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This paper is concerned with the interpretation of  velocity eigenstates for unstable quantons1, 
their relationship to space-like momentum eigenstates for such quantons and the explanation of  
Shirokov’s contracting lifetimes for such velocity eigenstates. It is an elaboration of a portion of 
the authors earlier study [F 09]. 
 
1. Introduction: In 2006 Shirokov [S 06] presented a derivation that the rate of 
decay for an unstable quanton with a precise, non-zero, velocity was required by 
Lorentz covariance to be faster than the rate for zero velocity. Taken at face value 
this result seems to contradict the traditional view that time dilation for  moving 
quantons would slow down the decay rate. That traditional view is motivated in 
part by the expectation that the time dilation with increasing velocity of classical 
unstable particles would carry over into quantum theory. Shirokov did point out 
that momentum eigenstates, as opposed to velocity eigenstates, do display the 
expected slow down. But whence the discrepancy and what is its significance? 
Hegerfeldt [H 06] simplified Shirokov’s derivation and indicated that the result 
was sufficiently counterintuitive to demand further study. More recently Shirokov 
provided further discussion of his result [S 08].  
 
In a recent survey of conflicting views in the theory of unstable quanton decay,    
[F 09] I argued that the apparent problematic character of Shirokov’s result arose 
from a misinterpretation of velocity eigenstates of unstable quantons. For the 
puzzle arises initially only as a consequence of interpreting the velocity eigenstate 
as a possible state for a quanton which is definitely undecayed at some instant of 
time. If we then ask what time displacement of the state will reduce the inner 
product with the original state by a given factor, Shirokov shows us that the 
required time displacement decreases as the velocity increases, and by just the 
reciprocal of the factor which gives the conventional time dilation. But, in fact, the  
proposed interpretation of the state is admissible only for zero velocity! For non- 
 
 
1. I follow Levy-Leblond [L 88] and others in referring to the molecular, atomic, nuclear and sub-
nuclear constituents of the mass-energy world as quantons rather than particles. 
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zero velocity, as will be shown below, the quanton can be definitely undecayed 
only on a non-instantaneous, space-like hyperplane, the orientation of which in 
Minkowski space-time is determined by the velocity eigenvalue. We will call this 
hyperplane the no-decay hyperplane for the quanton. In [S 08] Shirokov 
recognized that non-zero velocity eigenstates can not be 100% undecayed at any 
instant of time, but he did not identify where the 100% condition would be 
satisfied. We will see here that, as shown in [F 09], if we consider two parallel 
hyperplanes, one of which is the no-decay hyperplane and the other is separated 
from the first by a time-like interval, orthogonal to the hyperplanes and of 
magnitude equal to the rest frame lifetime, then the time interval between these 
hyperplanes is just the contracted lifetime given by Shirokov’s derivation (Fig. 1). 
 
That this equality is not just a coincidence can be seen as follows (details in 3). All 
velocity eigenstates are states for which some set of three, mutually orthogonal, 
space-like components of the total 4-momentum are exactly zero. For an unstable 
quanton the remaining, orthogonal, time-like, component of the total 4-momentum 
carries the non-trivial mass distribution of the quanton and generates the dynamical 
decay. The no-decay hyperplane of the quanton must contain the space-like  
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Fig. 1: Shirokov’s lifetime, tS, for an unstable quanton with velocity, u, is the time 
interval separating the no-decay hyperplane from a later, parallel hyperplane 
separated by the orthogonal time-like interval, η µτ0, with the magnitude of the rest 
frame lifetime, τ0.  
 



 
directions corresponding to the zero momentum eigenvalues, for this is the only 
hyperplane orientation within which all translations fail to induce decay. For zero 
velocity these space-like directions are just the spatial directions and the no-decay 
hyperplane is instantaneous. For non-zero velocity the zero momentum, space-like 
directions are not all spatial directions and, therefore, the no-decay hyperplane is 
non-instantaneous. Denoting the ratio of the velocity eigenvalue to the vacuum 
speed of light by u and the dimensionless, time-like, unit 4-vector orthogonal to the 
no-decay hyperplane by η, we have (using the + – – – metric), 
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The attractive feature of velocity eigenstates for modeling unstable quantons with 
unsharp mass spectra, is that, unlike 3-momentum eigenstates, they transform into 
each other under the homogeneous Lorentz group. It was on this basis in [S 08] 
that Shirokov recognized the presence of decay products at all instants of time in 
the non-zero velocity eignstates. For the Lorentz boost generators include 
contributions from the decay producing interactions [F 02]. Accordingly, the no-
decay hyperplane is always instantaneous only in precisely that inertial frame in 
which the transformed velocity is zero. With this understanding the velocity 
eigenstates can not constitute a complete basis for unstable quantons since, (1) for 
any given no-decay hyperplane, only one velocity eigenvalue can occur among the 
basis states for that hyperplane and (2) any superposition of velocity eigenstates 
with distinct eigenvalues will not consist of a pure, undecayed parent on any 
hyperplane. 
 
A complete basis for an unstable quanton with a given no-decay hyperplane is 
contained in that class of states which have non-zero, as well as zero, eigenvalues 
for the space-like components of the total 4-momentum that are parallel to the 
hyperplane . We will call such states space-like momentum (SLM) eigenstates. It 
remains the case that the no-decay hyperplane must contain the directions of the 
diagonalized SLM components since translations along those directions induce, at 
most, phase factors, but no decay. As before, decay is generated by the time-like 
component of the total 4-momentum orthogonal to the no-decay hyperplane, which 
carries the non-trivial energy-like distribution due now to the mass distribution 
augmented by the non-zero SLM eigenvalues. But now these SLM eigenstates can 
span the state space for a given no-decay hyperplane. We will discuss the result, 



alternatively derived in [S 06 ] and [F 09], that these SLM eigenstates do display 
lifetime dilation, albeit modified by the spread in the mass spectrum.  
 
  
2. Velocity eigenstates: We take our system to be isolated, i.e., to have conserved 
total 4-momentum operators, P̂µ . The velocity operator is given by, P̂ / P̂0 . A 
velocity eigenstate then, | u,! > , (where α represents any other properties, such as 
spin, that may be carried by the system) is defined by, 
 
                                              (P̂ / P̂0 ) | u,! > = | u,! > u ,                                     (2.1a) 
or, 
                                                     P̂ | u,! > = P̂

0
| u,! > u .                                      (2.1b) 

 
With a little manipulation, using (1.1), we obtain from (2.1b), 
 
                                             (P̂µ

!"
µ
("P̂)) | u,# > = 0 ,                                        (2.2) 

 
and our velocity eigenstate has zero space-like momentum in all directions 
orthogonal to η µ.  
 
Since we can also recover (2.1) from (2.2), using (1.1), the zero space-like 
momentum condition is equivalent to the velocity eigenstate condition, i.e., a state 
is a velocity eigenstate iff it is a zero momentum eigenstate for all space-like 
directions orthogonal to a time-like direction determined by the velocity 
eigenvalue.  
 
Defining the mass operator, M̂ , by (restricting to non-negative mass spectra), 
 
                                                         M̂ := P̂

2 ,                                                 (2.3) 

and assuming (2.2), we have, 
 
                                                   !P̂ | u," > = M̂ | u," > .                                       (2.4) 
 
Consequently, if |u, α > is a mass eigenstate, then it is a 4-momentum eigenstate as 
well, with 4-momentum in the direction of ηµ. On the other hand, if |u, α > 
represents an unstable quanton, then the decay process requires the mass spectrum 



to be spread and only the space-like components of P̂µ orthogonal to ηµ are precise, 
being zero. 
 
 
3. Unstable quantons: A physical system can consist of only one undecayed, 
unstable quanton on, at most, one space-like hyperplane. To be so constituted on 
two parallel hyperplanes, in the presence of time-like reversal invariance, would 
require a periodic evolution rather than decay. Similarly, to be so constituted on 
two intersecting hyperplanes, in the presence of Lorentz invariance, would require 
an alternative form of periodic evolution rather than decay. But what we mean here 
by an unstable quanton is a quanton that spontaneously evolves into a 
superposition of parent and decay products and which does not, subsequently or 
elsewhere, evolve back into a pure parent. The one preferred hyperplane on which 
no decay products are to be found for the isolated unstable quanton we call the no-
decay hyperplane. We now argue, in more detail than above, that for such a 
quanton in a velocity eigenstate with non-zero eigenvalue, the no-decay hyperplane 
can not be instantaneous. 
 
From (2.2) any active translation orthogonal to η µ changes nothing, i.e., for any 
translation vector, a µ, satisfying, a µ = a µ – η µ(η a), we have, 
 
                                            exp[(i / !)aP̂] | u,! > = | u,! > .                                (3.1) 
 
Consequently the unstable quanton can decay only due to evolution along the time-
like direction, η µ. 
 
Now all active translations within, i.e., parallel to the no-decay hyperplane can 
only slide the quanton around within that hyperplane. They can not induce decay. 
But a purely spatial translation with a non-zero component in the direction of u, 
i.e., the direction of 

 

!
! , will induce decay since, from (1.1) and (2.2), 

 
                                        P̂ | u,! > = u"

0
("P̂) | u,! > ,                                 (3.2a) 

 
and such a translation would be identical to one in the time-like direction of η µ. 
This kind of argument applies to any hyperplane that is not orthogonal to η µ, and 
thus the no-decay hyperplane for the state, | u,! > , must be orthogonal to η µ.  
 



From this, then, it follows that, for u ≠ 0, the no-decay hyperplane for the quanton 
can not be instantaneous. 
 
Furthermore, from, 
                                          P̂0 | u,! > = "

0
("P̂) | u,! > ,                                   (3.2b)  

 
which also follows from (1.1) and (2.2), we have that a pure time evolution through 
the interval, tS, is identical to a time-like evolution, in the direction of η µ, of 
magnitude, τ0, the rest frame lifetime. Thus, 
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and we have Shirokov’s result, 
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consistently interpreted. 
 
Thus the velocity eigenstates for an unstable quanton can not be a basis for such a 
system since no two with distinct eigenvalues can even share the same no-decay 
hyperplane. To span the space of unstable quanton states having a given no-decay 
hyperplane, we can, instead, employ the SLM eigenstates for all space-like 
momentum components parallel to the no-decay hyperplane. 
 
 
4. Space-like momentum eigenstates: We call a state, | p,η,α >, a space-like 
momentum (SLM) eigenstate, iff there exists a future pointing time-like unit 
vector, ηµ , such that, 
                                        (P̂µ
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µ
("P̂)) | p,",# > = | p,",# > p

µ                               (4.1) 
 
Clearly, ηp = 0, and the relation to the velocity eigenstates is given by, 
 
                                                         | u,! > " | 0,#,! > ,                                       (4.2) 
 



with the proportionality determined by the normalization conventions adopted for 
these states and with (1.1) relating u and η. By fixing η and varying p (and, 
possibly, α) we can stay with one hyperplane and span the states of the unstable 
quanton on that no-decay hyperplane. Henceforth we will make the no-decay 
hyperplane explicit by expanding the notation, η, to that of (η, τ) denoting the no-
decay hyperplane as that containing the points with Minkowski coordinates, x, 
satisfying ηx = τ.  
 
For any unit norm state of such a quanton, |Ψ ;η,τ >, we can extract the 
contributing SLM states by translation and superposition, i.e., 
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where, 
                                      < p ';!,";# ' | p;!,";# > = $!

3
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The projection onto the state space of the single, unstable quanton with no-decay 
hyperplane, (η,τ ), is given by, 
 
                                  !̂(",# ) := d

4
p$

%
$& ' ("p) | p;",#;% >< p;",#;% | .                     (4.5) 

 
For fixed η,τ ;α  the individual SLM eigenstates, | p; η,τ ;α >, are connected by the 
unitary transformations generated by the generalized Newton-Wigner position 
operator [F 65, 99] on the (η,τ) hyperplane, Q̂µ

(!," ) , where, !Q̂(!," ) = 0 . Thus  it 
follows from the commutation relations, 
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that, 
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( M̂ having been defined in (2.3)). We furthermore have, 
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which, in turn yields, 
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This last enables us to compare the rate of decay for different values of p. As 
detailed in [F 09 (see section 4 and Appendix 1)], defining the lifetime, Tp,α , by, 
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then from, 
                                    

 
I p,! (" ) = dµ#! (µ)exp[$ (i / !) µ2 $ p2% " ] ,                      (4.10c) 

we find, 
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(dependence on α can occur if α varies over different types of unstable quantons). 
 
With (4.10d) we clearly see the relativistic dilation of lifetime with increasing – p2, 
albeit modulated from the sharp classical result by the indefinite, i.e., spread, mass 
spectrum of the parent quanton. 
 



 
5. Discussion: Classically, the time dilation of unstable particle lifetimes seems 
more closely tied to the kinematical concept of velocity than the dynamical 
concept of momentum. How is it that the transition from classical unstable 
particles to unstable quantons shifts the burden of lifetime dilation to momentum? 
The answer is ultimately traceable to the energy-time uncertainty relation which 
forces the spread in the mass spectrum of the unstable quanton and thereby renders 
the velocity eigenstates to be only a small subclass of the SLM eigenstates required 
to form bases of states for given no-decay hyperplanes.  
 
There is ,of course, nothing wrong with inquiring into the time interval lying 
between the no-decay hyperplane and the parallel unit-lifetime hyperplane for 
velocity eigenstates. But regarding the contracted result as counterintuitive results 
from neglecting the non-instantaneity of those hyperplanes. Relative to their own 
no-decay hyperplane, all velocity eigenstates are at rest with rest frame lifetimes 
and, consequently, no superposition of velocity eigenstates with distinct velocity 
eigenvalues can yield unit probability for finding only the parent quanton 
anywhere or anywhen in any inertial frame. Only the SLM eigenstates with non-
zero momenta have non-zero velocity relative to the frames in which their own no-
decay hyperplanes are instantaneous. But those velocities are all indefinite, not 
sharp, i.e., 
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where, | p;!,";# K (!)/!P> , contains nothing but decay products on the (η,τ) 
hyperplane. The lifetime, (4.10d), does increase with the squared magnitude of the 
velocity expectation value, ! p2 < ("P̂)!1 >2p,# , but not so familiarly as the 
dependence on – p2 indicated by (4.10d). If we furthermore look at the 
instantaneous 3-velocity of the SLM eigenstates we find , 
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even less closely related, formally, to classical lifetime dilation. 
 
 



Finally, let us note in passing that if one examines the velocity eigenstate matrix 
elements of the projection operator defined in (4.5) and evaluated on instantaneous 
hyperplanes, i.e., at definite times, < u ',! ' | "̂(t) | u,! > , one finds non-trivial time 
dependence only for the case u = u’ = 0 and when u and u’ are collinear, but 
unequal. However, for u’ = u =/= 0, and for non-collinear velocities, the matrix 
element is time independent! This is essentially unintelligible if one analyses the 
matter solely from the perspective of structure and content at definite times. But it 
is easily understood, along lines laid out in the Appendix, below, in terms of the 
intersecting no-decay hyperplanes of the velocity eigenstates and the instantaneous 
projection operator.      
 
For classical, unstable particles there is no question of a no-decay hyperplane or a 
distinction between sharp velocity and momentum. They live on world lines, just 
as stable particles do, albeit spontaneously terminating ones. The indefinite mass of 
unstable quantons and the unitary nature of the decay evolution (prior to detection 
of decay) sever the connection between sharp velocity and sharp momentum and 
allow, at most, one hyperplane devoid of decay products. Furthermore, ‘though we 
have not touched on it here, the operator character and hyperplane dependence of 
the global positions for quantons, stable or unstable, preclude any sharp notion of a 
worldline. The quantum world is far richer than the classical and many comfortable 
features of the latter simply do not carry over. As Shirokov showed, lifetime 
dilation with sharp velocity for unstable quantons is one such.  
 
 
Appendix: Time-like dependencies of mixed matrix elements of the unstable 
quanton state space projectors 
 
Having established the interpretation of the SLM eigenstates, | p;!,";# > , it is 
illuminating, and perhaps a little surprising, to examine the dependencies on time-
like parameters of the mixed matrix elements of the state space projectors (defined 
in (4.5)), !̂(",# ) , for unstable quantons on given no-decay hyperplanes. By mixed 
matrix elements we mean matrix elements in which the SLM eigenstate ket and 
bras need not belong to the same basis, i.e., they may correspond to distinct no-
decay hyperplanes. The general example is of the form, 
 
                                    < p ';! '," ';# ' | $̂(! ''," '') | p;!,";# > ,                         (A.1) 
 
and we will examine the dependencies on τ, τ’ and τ’’, which dependencies will be 
found to depend on the relationships between η, η’ and η’’. 



 
While we have not provided formally exhaustive and precise definitions of the 
SLM eigenstates we are discussing, we here provide enough information 
concerning them to determine the dependencies of interest. In particular we 
require, 
                    

 
exp[(i / !)aP̂] | p;!,";# > = | p;!," + a!;# > exp[(i / !)ap] ,         (A.2) 

 
for arbitrary translation vector, aµ. Although we will not use it here, we also 
stipulate, 
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where, M̂ µ! , is the hermitian generator of the homogeneous Lorentz 
transformations, !(" )µ
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, are the coefficients for the Lorentz transformation 

of tensors and the little ω subscript on α covers a multitude of sins.  
 
If we now insert the identity operator in the form, 
 
                                       

 
Î = exp[! (i / !)aP̂]exp[(i / !)aP̂] ,                       (A.4) 

 
into (A.1) between the left hand bra and the projector and between the projector 
and the right hand ket, then using (A.2), its’ conjugate form and (4.5) we obtain, 
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a relationship fraught with implications! 
 
Case 1: Let us begin our analysis of (A.5) by considering the case in which η, 
η’and η’’ are all distinct and linearly independent. In that case there is one space-
like direction such that any a parallel to it is orthogonal to all the η vectors. 
Considering such a in (A.5) requires (p – p’)a = 0 if the matrix element is to be 
non-zero. If we then consider a that are orthogonal to only two of the η vectors 
(and any two can be so chosen) we find that dependence on the τ variable 
associated with the η vector not orthogonal to a is constrained to be at most in the 



form of a phase factor. So in this case all time-like dependencies are severely 
restricted to what will be called trivial, phase factor form.  
 
Case 2: Next we consider the case in which exactly one linear relationship holds 
among the η vectors. Let it be, !" + ! '" '+ ! ''" '' = 0 , with at least two of the 
coefficients different from zero. Then there is a two dimensional family of space-
like directions orthogonal to all the η vectors and for any a parallel to that family 
we must have, (p – p’)a = 0, for the matrix element to be non-zero. With this 
condition satisfied, no constraint is provided by (A.5) for the dependence on the 
variable, λτ + λ’τ’ + λ’’τ’’, but all other combinations of the τ variables linearly 
independent of the preceding one can contribute to at most trivial dependence of 
the matrix element, as consideration of translations, a, outside the two dimensional 
family will show. Note that this case includes the situation where η = η’ =/= η’’, 
an unmixed matrix element. 
 
Case 3: Finally we consider the case in which two, independent, linear relations 
hold among the η vectors. Now there is a full three dimensional family of space-
like directions orthogonal to all the η vectors and the matrix element can be non-
zero only when, p – p’ = 0, and then (A.5) places no constraint for the dependence 
on the independent linear combinations of the τ variables corresponding to the 
linear relations among the η vectors. In fact, the η vectors all being future pointing 
time-like unit vectors, the existence of two, independent, linear relations among 
them requires they all be equal!   
 
So (A.5) tells us a good deal about the time-like dependencies of the matrix 
element. But we might still be a little puzzled about the instances of restriction to  
merely phase factor dependence. A look at the geometrical relationships among the 
no-decay hyperplanes sheds some light on this issue (Fig. A1, 2). 
 
In Fig. A1 we have first the (top) situation in which two, independent, linear 
relationships hold among the η vectors, resulting in equality of all the η vectors 
and non-trivial dependence of the matrix element on the τ differences between the 
parallel no-decay hyperplanes, which differences measure changeable global 
relationships between pairs of hyperplanes. Second, we have the (bottom) situation 
in which only one linear relation holds among the η vectors; a relation yielding 
equality between two of the η vectors. Only the global relationship between the 
parallel hyperplanes is changeable and is measured by the τ difference between 
them on which the matrix element can depend non-trivially. The global  



 
 
 
 
 
 
 
        Two independent, non-trivial dependencies (two dim’s. suppressed) 
 
 
 
 
                   One non-trivial dependency (two dim’s. suppressed) 
 
                                                     Fig. A1 
 
 
relationship between the third hyperplane and either of the parallel ones can not 
change; only the location of the intersections can be altered corresponding to the 
restriction to trivial dependence on the corresponding τ  differences. 
 
In Fig. A2 we have first the (top) situation in which, again, one linear relation 
holds among the η vectors, but this time no equality between any two of them. 
This allows the global relationship among the three hyperplanes to change with the 
size of the space-time region encompassed between them as measured by the 
corresponding linear combination of the τ variables on which the matrix element 
can depend non-trivially. The global relationship between any two of the 
hyperplanes can not change and, accordingly, dependence on the corresponding τ  
variable differences can only be trivial. Second, the (bottom) situation represents 
the absence of any linear relationship among the η vectors and this results in an 
unavoidable common intersection of all three hyperplanes which can never be 
altered in form but only relocated. Thus the global relationships among the 
hyperplanes can not change with the τ differences and, accordingly, there are no 
non-trivial dependencies.   
 
Ultimately, the source of the connection between global hyperplane relationships 
and trivial vs non-trivial dependence is the fact that SLM eigenstates are not 
located anywhere on their no-decay hyperplanes. They are simply on the 
hyperplanes entire, except, of course, for phase factors! 



 
 
 
 
 
                    One non-trivial dependency (two dim’s. suppressed)      
 
 
 
 
 
 
 
 
           No non-trivial dependence possible (one dim. suppressed) 
 
                                                       Fig. A2 
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