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Abstract
In this paper we give a positive answer to a problem posed by G. Hofer-
Szab6 and M. Rédei (2004) regarding the existence of infinite common
cause systems (CCSs). An example of a countably infinite CCS is pre-
sented, as well as the proof that no CCSs of greater cardinality exist.

1 Preliminaries

The problem we tackle in this paper arose in the sub-field of philosophy of science
concerning the notion of common cause. The idea is traditionally thought to
have been first put forward by Hans Reichenbach in his book The Direction of
Time (1956). Various forms of it have been found to be of interest for different
sorts of researchers, from those mainly interested in physics to those dealing
with Bayesian nets. We now give all definitions needed to state the problem we
will be dealing with in the next sections.

By a probability space we mean a tuple (S, P), where S is a Boolean algebra
and P is a probability measure on S. Due to Stone’s representation theorem
we can without loss of generality view S as a field of sets. Events A, B € S are
(positively) correlated if P(AN B) > P(A)P(B).

Definition 1 Let A, B € S. An event C is said to be a screener-off for the pair
{A,B} if PLANB | C) = P(A| C)P(B | C). In the case where A and B are
correlated we also say that C screens off the correlation.

Definition 2 Let A,B € S. We say that a family of events {C;} satisfies the
statistical relevance condition with regard to the pair {A, B} if whenever i # j

(P(A|Ci) = P(A|C)))(P(B|Ci) = P(B|Cy)) >0

Definition 3 Let A,B € S.

Then C € S—{A, B} is said to be a common cause of these two events if (1)
both C' and its complement C are screener-offs for the pair {A, B} and (2) the
pair {C,C*} satisfies the statistical relevance condition with regard to {A, B}
with P(A | C) > P(A | C1).

A common cause C for events A, B may be viewed as a doubleton {C,C*}
with both elements screening off the pair and one being statistically more rel-
evant for A and B than the other. This idea has been generalized with regard
to the number of screener-offs in [3]. Recall that a partition of unity of S is a
family {Y;} of pairwise disjoint non-empty subsets of 15 such that [J{V;} = 1.
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Definition 4 A partition of unity of S is said to be a common cause system
(CCS) for A and B if it satisfies the statistical relevance condition w.r.t. A and
B and all its members are screener-offs for the pair.

The cardinality of the partition is called the size of the common cause system.

Tt was shown in [3] that existence of a common cause system (which was
then labelled ‘Reichenbachian common cause system’) for events A, B € S en-
tails a correlation between those events, so it can be considered an explanation
of the correlation.! As mentioned above, a common cause together with its
complement form a CCS of size 2.

Some results regarding CCSs were published in [3] and [4]. These include
the fact that for any natural n (n > 2) it is possible to find a probability
space containing a correlation for which a CCS of size n exists. [3] asks whether
infinite CCSs exist, conjecturing the positive answer. We confirm the conjecture
in the following section, providing an example of a countably infinite CCS, and
conclude with a proof of the non-existence of CCSs of greater size.

2 A countably infinite common cause system
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Let ([0,1), W, A) be the classical probability space comprising the real inter-
val [0,1), W — the set of all its Lebesgue-measurable subsets, and the Lebesgue
measure A. Put

an _ 1 2n+1 -1
Cn = |: ’ )7
2n 2n+1

C:= {On}nEN

It is evident that if n # m (n,m € N), C,, N C,,, = 0 and that JC = [0,1),
so C' is a countably infinite partition of [0,1). Notice that for any natural n,
MCy) = 527t

n fact, the notion of a CCS appeared first in [2], but it was a bit different: for a partition
to be a CCS for the pair {A, B} it was enough that all its elements screened off the pair. We
are not concerned with this more limited notion, since it lacks the explanatory value of the
later one — one cannot deduce the correlation from screening off alone.




For any n € N, we want both A(4A N C,) and A(B N C,) to be equal to

W To improve the clarity of the notation below, put [, = W

Define

o —1 27 —1
A= —+ Iy )
U5

“ron—1 n+1 2" —1 n+1
B = — 'lna ln l”
nL_Jo[ 2n +n+2 2n +n+2 + )

Fix an n € N. From the above definitions it follows that

1
MANC,)  mrzort 1
AMA[Cp) = = = = A(B| Cn);
(A1) = s = 5 =BG
whereas
n+1 1
AMANBNC,) (1_nig)‘w
MANB|Cy) = N — L( ) _
n 2n+1
_ e _ 1
T (n+2)?
and so

MANB|C,) =AA|CHANB | Cp),

which means that C satisfies the screening-off condition.
Now, fix two distinct m,n € N. Without loss of generality assume m > n.
It follows that

1 1
A = —_— —_— A
NAIC) = g > g =G
and ) .
ANB|C,) = —— = XB| C,).
(B]Cn) n+2>m+2 (B Cm)

Therefore, for m,n € N (m # n), the differences \(A | C,,) — AM(A | C,,) and
A(B | Cp) — A(B | Cy) have the same sign and are nonzero, so

(MA | Cin) = MA[ C)) (MB | C) = A(B| C) > 0 (m # )

which means that C satisfies the other condition of the definition of a CCS for
(A, B). To complete the picture, from Proposition 1 of [3] it follows that events
A and B are correlated.

We have shown that in the space ([0,1), W, A) the countably infinite set C' is
a CCS for (4, B), thus giving the positive answer to the problem stated in [3].



3 Proof of nonexistence of common cause sys-
tems of greater cardinality

As we will now show, countable infinity is the limit when it comes to the cardi-
nality of CCSs. No uncountable CCSs exist.

It is straightforward to note that the cardinality of a CCS may not exceed
280 For suppose E = {C;};cs is a CCS for the pair of correlated events A, B
in the probability space (S, P). Then the definition of a CCS requires that the
function

f:E>5C—PA|C)€[0,1]CR

be an injection, which is clearly impossible if E is of a greater cardinality.
It is however possible to prove more:

Theorem 5 The greatest possible cardinality of a CCS is V.
This follows from the following lemma:

Lemma 6 Let S be a Boolean algebra admitting countable joins and meets (i.e.
a measurable space) and [ — a bounded measure on it. Let I1 be a partition of
unity in S.

Then p assumes a positive value for at most countably many elements of 11.

Let S, u and II satisfy the hypothesis of the lemma. Then it suffices to
prove that if x4 assumes positive values for more than countably many elements
of II, then there exists a positive real number § with the property that for some
countably infinite subset @ of T, u[Q] C [d, +00].

(In this case Y equ(q) is divergent — the order of the summands is imma-
terial, because they are all positive — contradicting the assumption that p is
bounded.)

Suppose p does indeed assume positive values for uncountably many mem-
bers of II, but no number § possessing the property given above exists. Then
for any n € (0,+00) the set {¢ € II| u(q) > n} is finite. However,

Utrenumzn= |J remlumz= 1)

neR?, keN—{0}

would then be a countable union of finite sets, and so countable, contradicting
the assumption that p assumes positive values for uncountably many elements
of II. O

Returning to the proof the theorem, suppose that in some probability space
(S, P) a CCS {C;}icr of size greater than R exists. Lemma 6 entails that only
countably many of the C;s may have positive probabilities. Therefore for some
k € I, P(Cy) = 0, and so Cy cannot be a screener-off because the required
conditional probabilities are not defined.? This contradicts the assumption that
{Ci}z'el isa CCS. O

2The reader may prefer conditional probabilities given probability zero events to be always
equal to 0, or 1 (see e.g. [1], p. 57). In these cases the proof is completed by noting that
for some distinct k,l € I, P(A | Cx) = P(A | C;), which violates the statistical relevance
condition.
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