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Abstract

I apply some of the lessons from quantum theory, in particular from Bell’s theorem, to a debate
on the foundations of decision theory and causation. By tracing a formal analogy between the basic
assumptions of Causal Decision Theory (CDT)—which was developed partly in response to New-
comb’s problem— and those of a Local Hidden Variable (LHV) theory in the context of quantum
mechanics, I show that an agent who acts according to CDT and gives any nonzero credence to
some possible causal interpretations underlying quantum phenomena should bet against quantum
mechanics in some feasible game scenarios involving entangled systems, no matter what evidence
they acquire. As a consequence, either the most accepted version of decision theory is wrong, or it
provides a practical distinction, in terms of the prescribed behaviour of rational agents, between
some metaphysical hypotheses regarding the causal structure underlying quantum mechanics.
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1 Introduction

Quantum theory has motivated not only radical revisions in our understanding of physical theory, but
in our understanding of other areas of knowledge which seemed a priori quite dissociated from physics.
The most recent example is the application of the framework of quantum mechanics to the theory of
information processing, leading to the very active fields of quantum information and computation. One
of the precursors to these more recent developments was the work of John Bell (1964), inaugurating
an area of research that has been aptly termed experimental metaphysics by Abner Shimony (1989).
Bell and others since him have shown that a much more intimate relationship between physics and
philosophy is not only possible but fruitful. After Bell we have come to recognise novel ways in which
bare experimental data can have a direct influence on philosophically-oriented inquiry, and how such
inquiry can indeed be a precursor to new and useful views on physical theory, which can eventually
even lead to new technologies.

Here I argue that the lessons from quantum theory can shed light on an important debate in the
philosophical foundations of decision theory. This debate started when the philosopher Robert Nozick
published (Nozick, 1969) a puzzle introduced to him by the physicist William Newcomb—the so-called
Newcomb’s paradox or Newcomb’s problem. Attempts to solve this problem and its variants have
generated waves of activity in the philosophy of decision theory. The consensus at present seems to
be around the Causal Decision Theory (CDT) proposed and defended by Gibbard and Harper (1978),
Lewis (1981a), Skyrms (1982), among others.

The influence of this problem goes beyond the mere resolution of the original paradox, and even
beyond the foundations of decision theory. It has also had an effect on debates about the status of causal
laws, since Nancy Cartwright’s influential article “Causal laws and effective strategies” (Cartwright,
1979), where she argues that causal laws cannot be reduced to probabilistic laws of association, and
that they are necessary to distinguish between effective and ineffective strategies.

For philosophers the importance of this debate is obvious, but should physicists also care? I believe
so. An increasingly popular view among physicists is the idea that quantum mechanics is a theory of
information, and that quantum states are nothing but concise encapsulations of subjective probabil-
ities. In this Bayesian view of quantum states (Caves et al., 2002; Fuchs, 2003; Fuchs et al., 2005),
the gambling commitments of rational agents should mirror the probabilities assigned by quantum
mechanics to the possible outcomes of possible observations following a given physical preparation
procedure. It is well known that several problems occur when one tries to attribute underlying causal
stories to quantum phenomena, but there are also many open problems in the project of quantum
Bayesianism. One of them is that, as opposed to the case of classical probability, there is still no foun-
dationally attractive way to justify the structure of quantum mechanics from something as plausible
and intuitive as a Dutch-book argument1. The present work is part of recent attempts to be explicit
about the inclusion of an agent in quantum mechanics—through their decisions.

Decision theory has been used as the basis of a foundational program started by Deutsch (1999) and
further developed by Wallace (2006; 2007) in the context of the Everett (Many-Worlds) interpretation
of quantum mechanics. However, while that program aims at reconstructing features of quantum
mechanics from decision theory, the present work goes in the opposite direction: here I will rather
argue against a certain theory of decision based on lessons from quantum mechanics. Furthermore,
here we attempt to go beyond the use of a specific ontological framework, but take as starting point
the epistemological (or more correctly, decision-theoretic) aspect of the theory. Specific ontological
models or frameworks will be considered, as they will be seen to be fundamental in determining the
decision-theoretic prescriptions according to causal decision theory. But it is important to emphasise
that, in the spirit of experimental metaphysics, we study the space of possible metaphysical theories
without a particular commitment to one or another beyond what is required by experimental data.
A similar approach can be found in recent studies of so-called ontological models in the context of
quantum foundations (Spekkens, 2005; Rudolph, 2006; Harrigan et al., 2007; Harrigan and Rudolph,

1For a recent account of the progress in that direction, see (Fuchs and Schack, 2009).
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2007).
If CDT is right, causal considerations must take priority in generating the effective probabilities that

rational agents should use for their gambling commitments. According to CDT, rational agents should
base their decision on so-called causal probabilities, even when those are distinct from the subjective
(or evidential) probabilities refined by evidence. This is then not a purely philosophical question (to
use the physicist’s jargon for problems which do not have direct empirical implications), but has a
direct consequence in the prescribed behaviour of rational agents. The debate is not between opposing
interpretations of operationally equivalent theories, but between opposing theories with conflicting
prescriptions. If quantum mechanics is nothing but a theory of information, and if probabilities
are nothing but the gambling commitments of rational agents, and if one of the lessons of quantum
mechanics is the demise of causal concepts in the prescription of those probabilities, it should be a
problem for the Bayesian-inclined physicist that the most popular version of decision theory attempts
to put causation at the root of an agent’s effective probability assignments. This work can thus be
seen as an attempt to make decision theory "safe" for quantum Bayesianism2.

The main goal of this paper is to make this concern explicit and trace a formal parallel between
CDT and the class of Local Hidden Variable (LHV) theories which are discussed in the context of Bell’s
theorem (Bell, 1964, 1987). This parallel seems to lend support to Bayesian Decision Theory (BDT)
over CDT. I will show that, in general, CDT represents a limitation on the space of effective probability
assignments available to an agent—just as is the case with LHV’s in quantum mechanics—and this
can under certain conditions render an agent incapable of adjusting their effective probabilities (even
if they adjust their subjective probabilities) to match arbitrarily well to some possible observations,
no matter what evidence they accumulate. In fact, I will argue that even in some routine quantum
experiments, a causal decision theorist would be forced, under a plausible analysis of the prescriptions
of CDT, to bet against some observed predictions of quantum mechanics. As a result, either CDT
is wrong, or it surprisingly provides a practical distinction, in terms of the prescribed behaviour or
rational agents, between some causal hypotheses underlying quantum mechanics.

2 Newcomb’s problem

The original Newcomb problem (Nozick, 1969) is as follows. You are in a room with two boxes, labelled
1 and 2. Box 2, you can see, contains a thousand dollars. Box 1 is closed. A Predictor, in whom
you have high confidence to be able to predict your own choices (she has accurately predicted your
choices in several similar situations in the past, say), proposes the following game to you: you can
either choose to take both boxes in front of you, or choose only Box 1. She tells you that before you
entered the room, she predicted what you would do. She also tells you that if she predicted that you
were going to take only Box 1, she has put a million dollars inside. If she predicted you would take
both boxes, she has put nothing in it. What should you do?

Bayesian decision theory prescribes the maximisation of expected utility. In a general decision
situation, we denote by Ai, i ∈ {1, 2, ..., n} the several actions available to the agent, and by Oj , j ∈
{1, 2, ..., m} the possible outcomes. The agent ascribes to each pair action/outcome a numerical utility
u(Ai, Oj) and a conditional probability P (Oj |Ai). Since by assumption the Oj form a complete set
of mutually exclusive events,

∑

j P (Oj |Ai) = 1. The Bayesian (or evidential) expected utility of each
action is therefore

EU(Ai) =
∑

j

P (Oj |Ai)u(Ai, Oj). (1)

2Although I should mention that I disagree with aspects of the quantum Bayesianism defended by Fuchs et al. In
particular, I think this approach would be much more productive if it focused on the program of attempting to derive as
much of quantum mechanics as possible from information- or decision-theoretic principles, and abstained from opposing
specific ontological models. After all, everyone can agree that there are such things as subjective probabilities associated
to experimental outcomes (even if some may disagree on whether or not there are also other kinds of probabilities),
and thus everyone could find it interesting to know whether the probabilities prescribed by quantum mechanics can be
derived from information-theoretic principles (even if they could also be derived from a constructive ontological model).
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Now denote by O1 the event that you find a million dollars in Box 1, and by A1 and A2 your action
of choosing Box 1 and both boxes, respectively. Your information about the Predictor’s efficacy is
represented by the fact that your conditional probabilities are such that P (O1|A1) ≫ P (O1|A2). The
Bayesian expected utilities are

EU(A1) = P (O1|A1) 1, 000, 000 + [1 − P (O1|A1)] 0

EU(A2) = P (O1|A2) 1, 001, 000 + [1 − P (O1|A2)] 1, 000. (2)

We assume that the utilities of each pair action/outcome are just the money values received by the
agent. This is not a restrictive assumption, as one could adapt the money values if necessary such that
the utilities are as required. It is easy to see that if P (O1|A1) is sufficiently larger than P (O1|A2), the
expected utility of choosing one box will be larger than the expected utility of choosing both. In the
circumstance of Newcomb’s problem, therefore, EDT advises you to choose one box.

3 Causal Decision Theory

Although the above answer seems correct at first, a second argument soon comes to mind: whatever I
do, the first box either contains a million dollars or it doesn’t. This fact was settled in the past and is
beyond the causal influence of my present choice. Nothing that I can do now will change the contents
of Box 1. But regardless of whether it contains a million dollars or nothing, I’ll be better off taking
the extra thousand. Therefore I should take both boxes. This is called the dominance argument, since
one choice seems to dominate the other no matter what outcome obtains.

Causal Decision Theory was developed as an attempt to formalise the intuition behind the domi-
nance argument. Gibbard and Harper (1978) claimed that the expected utility of an action should be
calculated from the probabilities of counterfactuals, as opposed to the conditional probabilities that
figure in (1). Under the evaluation of the probabilities of counterfactuals favoured by Gibbard and
Harper, this principle of utility maximisation prescribes the desired two-boxing strategy in Newcomb’s
problem. However, there are different possible interpretations for counterfactuals, and this strategy
is therefore ambiguous. Horgan (1981), for example, argues that a "backtracking" analysis of the
counterfactuals leads to the prescription of one-boxing.

There is a consensus, however, on the final mathematical form of the utility formula defended by
CDT (Lewis, 1981a; Skyrms, 1982; Armendt, 1986). According to these authors, the correct quantity
to be maximised in a decision situation is the causal expected utility

CEU(Ai) =
∑

j

[

∑

λ

P (Kλ)P (Oj |Ai; Kλ)

]

u(Ai, Oj), (3)

where the K ′

λs represent the "dependency hypotheses" (Lewis, 1981a) available to the agent, and I
use the notation of separating the contemplated actions Ai from other propositions with a semicolon.
A dependency hypothesis, according to Lewis (1981a), is "a maximally specific proposition about how
the things [the agent] cares about do and do not depend causally on his present actions". On Skyrms’
(1982) account, the propositions Kλ represent the possible "causal propensities" that are objectively
instantiated in the world. Lewis (1981a) reads Skyrms as describing them as “maximally specific
specifications of the factors outside the agent’s influence (at the time of decision) which are causally
relevant to the outcome of the agent’s action”.

The important thing to note, regardless of the interpretational fine print, is that formally the
expression in brackets represents a “causal probability” defined as

Pc(Oj |Ai) ≡
∑

λ

P (Kλ)P (Oj |Ai; Kλ) (4)
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Cancer (C) No cancer (¬C)

Smoking (S) (0.2, -99) (0.8, 1)
Not Smoking (¬S) (0.02, -100) (0.98, 0)

Table 1: The smoking gene scenario. The ordered pairs (p, u) represent the conditional probabilities p =

P (Oj |Ai) and pay-offs u = u(Ai, Oj) for each choice Ai and outcome Oj .

which is in general distinct from the conditional probability, which can be decomposed as (assuming
that there exists a joint probability distribution for the Kλ and Oj),

P (Oj |Ai) =
∑

λ

P (Kλ, Oj |Ai) =
∑

λ

P (Kλ|Ai)P (Oj |Ai; Kλ), (5)

The distinction, as is clear in this notation, is that in evaluating the causal probabilities, one ignores any
statistical correlation between the dependency hypotheses and the actions Ai. In general, however, such
correlations may exist in the expression (5) for the conditional probability. I will call a Newcomb-type

problem any decision problem for which the prescriptions of CDT and BDT disagree. A Newcomb-
type problem can be concocted, by appropriate choice of utilities, in any circumstance where causal
probabilities differ from the conditional probabilities.

For those unfamiliar with this formalism, and who lack a clear intuition for two-boxing in the
original Newcomb problem, this may sound like an unjustifiable move. So as not to be unfair to the
causal decision theorist, I will present the kind of case where the intuitions favour CDT the most: the
“medical Newcomb problems”.

In a common version of a medical Newcomb problem3, it is found that smoking does not cause lung
cancer. Instead, it is discovered that the correlation between smoking and lung cancer is a spurious
one, arising from the existence of a common cause, a certain gene G. The presence of this gene is
correlated with smoking, so that it occurs in, say, 20% of smokers but only in 2% of nonsmokers. It
is also highly correlated with lung cancer: almost all bearers of this gene develop lung cancer if they
don’t die earlier of other causes, and the likelihood of a non-bearer to develop lung cancer is negligible.
Given the presence (or absence) of the gene, however, smoking is rendered uncorrelated with lung
cancer.

Now imagine that Fred knows all this and is trying to decide whether or not to smoke (or continue
smoking). He likes smoking, but the prospect of cancer outweighs his desire for smoking. Suppose his
desires, and the (evidential) conditional probabilities he takes the available evidence to imply in his
case, are as represented on Table 1.

Given these data, the evidential expected utility of smoking is EU(S) = −19 and that of not
smoking is EU(¬S) = −2. BDT therefore advises Fred not to smoke. Within causal decision theory, on
the other hand, and taking the presence of the gene as the dependency hypothesis in (3), P (C|S; G) =
P (C|¬S; G) and P (C|S;¬G) = P (C|¬S;¬G), therefore whatever Fred’s prior beliefs P (G) about his
genetic endowment are, CEU(S) > CEU(¬S), and CDT advises him to smoke, as is intuitively the
correct prescription for most people.

Although this example seems to strongly support CDT, there are defences available which allow
BDT to achieve the same prescription. I will return to these in Section 5.

3.1 Regions of causal influence

There is an important point to emphasise. Causal decision theory assumes not only that there exists
a distribution over a complete specification of the causal propensities in general but also, although
perhaps less explicitly, that these dependency hypotheses screen off the correlations between an action
and all events which are outside its causal influence. Formally, this means that

P (Oj |Ai; Kλ) = P (Oj |Ai′ ; Kλ) = P (Oj |Kλ) (6)

3Here I have adapted an example from Price (1986).
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for all (i, i′), whenever Oj is outside the causal influence of Ai. Therefore the causal probabilities given
by Eq. (4) reduce in those cases to

Pc(Oj |Ai) ≡
∑

λ

P (Kλ)P (Oj |Kλ). (7)

The justification for this is the belief that, for example, if I knew about the gene, my chance of cancer
would not be statistically correlated with my choice of smoking; if I knew what the prediction was, the
money in the box would not be correlated with my choice of picking one or both. If this assumption
isn’t made, nothing prevents a direct dependence between those outcomes and my choices. In other
words, if it is to serve the purpose it is meant to—i.e., to prescribe "two-boxing" in Newcomb-type
problems—CDT necessarily needs an account of what are the sets of events “inside” and “outside” the
causal influences of an action. In Newcomb problems, these are typically events that happened in the
past of the action. In general, however, taking into account relativity, this region could be expanded to
include all events outside the future light cone of the action—both the past light cone and space-like
separated regions. In any case, the causalists need an account of what these sets are supposed to be
which can be used consistently throughout all decision problems.

Of course, in particular problems the reasoning behind the assignment of event O as outside the
causal influence of action A may not be due to a fundamental physical constraint such as the speed
of light, but due to other constraints that arise out of an understanding of the physical situation of
the problem. For example, relativity does not prohibit that a choice we make could change our genes,
but this possibility is disregarded due to our understanding of genetics. Therefore the term "regions
of causal influence" may not necessarily refer to actual space-time regions, but to more general sets
of events. In any case, it seems that the regions of causal influence should be taken from our best
scientific theories about the physical situation underlying a decision scenario.

This formalism seems to miss an important issue, however. What if some of the outcomes in a
decision situation are outside the agent’s influence, but some are not? Let us suppose we have a set
of outcomes aj which the agent takes to be within the causal influence of the choices Ai, and another
set of outcomes bl which are taken to be outside the agent’s possible causal influence. Now suppose
the pay-offs of a decision situation depend on both of these events. CDT then needs a joint causal
probability Pc(aj , bl|Ai). The fact that we are now considering two variables isn’t important—this
should still be given by the obvious generalisation of (4),

Pc(aj , bl|Ai) ≡
∑

λ

P (Kλ)P (aj , bl|Ai; Kλ). (8)

We can always decompose the conditional probability inside the summation as P (aj , bl|Ai; Kλ) =
P (aj |Ai; Kλ)P (bl|Ai; aj , Kλ). And, since each Kλ represents "a maximally specific proposition about
how the things [the agent] cares about do and do not depend causally on [the agent’s] present actions",
this can be simplified to P (aj , bl|Ai; Kλ) = P (aj |Ai; Kλ)P (bl|Kλ). The reason, as before, is that
by assumption the b′ls are not causally dependent on the A′

is, only statistically correlated via some
common cause, maximally specified by Kλ. And since the a′

js are causally dependent on the A′

is, the
b′ls cannot depend directly on the a′

js either. Otherwise by influencing aj the agent could influence
bl, contrary to the assumption. Substituting this expression on (8), the causal probabilities in this
scenario become

Pc(aj , bl|Ai) =
∑

λ

P (Kλ)P (aj |Ai; Kλ)P (bl|Kλ). (9)

Given the utilities u(Ai, aj , bl), the causal expected utility which generalises Eq. (3) is

EU(Ai) =
∑

j,l

[

∑

λ

P (Kλ)P (aj |Ai; Kλ)P (bl|Kλ)

]

u(Ai, aj , bl). (10)

We could also consider a situation involving not only one but two agents. We could interpret bl as
being the outcomes observed by a second agent, who has at their disposal a number of possible choices
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Bk. Of course, the bl are within the causal influence of Bk, and therefore the more general causal
probabilities are given by Pc(aj , bl|Ai, Bk) =

∑

λ P (Kλ)P (aj |Ai, Bk; Kλ)P (bl|Bk; Kλ) if the actions
Bk can directly causally influence the outcomes aj (by being in their past, say), or

Pc(aj , bl|Ai, Bk) =
∑

λ

P (Kλ)P (aj |Ai; Kλ)P (bl|Bk; Kλ) (11)

if they cannot.

3.2 Evidential and effective probabilities

I should stress the fact that for the causal decision theorist there are two kinds of probabilities: those
that represent their evidence, their degrees of belief, about the possible outcomes conditional on the
performance of each action available to them, and the probabilities that they should use to ground
their decisions. I will call the former kind of probability the “evidential” or “subjective” probabilities,
and the latter kind the agent’s “effective” probabilities. For evidential decision theorists, these two
probabilities coincide: they ground their actions on their subjective conditional probabilities. For
causal decision theorists they come apart in scenarios such as Newcomb’s. They can also come apart,
I will argue in the next section, in actually feasible scenarios involving quantum experiments.

It is important however to remind the reader that the causal decision theorist does not deny
the existence or meaning of the subjective probabilities. They indeed believe in the same subjective
conditional probabilities. They believe that the one-boxers in Newcomb’s original problem are more
likely to come out richer than the two-boxers, but they believe they come out richer for the wrong
reasons. As Lewis (1981b) puts it:

They have their millions and we have our thousands, and they think this goes to show the error of
our ways. They think we are not rich because we have irrationally chosen not to have our millions.
We reply that we never were given any choice about whether to have a million... The reason why
we are not rich is that the riches were reserved for the irrational.

This implies that while the causalist believes in the same conditional probabilities as the evidentialist,
with apparently the same interpretation, the causalist also believes that those should not ground their
decisions. Instead, they take their effective probabilities to be the causal probabilities (4) (which
implicitly mean in general, as I argued, (9)).

It is important to note that the effective probabilities of a causal decision theorist need not be
updated by evidence in the same manner as the evidential probabilities. For example, in the original
Newcomb scenario, repeatedly playing the game and observing strong correlations between one-boxing
and a million dollars, and two-boxing and a thousand dollars, could influence the agent’s evidential
probabilities, which should be properly updated through Bayes’ rule. But it could not change the
agent’s causal probabilities; by assumption the contents of the box are outside the agent’s causal
influence, and the correlations are (by assumption) explained in that case by the existence of a common
cause for the agent’s choices as well as the contents of the box. This refusal to change his decisions
even in the face of the winnings of the one-boxer is what is illustrated by the Lewis quotation above.

To be sure, it is important that the agent’s causal story can explain the evidential correlations.
For example, in the smoking gene scenario, the assumption that the gene causes both smoking and
lung cancer explains the correlation between the two. In Newcomb’s problem the Predictor’s ability
explains the correlations between the agent’s choices and the contents of the box. If some evidence
arises that is incompatible with the causal story held by the agent, then of course the agent would
be compelled to revise their causal hypotheses. In general, however, if the agent’s causal hypotheses
provide a causal explanation for the observed correlations, then the correlations cannot suggest a change
in those hypotheses. Correlations which are already expected or predicted by the causal hypotheses
cannot present any new information to modify those.

If the causal probabilities were updated in the same manner as the subjective probabilities, then
CDT and BDT would tend to agree in the long run, and the conflict between the two would disappear.
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The idea that causal probabilities should tend to agree with subjective probabilities (under some
interpretation of causation) is a position that can and has been defended, for example, by Price (1991).
The arguments in this paper will be directed towards those who are not swayed by Price’s program
and maintain that there can be differences between causal and subjective or evidential probabilities
(and thus between the prescriptions of CDT and BDT).

One of the reasons Newcomb’s problem is so controversial, I believe, is that Newcomb-type prob-
lems have been generally purely hypothetical and quite far-fetched scenarios. The adherence to each
contender theory never had to be tested in practical decision situations. In the following I will make
a parallel that should serve to provide a feasible example.

4 The parallel with Bell’s theorem

The main argument of this paper is based on a formal and conceptual analogy between the causal
probabilities as applied to a Newcomb scenario and the probabilities prescribed by a local hidden
variable theory in the context of quantum mechanics. In this section I will present this analogy.

Let me first introduce the relevant notation. Alice and Bob are agents who have at their disposal a
number of possible measurements (Ai for Alice, Bk for Bob) each of which with a number of possible
outcomes ai

j , bk
l , respectively (we could introduce other agents if necessary, of course, but two will

be sufficient for our purposes). We will henceforth constrain ourselves for simplicity to the cases in
which all measurements have the same number of outcomes, and identify ai

j = ai′

j = aj for all i, i′,

and similarly for the bk
l . Alice assigns a subjective conditional probability P (aj |Ai) to each possible

outcome of each possible experiment.
A general hidden variable theory for the phenomena observed by Alice and Bob consists of a

probability distribution over the elements λ of a set of hidden variables Λ, together with a distribution
for the possible experimental outcomes (given λ) which reproduces the observed statistics, i.e.

PHV (aj , bl|Ai, Bk) ≡
∑

λ

P (λ)P (aj , bl|Ai, Bk; λ). (12)

These variables are supposed to represent a sufficiently complete specification of physical variables
that are causally relevant to the outcomes of the experiments under study. The requirement that they
be causally relevant is translated within classical relativistic mechanics to the requirement that they
must be specified in the past light cones of those experiments. The important point is that they must
be necessarily specified in some region of space-time which can “causally influence” the experiments,
according to some theory of causation. There is at the outset an important assumption used in the
equation above:

Statistical independence. The hidden variables are statistically independent of the choice of exper-
iments made by Alice and Bob, i.e., P (λ|Ai, Bk) = P (λ).

Some authors call this the “free will” assumption, or perhaps "no-retrocausality" assumption. I prefer
not to use the term "free will" so as not to presuppose an interpretation of the concept of free will which
precludes an account in which it is compatible with determinism. And I don’t favour the term "no-
retrocausality" because although a dependence of the hidden variables on those experimental settings
would be essentially indistinguishable from backwards causation from the agent’s perspective, it is
logically possible for statistical independence to fail even when there is no actual backwards causation.

This assumption seems to be justified by the fact that these choices are completely arbitrary. They
could be made as a function of the intensity of a measurement of the cosmic background radiation,
or at the whim of the “free-willed” experimentalists. The variety and arbitrariness of possible sources
seem to imply that they cannot be correlated with the variables which are causally relevant to this
particular laboratory experiment.

The extra assumption that will lead to a local hidden variable theory is that there exists some
such sufficient specification of variables that renders the probability of an event E1 uncorrelated with
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b1= "Bob predicts a1" b2= "Bob predicted a2"

a1= "Alice takes Box 1" 1,000,000 0
a2= "Alice takes both" 1,001,000 1,000

Table 2: Pay-off matrix in a Newcomb-type problem

that of an event E2, when the event E2 is outside the region of causal influence of E1. In a typical
Bell scenario, this is usually translated as the requirement that Alice’s and Bob’s experiments are in
space-like separated regions so that the following holds:

Local causality. P (aj |Ai, Bk; bl, λ) = P (aj |Ai; λ), and similarly for Bob.

With this assumption we obtain what is called a local hidden variable (LHV) model for this experi-
mental scenario:

PLHV (aj , bl|Ai, Bk) ≡
∑

λ

P (λ)P (aj |Ai; λ)P (bl|Bk; λ). (13)

The analogy should start to be clear. Eqs. (11) and (13) are formally identical. I will now analyse
in some more detail the Newcomb scenario discussed above to make sure that the conceptual analogies
are also clear. The scenario involves not only the choices and direct observations of the agent (let us say
Alice is this agent) but also the actions and the outcomes of the actions of the Predictor, which happen
in a region outside the causal influence of Alice. In the Newcomb scenario, that is translated as the
fact that the Predictor’s actions are in the past of Alice’s choice. Even if there is no actual Predictor
(as in the smoking gene scenario) we can always model the situation by imagining those events outside
Alice’s causal influence as being the actions performed and outcomes observed by an agent, with trivial
actions/outcomes where necessary. This will allow a more explicit and direct comparison between the
two models, without modifying in any way the prescriptions of causal decision theory.

The assumption of "statistical independence" in a general hidden variable model, which leads to Eq.
(12), is formally and conceptually equivalent to the assumption that the effective causal probabilities
are given by an average over the unconditional probabilities of the causal propensities Kλ, Eq. (4) (and
(8)). The assumption of "local causality" which leads to a LHV model is formally and conceptually
equivalent to the assumption that outcomes outside Alice’s regions of causal influence are screened by
the causal propensities Kλ, Eq. (6).

Thus in the Newcomb problem we can model the situation by imagining that Bob is the Predictor.
He chooses a trivial available action (B1) to put a million dollars inside the closed box if and only
if he predicts Alice will pick only the closed box. He will base his prediction on his knowledge of
some variables λ, necessarily specified in his own past light cone. These variables, he believes, will be
correlated with Alice’s future choice. He will plug these variables into an algorithm, say, and observe
outcomes corresponding to the prediction that Alice will (b1) pick the closed box only or (b2) pick
both boxes. He tells this whole story to Alice, as usual, and asks her to make her decision. She can
either choose to (A1) pick the closed box or (A2) pick both boxes. The outcomes associated to her
choice, however, cannot be whether or not the box contains a million dollars, since that is not under
her direct causal influence. Those outcomes are (were) under Bob’s causal influence, not hers. This is
the reasoning that leads to Eq. (7) and which allows CDT to prescribe two-boxing. So I will use the
trivial outcomes: (a1) she opens only one box or (a2) she opens both boxes. Let us stipulate that the
pay-offs depend on the explicit actions (the aj ’s), not on the choices, so that the utilities attributed to
each possible pair of outcomes are as given by Table 2.

What are the causal probabilities that Alice should use in her decision? The scenario described
above is precisely the type that led to Eq. (11), identifying Kλ ↔ λ :

Pc(aj , bl|Ai, Bk) =
∑

λ

P (λ)P (aj |Ai, λ)P (bl|Bk, λ). (14)
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Since there is only a trivial choice for Bob, and using the usual assumption that Alice is always able
to carry out her chosen strategy, P (aj |Ai, λ) = δij , where the Kronecker delta is defined as δij = 1 if
i = j and 0 if i 6= j. This simplifies the equation above to Pc(bl|Ai) =

∑

λ P (λ)P (bl|λ), identical to
Eq. (7), and which leads to the prescription of two-boxing as already argued.

4.1 Consequences of the analogy

This analogy can lead to two lines of criticism of CDT, both based on the fact that the causal proba-
bilities can disagree with the quantum probabilities. The main line of criticism being pursued in this
paper4 is to show that proper consideration of the various alternative causal hypotheses proposed as
explanations for the quantum correlations will lead the causalist to bet against the outcomes predicted
by quantum mechanics for certain feasible experimental situations. This will make use of a game that
can be actually set up in a standard quantum optics laboratory.

I will argue that given the analogy between causal probabilities and local hidden variable models,
the causalist should consistently give some weight to a local hidden variable model as their effective
probabilities in the quantum-mechanical experiments. Since real experiments routinely violate these
assumptions, through violation of Bell-type inequalities (Bell, 1964, 1987), the causalist would stand
to lose money. I will first introduce a decision scenario with no mention of quantum mechanics, so as
to make the discussion of the causalist’s decision simpler to follow. Later I will show how this scenario
can be set up with a pair of entangled quantum systems, and the reasoning that leads the causalist to
bet against quantum mechanics in that game.

4.1.1 The marble boxes game

Alice enters a room which has a collection of N black boxes in a long row. They are all labelled
sequentially by integers from 1 to N . These boxes have two buttons each: a red button and a green
button. The boxes are closed and completely sealed from external influences, as far as she can tell.
Each box behaves as follows: when Alice first presses one of the buttons, a marble of the same colour
as the button she pressed is released from a small circular opening. Each marble has a symbol, which
is either ‘+1’ or ‘−1’. Once a marble has emerged from a box, further button presses on that box do
nothing.

She then hears a familiar voice coming out of a monitor in one corner of the room. The face is
also familiar: it is Bob, the famous game-show host, who proposes a game to Alice. Bob says he has
a set of boxes that work by the same mechanism in his studio in Brisbane, half a world away from
Alice’s location in Amsterdam. His boxes are also labelled sequentially from 1 to N , so that each box
at Alice’s location has a corresponding one at Bob’s. He tells Alice that she can choose to press either
a red button or a green button at her will on each of her remaining boxes. He tells her that these
boxes can predict whether she will press the red or green buttons. But it’s not so simple, he admits.
The prediction isn’t perfect, but it’s better than even odds. Moreover, it’s encoded in a certain way
so that the prediction of each individual choice cannot really be retrieved, but only inferred from the
correlations between the balls coming out of her boxes and those of his own boxes.

Alice’s friend Charlie is in Bob’s studio to guarantee Alice can trust the game. Bob explains that
Charlie will press a red or green button at random in the remaining of his boxes, simultaneously with
Alice, and similar marbles will emerge from Bob’s boxes.

For each pair of marbles from correspondingly-numbered boxes, he will multiply the numbers
printed on them (to give a product of either +1 or -1), and keep a record of the pair of colours with a
code "arbr" for red-red, "arbg" for red-green, etc. After all the buttons are pressed and all the marbles
are released, he will finally take the averages 〈arbr〉, etc, of each of these values over the collection of
boxes (where 〈arbr〉 denotes the average of the +1 and −1 values of all pairs that came up red-red,

4The other will be mentioned in a footnote in Section 4.1.4.
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and so on) and plug them into the formula

〈F 〉 = 〈arbr〉 + 〈arbg〉 + 〈agbr〉 − 〈agbg〉. (15)

If one or more pairs of button colours (〈arbr〉, 〈arbg〉, etc) does not occur, the corresponding value will
be zero. Bob says that if she chooses to play, and the value of 〈F 〉 is larger than 2.8, she wins a million
dollars. If 〈F 〉 is less than or equal to 2.8 she goes home empty-handed. Alternatively, she can choose
not to play and take home a thousand dollars, risk-free.

4.1.2 Mechanism underlying the marble boxes game

Bob explains the reasoning behind the claim that the boxes can predict Alice’s actions. Inside each
box, there’s already a pair of balls—one red, one green—with numbers written on them. Let’s consider
a single pair of boxes, and call the numbers on the two balls in each box ar, ag, and br, bg. Recall
that each of these numbers can only be +1 or −1, and consider the sum br + bg and difference br − bg

of the numbers on Bob’s marbles. If both marbles have the same value, then their difference is 0 and
their sum is either +2 or −2; if the marbles have opposite values, their sum is 0 and their difference
is +2 or −2. Now consider the formula F = ar(br + bg) + ag(br − bg). If Bob’s marbles have the same
value, we have F = ±2ar; if they have opposite values we have F = ±2ag. Thus, in either case, F can
only take on the value +2 or −2.

Multiplying out the above formula F = arbr + arbg + agbr − agbg = ±2 we see how the above
analysis for a single box puts constraints on the value for 〈F 〉 we should expect from the set of all
boxes. That is, if Alice’s and Charlie’s choices were really random, or at least not correlated with
the mechanism behind the boxes, then the expectation value of F for the group of boxes would also
be at most 2. After all, each average in that sum would be taken over the same ensemble of marbles.
But it turns out that this average value is, in practice, always very close to the magical number of
2
√

2 ≈ 2.828. The explanation for that weird situation, Bob guarantees, is that the boxes are created
from a single source, and at that time the internal mechanism of the boxes somehow "knows" what
buttons are going to be pressed, and prints the numbers on each pair of balls so as to ensure that
〈F 〉 ≈ 2

√
2. In other words, the mechanism prepares a different distribution of numbers on the pair

of marbles for each pair of buttons to be pressed. Therefore each of the expectation values in Eq.
(15) can assume independent values, and the reasoning that restricts the value of F doesn’t apply. In
fact, without the assumption that the distributions for each pair of buttons are the same, the value of
〈F 〉 could logically be anything between −4 and +4, since each term in that sum could be anything
between −1 and +1.

Alice isn’t convinced. “What if we look inside? Then Charlie and I would be able to find out
what the outcomes are supposed to be, and we could obtain information about what the boxes have
predicted. Then we could do otherwise. So how’s that possible?” Bob replies that if they open the
boxes, the marbles are destroyed instantaneously. And when they press a button to release one of the
balls, the other ball is similarly destroyed. So they can never really find out what the prediction was;
they can only recognise by the above reasoning that the boxes somehow knew what they were going to
choose. This, Bob explains, is the only really secure way to avoid the information about the prediction
reaching Alice, and her doing something to prevent it from happening. Otherwise, as Alice correctly
pointed out, it would be impossible for these boxes to do what they do.

“Now even if you don’t believe that the numbers on the marbles are already there”, Bob continues,
“even if you imagine that the number on each ball is printed just after each of you presses a button,
there’s still no way that the formula F could be on average more than 2. That’s because we’ll make
sure that each of you presses your chosen buttons simultaneously, and as you are on opposite sides of
the globe, you can trust that no communication has been exchanged between the boxes about which
button you pressed”.
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4.1.3 The causalist’s decision

Alice tries to think carefully about it. She has watched this show many times, and knows that almost
everyone who takes the challenge walks home with a million dollars. But whatever she does, the
numbers on the balls are fixed, and there’s nothing she can do about that. Bob’s description of the
mechanism of the boxes explains why the correlations most people observe can be such that 〈F 〉 > 2.8,
but the numbers that will come out of each box cannot causally depend on what she does now. Alice
has read about causal decision theory, and decides to base her decision on it.

The first thing she needs to do is to calculate the causal probability that 〈F 〉 > 2.8, given each
sequence of button presses at her disposal. She really has 2N +1 choices available: to press the buttons
in any of the possible 2N combinations of red-green, or not to press the buttons.

Alice trusts that the numbers in the marbles are determined in advance of their choices. Or at
least she trusts that the outcome of each individual box cannot depend on the choice of experiment
made in the associated box in the other city, since there is no way a signal could communicate that
information between the boxes. Let us denote by Kλ a causal hypothesis that encodes those values. In
other words, Kλ determines the values of all numbers on the marbles. She understands that the boxes
may be predicting what she is going to choose, but according to causal decision theory she can’t take
that correlation into account in the calculation of causal probabilities. Therefore the causal probability
for her to obtain a particular pair of values for a pair of boxes where she chooses to press, say, the red
button (we will denote this choice by AR) and Charlie chooses to press, say, the green button (we will
denote this by BG) is

Pc(ar, bg|AR, BG) =
∑

λ

P (Kλ)P (ar|AR; Kλ)P (bg|BG; Kλ), (16)

following Eq. (11). Denoting by 〈ar〉λ the expectation value of ar given the variable Kλ, i.e. 〈ar〉λ =
P (ar = 1|AR; Kλ) − P (ar = −1|AR; Kλ),5 and similarly for the other values, we thus obtain for each
of the boxes

〈arbg〉c =
∑

λ

P (Kλ) 〈ar〉λ〈bg〉λ. (17)

Now Alice of course attributes the same underlying distribution of Kλ to all of the pairs of boxes.
After all, as far as she is concerned, they are all identical. Therefore, the causal expectation value
〈arbg〉c for the subset of boxes where she chose to press the red button and Charlie chose the green
button will be just that given by Eq. (17). This will be the same, therefore, regardless of what is the
subset of boxes for which they choose the combination red-green. The same argument tells us that the
causal expectation value of 〈arbr〉c, 〈agbr〉c and 〈agbg〉c will also be given by an equation of the form
(17), and will be independent of Alice’s and Charlie’s particular choices. And therefore the causal
expectation value of 〈F 〉c will be

〈F 〉c =
∑

λ

P (Kλ) [〈ar〉λ (〈br〉λ + 〈bg〉λ) + 〈ag〉λ (〈br〉λ − 〈bg〉λ)] .

The argument of section 4.1.2 tells Alice that each of the terms in square brackets is at most 2, and
therefore the value of 〈F 〉c can also be at most 2.6 Alice therefore decides not to play the game and
takes home the risk-free thousand dollars.

The causalists could object that the example is not directly analogous to the original Newcomb
problem. I do not claim it is. But CDT should not be valid only for the original Newcomb problem.
It should be able to be applied consistently to every decision problem, given the agents’ beliefs about
the causal structure of the world. With the interpretation about the causal structure given in the
problem, this analysis leads to the prescription exemplified above. In any case, I will present below

5Here I allow for those values to be determined probabilistically by the Kλ for generality. Of course, in the deter-
ministic case we simply have that P (ar = 1|AR; Kλ) ∈ {0, 1} and so on.

6It would be possible, of course, for the actual value of 〈F 〉 to be larger than 2. But we assume for simplicity that
the number of boxes is large enough that she should not reasonably expect large deviations from the expected value.
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a modified Newcomb problem that is closer to the marble boxes game, so as to sharpen the reader’s
intuition with this scenario.

There are a million closed boxes, and an open box with $1000. Alice can pick one and only one of
the closed boxes. She can also take home the open one if she so chooses. If the Predictor predicted
Alice would choose just one closed box instead of a closed box and the open one, then the Predictor
has also made a prediction about which one of the million closed boxes Alice would pick and has put
the money into that box. If Alice was predicted to pick the open box as well, the million dollars have
been placed in one of the closed boxes at random. Her evidential expected utility given that she picks
only a closed box is much larger than that given that she picks also the open box, because she believes
the Predictor is sufficiently accurate. Suppose Alice decided to pick only box 3679, say, and found $1
million in it. Can she consistently believe (without a belief in retrocausality) that the fact that box
3679 contained $1 million was caused by her choice to pick it? Of course not. Box 3679, she believes,
already contained $1 million dollars before she picked it. It contained a million dollars because the
Predictor put it there. And she put it there because she predicted Alice would pick that particular
box.

Now suppose Alice is a causal decision theorist. She believes her choice cannot cause the contents
of the boxes to change. For all she knows, there is a million dollars inside one of the closed boxes, but
she doesn’t know which one. Even though her evidential probability that it will be behind the box
that she chooses is high—if she chooses just one of the closed boxes—CDT says she can’t take that
correlation into account in her decision any more than she can take into account the correlation in the
standard two-box Newcomb problem. The causal probability that she gets a million dollars given that
she picks one of the closed boxes is given by Eq. (7), with an unconditional average over the possible
states of the boxes—i.e., it is 1 in a million. Therefore the causal expectation value for picking just
one of the closed boxes is just $1, and CDT says she should take the $1000.

4.1.4 The Bell game

As the reader familiar with Bell’s theorem already noticed, the marble boxes scenario can be arranged
with a pair of entangled quantum systems. Bob’s formula is just the expression on the left side of
the Bell-CHSH inequality (Clauser et al., 1969), which has the limit of 2 within local hidden variable
models. The red/green buttons play the role of the type of measurement to be performed on each
particle, and the numbers on the balls represent the two possible outcomes of these measurements,
which can be given the values of ±1. However, quantum mechanics allows the value of 〈F 〉 to be as
much as 2

√
2 for pure entangled states of the pair of particles, with appropriate measurement settings.

I will argue that every causalist—even those who know about Bell’s theorem—should bet against
the predictions of quantum mechanics in the Bell game7. . However, there is a subtlety: there are

7Here I will point out the other line of criticism mentioned in the beginning of Section 4.1. A causalist who has a
strong belief in local causality, perhaps due to lack of knowledge of Bell’s theorem, and who is presented with a story
similar to that of the marble boxes game, would not be able to modify their bets even in the face of a losing history, as
discussed in Section 3.2. The evidence acquired with the losing history could change their subjective probabilities about
the situation, but those are effectively useless as far as their gambling commitments are concerned. Given their best
theories about the causal structure of the world (presumably the causal structure implied by the theory of relativity,
with forwards causality) the only explanation for the correlations in the marble boxes game is in fact a common cause
for their choices and the numbers in the marbles. Since this hypothesis explains the correlations, more data about the
correlations cannot change the agents’ prior beliefs about the causal structure. They would maintain their decisions
even when faced with strong evidence that the correlations can indeed be such that it would be advantageous to play
the game, just as they would have to maintain their decision to pick two boxes in Newcomb’s problem regardless of how
much evidence they acquire about the correlation between their choices and the contents of the closed box.

This criticism may require a particular type of causalist, perhaps a non-existent type. A causalist that may have fallen
in this category may argue with hindsight that they have simply been cheated in this game, and that their decision
theory is not at fault. I won’t try to disagree with this conclusion. However, this discussion seems to point at another
problem for the causalist, i.e. to explain how their causal hypotheses are modified by evidence. It would be a challenge
to the causalist’s refusal to revise their causal stories in the face of the evidence in the Newcomb scenario. That is, it
would be a challenge to explain in which sense the Newcomb scenario is different from the quantum case that no amount
of evidence (apart from "inside information" about the workings of the Predictor’s system) can justify a modification of
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several alternative causal hypotheses for the correlations given by quantum mechanics, some of which
would lead to the conclusion of section 4.1.3, some of which wouldn’t. The prescription of CDT will
depend on the causal hypothesis entertained by the agent. The problem here is that there is no
consensus about what the causal structure underlying quantum mechanics is. Let us analyse some of
the possibilities:

1. Acausal correlations. A common view is that quantum correlations do not involve causation—
they are acausal. This view seems to present a problem for CDT. If the correlations are acausal,
then it must be the case that the distant measurement outcome is not caused by the local choice
of measurement (it is not caused by anything for that matter). This view would presumably
maintain that any causal effects are still restricted to the future light cone of an action (otherwise
there would be no reason for the unusual claim that quantum correlations are acausal), and we
should obtain for the causal probabilities allowed in this hypothesis the same mathematical form
as (11).

2. Nonlocal causality. The view that there is some form of nonlocal causation involved in quan-
tum correlations (e.g., Bohmian mechanics). In this case, causal probabilities would coincide
with the quantum probabilities.

3. Superdeterminism. This is the hypothesis that local causality is still valid, but that the
independence assumption fails, i.e., the hidden variables are correlated with the choices of mea-
surements in much the same way as in the marble boxes example. Bell (1987) referred to this
possibility as "superdeterminism". This hypothesis has very low credibility in general—even
though it is the only one fully compatible with forwards relativistic causality, as far as I am
aware—since it would require conspiratorial correlations. It is a logical possibility however, as
acknowledged by Bell himself. In this case the causal probabilities would be given by Eq. (11).

4. Retrocausality. Depending on whether one also assumes local causality, this hypothesis could
be formally indistinguishable from Hypothesis 3, but would postulate retrocausality as an ex-
planation for the correlations (Price, 1996), and thus a failure of the independence assumption.
The causal probabilities would then be the same as the quantum probabilities.

Being logical possibilities, all of which with some advantages (and disadvantages) over the others,
a rational agent should ascribe some credence, even if very small, to each of these possible causal
hypotheses. Certainly Hypothesis 3, and I believe also Hypothesis 1, both lead to a situation where
causal probabilities are given by Eq. (11) and thus diverge from the quantum probabilities in general.
In the case of Hypothesis 3, that situation is clear, as it is analogous to the marble boxes example.
Either way, some nonzero credence (call it ǫ) should be assigned to some hypotheses where the causal
and quantum probabilities differ.

How should CDT deal with these different hypotheses? The obvious approach is to understand the
causal variables Kλ in Eq. (8) as really representing two variables: one that describes which general

the causal probabilities in the Newcomb case, whereas it can change our causal hypotheses about the quantum case.
The causalist could here reply that their causal stories may be affected by evidence, and choose to emphasise that in

the quantum scenario, local causality cannot explain the quantum correlations, and that is the reason it was rejected as
a causal hypothesis. However, there are logically possible causal hypotheses compatible with the quantum correlations
and in which local causality is maintained in one way or another (either through retro-causality (Price, 1996; Pegg, 2008;
Price, 2008; Berkovitz, 2008), or through what Bell called “superdeterminism” (Bell, 1987)). Given that local causality
is, according to Bell and others, the causal requirement of relativity—our best theory of causal structure—and given the
availability of alternatives that maintain it, local causality should not be outright rejected by the causalist. Furthermore,
a commonly held position is the idea that the quantum correlations are acausal, thus implying that the causal effects (if
any) of an action like choosing among a number of alternative experiments are still restricted to those effects which can
be caused locally. This causal hypothesis also leads to difficulties for CDT as I will argue in more detail in this section.

After the preparation of this manuscript it was brought to my attention that a proposal for a Newcomb-type problem
using quantum mechanics was published in the PhD thesis of Joseph Berkovitz (1995). While the underlying motivation
is similar, the specific setup and the analysis are substantially different from those of the present work. Importantly,
the arguments given by Berkovitz are aimed towards an agent without a knowledge of Bell’s theorem, as in the line of
argument mentioned above.
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causal hypothesis one is considering (e.g., 1, 2, 3 or 4 above) and the second describing the actual
causal variables within each hypothesis (e.g., the hidden variables within 3). Grouping together all
causal hypotheses according to the prescribed causal probabilities (according to whether or not they
allow agreement with the quantum probabilities), and representing the credence on causal probabilities
of the form (11) by ǫ, we arrive at

Pc(aj , bl|Ai, Bk) = ǫ
∑

λ

P (Kλ)P (aj |Ai; Kλ)P (bl|Bk; Kλ)

+ (1 − ǫ)
∑

ξ

P (Kξ)P (aj , bl|Ai, Bk; Kξ), (18)

where I have used the subscript λ to indicate the causal variables associated with Hypothesis 3 (or
any hypothesis that leads to the same form for causal probabilities, such as perhaps Hypothesis 1 as
argued above), and ξ to indicate causal variables associated with hypotheses that allow the causal
probabilities to be equal to the quantum prescription.

As shown in section 4.1.3, the causal probabilities prescribed by the first term will lead to a bound of
2 on 〈F 〉, whereas the other term would be bounded by the maximal quantum-mechanical expectation
value of 2

√
2. The weighted causal expectation value of 〈F 〉 would therefore be 〈F 〉c ≤ 2ǫ+2

√
2(1− ǫ).

For any nonzero value of ǫ, therefore, that expectation value can never reach 2
√

2, and Bob can always
formulate a game analogous to the marble boxes game simply by changing the boundary between the
region where Alice gets the million-dollar payoff and that in which she gets nothing. With enough
statistics (and this can always be arranged in principle) the actual expectation value can be confidently
above this bound, leading to the same situation as in the example. Therefore this argument against
causal decision theory does not depend on a strong belief in any causal hypothesis, but merely on the
acceptance that each of those are logical possibilities which have some merit (and therefore must be
given some nonzero, even if arbitrarily small, credence).

It can be argued against this conclusion that one usually assumes that we are allowed to ignore
extremely unlikely hypotheses in our decisions. Consider, say, the hypothesis that having a cup of tea
would result in the destruction of the universe8. Surely, the argument goes, we don’t need to consider
all logically possible hypotheses?

My response to this criticism is that we don’t consider all possible hypotheses because we make a
pre-judgement that no further hypotheses would change our decisions, and that further considerations
would only introduce unnecessary complications in the calculations. Most tea drinkers attribute an
exceedingly small probability for the destruction of the universe conditional on their drinking tea.
But if a tea drinker were to give any appreciable probability to this hypothesis, it would certainly be
irrational for them to have that cup of tea.

Further, in a situation like the referee’s example, not only would these kinds of unlikely hypotheses
have negligible effects on the decisions, but there would usually be equally arbitrary competing hy-
potheses pulling the decision the other way: the hypothesis that NOT having a given cup of tea will
lead to the destruction of the universe is just as (un)likely as the one that having that cup of tea will
do so, and precisely cancels the effect of the first.

There is also an important difference between the tea example and the hypothesis of superdeter-
minism. Not only there are more reasons to believe the latter—and therefore it should have a larger,
even if still small, credence—but the argument holds for any nonzero value attributed to this credence.
Besides, the causal hypotheses underlying quantum mechanics do not affect the observable evidential
probabilities, whereas the tea hypothesis changes the expected probabilities and utilities of the possible
outcomes.

In any case, it is not necessary to hang onto the idea that one should assign nonzero probabilities to
every logically possible causal hypothesis. All that is needed is that one assigns some nonzero credence

8This example was brought to my attention by an anonymous referee.
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to Hypothesis 3, or to Hypothesis 1 with the analysis above. Since our best theory of causal structure
is Einstein’s theory of relativity, which according to Bell’s analysis implies local causality, and given
that there are options available to explain the quantum predictions while upholding local causality
(and either violating statistical independence or believing in acausal correlations), it seems that we
have reasons not to completely reject those hypotheses.

An option for the causalist is to bite the bullet and maintain, with Lewis, that the riches in the
Bell game are reserved for the irrational just as much as in the Newcomb game. This would then,
interestingly, provide a practical means to distinguish between different causal hypotheses underlying
quantum mechanics. Depending on their credences on the various alternatives, different agents who act
according to CDT would have different thresholds for which they would accept to play the Bell game.
Their gambling commitments at different formulations of the game would therefore be evidence of their
credences on underlying causal hypotheses, all of which being otherwise empirically indistinguishable.
In other words, varying degrees of belief in metaphysical hypotheses would surprisingly lead to different
prescriptions for the explicit behaviour of rational agents.

5 Communicated vs. non-communicated predictions

The scenario proposed in this paper brings up an interesting discussion which I find worth mentioning
here. The existence of a further knowledgeable agent has been sometimes considered as intuition
pumps for the Newcomb problem. Schlesinger (1974), for example, considered the existence of a
perfectly knowledgeable well-wisher agent who can see the contents of the closed box and give advice
to the agent in the original Newcomb problem. Clearly this well-wisher would always advise the agent
to choose both boxes. Isn’t it in the best interest of the agent to follow the advice of a well-wisher
who has more knowledge than herself about the situation?

Note, however, that whatever the contents of the box, the advice of the well-wisher would always
be the same. Therefore the well-wisher does not convey any new information to the agent, despite
the appearances. This is the crucial point: for a Newcomb problem to exist in the first place, the
information about the relevant causal factors cannot be available to the choosing agent, regardless
of whether it is available to other agents. If this information was available, nothing could prevent
the agent from choosing so as to falsify the prediction; the prediction therefore could not be accurate
independently of the agent’s choice, in contradiction with the premise of the problem. No metaphysical
"free-will" is necessary for this conclusion. All that is necessary is for an agent to be a physical system
able to carry out the deterministic algorithm: "if I find that I was predicted to do A1, I do A2, and
vice-versa".

In fact, we could imagine, quite reasonably, that artificial-intelligence (AI) programs could be
constructed to take decisions in situations where they could be caught up in a Newcomb problem.
After all, there is no mystery involved in predicting the actions of a program; all you need is to run
another copy of it with the same inputs9. Perhaps these programs could "know" that they are in a
Newcomb problem: some of the inputs could be a prediction of the program’s own output, which the
programs could empirically observe to be accurate at better than even odds as required. Suppose a
company is trying to decide whether to build their AI agents with causal or Bayesian decision theory.
Clearly the preferred algorithm in this case would be BDT.

There may be a way to block this conclusion: perhaps the AI could have access to all the relevant
parts of its own algorithm. It would therefore be able to know in advance what it would have been
predicted to choose. This would not mean, however, that the AI would be able to perform better
in Newcomb problems. On the contrary, it would mean that it would not be able to find itself in
Newcomb problems in the first place. This is the essence of the "tickle defence" of BDT. It was first
proposed by Horgan (1981) in reference to the "smoking gene" problem reproduced in Section 3. His
argument was that in this case the flaw is in "the assumption that the agent needs to act before he
has the relevant information to determine the likelihood of getting lung cancer. He does not, because

9An argument for one-boxing involving computer simulations can be found in (Aaronson, 2005).
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his own desirabilities (and past behaviour) give him the bad news already." With that information,
Horgan argues, the agent can screen off the conditional probabilities such that the probabilities of
having or not the gene (and therefore of developing lung cancer) are independent of his choice. There
are some more sophisticated variations on this type of argument (Eells, 1985; Price, 1986, 1991), but
the general idea is that a careful account of a rational agent’s capabilities would block the need for
CDT, as Newcomb-type problems would not be generally feasible, and BDT would therefore always
give the same prescriptions as CDT. This could be due to the fact that a rational agent acts according
to her beliefs and desires—there are no further relevant causal factors to affect her decisions. To the
extent that she knows her beliefs and desires, she knows all that the Predictor could know in order to
predict her choices, and therefore she knows the prediction. As a consequence, she cannot find herself
in a Newcomb problem, since she would not believe in the defining conditional probabilities.

But this only solves the problem by dismissing it, and makes CDT simply irrelevant, as there would
be no problem in which the causal and evidential probabilities are different. Horgan admits, however,
that the problem could be (implausibly) reformulated so that, say, the genetic factor in question induces
in smokers a tendency to choose to continue smoking when faced with this problem. Horgan concedes
that this avoids the tickle defence, but believes that, in this case, it would actually be rational to stop
smoking, even though that decision does not cause the desirable outcome.

Within a hidden-variables interpretation, the quantum scenario makes it possible to instantiate an
actual Newcomb-type problem by making it impossible even in principle for an agent to know the hidden
variables. If this were not the case, then where Bell violations occur, an agent could use their knowledge
of the hidden variables to transmit faster-than-light signals (Cavalcanti, 2007), which could lead to
the existence of inconsistent causal loops. The fact that the probabilities in a usual Newcomb scenario
seem to be apparently independent of whether or not the agent could have knowledge of the causal
factors speaks against the feasibility of those scenarios. Any actual instantiation of a Newcomb-type
problem would probably look much more like the Bell scenario than the medical Newcomb problems.
They should make it clear that those causal factors are in fact hidden as far as the agent is concerned.

6 Summary and conclusion

The main argument of this paper can be summarised as follows: (i) CDT needs some account of which
events are within and outside the causal influence of an action; (ii) with this distinction in place,
the causal probabilities are formally identical to a LHV model in the context of quantum mechanics;
(iii) the causal decision theorist should assign some nonzero credence to the logically possible causal
hypotheses listed in 4.1.4; (iv) the causal probabilities for some of those hypotheses are given by a LHV
model and are thus distinct from the quantum probabilities. A game can be constructed to exploit
that discrepancy, following Bell’s theorem; (v) since any observation is by construction compatible
with all of the causal hypotheses, repeated observation of the predicted quantum correlations cannot
change the initial credences and CDT will always prescribe the losing strategy.

Perhaps this debate may also inform discussions in foundations of quantum mechanics. The fact
that the debate in decision theory centres around the "statistical independence" assumption may
indicate that this assumption, often taken for granted, needs more attention in the quantum debate.
One way of relaxing that assumption is in terms of a kind of superdeterministic theory in which
both the experimental outcomes and choices share a common cause. Another possibility is that these
correlations are arranged through retrocausality. Some authors have considered this possibility as a
serious alternative to the interpretation of quantum mechanics (Price, 1996; Wharton, 2007; Berkovitz,
2008; Pegg, 2008; Price, 2008), but it hasn’t been given as much attention as it seems to deserve.

Decision theory has been used as the basis of a foundational program started by Deutsch (1999) and
further developed by Wallace (2006; 2007) in the context of the Everett (Many-Worlds) interpretation
of quantum mechanics. However, that parallel could also prove useful in attempts to understand
quantum mechanics as a theory about information (Caves et al., 2002; Fuchs, 2003). One of the goals
of this program is to pursue information-theoretic principles that lead one to the abstract formalism of
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quantum mechanics. The discussion in this paper seems to indicate that it might be interesting for that
program to consider the perspective of an agent not only as the holder of information, but as the source
of decisions about observations to be performed on the world. These decisions, as far as the agent is
concerned, cannot be considered to be correlated with any of their information (which experiments
an agent will perform is not encoded in their quantum state assignment), but yet their observations
are such that the world looks as if the outcomes of those observations were so correlated with their
choices, if only they consider the general validity of local causality. Regardless of commitments about
the actual existence or otherwise of hidden variables, it would be interesting to know whether these
kinds of considerations can restrict the space of possible theories in an interesting way.

As topics for further research, it would be interesting to attempt to find simpler decision scenarios
displaying an incompatibility between CDT and BDT within a quantum set up. A possible approach
would be to use the correlations of a Greenberger-Horne-Zeilinger tri-partite entangled state, which
allow for non-statistical demonstrations of the incompatibility between local realism and the predictions
of quantum theory, or an adapted form of the Bell-Kochen-Specker theorem.

Finally, as discussed in Section 4.1.4, if causal decision theory is the correct theory of rational
decisions, then this analogy would provide a surprising practical consequence, in terms of the pre-
scribed behaviour of rational agents, for competing causal interpretations of quantum mechanics. In
other words, it would provide an observable, practical distinction between alternative metaphysical
hypotheses.
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