1
p) =! m ((0,

!
k )) =! m (

!
k ) ,                 (5.11b) 

and, finally, 
                                          Û(!) |" ;#,$ > = |"!;!#,$ > ,                             (5.12) 
where, 

                                     !",m ' ("p) = Y
s

m ',m
(R)!

m
(p)

m=# s

s

$ ,                          (5.13) 

and R is given by (5.9). 
 
These space-like momentum - spin eigenstates and all useful superpositions 
of them, with fixed no-decay hyperplane in the superposition, comprise, 
along with the ISP states of the preceding sections, the possible states for an 
isolated UQ with some definite no-decay hyperplane. We will designate 
them, collectively, as single parent states (SP). 
 
Having introduced Lorentz transforms, we can now complete the earlier 
preliminary remarks about the transformations between momentum 
eigenstates generated by the generalized Newton-Wigner position operator. 
 
Writing, !µ

"
= e

#( )
µ

"
 , we have, 

                                          
 
Û(!) = exp[" (i / 2!)M̂

µ#
$µ# ] .                            (5.14) 

 
The generator of homogeneous transformations, M̂ µ! , can be decomposed, 
relative to any future pointing time-like unit vector, !µ , as 
 
                                 M̂ µ!

= N̂
µ
(")"! # N̂ !

(")"µ
+ $ µ!% &

Ĵ% (")"& ,                  (5.15) 
 
where, !N̂(!) = !Ĵ(!) = 0 . The generalized spin and NW position operator, 
Ŝ
µ
(!)  and X̂ µ

(!, " ) , respectively, for arbitrary closed systems are then 
implicitly defined by the equations [Fl 99], 
 
                                       Ĵ µ

(!) = " # µ$ % &
X̂$ (!, ' )P̂% !& + Ŝ

µ
(!) ,                   (5.16a) 

and, 
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                           N̂ µ
(!) = !P̂ : X̂ µ

(!, " ) # P̂µ " #
$ µ% & '

P̂% Ŝ& (!)!'

!P̂ + P̂
2

,                (5.16b) 

 
where the colon indicates a symmetrized product. From these definitions, 
(2.12b) and (3.9) we can consistently assume, (App. 5) 
 
                     

 
exp[! (i / !) X̂ µ (", # )$µ ] | p, m;", # > = | p + $, m;", # > ,             (5.17) 

 
where, !" = 0 .  
 
6. Survival probability for SP states: 
 
We now turn to the analysis of the survival probability for boosts of ISP 
states, which, as the preceding discussion makes clear, are, themselves, SP 
states with non-instantaneous no-decay hyperplanes. The quantities of 
interest are, 
 
                              

 
<! ;0 | Û †

(B(
!
u))"̂(t)Û(B(

!
u)) |! ;0 >  

  
                                = <!

B
;", 0 | #̂(t) |!

B
;", 0 > = P!

B

(t |",0)                          (6.1) 
 
for unit norm SP states, and, 
 
                          

 
<

!
k
2
,m

2
;0 | Û

†
(B(
!
u))!̂(t)Û(B(

!
u)) |
!
k
1
,m

1
;0 >                     

 
                       = < p

2
,m

2
;!, 0 | "̂(t) | p

1
,m

1
;!, 0 > # P

( p2 ,m2 ; p1 ,m1 )
( t |!,0)               (6.2) 

 
for SP momentum-spin eigenstates, where, as before, 

 
B(
!
u)(1,
!
0) = B(

!
u)!

(0)
= ! , 

and 
 
B(
!
u)(0,

!
k
1, 2
) = p

1, 2
. The proportionality sign in the last stage of (6.2) is due 

to delicacies concerning momentum conserving delta functions. A natural 
question to ask at this point is whether, as was the case for ISP momentum 
eigenstates, the survival probability, P( p2 ,m2 ; p1 ,m1 ) ( t |!,0) , is, itself, the absolute 
square of a survival amplitude, 

 
I
B(
!
u )(0,

!
k1 )
(t) , defined by, 

 

 
<

!
k2 ,m2;0 | Û

†(B(
!
u))exp[(i / ") P̂0t]Û(B(

!
u)) |
!
k1,m1;0 > = !

3(
!
k2 "
!
k1) IB( !u )(0,

!
k1 )
(t) ,     (6.3) 
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where the delta function is, here, unquestioned. The answer is no, such 
probabilities do not have corresponding amplitudes, precisely because the 
matrix element (6.2), as we will see below, is not proportional to a three 
dimensional delta function, i.e., it does not conserve all the momentum 
components and, therefore, more than one term from the projection operator 
contributes to the probability.  
 
But it is worth pausing here to examine a side issue and see what results if 
we blithely proceed as if (6.3) did define the survival amplitude for the 
boosted momentum eigenstate. We then find, 
 
 

 
<

!
k2 ,m2;0 | Û

†(B(
!
u))exp[(i / ") P̂0t]Û(B(

!
u)) |
!
k1,m1;0 >  
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!
k2 ,m2;0 | Û

†(B(
!
u))Û(B(

!
u))exp (i / ")

P̂
0
+
!
u !
!̂
P

1" u2
t

#

$

%
%

&

'

(
(
|
!
k1,m1;0 >  

 

 
 

= <

!
k2 ,m2;0 | exp (i / ")

P̂
0
+
!
u !
!̂
P

1" u2
t

#

$

%
%

&

'

(
(
|
!
k1,m1;0 >  

 

            
 

= <

!
k2 ,m2;0 | exp (i / ")

P̂
0

1! u2
t

"

#
$

%

&
' |
!
k1,m1;0 >exp (i / ")

!
u (
!
k1

1! u2
t

"

#
$

%

&
' .        (6.4a) 

 
Equating absolute values of the beginning and last expressions, we find, 
 

                                          
 

I
B(
!
u )(0,

!
k1 )
(t) = I

k1

t

1! u2
"

#$
%

&'
 ,                              (6.4b) 

 
and the boosted amplitude decays faster than the original amplitude! This is, 
essentially, a generalization of the calculation Shirokov [Sh 06, 09] and 
Hegerfeldt [He 06] reported except that they confined themselves to the 
case, 

 

!
k
1
=
!
0 , because they were working with velocity eigenstates, 
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!
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0 > = Û(B(

!
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Unlike 3-momentum eigenstates, velocity eigenstates do transform into one 
another under Lorentz boosts and this has made them attractive to various 
workers [Zw 63; Ha 72; Ra 73; Se 75; Bo 00; Ta 08] as possible UQ basis vectors. 
But (6.4) is clearly a problem and so Shirokov put them aside and returned 
to momentum eigenstates. But this leaves the question of the physical 
significance of (6.4) hanging and I refer the reader to my [Fl 09b] for the 
detailed analysis. Briefly the explanation is that the non-zero velocity 
eigenstates (and the boosts of 3-momentum eigenstates occurring in (6.3)) 
have non-instantaneous no-decay hyperplanes and the amplitude defined by 
(6.3) is the survival amplitude for finding the parent quanton on hyperplanes 
parallel to the no-decay hyperplane, but expressed in terms of the time 
interval between the hyperplanes instead of the time-like interval, orthogonal 
to the hyperplanes.  
 
A time-like interval between parallel, space-like hyperplanes is always 
maximal in the direction orthogonal to the hyperplanes (the direction parallel 
to !µ ) and this fact is the source of the time interval between parallel, non-
instantaneous hyperplanes being shorter than the orthogonal time-like 
interval. While never being explicit on the matter, the discussion presented 
by Shirokov and Hegerfeldt reads as if the velocity eigenstates they work 
with are being regarded as having a definite no-decay time, t = 0. This 
motivates the misleading parameterization of the amplitude in terms of the 
time. 
 
In the final analysis, there is no possibility of choosing between 3-
momentum or velocity eigenstates as providing the most appropriate basis 
for UQs. Both are simply special cases of the generalized, space-like 
momentum eignstates, | p,m;!," > , introduced in the previous section and all 
of which are required to adequately express the range of manifestation of 
UQs with arbitrary no-decay hyperplanes. The explicit declaration of the 
special cases in question is given by, 
 
                                     

 
|
!
k , m; t > = | p = (0,

!
k ), m; ! = (1,

!
0), ct > ,                    (6.6a) 

and 
                                            

 
|
!
u, m > = | p = 0, m; !, 0 > ,                                (6.6b) 

 
where, 

 
! = (1,

!
u) / 1" u

2 , is the 4-velocity corresponding to the 3-velocity,  
!
u . 
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We now return to our central concern which is the analysis of the probability 
for finding the UQ on an instantaneous hyperplane when the no-decay 
hyperplane of that UQ is not merely distinct from, but intersects the first 
hyperplane. In such a case, in every frame, at least one of the two 
hyperplanes is non-instantaneous and thus, reverting to the general 
formalism in which arbitrary hyperplanes are considered is in order.  
 
Accordingly, we generalize the analysis to emphasize that the quantity we 
are interested in is a special case of matrix elements of the form, 
 
                                    < p

2
,m

2
;!," | #̂(! '," ') | p

1
,m

1
;!," > ,                             (6.7) 

 
where ! ' " !  and the projection operator, !̂(" ',# ') , is defined by, 
 

                             !̂(" ',# ') = d
3

" 'p | p,m;" ',# ' >< p,m;" ',# ' |$
m=% s

s

&  ,                    (6.8) 

 
and the projection operator, (2.14), is the special case,!̂(t) = !̂("

(0)
, ct) . 

 
The surprise for the matrix elements, (6.7), is that their dependence on τ and 
τ’ (when ! ' " ! ) is confined to an exactly calculable phase factor (App. 6), 
i.e., 
                                         < p

2
,m

2
;!," | #̂(! '," ') | p

1
,m

1
;!," > =  

 

         
 

exp (i / !)
! '(p1 " p2 )(# '" (!! ')# )

((!! ')2 "1)

$

%
&

'

(
) < p2 ,m2;!,0 |*̂(! ', 0) | p1,m1;!,0 > ,       (6.9) 

 
In fact, if the matrix element was proportional to the three dimensional delta 
function of the momentum difference, δη

3( p2 – p1), the phase factor would 
be completely superfluous and there would be no “time” dependence at all. 
But the matrix element is only proportional to the two dimensional delta 
function, δη,η’

2( p2 – p1), conserving the components of the momenta 
eigenvalues orthogonal to both η and η’. The component parallel to η’ is not 
conserved. Nevertheless, the diagonal matrix element, with η’( p2 – p1) = 0, 
is “time” independent. It would seem that there is no decay at all with 
“time”! How are we to understand this? 
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In fact, an intuitive grasp of this result is not hard to come by. It stems from 
the fact that the SP spin-momentum eigenstates appearing in the matrix 
element are not preferentially localized anywhere on the (η, τ ) no-decay 
hyperplane. As a consequence, the probability for finding the undecayed 
parent quanton on an intersecting hyperplane can depend on the hyperplanes 
only through their relationships with the momentum-spin eigenvalues and 
each other. In particular, this allows for a dependence on the ‘angle of 
intersection’ of the hyperplanes, determined by η and η’, but not on where 
the intersection occurs, i.e., on τ or τ’ (Fig. 1a). 
 
 
 
             (η’, τ’2)                                                         p1, p2 

                                 η’ µτ’2                                                             (η, τ ) 
                                                                                                                                                                                                    
                                                            η µτ 

                                             
                                         η’ µτ’1                                        (η’, τ’1)                   
                                                                                                                               
 
  
Fig. 1a: For SP momentum eigenstates with no-decay hyperplane, (η, τ ), 
the probability (density) for survival on intersecting hyperplanes, (η’, τ’1) or 
(η’, τ’2) can not depend on the “time” variables, τ  and τ’. The reason is the 
absence of preferential localization of the momentum eigenstates on (η, τ ) 
and the intrinsic relation between the intersecting hyperplanes, themselves, 
depending only on η and η’. 
 
 
Applying this result to (6.2) we have all the t dependence confined to an off 
diagonal phase factor. To obtain a time dependent survival probability for a 
boosted SP state we must have some degree of localization of the unstable 
parent on the (η, 0 ) hyperplane! (Fig. 1b) 
 
We now turn to the calculation of the survival probability for a boosted unit 
norm state. As above, we actually calculate the more general expectation 
value, <! ;",# | $̂(" ',# ') |! ;",# > , to be able to see our survival probability, 
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             (η’, τ’2)                                                          
                                 η’ µτ’2                                                             (η, τ ) 
                                                                                                                                                                                                    
                                                            η µτ 

                                             
 preferential localization                                                    (η’, τ’1)                   
  on  (η, τ )                         η’ µτ’1                                                                      
 
  
Fig. 1b:  With the indicated preferential localization of the parent quanton 
on the no-decay hyperplane, (η, τ ), the probability of finding the undecayed 
parent on the intersecting hyperplane, (η’, τ’1 ), will be higher than on,     
(η’, τ’2 ), at which more probability for decay will have accumulated. 
 
 
(6.1), as a special case. Unlike the above, however, the calculation will both 
probe more deeply and remain incomplete. First we have the boosted version 
of (3.1), 
 
            

 
| p,m;!," > = d

4
q | q,m > # 3! (p $ q)% 2!q r(q)exp[(i / !)!q" ] ,             (6.10) 

 
which will be employed in the analysis of the expectation value, 
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On the right hand side we substitute (6.9) followed by (using (6.10)), 
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Next we have (using (6.8) and (6.10)), 
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) ,                   (6.13) 

 
where we have chosen to diagonalize all spin states along a single space-like 
direction parallel to the 2-manifold that comprises the intersection of the 
(η,τ ) and (η’,τ’) hyperplanes.  
 
A usefully compact expression for (6.12) (tolerating slight notational 
license) can now be obtained by introducing the conventions, 
 
                                     p1, 2 +!"1, 2

# q
1, 2

# q
1!, 2! +! (!q1, 2 )  ,                        (6.14) 

 
and employing them throughout (6.12). The combination of (6.12) and 
(6.13) then immediately yields, 
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where we have also employed (3.2). A more explicit rendering of (6.15) is 
provided in App. 7, where we find, 
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We immediately notice that upon substitution of (6.16) into (6.9) and the 
moving of the “time” dependent phase factor under the influence of the 
integral, the 2nd delta function in (6.16) allows the replacement of the phase 
factor with, 
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This is significant for getting the “energy-like”, !q

1, 2
 quantities back into the 

“time” dependent exponent analogous to the case of (3.7). In particular, as 
we now turn to the calculation of the unit norm state expectation value, 
(6.11), we can exploit our notational conventions, (6.14), to write, 
 
       d 3! p1, 2 d!q1, 2 " d 3!q1!, 2! d!q1, 2 = d 3!q1, 2 d!q1, 2 = d 4q1, 2 = d 3! 'q1, 2 d! 'q1, 2 ,         (6.18a) 
 
and                               ! m1, 2

(p
1, 2
) "!#;m1, 2

(q
1#, 2# ) "!#;m1, 2

(q
1, 2
)  ,                 (6.18b) 

 
and then combine (6.18, 17, 15) and (6.9) to obtain for (6.11), 
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Noticing that under the absolute value sign in (6.19a) the quantity, q! ' , is 
fixed and, therefore, its contribution to the phase factor can be cancelled and 
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the replacement, !q " !q! ' + (!! ')! 'q# (!! ')! 'q , can be made in the phase 
factor, yielding, 
                                            <! ;",# | $̂(" ',# ') |! ;",# > =  
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! 'q d! 'q (!q)(! 'q)
" q

2( )
q
2# $!;m (q)exp %

i

!
! 'q (& '% (!! ')& )'

()
*
+,#

2

m=% s

s

- .      (6.19b) 

 
This relationship, for the special case of, 

 
! ' = !

(0)
= (1,
!
0) , and,! = 0 , but 

without recognizing the roles played by the intersecting survival and no-
decay hyperplanes and neglecting spin, was expressed in non-covariant 
notation by Stefanovich [St 08]. In particular, Stefanovich noted the 
difficulty in having any value of ! '  yield the value, unity, for the survival 
probability. He interpreted this as indicating that decays can be “caused by 
boosts” since |! ;",0 >  is a boosted state, i.e., ! " !

(0) . From our present 
perspective the failure of (6.19) to reach unity is simply due to the 
uniqueness of the no-decay hyperplane for an UQ. When searching for the 
UQ on a hyperplane other than the no-decay hyperplane, finding it, as 
opposed to finding decay products or formation precursors, will always be 
less than certain. It seems just as inappropriate to regard decays to be caused 
by boosts as it would be to regard decays to be caused by time translations. 
If cause is to be assigned, it is to the operation of interactions in the course 
of dynamical evolution from the no-decay hyperplane to any other 
hyperplane, including intersecting ones. 
 
7. The lifetime of boosted ISP states 
 
We now turn to our final task of integrating (6.19) over ! ' to obtain the 
‘lifetime’ associated with this generalized survival probability. But a 
conundrum confronts us immediately. Where do we start the integration? 
Unlike our first lifetime calculation, (4.1), where the no-decay hyperplane 
and the ‘survival’ hyperplane were parallel and the decay process obviously 
began at t  = 0, here the ‘survival’ hyperplanes all intersect the no-decay 
hyperplane and no choice is the obvious beginning of the decay process. 
Presumably there is one among the survival hyperplanes which maximizes 
the survival probability; but which one?! From (6.19) a general 
determination does not look simple. On the other hand, Fig. 1b suggests that 
maximization will occur when the preferential localization region of the UQ 
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on its no-decay hyperplane overlaps the intersection with the appropriate 
survival hyperplane. One could make this conjecture precise by considering 
the expectation value of a global, generalized position operator; the 
generalized Newton-Wigner operator, say, and demanding that it also lie on 
the maximizing survival hyperplane, (η’, τ’0), as well as on the no-decay 
hyperplane, (η, τ ) i.e., 
 
                                   ! 'µ <" ;!,# | X̂ µ

(!,# ) |" ;!,# > = # '
0 ,                            (7.1) 

 
where, !µ X̂

µ
(!," ) = " . But even if this plausible, but far from certain 

conjecture were accepted, the determination of (η’, τ’0) remains elusive.  
 
Another consideration is motivated by the recognition that in the case of  the 
lifetime, (4.1b), of an ISP state, the time integration from – ∞ to + ∞ would 
just double the result due to the decay being an inverse recapitulation of the 
formation of the UQ state from – ∞ to 0. In the ISP case this is easy to see 
due to the time reversal invariance of the probability, (3.7). 
 
Does the same thing happen in the more general SP state case, thereby 
allowing the lifetime calculation to be just half the integral over τ’ from – ∞ 
to + ∞ ? Again this seems plausible, but not so easy to demonstrate from 
(6.19). Some insight may be gained by examining the τ’ integral of just the 
exponential factor in (6.19), understanding the expressions in the sense of 
generalized functions. We have, where, ! = " 'q

2
#" 'q

1
 , 
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= i!
Pr
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exp (i / !)! (" '0# ($$ ')" )[ ] +%!& (!) .                         (7.2) 

 
where Pr denotes principle value. Now the generalized function limits of the 
first term on the right hand side of (7.2), for τ’0 ! ±" , are, 

 
! !"" (#) , 

respectively. And since the expectation value, (6.19), is always real, there 
must be an intermediate value of τ’0 that renders the contribution of that first 
right hand side term in (7.2) to the τ’ integral of (6.19) from τ’0 to + ∞ equal 
to zero. This intermediate value of τ’0 seems a likely candidate for the value 
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at which the lifetime integral should begin. Furthermore, while we don’t 
know what that intermediate value of τ’0 is, we do know what the resulting 
lifetime integral will yield, viz. just the contribution from the delta function 
term in (7.2)! We will proceed on the assumption that all of our conjectures 
concerning τ’0 yield roughly compatible and possibly exactly equal values 
and that the delta function term in (7.2) is the correct contribution. This 
assumption then yields for the lifetime, 
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where the variables of integration go through the transitions from (6.19) to 
(7.3) indicated by the sequence, 
 
                  d! 'd 3" 'qd" 'q2 d" 'q1# d
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                                         = d 4q = d 3!qd!q = d 3! pd"                                      (7.4) 
 
Finally, we reintroduce the mass spectrum variable, µ = p

2
+!

2 . Noting 
that, d 3! pd"" = d

3

! pdµ µ , we can rewrite (7.3) in the form, 
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This is to be compared first to (4.4), to which (7.5) reduces if 
 
! ' = ! = !

(0)
= (1,
!
0) . But what of the more interesting case for which we 

actually obtained (7.5), i.e., the case where 
 
! ' = !

(0)
= (1,
!
0)  while η remains 

arbitrary? This is the case of (6.1) for which we require the substitutions (in 
(7.5)),  
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With these substitutions and employing the notation, 
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 (7.5) can be expressed in the form, 
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We have chosen this particular form for (7.8) to facilitate comparison with 
the classical equation, (1.5), for the dilation of a lifetime of an unstable 
particle with an initial non-zero momentum. We repeat that expression here. 
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Clearly, the quantum lifetime dilation differs, formally, from the classical 
case in a completely plausible way, i.e., by summing the classical lifetime 
dilation dependence over the spectra of rest mass, momenta and spin 
contributions that contribute to the initial state. What could be more 
natural?! But we must not lose sight of the serious difference in the relation 
between the momentum contribution and the boost contribution in the 
quantum and classical cases. The classical particle can reach the composite 
velocity,  

!
w , either from the boost by velocity,  

!
u , from a state with 

momentum,  
!
k , or via a boost with velocity,  

!
w , from a state with zero 

momentum or velocity. Because of the non-trivial mass spectrum, however, 
the 3-momentum composition of the UQ can not be acquired through boosts 
of that quanton from zero 3-momentum. The only dependence of the 
quanton lifetime (7.8) on a boost of the quanton is the dependence on  

!
u , not 

the dependence on  
!
k . The 3-momentum composition of the UQ state in the 

frame of reference in which the no-decay hyperplane is instantaneous and 
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the boost of that state to a frame in which the no-decay hyperplane is not 
instantaneous comprise a two-fold origin of the dilation of the UQ lifetime 
from its minimum possible value. 
 
We will close this section with the analogue of (4.6) having the same 
relation to (7.5) that (4.6) has to (4.4). Recalling the derivation of (4.6) and  
by simple inspection of (7.5) we see that, 
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independent of ! . Upon setting ! ' = !(0) , and writing, 
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as the corresponding version of (7.8). In particular, if |! > , with 
instantaneous no-decay hyperplane, also has 
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0 , we then have, 
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an instance of exact Einstein dilation of a quanton lifetime which, we note in 
passing, includes arbitrarily close approximations to velocity eigenstates! 
 
 
Appendix 1: Spin operator for ISP states 
 
Beginning with (2.9), our (A1.1), we have, 
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and       
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Finally, for  
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J to be the generator of infinitesimal rotations, we must have, 
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where, 
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is the rotated momentum and the subscripts ⊥  and || denote components 
perpendicular and parallel, respectively, to the rotation axis,  

!
n . 

 
Appendix 2: 3-momentum eigenstates as sums over 4-momentum 
eigenstates 
 
We begin with, 
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Now assuming the normalization, 
 
                                         < q ', m ' | q, m > = !

4
(q '" q)!

m 'm
 ,                         (A2.2) 

we must have, 
 

 
<
!
k
2
,m

2
;t |! (P̂

2
" µ2

) |
!
k
1
,m

1
;t >  

 
 

 
= d

4
q! fm2 (q) *"

3
(
!
q #
!
k
2
)"m2 ,m1

" (q 2 # µ2
) " 3(
!
q #
!
k
1
) fm1 (q)  

 
 

 
= !m2 ,m1

! 3(
!
k
2
"
!
k
1
) dq

0 ! ((q0 )2 " k2
1
" µ2

)| fm1 ((q
0
,
!
k
1
)) |

2

#  
 



 32 

 
 

= !m2 ,m1
! 3(
!
k
2
"
!
k
1
) dq

0 1

2q
0
! (q0 " k

2

1
+ µ2

)| fm1 ((q
0
,
!
k
1
)) |

2

#  

 

                             
 

= !m2 ,m1
!
3
(
!
k
2
"
!
k
1
)

1

2 k
2

1
+ µ2

fm1 k
2

1
+ µ2

,
!
k
1( )( )

2

.            (A2.3) 

 
But according to (2.11) we must have, 
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Therefore we can write, 
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Appendix 3: Calculation of the ISP lifetime, (4.3) 
 
The calculation is straightforward starting from the left hand side of (4.2). 
Thus, 
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as claimed. 
 
Appendix 4: Spin operators for boosted SP states 
 
Starting with (5.5), 
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we have, 
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Consequently, 
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as claimed. 
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Appendix 5: The consistency of (5.17) 
 
From the relations, (5.14,15), and the definition,  
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the Lie algebra of the inhomogeneous Lorentz group takes the form, 
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µ
(!), (Ĵ"
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from which the preceeding commutation relations imply, 
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#
(!)] = [K̂

µ
(!), Ŝ
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From (A5.4a, b) it follows that, 
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where !µ  satisfies, !" = 0 . This permits us to consistently assume, 
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which is the same as (5.17). 
 
Appendix 6: Derivation of (6.9) 
 
We begin with, 
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for arbitrary 4-displacement, λµ, which follow from the SP momentum 
eigenstates being eigenstates of space-like translations parallel to the no-
decay hyperplane, (!, " ) , and !P̂  being the generator of time-like 
displacements normal to the no-decay hyperplane. 
 
From (A6.1, 2) it immediately follows that, 
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,m

2
;!, " | #̂(! ', " ') | p

1
,m

1
;!, " > =  

 
 
 
< p2 ,m2;!, " + !# | $̂(! ', " ' + ! '#) | p1,m1;!, " + !# > exp[(i / !)(p1 % p2 )#]       (A6.3) 

 
For any !µ  that satisfies, !" = # $  and ! '" = # $ ' , (A6.3) becomes, 
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< p2 ,m2;!, 0 | "̂(! ', 0) | p1,m1;!, 0 > exp[(i / !)(p1 # p2 )$]                 (A6.4) 
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One such !µ is given by, 
 
                                        ! = "

# $ ("" ')# '

("" ')2 $1
+ " '

# '$ ("" ')#

("" ')2 $1
 ,                          (A6.5) 

 
and the most general such !µ differs from (A6.5) by an arbitrary 4-vector 
orthogonal to both, !  and ! ' . This is consistent with (A6.4) only if the 
matrix element vanishes whenever the momentum difference, p

1
! p

2
, is not 

parallel to the (!,! ')  plane, as, indeed, we see to be the case in (6.12). Upon 
substituting (A6.5) into (A6.4), we obtain (6.9).   
  
Appendix 7: Derivation of (6.16) 
 
Replacing, q

1, 2
 by p

1, 2
+!"

1, 2
, respectively, in (6.13), we have, 
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Substituting this into (6.12) we obtain 
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where, 
 
         ! 3" ' (p2 +"#2

$ p
1
+"#

1
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1
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and, e ' = (! "! '(!! ')) / (!! ')
2
"1 , is the space-like unit vector orthogonal to η’ 

and lying in the (η, η’) 2-plane. From, 
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we obtain, 
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This becomes (6.16) upon using (3.2).  
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