
A Remark About the “Geodesic

Principle” in General Relativity∗

Version 3.0

David B. Malament

Department of Logic and Philosophy of Science

3151 Social Science Plaza

University of California, Irvine

Irvine, CA 92697-5100

dmalamen@uci.edu

1 Introduction

General relativity incorporates a number of basic principles that correlate space-

time structure with physical objects and processes. Among them is the

Geodesic Principle: Free massive point particles traverse timelike

geodesics.

One can think of it as a relativistic version of Newton’s first law of motion.

It is often claimed that the geodesic principle can be recovered as a theorem

in general relativity. Indeed, it is claimed that it is a consequence of Einstein’s

∗I am grateful to Robert Geroch for giving me the basic idea for the counterexample

(proposition 3.2) that is the principal point of interest in this note. Thanks also to Harvey

Brown, Erik Curiel, John Earman, David Garfinkle, John Manchak, Wayne Myrvold, John

Norton, and Jim Weatherall for comments on an earlier draft.
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equation (or of the conservation principle ∇aT ab = 0 that is, itself, a conse-

quence of that equation). These claims are certainly correct, but it may be

worth drawing attention to one small qualification. Though the geodesic prin-

ciple can be recovered as theorem in general relativity, it is not a consequence

of Einstein’s equation (or the conservation principle) alone. Other assumptions

are needed to drive the theorems in question. One needs to put more in if one

is to get the geodesic principle out. My goal in this short note is to make this

claim precise (i.e., that other assumptions are needed).

All talk about deriving the geodesic principle is a bit delicate because it is not

antecedently clear how to formulate it so that it is even a candidate for proof.

One way or another, one has to confront the problem of how to associate an

energy-momentum content Tab with a point particle. (Only then can one invoke

the conservation principle ∇aT ab = 0.) This is a problem even if one is willing

to restrict attention to “test particles”, i.e., even if one does not insist that Tab

be recorded on the right side of Einstein’s equation. One might try to work

with energy-momentum “distributions” rather than proper smooth fields, but

there is a natural alternative. In effect, one models a massive point particle as a

nested sequence of small, but extended, bodies that converges to a point. One

associates with each of the bodies a garden variety smooth energy-momentum

field Tab, and requires that, in each case, it satisfy certain constraints. Then

one proves, if one can, that the point to which the bodies converge necessarily

traverses a timelike geodesic.

Various theorems in the literature do, in fact, have this form. In all cases,

one assumes that the energy-momentum field Tab associated with each small

body in the sequence satisfies the conservation principle. (This captures the

idea that the body is “free” i.e., not exchanging energy-momentum with some

external field.) That much the theorems have in common. But they differ as

to the additional constraints that are imposed. In some cases, very specific

assumptions are made about the constitution of the bodies in the sequence. A

theorem in Thomas [6] and Taub [5] is of this type. There one takes each body to

be a blob of perfect fluid, with everywhere non-negative isotropic pressure, that

satisfies a strong constraint. It is required that the pressure at every point in the

blob remains constant over time. Given this assumption (and the conservation

principle), it is easy to prove that the convergence point of the bodies does, in

fact, traverse a timelike geodesic.
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This result is certainly of interest. But it seems a considerable advance to

prove theorems that dispense with special modeling assumptions in favor of

generic ones. The result of Geroch and Jang [2] that I’ll formulate in section

3 (proposition 3.1) is an example of this latter type. There one only assumes

that the energy-momentum field Tab of each body in the sequence satisfies a

certain “energy condition”. It asserts, in effect, that, whatever else is the case,

energy propagates within the body at velocities that are timelike. That too

is sufficient, together with the conservation principle, to guarantee that the

convergence point of the bodies traverses a timelike geodesic.

My point in this note is that the Geroch-Jang theorem fails if one drops the

energy-condition requirement. As we shall see (proposition 3.2), the conserva-

tion condition alone imposes no restrictions whatsoever on the wordline of the

convergence point of the bodies. It can be a null or spacelike curve. It can also

be a timelike curve that exhibits any desired pattern of large and/or changing

acceleration.

In the Geroch-Jang theorem, one allows oneself to ignore the negligible effect

on the background metric made by (the energy-momentum content of) each

body in the convergent sequence. A stronger result of Ehlers and Geroch [1]

relaxes this restriction. There it is not required that the perturbative effect

disappear entirely at each intermediate stage, but only that, in a certain pre-

cise sense, it disappear in the limit. In this result too, an energy condition is

imposed in lieu of any more specific modeling assumptions about the bodies in

the sequence. And again in this case, the result fails completely without the

energy condition. (The counterexample that we present for the weaker theo-

rem (in proposition 3.2) carries over intact to the stronger one.) To keep the

presentation as simple as possible, I will limit my attention to the former.
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2 The Energy-Momentum Field Tab

In this section, we review a few things about the energy-momentum field Tab

that will be important later.1 Some readers may want to skip to section 3.2

In what follows, let (M, gab) be a relativistic spacetime, which we here take to

consist of a smooth, connected, four-dimensional differential manifold M , and a

smooth metric gab on M of Lorentz signature (1, 3). With this sign convention,

a vector ξa at a point counts as timelike if ξaξa > 0, null if ξaξa = 0, causal

if ξaξa ≥ 0, and spacelike if ξaξa < 0. We assume that (M, gab) is temporally

orientable, and that some temporal orientation has been specified.

Let us start with point particles. It is a basic assumption of relativity theory

that we can associate with every point particle, at every point on its world-

line, a four-momentum (or energy-momentum) vector P a that is tangent to its

worldline. We can think of it as encoding several pieces of information. It is

standardly taken for granted that P a is causal. In that case, at least, the length

of P a gives the mass of the particle:

mass = (P aPa)
1

2 .

So, in particular, the mass of the particle is strictly positive iff its four-momentum

vector field is timelike. Let ξa be a future-directed, unit timelike vector at some

point on the worldline of the particle. We can think of it as representing the in-

stantaneous state of motion of a background observer at that point. Suppose we

decompose P a into two component vectors that are, respectively, proportional

to, and orthogonal to, ξa:

P a = (P bξb)
︸ ︷︷ ︸

energy

ξa + (P a − (P bξb) ξa)
︸ ︷︷ ︸

3−momentum

. (2.1)

The proportionality factor P bξb in the first is standardly understood to give the

energy of the particle relative to ξa; and the second component is understood

to give the three-momentum of the particle relative to ξa.

1We will assume familiarity with the basic mathematical formalism of general relativity in

what follows. For background material, see, e.g., Hawking and Ellis [3], Wald [7], or Malament

[4]. The third is a set of unpublished lecture notes that is available online.

2All the material in the section is perfectly standard except for one small bit of ad hoc ter-

minology. In addition to the weak and dominant energy conditions, we will consider something

that we call the “strengthened dominant energy condition”.
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Let us now switch from point particles to matter fields, e.g., fluids and elec-

tromagnetic fields. Each such field is represented by one or more smooth tensor

(or spinor) fields on the spacetime manifold M . Each is assumed to satisfy field

equations involving the spacetime metric gab.

For present purposes, the most important basic assumption about the matter

fields is the following.

Associated with each matter field F is a symmetric smooth tensor

field Tab characterized by the property that, for all points p in M ,

and all future-directed, unit timelike vectors ξa at p, T a

b
ξb is the

four-momentum density of F at p as determined relative to ξa.

Tab is called the energy-momentum field associated with F . The four-momentum

density vector T a

b
ξb at p can be further decomposed into components propor-

tional to, and orthogonal to, ξa (just as with the four-momentum vector P a):

T a

b
ξb = (Tnb ξnξb)

︸ ︷︷ ︸

energy density

ξa + (T a

b
ξb − (Tnb ξnξb) ξa)

︸ ︷︷ ︸

3−momentum density

. (2.2)

The coefficient of ξa in the first component, Tabξ
aξb, is the energy density of F

at p as determined relative to ξa. The second component, Tnb(g
an − ξa ξn)ξb,

is the three-momentum density of F at p as determined relative to ξa.

Various assumptions about matter fields can be captured as constraints on

the energy-momentum tensor fields with which they are associated. The Geroch-

Jang theorem makes reference to the third and fourth in the following list.

(Suppose Tab is associated with matter field F .)

Weak Energy Condition: For all points p in M , and all unit timelike vectors

ξa at p, Tab ξaξb ≥ 0.

Dominant Energy Condition : For all points p in M , and all unit timelike

vectors ξa at p, Tab ξaξb ≥ 0 and T a

b
ξb is causal.

Strengthened Dominant Energy Condition3: For all points p in M , and

all unit timelike vectors ξa at p, Tab ξaξb ≥ 0 and, if Tab 6= 0, then T a

b
ξb

is timelike.

3This is not a standard name.
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Conservation Condition: ∇a T ab = 0 at all points in M.

The weak energy condition asserts that the energy density of F (as determined

relative to any background observer) is everywhere non-negative. The dominant

energy condition adds the requirement that the energy-momentum density of F

(as determined relative to a background observer) is causal. It can be under-

stood to assert that the energy of F does not propagate at superluminal velocity

(relative to any such observer). The strengthened version of the condition just

changes “causal” to “timelike”. Each of the energy conditions is strictly stronger

than the ones that precede it.4

The final condition in the list captures the requirement that the energy-

momentum carried by F be locally conserved. If two or more matter fields are

present in the same region of spacetime, it need not be the case that each one

individually satisfies the condition. Interaction may occur. But presumably in

that case the composite energy-momentum field formed by taking the sum of the

individual ones satisfies the condition. Energy-momentum can be transferred

from one matter field to another, but it cannot be created or destroyed.

Suppose Tab represents the aggregate energy-momentum present in some

region of spacetime. Then, at least if it is understood to arise from “source

fields” rather than “test fields”, it must satisfy Einstein’s equation

Rab −
1

2
R gab = 8 π Tab.

The left side is divergence-free: ∇a(Rab − 1
2

R gab) = 0. (This follows from

Bianchi’s identity.) So, in this (source field) case at least, the conservation

condition is a consequence of Einstein’s equation.

The dominant energy and conservation conditions have a number of joint

consequences that support the interpretations just given. Here is one. It requires

a preliminary definition.

Let (M, gab) be a fixed relativistic spacetime, and let S be an achronal subset

of M (i.e., a subset no two points of which are connected by a smooth timelike

curve). The domain of dependence D(S) of S is the set of all points p in M

4If λa is a smooth spacelike field, then Tab = λaλb satisfies the weak, but not the dominant,

energy condition. Similarly, if λa is a smooth, non-vanishing null field, then Tab = λaλb

satisfies the dominant, but not the strengthened dominant, energy condition.
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with this property: given any smooth causal curve without (past or future)

endpoint,5 if (its image) passes through p, then it necessarily intersects S.

}D(S)S

Figure 2.1: The domain of dependence D(S) of an achronal set S.

Proposition 2.1. Let S be an achronal subset of M . Further let Tab be a smooth

symmetric field on M that satisfies both the dominant energy and conservation

conditions. Finally, assume Tab = 0 on S. Then Tab = 0 on all of D(S).

The intended interpretation of the proposition is clear. If energy-momentum

cannot propagate (locally) outside the null-cone, and if it is conserved, and if

it vanishes on S, then it must vanish throughout D(S). After all, how could it

“get to” any point in D(S)? Note that our formulation of the proposition does

not presuppose any particular physical interpretation of the symmetric field Tab.

All that is required is that it satisfy the two stated conditions. (For a proof, see

Hawking and Ellis [3, p. 94].)

3 A Theorem and A Counterexample

Now we turn to the Geroch-Jang theorem [2] itself.

Proposition 3.1. Let (M, gab) be a relativistic spacetime, and let γ : I → M

be a smooth curve. Suppose that given any open subset O of M containing γ[I],

there exists a smooth symmetric field Tab on M such that:

5Let γ : I → M be a smooth curve. We say that a point p in M is a future-endpoint of γ

if, for all open sets O containing p, there exists an s0 in I such that for all s ∈ I, if s ≥ s0,

then γ(s) ∈ O, i.e. the image of γ eventually enters and remains in O. (Past-endpoints are

defined similarly.)
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(1) Tab satisfies the strengthened dominant energy condition;

(2) Tab satisfies the conservation condition;

(3) Tab = 0 outside of O;

(4) Tab 6= 0 at some point in O.

Then γ is a timelike curve, and can be reparametrized so as to be a geodesic.

The proposition might be paraphrased this way. Suppose that arbitrarily

small bodies (with energy-momentum) satisfying conditions (1) and (2) can

contain the image of a curve γ in their worldtubes. Then γ must be a time-

like geodesic (up to reparametrization). In effect, as discussed above, we are

representing “point particles” as nested convergent sequences of smaller and

smaller extended bodies. Bodies here are understood to be “free” if their in-

ternal energy-momentum is conserved (by itself). If a body is acted upon by a

field, it is only the composite energy-momentum of the body and field together

that is conserved.

The proof proceeds by showing that given any worldtube and any energy-

momentum field satisfying conditions (1)-(4), the tube must contain the image

of a timelike geodesic. That cannot be true for arbitrarily small tubes containing

the image of the original curve γ unless that curve itself is a timelike geodesic

(up to reparametrization).

Our formulation of the proposition takes for granted that we can keep the

background spacetime metric gab fixed while altering the fields Tab that live on

M . This is justifiable only to the extent that, once again, we are dealing with

test bodies whose effect on the background spacetime structure is negligible.

Though, of course, the proposition has an intended interpretation, it is im-

portant that it stands on its own as a well-formed mathematical theorem (as

does proposition 2.1). It can be proved without any appeal to the interpretation

of Tab. It is also noteworthy in the proposition that we do not have to assume

that the initial curve γ is timelike. That is something that we prove.

Our main claim, as announced above, is that the proposition fails if condition

(1) is dropped. Without it, one cannot prove that the original curve γ must

be a geodesic (up to a reparametrization), not even if we do assume in advance

that it is timelike. The following proposition gives a counterexample.
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Figure 3.1: A non-geodesic timelike curve enclosed in a tube (as

considered in proposition 3.2).

Proposition 3.2. Let (M, gab) be Minkowski spacetime, and let γ : I → M

be any smooth timelike curve. Then given any open subset O of M containing

γ[I], there exists a smooth symmetric field Tab on M that satisfies conditions (2),

(3), and (4) in the preceding proposition. (If we want, we can also strengthen

condition (4) and require that Tab be non-vanishing throughout some open subset

O1 ⊆ O containing γ[I].)

Proof. Let O be an open subset of M containing γ[I], and let f : M → R be

any smooth scalar field on M . (Later we will impose further restrictions on

f .) Consider the fields Sabcd = f(gadgbc − gacgbd) and T ac = ∇b ∇d Sabcd,

where ∇ is the (flat) derivative operator on M compatible with gab. (So ∇agbc =

∇agbc = 0.) We have

T ac = (gadgbc − gacgbd)∇b ∇df = ∇c ∇af − gac (∇b ∇
bf). (3.1)

So T ac is clearly symmetric. It is also divergence-free since

∇a T ac = ∇a ∇
c ∇af −∇c ∇b ∇

bf = ∇c ∇a ∇
af −∇c ∇b ∇

bf = 0.

(The second equality follows from the fact that ∇ is flat, and so ∇a and ∇c

commute in their action on arbitrary tensor fields.)

To complete the proof, we now impose further restrictions on f to insure that

conditions (3) and (4) are satisfied. Let O1 be any open subset of M such that
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γ[I] ⊆ O1 and cl(O1) ⊆ O. (Here cl(A) is the closure of A.) Our strategy will

be to choose a particular f on O1, and a particular f on M−cl(O), and then

fill-in the buffer zone cl(O) − O1 any way whatsoever (so long as the resultant

field is smooth). On M−cl(O), we simply take f = 0. This choice guarantees

that, no matter how we smoothly extend f to all of M , T ac will vanish outside

of O.

For the other specification, let p be any point in M , and let χa be the

“position field” on M determined relative to p. So ∇a χb = δa
b everywhere,

and χa = 0 at p. (See, for example, proposition 1.7.11 in Malament [4].) On

O1, we take f = −(χnχn). With that choice, T ac is non-vanishing at all points

in O1. Indeed, we have

∇af = −2 χn∇aχn = −2 χn δa
n = −2 χa,

and, therefore,

T ac = ∇c ∇af − gac (∇b ∇
bf) = −2∇cχa + 2 gac (∇b χb)

= −2 gca + 2 gac δb
b = −2 gac + 8 gac = 6 gac

throughout O1.

One point about the proof deserves comment. As restricted to O1 and to

M−cl(O), the field Tab that we construct does satisfy the strengthened dominant

energy condition. (In the first case, Tab = 6 gab, and in the second case, Tab =

0.) But we know – from the Geroch-Jang theorem itself – that it cannot satisfy

that condition everywhere. So it must fail to do so in the buffer zone cl(O)−O1.

That shows us something. We can certainly choose f in the zone so that it

smoothly joins with our choices for f on O1 and M−cl(O). But, no matter how

clever we are, we cannot do so in such a way that T ab (as expressed in (3.1))

satisfies the strengthened dominant energy condition.
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