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Abstract.
The present paper introduces “ontomimetic simulation” and argues that this

class of models has enabled the investigation of hypotheses about complex systems
in new ways that have epistemological relevance. Ontomimetic simulation can be
differentiated from other types of modeling by its reliance on causal similarity in
addition to representation. Phenomena are modeled not directly but via mimesis
of the ontology (i.e. the “underlying physics”, microlevel etc.) of systems and a
subsequent animation of the resulting model ontology as a dynamical system. While
the ontology is clearly used for computing system states, what is epistemologically
important is that it is viewed as a hypothesis about the makeup of the studied
system. This type of simulation, where model ontologies are used as hypotheses, is
here called inverse ontomimetic simulation since it reverses the typical informational
path from the target to the model system. It links experimental and analytical tech-
niques in being explicitly dynamical while at the same time capable of abstraction.
Inverse ontomimetic simulation is argued to have a great impact on science and to
be the tool for hypothesis-testing that has made systematic theory development for
complex systems possible.

Keywords:

1. Introduction

No person in its right mind would suggest that writing was invented
with the richness of its future applications in mind. The same can very
much be said about computer technology, which supplies science with a
potential that is constantly being further explored by the introduction
and refinement of new methods, e.g. (Kel03; Har96). Computational
models of dynamical systems have been used in science for a long time
beginning with numerical methods for approximating solutions to un-
solvable mathematical models(Hum91; Har96; Gal97; Kel03; Len07).
This practice has later evolved through a series of exaptations1 into
what has become a whole tree of techniques. Among these we find

1 A term used in evolutionary biology to denote the evolutionary exploration of
an incidental source of fitness that had nothing to do with the original evolution of
a structure (GV82). The evolution of wings from forelimbs is an example of this.
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2 Claes Andersson

quasi-realistic models (such as genetic programming and artificial neu-
ral networks), event-based simulation, simple and not-so-simple models
of complex system systems (such as in physics, game theory, economics
and biology), agent-based modeling, molecular dynamics, mesoscopic
chemistry, meteorology, climatology and morphogenetic development,
see e.g. (Lin92; Art94; SCGFS00; MH01; SCJ02; MHKS03; SCJN03;
KSM+05; Pet06; Eps07).

In most inquiries into the epistemology of simulation to this date,
the physics perspective has been dominant and even where the scope
is wider most examples are still from physics. But while the physics
perspective is important, not least historically, it is not representative
since simulation is today used throughout science. It is here argued
that an important epistemological role of simulation, that of producing
scientific knowledge, is much more clearly visible in applications to
problems where little or no prior formal theory exists2.

According to Popper (Pop35; Pop79), the testing of hypotheses in-
volves exploring their logical content and putting it to the test against
empirical knowledge of the system under consideration. However, for
dynamical systems, and especially those that we know mainly through
causal description, mathematical and logical operations are quite tooth-
less and our cognitive capabilities for following the vast amount of
complex cause-and-effect relations in complex systems are highly lim-
ited. What is here called ontomimetic simulation has offered a way of
putting such hypotheses to the test by working out and testing what
we might call their “causal content”: what happens when our causal
hypothesis about how a system works is put into motion as a dynamical
system? What is claimed here is that the epistemologically new thing
with simulation is not that it allows the automation of theory but that
it allows for a new way of producing theory. A combination between
the ability to explore vast webs of causes-and-effects, a mimetic relation
between model and target systems as well as the transparency, control
and potential abstractness of simulations models has made it possible
to devise theory in whole new areas (within nearly all fields of sciece)
that previously could not be explored scientifically.

2. From numerical methods to ontomimetic simulation

As reviewed by e.g. Fox Keller, Lenhard and Humphreys (Kel03; Len07;
Hum02) it is clear that the intellectual genealogy of computer simula-
tion does not begin in any effort to mimic and animate the microlevel of

2 The epistemology of such models has only begun to be investigated, for example
in the EPOS series of workshops; see http://epos2008.dcti.iscte.pt
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systems. This is something that appeared later and that has probably
been invented independently many times over. The history of computer
simulation begins, instead, with numerical methods for approximat-
ing solutions to unsolvable mathematical models. These models were
models of various natural phenomena, and the connection between the
computational model and reality went via the mathematical models.
The numerical models were, consequently, models of models.

Lenhard (Len07) argues that the act of short-circuiting this chain
by viewing the phenomenological level of the computational model as
a model directly of the natural phenomena (that its basic equations
originally represented) was a pivotal step in the emergence of simulation
modeling. The computational model was then no longer just a model
of a model, but a model in its own right. Thereby the door was also
opened for refinement of the computational model independently of
the original mathematical model. Lenhard frequently uses the phrase
“modeling from above” (Len07) to characterize simulation, a phrase
introduced by Fox-Keller (Kel03). “Below” were here mathematical
models and “above” were the phenomena. However, while “modeling
from above” – i.e. the reproduction of a phenomenon by the design
of a computational model – is surely important, many would certainly
agree that simulation is still much about modeling from below; although
nowadays what lies below is frequently an ontology that explicitly
mimics cause and effect on the microlevel rather than mathematical
equations. See for for example discussions of simulation in the complex
systems literature, e.g. (RB95; Bed97; Bed03; Eps07).

Mimesis that is successful results in similarity, and similarity on a
low level leads to similarity on higher levels; as Hartmann puts it we
“imitate one process by another process” (Har96), which also clearly
recalls Campbell’s concept of vicariousness (Cam74). The vicarious
system is put into motion as a dynamical system where its entities are
argued to interact in a way that parallels that of the target system. As
Rasmussen et al (RB95) state: “The central point is that a simulation
is a representational mechanism that is distinguished by its capacity
to generate relations that are not explicitly encoded.” In other words,
simulation lets us investigate how small-scale cause-and-effect causes
large-scale phenomena and this clearly has an explanatory potential:
arguments based on low-level cause-and-effect is at the heart at what
most qualify as being an explanation of something.

This causal link is a type of theory content that has just as much
corroboration and falsification power as does content reached by logical
and mathematical operations, and the appearance of a systematical
method for obtaining it should have (and has had) wide-ranging sci-
entific consequences. Ontomimetic simulation hence lets us employ a
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causal mode of explanation also where the sheer volume of these causes
and effects overwhelm our ability to cognitively follow what happens.
The argument for similarity on the ontological level is then used as
an argument in favor of accuracy of the phenomenologies that are
produced by animating this vicarious system, and, importantly, also
vice versa.

The computer is so singularly powerful for enabling what we call
simulation that when we speak of simulation, the fact that we are using
a computer to do it is today understood implicitly. This said, the brand
of simulation here considered does not rely on computation in principle.
It relies on causal mimesis and it can be (and has been) pursued using
other means as well; see e.g. what Hartmann calls “experimental simu-
lation”(Har96). It is the stark difference in flexibility, transparency and
control between computers and other means for fashioning dynamical
models that makes the difference. The lack of flexibility and variabil-
ity of non-computer-based media for doing simulation is perhaps best
realized by considering cases where such techniques have been pushed
to the limit with great ingenuity, such as Holmberg’s pre-computer
tabletop simulation of galaxy cluster dynamics from 1941 (Hol41)3.

3. Simulation producing theory and a new window on the
world

In areas that are not highly formalized, simulation is not primarily used
for animating theory, much less is it used for automating mathematical
models, see e.g. (LMPS08). The fact is that since within science, theory
production and testing is much more central than mere application of
existing theory, simulation is in particular used precisely where theory
is lacking. The reason is that the causal content (viz. the dynamical
consequences) of hypotheses about complex systems have not been
possible to discover in a satisfactory way by means of logic, math-
ematics or informed intuition and argumentation. Hypotheses have
thereby been poorly testable and many such areas have been white
spots on the scientific map. This role of simulation is practiced widely
and successfully but in science studies it is not widely acknowledged as a
major objective of simulation modeling4. Theory-producing simulation

3 In this case, the causal similarity between the propagation of light and gravity
was used in a way that enabled the vicarious use of the former to experimentally
simulate the latter.

4 Although it is not entirely unnoticed either, see e.g. (Liv07). Livet furthermore
discusses the types of theory that can be reached given certain criteria on the realism
and constitution of the model.
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is typically viewed as steps-on-the-way towards predictive and scenario
generating modeling or as something that we are unfortunately (and
for the time being) constrained to doing5. Yet it is here argued that not
only is the production of theory the main role of scientific simulation
modeling today, it is also a role in which it has been the most influential
within science, where it has in fact re-shaped how science looks upon
the world. While it is beyond argument that predictive modeling is
an important and worthy goal, it is not obvious that theory-producing
models must lean on the promise of foreseeable such models in order
to be respectable: simulation has opened the eyes of science to whole
new classes of phenomena and mechanisms in Nature; things that we
have really known to be there all along but that we for methodological
reasons have tried to do without, bypass and even wish out of existence.

The out-of-equilibrium, the transients rather than just the equilibria,
the history and dynamics of systems, chaos, phenomena as emergent
results of underlying dynamical systems; all these are things that were
very hard to explore and develop theoretically before computer simula-
tion became possible. Once possible to study, once the methodological
barrier preventing the study of these aspects of the world began to
crumble,6 their importance in nearly every aspect of the world has
begun to be acknowledged.

Complex systems research can almost be defined by its use of simu-
lation (including the use of such models together with more traditional
types of models) and it is also in this tradition that the type of simula-
tion discussed in this paper has largely developed. The first dedicated
research center for complex systems, the Santa Fe Institute (SFI), was
founded (in Santa Fe, New Mexico) in 1984, in large part by researchers
at the nearby Los Alamos National Laboratory (LANL), which is at the
root of not just simulation but of scientific computing as such7. While

5 This goes also for social and biological science where predictive models with
a degree of success approaching that of physics-based models (such as those listed
above in Sec. 1) are exceedingly rare and disputed.

6 We are here speaking of quantitative methods. Of course, complex systems have
been subject to discursive theorizing in for example philosophy, psychology, social
science and biology for a long time, and the value of such theorizing should not be
detracted from. Major breakthroughs have resulted from sound discursive argumen-
tation, and there can hardly be a better example of this than Darwinism. But it is
equally true that the wide acceptance of Darwinism in science did not emerge until
the formalization of the Modern Synthesis, see (Rus06). Indeed simulation offers yet
a new opportunity to turn qualitative descriptions of systems into models that can
be investigated quantitatively.

7 Among them George Cowan, Stirling Colgate and Nicholas Metropolis who were
part of the Manhattan Project at Los Alamos National Laboratory, see e.g. (Gal97).
It should also be mentioned that the Center for Non-Linear Studies at LANL was
founded in 1980 and although it has a heavier emphasis on natural sciences than
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the early history of complex systems research was characterized by high
activity and large visions tempered by little in terms of time-tested
practices and methods, it has gradually matured8. Not unlike general
systems theory, maturation and success has furthermore often lead to
the assimilation of its methods and perspectives into the mainstream of
specialized fields. As Bar-Yam puts it (BY03): “Currently, simulations
play such an important role in scientific studies that many analytic
results are not believed unless they are tested by computer simulation.”
Epstein (Eps07) sees this era of simulation as the emergence of a whole
new paradigm for what it constitutes to say that we understand some-
thing about social systems. What he calls a “generative social science”
asks whether hypotheses are capable of generating (most importantly
through simulation) the phenomena that they purport to explain. This
mode of explanation is not inherently tied to social systems but applies
to just about all fields where complex systems methods are applied.
If a proposed hypothesis is found to produce the wrong results when
animated in a simulation, this raises serious questions regardless of
what field our study sorts under. When the question can be asked, it
also must be asked.

The critical feature is that the model ontology here has a dual
nature: it can both generate the phenomenology of the target system
(explore its causal contents) and function as an hypothesis about it
(being abstract, it has theoretical qualities). It is hence the ontology,
not the computations made using the ontology, that is the final cause
of many (indeed most) scientific simulation models today, and they
are therefore inverted compared to the computational role in which we
seem to almost instinctively put simulation. The potential for (and exis-
tence of) an inverse simulation methodology has been noted by Galison
(Gal97) but not been analyzed further. Furthermore, the ability to test
hypotheses in this manner is by no means useful only for contributing
to what we usually think of as scientific theory, it is also used to gain
knowledge that is of directly applied interest such as policy options or
engineering solutions.

4. The meaning and function of mimesis

The mimetic nature of simulation is itself of course old news, but we
here look more closely at mimesis and at a specific form of mimesis:
the practice of constructing model ontologies that are viewed as be-

SFI, it can still be said to be a research center for the study of complex systems in
general.

8 Which is not to say that it is yet fully adult.
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ing causally similar to the microlevel (underlying physics, generating
processes, etc.) of the target system. Mimesis (with similarity as an
intended outcome) is used here rather than similarity directly. The
reason for this is entirely analogous to the reasons why Suaréz chose
representation rather than similarity to describe the relation between
model and target systems (Sua03); i.e. to avoid reflexivity and impli-
cations of successfulness9. This problem with using similarity in this
context is also noted by Livet(Liv07). In ontomimetic simulation, we
basically proceed from observing a system – biological, physical, social
or just about anything – to then fashion a model ontology that mimics
its components in terms of how they interact. Animating such model
ontologies, one then hopes that this ontological (low-level) similarity
will lead also to a phenomenological (high-level) similarity. Doing so,
it is argued here, has allowed science to tackle problems that are oth-
erwise impervious to mathematical (including numerical methods of
approximation) and empirical methods.

While the existence of such models has been noted and briefly de-
scribed, for example by Galison (Gal97), the centrality of their position
on the stage in much of science has not been identified; something that
in large part appears to be due to the legacy of taking physics as the
starting point. In the literature on the epistemology of simulation in
social systems, which is all of a recent date, the important role of the
ontology is more visible and has been discussed, e.g. by (LMPS08).
However, the implications discussed here, and the exact nature of the
relation between model and target system ontologies in simulation, has
not been explored.

5. A closer look at simulation: ontomimetic simulation in
context

5.1. Terminology

For the purposes of the present argument, let us distinguish between
four perspectives from which a system under study can be viewed.

The realization This simply denotes the system in its own facticity
as it is constituted in Nature, including all its known and unknown
aspects. There may be all sorts of theory about how the realization

9 If A is similar to B, then B is also similar to A. Also, the question arises of
how similar it is and how similar it must be if it is to qualify as similar or not. On
the other hand, if A mimics B, then there is no implication thereby that B mimics
A. It is furthermore perfectly possible to mimic something without succeeding in
achieving similarity.
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level works, but this is all outside of the theoretical focus of our
study: e.g. say that our model features humans, then the fact that
there exists large amounts of biochemistry theory that applies to
humans does not mean that our model must or should use such
theory.

The ontology This is our theoretical conception of the causal struc-
ture of the system, i.e. objects, properties and laws at some par-
ticular conceptual level that we would like to see as fundamental
in our study10.

The state The specific state of a particular system at some particular
point in time from the perspective of the ontology. If the ontology
says that there are bodies located in space, then the state provides
locations of particular bodies at particular times.

The phenomenology The phenomenology involves observation of the
state of the system along with various theoretical and/or cognitive
operations on observational data. Quite often integration over time
and space (as well as other degrees of freedom) is required.

We may now note that in simulation, we are using one process as a
model of another process (Har96; Cam74). We hence have two systems:
one real system that we would like to study, here referred to as the
target system, and one vicarious system that we study instead of the
target system, here referred to as the model system. Both of these are
here put under above mentioned perspectives. We employ mimesis to
achieve similarity between the two systems, and while this similarity
may for practical reasons begin anywhere, it is in the ontology that it
really matters theoretically.

The ontology, the state and the phenomenology of a model are
understood in theoretical terms that apply also to the corresponding
levels of the target system. That is, we strive to be able to use the
same language when speaking of the two. The realizations, however,
can be arbitrarily different between the two. In computer models, all
realizations for example end up as digital computation and this is of
course not the case for the target system, unless of course we happen to
be studying precisely digital computation. This means that we have two
distinct theoretical and descriptive regimes: for the model realization
we can have any set of theories and in the model ontology and above
we have theory regarding the target system. For example, a computer

10 Including external factors summed up as boundary conditions and such. An
excellent treatment of the use of the term ontology in simulation modeling and how
it relates to the traditional metaphysical concept is provided in (LMPS08).
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program employs a lot of theory about computers along with any theory
about the target system that it uses.

5.2. The relation between model and target system

In Figure (1), color code A indicates a double arrow between the on-
tology and the realization of the model system. The realization of an
ontology in a computer (or any other medium) is an iterative process
that is guided by, on the one hand, the constraints of the realization
medium, and, on the other hand, by the verifications of similarity in-
dicated by color code C. While it would be schematically attractive to
say that comparison first only takes place on the ontological level, this
is far from true. The ontology and the phenomenology are both part
of the model and comparison with the target system in both equally
reflect on the validity of the model. Hence, early versions of the ontology
are run and its states and phenomena weigh into the ontological design
process from an early stage. The reason that the ontology is emphasized
over the state and the phenomenology is that the ontology generates
the phenomenology dynamically and thereby we see it as capable of
serving as an explanation.

Moving between levels in Figure (1) does not correspond to the same
type of transformation throughout. That is, they are not organizational
or observational levels. For instance, while we might primarily think of
the realization as organizationally lower, it does not only contain that
which is too small/fast but also the things that are too large/slow.
The state can roughly be viewed as an ontology whose variables have
been given values and whose structure has been instantiated. The state
level is thus obtained through an initialization of the ontology, but a
history of states is then obtained through a subsequent animation of
its rules as a dynamical system. Hence the relations ontology→state
(color code F) is one of situation and state→state (color code D) is
one of generation. The relations state-phenomenology and realization-
ontology (color code B) are however ones of conceptualization. That is,
we there observe and characterize the lower level to obtain the upper
level in the graph.

Finally, color code E indicates the epistemological potential of sim-
ulation that is here argued to be unique to ontomimetic simulation
and to characterize the here primarily discussed subclass of inverse
ontomimetic simulation. The potential is that of looking for features
of the model ontology in the ontology of the target system. We refer
to this as inverse ontomimetic simulation since it reverses the more
obvious inferential direction from target to model ontology and on
to model phenomenology by computation, observation and analysis.
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Figure 1. A schematic figure showing relations between a simulation model to the
left and the simulated target system to the right.
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Archetypically, the reasoning goes as follows: “Altering the model on-
tology in such and such ways gives us a better phenomenological match
between model and target system. Could this alteration point us to an
undiscovered feature of the target system?”

6. Inverse Ontomimetic simulation

In this section we will characterize inverse ontomimetic simulation in
a variety of ways: why and how did computers make it possible, how
does it compare to theory, computation, mathematical modeling and
empirical experiments? Let us begin by looking at how the computer
makes inverse ontomimetic simulation possible.

The computer puts before us a number of features that it has as
a machine. These change over time as computer technology evolves
although there is a core set of features of computer organization that
have remained qualitatively (although certainly not quantitatively) the
same11. These features are the constraints under which and (no less
importantly) by which computer based techniques, such as scientific
computer simulation, have developed. In the context of computer mod-
eling we might summarize some of the more salient opportunities as
follows:

− Dynamism: Algorithms are executed sequentially operating on a
working memory. The computer is a dynamical system that lends
itself very well to modeling other dynamical systems.

− Transparency : We have full access to the states of computers.

− Flexibility : We have full freedom within the constraints of com-
puter programming to define what we wish the computer to do.

− Abstractness: The flexibility of the computer gives us, among other
things, the ability to devise models from any perspective and on
any level of description and more or less abstractly.

− Vicariousness: Computer models execute within the computer and
hence operate on its temporal and spatial scales. This makes the
computer in many cases fast, safe, repeatable, ethical as well as

11 It should be borne in mind that quantitative change on a low level can well
result in qualitative change on higher levels: models used routinely now would not
have executed even by now if run on early computers. More computational resources
have made qualitative novelty such as graphical user interfaces, object-oriented
programming and multitasking possible and thereby triggered their invention and
development.
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above mentioned points; in short it is often a good vicarious device
that can be studied instead of the target system in which we are
really interested.

Ontomimetic simulation makes the inverse method possible and in
its computer based instances it draws on the above listed features. It
was invented as the technology conferring them appeared and because
it was useful12. It is a type of modeling in that it relies on repre-
sentational links between model and target system (Sua03; Gie04).
It is furthermore distinct from other types of simulations and most
other types of models (except for experiments) in that it also aims
to achieve causal similarity to the target system on the ontological
level. Nothing in principle prevents mimesis from being achieved in any
medium, but at the present, the computer is the ultimate customizable
dynamical system. The mimetic nature of simulation has of course been
emphasized by many (see e.g. Hughes, Galison, Hartmann, Winsberg,
Lehtinen and Kuorikoski (Har96; Gal97; Hug99; Win99; LK07)) but
we here focus on the cases where it is the ontological level specifically
that is mimicked.

The distinction and relation between mimesis and similarity was dis-
cussed in Section (4), but what is the distinction and relation between
representation and mimesis? They are akin in the important way that
they are both intentional. They avoid resting on notions of success and
they are not reflexive; i.e. they do not threaten to force us to view the
target system as being a model of the model; see (Sua03; Gie04). But
there are also important differences. Representations are symbolical
and arbitrary and if the representational links are lost they cannot be
reconstructed. For instance, there is nothing massive about the symbol
m in mechanics13. To the extent that mimesis is successful, it leads to
similarity and this means that we can re-establish the links by means
of recognition. But even more importantly, we can establish links that
we did not know were there and that we did not put there, e.g. (RB95).
Equally important is that changes to a mimetic structure correspond
directly to the same (and recognizable) variation in the target system;

12 This is not a general statement about innovation. But it happens that in com-
putation, many important techniques have been easy to invent once they became
technologically feasible.

13 Although it is interesting to note that in abbreviating another symbol, the
word “mass”, it still makes use of similarity in another way. The symbol “mass”
is of course highly unlikely to lose its representational link to the concept by that
name but the strength of the symbolical connection does not change its type: it is
still symbolical. We of course have no reason to suspect that a dynamical system
of m’s (whatever that would be like) would have anything to do with the physical
concept of mass: it represents rather than mimics mass.
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in a symbolical system this is not the case since the symbols mean
nothing beyond what we by fiat decide that they mean; this will be
discussed further down in the text.

The most important key to understanding how ontomimetic simula-
tion makes this inverse method possible is to see how it combines causal
dynamics with abstractness. Ontomimetic simulation models can have
any degree of abstractness: a mimic can be abstract just as much as a
theoretical model can be abstract. The more abstract a mimetic model
is, the wider the class of systems that it may resemble and be useful as
a model of and, consequently, the more general will its results be. The
concept of something like an abstract experiment is quite new, and this
is likely the reason for the indecision over whether simulation is best
viewed as a type of experiment (based on it being explicitly dynamical)
or a type of theory (based on it being abstract and on the heavy use of
theory in its design). Abstract mimetic ontologies can undergo causal
dynamics and are in that sense more like experiments than like theory.
However, since theory must be abstract, their abstractness makes them
more compatible with theory than are the experimental models with
which they share their generative/dynamical features.

We almost certainly know aspects of the ontology that we wish to
learn more about and the ontology can of course be falsified just as
readily on the ontological level as it can on the phenomenological level.
It is furthermore also important for logical reasons. We are here faced
with inverse problems(Kir97): a phenomenology does not generally (or
usually) point to a unique generating ontology. It rather points to a
class of ontologies. This means that if phenomenological correspondence
is used in conjunction with a direct ontological correspondence, a much
more narrow class of possible ontologies can usually be determined.

Variations of ontomimetical simulation model systems correspond
to those same variations also in the target system. This possibility
of varying causal and abstract characteristics with great control and
precision signify a fundamental difference between inverse ontomimetic
simulation and other ways of testing hypotheses. If we view the pro-
duction of new hypotheses to try out as a central component of the
scientific epistemological machinery, see e.g. (Pop79; Hul88; And08),
then this variational flexibility is highly notable.

Winsberg’s (Win03) three ideal views on the epistemological signif-
icance of simulation are useful to consider: i) That simulation has a
metaphorical role and is in fact nothing more than a brute-force way of
approximating solutions to unsolvable mathematical models. ii) That a
simulation model is a “stand-in, or mimic, of a real world system”, and
that it can therefore be used as any experiment. iii) That simulation is
something genuinely new that is neither experimental nor theoretical.
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We here limit our inquiry to ontomimetic simulation, without arguing
laying claims on the whole simulation concept (e.g. arguing that it is
“true simulation” or some such).

View (i) is deemed to be without merit as even a cursory glance on
how ontomimetic simulation is used shows that they are often employed
in the complete absence of mathematical models of the target system.
Of course, we always need knowledge of the target system in order to
build a model of it and since much of our scientific knowledge about
the world comes in the shape of mathematics, the knowledge behind
simulation models is often mathematical. It is not intrinsically linked
to mathematics, however, and it is how it complements mathematics
that is what is interesting about it; not how it might somehow be con-
strued as mathematics anyway. Ontomimetic simulation is causal while
mathematics and computation is symbolical: an ontomimetic ontology
means something in itself in the important sense that it resembles
what it is a model of. The view that is supported here is the first
part of view (ii) but, with the addition of some further observations,
drawing view (iii) as the conclusion. Unfortunately, view (iii) makes
no specific commitments, so let us therefore go into some more detail
by relating ontomimetic simulation to a range of other things; see also
Figure (2) for a an overview of the relation between inverse ontomimetic
simulation and some other relevant concepts.

6.1. Ontomimetic simulation vis-à-vis theory

Since ontomimetic simulation models are often highly abstract and
since they involve the design and construction of systems that represent
and are used for making deductions about target systems it is little
wonder that simulation is strongly linked to theory. The use of theory
for realizing ontomimetic simulation modeling is important, but its
most interesting theoretical aspect lies in how it is used for producing
theory. Rather than animating theory (already tested and trusted) it
animates hypotheses that, to the extent that they successfully pass
our tests, might become scientific theory. That is, simulation models
have been used for uncovering how systems work on an abstract and
causal level, often abstract enough that mathematical theory has been
possible to devise as a result.

The key to the usefulness of simulation in this role is here argued to
lie in how it thereby links experiments and theory by being a system of
abstract interacting entities. While ontomimetic simulation is to a large
extent a mix between theory and experiment, stopping at that descrip-
tion causes us to miss its most interesting features. In particular, it is
the ability to use an experimental approach on abstract tailor-made,

phsci1.tex; 14/10/2009; 19:55; p.14



Ontomimetic Simulation: Mimesis and animation 15

Similarities 

Mathematics 

and logic 

Numerical 

techniques 

Differences Relations 

Theory 

Empirical 

experiments 

Computation 

Mathematics, logic and 

ontomimetic simulation 

are all methods for 

exploring the relation 

between states and how 

states change over time. 

Both are based on explicit 

dynamical systems. 

Ontomimetic model 

ontologies, like theory, 

are abstract. The model 

and target systems have a 

common abstract 

theoretical 

conceptualization in the 

ontology.  

Both operate on the basis 

of causal dynamics and 

both rely on similarity 

between model and 

target system for their 

usefulness. 

Digital computation is, 

like ontomimetic 

simulation, based on 

dynamical systems.  In the 

general sense, 

ontomimetic simulation 

as a whole performs 

computations also if they 

are not computer-based. 

Mathematics and logic 

are stringent, exact but 

strongly constrained by 

solvability. Being 

symbolical, the inverse 

method is hampered by 

the need to go back and 

forth between causal and 

symbolical. 

The dynamics of 

numerical techniques is 

not causal. They minimize 

error in relation to a 

mathematical “truth” that �� ����
 may be a model of 

a target system. 

Ontomimetic simulations 

may be abstract but they 

may also be explicitly 

dynamical, which theory 

is not. This combination is 

of great importance. 

Empirical experiments 

employ authentic rather 

than designed entities to 

achieve similarity. 

Simulations not tied to 

the scales of the target 

system but to 
���

 

realization; i.e. typically 

computers. 

The operations of 

computation are 

symbolical and its 

meaning is purely internal 

to the computational 

system.  Computation in 

the general sense is only 

one part of the inverse 

method; see Fig (1). 

Ontomimetic simulations 

use and produce theory 

on mathematical and 

logical form. The realism 

of mathematical models is 

also strengthened if it can 

be demonstrated that it 

predicts a corresponding 

causal model. 

Ontomimetic simulation 

very frequently uses 

numerical techniques and 

it genealogically derives 

from them. 

Theory along with 

observation underpins the 

design of simulation 

models as well as any 

other model. 

Experimentation has 

always been a strong 

inspiration for 

ontomimetic simulation. 

Today, it is increasingly 

feasible to use 

simulations where the 

scale of the target system 

rules out experiments. 

Ontomimetic simulation is 

almost always realized 

using computers. The 

suitability of computers 

for this task has caused 

the term simulation to 

become tightly linked to 

computers. 

Phenomimetic 

simulation 

Both use a foreign 

realization medium 

(usually a computer) to 

realize vicarious entities 

that are intended to be 

similar to target entities in 

a causal sense; i.e. they 

act like them and can be 

recognized as them. 

Ontomimesis mimics 

phenomena through 

designed ontologies that ��������
 the phenomena. 

Hence, the organizational 

level below the 

phenomenon can be 

studied using it. This is 

not so for phenomimesis. 

Phenomimesis often uses 

ontomimesis as a starting 

point, e.g. artificial neural 

nets or genetic 

algorithms. The ontology 

of ontomimetic models is 

itself also realized using 

phenomimesis. 

Figure 2. Above is shown an overview of the similarities, differences and relations
between inverse ontomimetic simulation and a range of other concepts.
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variable, controllable and entirely transparent systems that serves us
well in the search for theoretical understanding of the world. Out of
this ability has emerged the inverse strategy by which ontologies are
treated both as systems of experimental interactors and as theoretical
hypotheses.

6.2. Ontomimetic simulation vis-à-vis empirical experiments

Ontomimetic simulation involves a dynamical system where entities
interact in a way that is intended to reflect how their counterparts
interact in the target system. This means that is has a clear flavor
of empirical experimentation, and indeed it is often referred to as a
“quasi-empirical” method or as “in silico experimentation”, see Figure
(3). But the match between the two is far from perfect, and this is
so for a number of concrete reasons, some of which have already been
mentioned. It is true that empirical experimentation also relies on an
ontological similarity between model and target system, and that this
congruence between simulation and empirical experiments is responsi-
ble for most of their common qualities. It is also true that ontomimetic
simulation produces explanations in terms of causes and effects and
how naturally it interfaces with empirical data from experiments and
observations. Indeed, since it mimics the target system, data can be
generated much like for the target system itself, and this data ca be
put through the same type of analysis alongside it. However, simulated
entities are designed to be as similar as possible whereas in empirical
experimentation the normal thing is to simply use authentic entities;
see Figure (3) and the relation (color code G) between target and model
realizations. This is the root cause of the difference between simulation
and experimentation and since it is responsible for its most important
differences, it may go a long way towards defining them in relation to
one another.

The idea of separating the ontological from the realizational per-
spective, which is highly natural for ontomimetic simulation since the
target system is obviously foreign to the electronics of the computer,
is not as obviously motivated for empirical experimental modeling. A
water molecule is, after all, a water molecule, and while it does not
cause any problems to speak of the ontology of water (in the present
sense) separate from the realization of water it does not seem to add
anything new; it over-defines the problem. The reason that we do so
here is that by harmonizing our conceptualizations of simulations and
experiments we see more clearly what their similarities and differences
are.
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The experimental model system as a whole is however far from
authentic. Some of these unauthentic aspects we would just want to
eliminate if we could, but there are also several ways in which experi-
mental systems are not intended to be authentical. For example, they
contain a range of designed components intended to make the system
controllable, repeatable and observable in ways that the target system
is not. In the schematic and highly cartoon-like example of Figure (3),
an actual rabbit is used (in the model) but along with auxiliary things
such as carrots (what else?) that form the rest of a controlled and
well-known vicarious system.

The fact that the simulation model’s ontology must be conceived
and assembled introduces a number of fundamental differences between
simulation and empirical experimentation. These differences are inher-
ent and they come in the shape of both opportunities and problems.
The most obvious problem is the question mark that constantly hangs
over the designed ontology of the simulation model. As mentioned,
in physics it happens that sufficient confidence can be put into this
design process that it can form the basis for something truly close to
an experimental approach; we need not look further than to the earliest
examples of “numerical experiments” developed under the Manhattan
Project of the mid-to-late 1940’s, see (Gal97). This is however rarely,
indeed perhaps never, the case in other fields.

But ontological simulation also has some strengths that can make it
viable as a replacement for experimental models where experiments are
not feasible. It can be applied to systems where the entities and events
are too small, too large, to fast, too slow, no longer exist and so on. This
is discussed by Hartmann (Har96) and Galison (Gal97) who recounts
how the strong pressure to design thermonuclear weapons combined
with the practical impossibility to perform the necessary experiments
drove the early development of computer simulation very forcefully.
Simulation is not superior to experimentation here per se but since
experiments (and direct observations) are impossible, simulation is still
in use in an experimental role, with the opportunities characteristic of
ontomimetic simulation modeling as a bonus.

But the above described extension of the range of scientific inquiry
may still not be the epistemologically most significant point at which
simulation brings something to science beyond what experiments give
us. Simulation models can do some things that neither theory nor ex-
periment can do: they can be abstract and dynamical at the same time.
This combination is highly potent, not least since it fills a considerable
methodological lacuna. Abstract models that capture the behavior of
systems based on only its causally important features greatly improves
clarity, they can separate the dominant features from those that are
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Authentic entities are combined with selected entities to form a model 

realization yielding control along with a high degree of similarity. 
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The potential for using an experimental ontology inversely is lower: similarity 

is cheap, but we are also more stuck with our objects as they are. 

Realization 

Figure 3. Empirical experiments and ontological simulations are structurally very
similar, but there are still important differences between them. The color codes
from Figure (1) are used here as well with the changes and additions indicated in
the figure.
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unimportant and they interface neatly with theoretical models. Our
general scientific knowledge about the world comes in the form of
abstract theory (in addition to data which, of course, is highly spe-
cific) and we also want to produce new general knowledge in abstract
theoretical form.

xxx
As briefly mentioned above, the element of design inherent to on-

tomimetic simulation means that such models are far from guaranteed
any amount of similarity: the flip-side of the opportunity to define just
about anything in a simulated ontology is the need to consider every-
thing. In this, ontomimetic simulation is highly similar to mathematics:
no unknown but important features come for free the way they do when
authentic entities are used. This introduces a tremendous difference
between experiments and simulation. In empirical experimentation we
can use entities that we do not know much about at all; they bring
all their properties to the party regardless of whether we know about
them or not. For example, chemical experiments were conducted with
great success long before anything was known about the molecular and
atomic structure of the used substances. On the other hand, empiri-
cal experiments are much more stuck with their components as they
happen to be and we never know what important properties that may
affect the dynamics without our knowledge, and we are also limited in
our ability to make variations.

Theoretically, these shortcomings of experiments are more constrain-
ing than what might seem the be the case at first glance (most of
them apply even more to direct observation of target systems). Indeed,
especially in the early days of complex systems research, this new ability
to investigate “would-be worlds” (Cas97), such as in the Artificial Life
movement (see e.g. (Ada99; Ae05)), provided a strong impetus. This
made it possible to explore the principles of natural dynamical systems
in extremely abstract forms, such as natural selection, adaptation, self-
assembly, emergence, the origin of life, life and so on. It also greatly
stimulated the search for “universality” in explanations, i.e. of robust
phenomena due to so abstract causes that they re-appear in differ-
ent but strictly recognizable forms widely across fields of study, see
e.g. (SAB+96; SAG+00). With ontomimetic simulation, universality
could be sought also where mathematics does not allow us to make
deductions.
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6.3. Ontomimetic simulation vis-à-vis mathematical
modeling

The heart of any simulation model is the animation of an ontology,
situated in time and space as a state, into future states14. Mathematical
models are of course used in (among other things) precisely this role:
to provide mappings between variables or over time. But while the
operations of an ontomimetic simulation can (and must) be framed in
the same causal terms in which we understand reality, mathematical
operations cannot be thus framed. A predator eating a prey agent
corresponds to precisely that in reality. The operation of ontomimetic
models is understood in terms of events that have direct counterparts
in the target system. Taking a derivative or a logarithm, however, does
not correspond to any real events, and those are the terms in which
the operation of mathematical models are understood. Mathematical
and logical operations, as we all know, work exceedingly well but to
make intuitive sense of what they do we must move to the systems
of metaphors that they are based on, see (Ln00). Regardless of how
well mathematics and logic works, and regardless of how skillful many
theorists are in making the connection between symbols and reality
and back again, there is still a fundamental difference to be found
here between models that conceptually operate symbolically and those
operating causally.

Because ontomimetic simulation and mathematics alike are used for
mappings and, very likely, because of simulation’s ancestry in numerical
methods, it is tempting to view simulation as basically a type of numer-
ical method. As has been argued here, that view is not satisfactory and
there are many roles in which simulation is used to which numerical
methods cannot be applied. The similarity between simulation and nu-
merical methods can be summarized thus: both are dynamical systems
and both are used as models. However, numerical methods specifically
approximate solutions to equations. They take the mathematical model
as the truth to which to conform (minimize the error in relation to).
This means that they do not model causal dynamics but something
entirely different. Instead, they tend to operate within what Lakoff and
Núñez (Ln00) refer to as the metaphors of mathematics. For instance,
the dynamics of Euler’s explicit method for approximating solutions of
ODE’s makes full sense within mathematics (in algebraic and geomet-

14 Future is of course not always defined as a particular point in time specified by
a time parameter, but can also be a future equilibrium, optimum and so on. While
time always proceeds explicitly in ontological simulation models, it is not always
minded explicitly there either: they can for example be run until some criterion,
such as detection of equilibrium, has been fulfilled.
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rical terms) as a method of narrowing in on a curve described by the
equation to which we seek solutions. Such a dynamics, however, lacks
any interpretation in terms of the dynamics of whichever target systems
that such ODE’s are used as models of, and neither is it supposed to.
However, this being so still means that the inverse method described
here cannot be used: the dynamics of the numerical method offers no
insight into the dynamics of the target system. In other words, numer-
ical methods and ontomimetic simulations both rely on the dynamism
of computers, but they do so in conceptually different ways.

Mathematical modeling has many obvious strengths, but it also
has its weaknesses. One is that there are large interesting areas where
it cannot be properly applied; i.e. where the assumptions needed for
successful application are too strong and lead to unacceptably poor
realism15. Furthermore, the instantaneous swiftness by which we can
bridge dynamics in, say, a solved differential equation (by plugging in
numerical values), comes at the obvious price that we obtain no infor-
mation about what causally takes place over the history of the system
in question. This is even more markedly the case when the model is not
a function of time, such as when solving for equilibrium states. Numer-
ical methods have here extended the reach of mathematical modeling
immeasurably, in particular in its application to large and detailed real
systems such as is often the case in engineering. However, many types
of systems and problems are as impossible to study mathematically as
ever.

The specific natural phenomenon that causes systems to be impos-
sible to study using mathematical modeling is chaos in conjunction
with discrete events. Chaos is a fundamental unpredictability that in
general occurs when a dynamics is sensitive to small changes in its
state, see e.g. (CAM+05), or, for that matter, in its ontology, see
(LM05). This senistivity wreaks havoc on prediction for many reasons.
In short, two systems that differ arbitrarily little will soon be no more
similar than any two systems. The initially minute difference between
the two systems grows exponentially or faster. This leaves us with a
very short predictive range whose extension is highly costly in terms
of demanded exactness; the most familiar example of this is of course
weather forecasting. Add to this historical path-dependence and the sit-
uation becomes even worse: small events often not only magnify, but act
to suddenly make certain future states unreachable and others suddenly
highly likely (often referred to as non-ergodicity). For instance, whether

15 This complaint has been made in particular against neoclassical economics, see
e.g. (NW82; Art94; Hod01).
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or not the first settlement of a city happens in a certain location or not
completely changes the future of that location.

Mathematical models are however far from useless in the study of
complexity. To the contrary, much of our conceptual understanding
of complex systems resides in the mathematical field of chaos the-
ory, which was well developed already when computers and complex
systems science emerged; Cvitanovic et al even opine that computers
have, if anything, hampered the development of mathematical chaos
theory (CAM+05) . This brings us to the plain fact that ontomimetic
simulation in no manner solves the problem of chaos and complexity.
What it does, however, is to present us with the opportunity to grapple
with it in the first place as it turns up in specific systems that we are
interested in. If the system that we ontomimetically simulate is chaotic
then the simulation will simulate also that. What we get is therefore
not a prediction but an ensemble of possible futures that are far from
always possible to make sense of in simple and standard ways, such as
Monte Carlo methods.

Mathematical modeling is nearly always present also in ontomimetic
simulation modeling. First of all mathematical models are used for re-
alizing ontologies in the top-down design of their features, as discussed
in section (5.2). Mathematical models are also often discovered as a
result of the use of ontomimetic simulation models. As noted by Bar-
Yam (BY03), we are often not prepared to accept the relevance of
mathematical models unless they are shown to conform to the outcome
a simulation of the system in question. In this role, ontomimetic simula-
tion has a unique crucial feature since, as noted in section (6.2), it allows
us to systematically study dynamical systems of abstract entities.

Epstein recently provided a highly insightful analysis of simulation
in social systems that generalize well to similar types of computer
simulation in other fields. However, a point in his argument that might
be misleading is important to raise: the claim that simulation models
are “expressible as equations”. Epstein points out that computer code
can be represented as recursive mathematical functions and this is by
all means true. However, the question is whether this tells us anything
about simulation; whether this makes simulation more mathematical
in any useful sense. If not, then emphasizing this fact risks misplacing
emphasis and attention in a way that hampers understanding of what
is remarkable about ontomimetic simulation.

Mathematical models have some powerful features that they do not
share with ontomimetic simulation models. This fact unfortunately
does not change if we are able to cram the model into some symbolical
formalism. The question is whether or not it has any consequences
that we can come up with a symbolical formalism. It is granted that
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we might gain some notational clarity by doing so, although this is by
no means guaranteed to be the case since we risk losing the overview
of what in fact happens in the system if we hide causality behind
otherwise toothless symbols and algebraic operations. Furthermore, if
a formalism is not motivated by its power to make inferences it be-
comes quite arbitrary: one can invent any number of such formalisms.
There is a steady stream of “general/formal framework for complex-
ity/life/autocatalysis/...” to complex systems related publications and
some of these make it past the review process. These reports are curi-
ously similar in many respects and typically they claim to make a “first
report” on some new way of making sense of highly general phenomena
such as those listed just above. The trivial (which they freely admit)
computations and derivations that can be made at this point are to be
followed up with new things as soon as these have been worked out.
As far as is known to me, no sequel to such a paper has ever appeared,
and no non-trivial results have been obtained as a result of such a
framework. The perceived importance of formalizing complex systems
is obviously high but precisely why this is important is never explained,
presumably because it is seen as obviously true. This brings to mind
Feynman’s (Fey97) felicitous term “Cargo Cult Science”: the most suc-
cessful sciences are formalized, hence if we formalize our science and
perform formal operations upon its models, it should become successful.
This does not seem to work: it seems that successful formalization
simply does not begin in this way. Proper formal models allow us to
use algebraical or logical operations to draw non-trivial conclusions
about the target system. This has not been the case for formalizations
of simulation so far.

6.4. Ontomimetic simulation vis-à-vis computation

One could think that simulation – at least as long as it happens on
a computer – necessarily has to be a form of computation. This must
however be classified as a “greedy reductionist” (as discussed by Den-
nett (Den95)) conclusion that conceals the interesting structure of the
problem. While technically correct in some sense, equating a simula-
tion with its code under-defines the problem in a way that keeps us
from understanding important details of the epistemology; not unlike
how the technically correct statement that humans are collections of
atoms does not tell us a whole lot about humans as social agents. The
computer program is here seen as belonging to the realization of the
computer simulation model system. What we define is the ontology
and the code that realizes is is a means for achieving what we seek to
achieve. The computer code is determined by the model only in terms
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of its function. For example, two programs written to realize a specified
model are unlikely to turn out very similar, even if the model is quite
simple.

It is clearly the properties of the ontological level of the target
system, not those of the computer program, that we are interested
in. Properties of the realization that remain in the ontology we refer to
as “artifacts” (such as, say, a lack of precision in continuous variables
or effects from a discretization of space); these are always problematic
and the reason is that they have to do with the stuff of the realization,
which is arbitrary in relation to the systems that we wish to study.
Indeed, we do not even insist that our models should be realized in a
computer in the first place. If we can use other means of realization,
like Holmberg did with lamps, photo sensors and spatial movement by
hand (see Sec. 2), we are happy to do so if we have something to gain
from it. It is a practical consideration that causes us to usually choose
the computer and specific algorithms: the flexibility of the computer is
so much greater than other realization means are at the moment that
we rarely have any alternative.

We have said that similarity (as a result of mimesis) is a charac-
teristic of the ontological level of target-model system pairs. It may
however be interjected that mimesis is also used liberally in the model
realization. The difference between these two instances of mimesis lies
in how they are used: what mimesis is intended to achieve. Mimesis in
the realization is, like the model realization itself, a tool in the effort
to realize the ontology in a phenomimetic modeling-from-above fashion
(the ontology can be seen as phenomenology of some lower level in the
realization).

This difference in the role of mimesis in the realization is evident
in how phenomimetic tend not to remain faithful to this inspiration.
Mimesis has value in the realization only insofar as it improves this phe-
nomimesis. Take for instance techniques such as Genetic Programming
(GP) (PLM08) and Artificial Neural Networks (ANN) (Hay08). Both
are strongly inspired by natural systems but they seek to mimic only
a limited number of features of these systems on a very high level, e.g.
adaptivity and recognition. Consequently, we might have human agents
in an agent-based model using ANN in order to achieve intelligent
behavior. Thereby, a certain similarity between model and target will
obtain on the level of the neural network; a level that here resides in
the realization rather than in the ontology of the model. But it will be
a similarity that for the theoretical purposes of the model is of only
indirect value. That is, whereas we draw conclusions about the agents
vis-à-vis humans in the target system we draw no conclusions about the
artificial neural networks vis-à-vis the human brain. If there would be
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a more efficient or suitable way of achieving intelligent behavior, then
we would use that technique without sentimentality, as we indeed do
if we use rules or mathematical models to control behavior instead. If
biological neural networks had been the subject of our study, then the
situation would be different altogether (and ANN would be unlikely to
be sufficiently realistic in such as role in any case).

However, there is another way in which simulation essentially in-
volves computation: the mapping between states from one point in
time to another; see the generation relation (color code D in Figure
1). This casting of simulation as computation does not follow from the
reductionist casting mentioned above and may be true independent
of it. Computation is thereby fundamental to simulation in one way
and very common in another way. The common but not fundamental
relation is that we use computers to realize most simulation models.
The fundamental relation is that since simulations play out a dynam-
ics, we can view this playing-out as a series of computations16. But
also this fundamental connection does not allow us to say that inverse
ontomimetic simulation is computation. As shown in Figure (1), the
computational step is just one cog in a larger machinery and the other
cogs are no less important. Ontomimetic simulation is computation in
the same sense that a car is an engine.

This is not to detract from the importance of understanding what
most ontomimetic simulation models are built from, which indeed is
computation. We have for example the problems associated with nu-
merical instability as well as any other artefact of using a digital com-
puter as a medium. We can compare this to a parallel example: is a
house a collection of planks and bricks or is it a collection of rooms
with different functions? There are situations where both perspectives
(as well as other perspectives) are necessary, but neither perspective
supervenes on the other universally. If we want to see why humans build
houses in the first place, their status as collections of bricks and planks
enlighten us considerably less than their status a fulfilling certain needs.
However, if we want to build a house (presumably because we want a
collection of rooms with different and complementing functions) from
bricks and planks we are well served by knowing as much as possible
about bricks and planks and about how to combine them.

16 Viewing any dynamics as computation may or may not be metaphorically use-
ful (as in what is commonly referred to as pancomputationalism), but from the
viewpoint of epistemology, computation disconnected from any type of knowledge
seems to be rather pointless. It might still, however, be fruitful to say that any
dynamics is potentially a computation in an epistemological sense. That is, if we use
the dynamics in order to gain knowledge then it is a computation.
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7. Conclusions

Inverse ontomimetic simulation is a process that is of an undeniably
epistemic nature: it allows the posing, varying, strengthening and weak-
ening of hypotheses. With it, science has pursued a path that was
impossible (except in isolated cases) before computer technology came
around. The characteristics that set inverse ontomimetic apart from
other methods for producing theory can be summarized as follows:

− The mimetic relation between model and target systems provides
a range of opportunities related to similarity. Most importantly we
may: i) Achieve ontological similarity in order to thereby achieve
phenomenological similarity (computation). ii) Ask the question
“is this model ontology similar to that (or one) of the target
system?” Achieving ontological similarity then serves to find some-
thing out about the target system.

− Allows exploration of the “causal content” of abstract hypotheses
that can be varied with a high degree of control and precision and
that are completely transparent.

− Their abstractness makes these models highly compatible with
theory.

− Their causal nature makes them highly compatible also with em-
pirical data.

− The causal nature (generativity) also puts them close to what we
normally mean by “explanation”, without intermediate encoding
and decoding in symbolical form; i.e. they operate in terms of, and
produce results based on, causes and effects.

− They are not tied to the temporal and causal scales of realization
of the target systems. They are however tied to that of their own
realization, most often computers.

References

Christoph Adami. Introduction to Artificial Life. Springer Verlag, 1999.
Andrew Adamatzky and Maciej Komosinski (eds.). Artificial Life Models in

Software. Springer Verlag, 2005.
Claes Andersson. Sophisticated selectionism as a general theory of knowledge.

Biology and Philosophy, 23(2):229–242, March 2008.

phsci1.tex; 14/10/2009; 19:55; p.26



Ontomimetic Simulation: Mimesis and animation 27

W. B. Arthur. Increasing Returns and Path Dependence in the Economy. Univ. of
Michigan Press, Ann Arbor MI, 1994.

Mark Bedau. Weak emergence. In James Tomberlin, editor, Philosophical Per-
spectives: Mind, Causation, and World, volume 11, pages 375–399. Blackwell
Publishers, 1997.

Mark Bedau. Downward causation and the autonomy of weak emergence. Principia
Revista Internacional de Epistemologica, 6:5–50, 2003.

Yaneer Bar-Yam. Dynamics of Complex Systems (Studies in Nonlinearity).
Westview Press, 2003.

Donald T. Campbell. Evolutionary epistemology. In P. A. Schilpp, editor, The
Philospohy of Karl Popper, pages 413–463. La Salle IL: Open Court, 1974.

P. Cvitanovic, R. Artuso, R. Mainieri, G. Tanner G, and G. Vattay. Chaos: Classical
and Quantum. Niels Bohr Institute, Copenhagen, 2005.

J. L. Casti. Would-Be Worlds: How Simulation is Changing the Frontiers of Science.
John Wiley and Sons, New York, 1997.

Daniel C. Dennett. Darwin’s Dangerous Idea. New York: Simon and Schuster, 1995.
Joshua M. Epstein. Generative Social Science: Studies in Agent-Based Computa-

tional Modeling (Princeton Studies in Complexity). Princeton University Press,
2007.

Richard P. Feynman. Surely You’re Joking, Mister Feynman! W. W. Norton and
Company, 1997.

Peter Galison. Image and Logic: A Material Culture of Microphysics. Univerity of
Chicago Press, 1997.

Ronald N. Giere. How models are used to represent reality. Philosophy of Science,
71:742–752, 2004.

Stephen J. Gould and Elisabeth S. Vrba. Exaptation - a missing term in the science
of form. Paleobiology, 8:4–15, 1982.

Stephan Hartmann. The world as a process: Simulations in the natural and social
sciences. In Mary S. Morgan and Margaret Morrison, editors, Simulation and
Modeling in the Social Sciences from the Philosophy of Science Point of View,
Theory and Decision Library, pages 77–100. Kluwer Press, 1996.

Simon Haykin. Neural Networks and Learning Machines (3rd Edition). Prentice
Hall, 2008.

G. M. Hodgson. How Economics Forgot History. Routledge: London, Great Britain,
2001.

Erik Holmberg. On the clustering tendencies among the nebulae. ii. a study of
encounters between laboratory models of stellar systems by a new integration
procedure. The Astrophysical Journal, 94(3):385–395, 1941.

R. I. G. Hughes. The ising model, computer simulation, and universal physics. In
Mary S. Morgan and Margaret Morrison, editors, Models as Mediators, chapter 5,
pages 97–145. Cambridge University Press, 1999.

David L. Hull. Science as a Process. Chicago IL, Chicago University Press, 1988.
Paul Humphreys. Computer simulations. In A. Fine, M. Forbes, and L. Wessels,

editors, PSA 1990, volume 2, pages 497–506. East Lanset, 1991.
Paul Humphreys. Computational models. Philosophy of Science, 69:1–11, 2002.
Evelyn Fox Keller. Models, simulation, and “computer experiments”. In Hans

Radder, editor, The Philosophy of Scientific Experimentation, chapter 10, pages
198–215. Pittsburgh: University of Pittsburgh Press, 2003.

Andreas Kirsch. An Introduction to the Mathematical Theory of Inverse Problems.
Spriger Verlag, 1997.

phsci1.tex; 14/10/2009; 19:55; p.27



28 Claes Andersson

Jaap A. Kaandorp, Peter M. A. Sloot, Roeland M. H. Merks, Rolf P. M. Bak,
Mark J. A. Vermeij, and Cornelia Maier. Morphogenesis of the branching
reef coral Madracis mirabilis. Proceedings Royal Society B: Biological Sciences,
272(1559):127–133, 2005.

Johannes Lenhard. Computer simulation: The cooperation between experimenting
and modeling. Philosophy of Science, 74:176–194, 2007.

Kristian Lindgren. Evolutionary phenomena in simple dynamics. In C. G. Langton,
C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial life II, pages 295–
311. Redwood City, CA: Addison-Wesley, 1992.

Pierre Livet. Towards an epistemology of multi-agent simulation in social sciences.
In D. Phan and F. Amblard, editors, Agent-based Modelling and Simulations in
the Social and Human Sciences, pages 169–194. The Bardwell Press, 2007.

Aki Lehtinen and Jaakko Kuorikoski. Computing the perfect model: Why do
economists shun simulation? Philosophy of Science, 74:304–329, 2007.

D. Lane and R. Maxfield. Ontological uncertainty and innovation. Journal of
Evolutionary Economics, 15:3–50, 2005.

Pierre Livet, Jean Pierre Müller, Denis Phan, and Lena Sanders. Ontology, a medi-
ator for agent-based modeling in social science. In Epistemological Perspectives
on Simulation (EPOS) workshop 2008 (proceedings volume to appear). 2008.
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