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Abstract

Quantum information theory has given rise to a renewed interest in, and a new
perspective on, the old issue of understanding the ways in which quantum mechan-
ics differs from classical mechanics. The task of distinguishing between quantum and
classical theory is facilitated by neutral frameworks that embrace both classical and
quantum theory. In this paper, I discuss two approaches to this endeavour, the alge-
braic approach, and the convex set approach, with an eye to the strengths of each,
and the relations between the two. I end with a discussion of one particular model,
the toy theory devised by Rob Spekkens, which, with minor modifications, fits neatly
within the convex sets framework, and which displays in an elegant manner some of
the similarities and differences between classical and quantum theories. The conclusion
suggested by this investigation is that Schrödinger was right to find the essential dif-
ference between classical and quantum theory in their handling of composite systems,
though Schrödinger’s contention that it is entanglement that is the distinctive feature
of quantum mechanics needs to be modified.

1 Introduction

Quantum information theory is the study of how the peculiar features of quantum mechanics
can be exploited for the purposes of information processing and transmission. A central
theme of such a study is the ways in which quantum mechanics opens up possibilities that
go beyond what can be achieved classically. This has in turn led to a renewed interest in,
and a new perspective on, the differences between the classical and the quantum. Although
much of the work along these lines has been motivated by quantum information theory—
and some of it has been motivated by the conviction that quantum theory is essentially
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about possibilities of information processing and transmission—the results obtained, and
the frameworks developed, have interest even for those of us who are not of that conviction.
Indeed, much of the recent work echoes, and builds upon, work that predates the inception
of quantum information theory. The significance of such work extends beyond the setting of
quantum information theory; the work done on distinguishing the quantum from the classical
in the context of frameworks that embrace both is something worthy of the attention of
anyone interested in the foundational issues surrounding quantum theory.

One of the striking features of quantum mechanics lies in its probabilistic character.
A quantum state yields, not a definite prediction of the outcome of an experiment, but
a probability measures on the space of possible outcomes. Of course, probabilities occur
also in a classical context. In this context they have to do with situations in which the
experimenter does not have complete control over the classical state to be prepared, and,
as a consequence, we do not have complete knowledge of the classical state of the system
subjected to the preparation procedure. The question arises, therefore, whether quantum
probabilities can be construed as being like this. One way of framing this question is in
terms of hidden variables: ought we to think of quantum-mechanical pure states as being
probabilistic mixtures of states of a more encompassing theory, whose pure states would
ascribe definite values to all variables? It is interesting to ask which of the peculiar features
of quantum mechanics are traceable to ineliminable statistical dispersion in its states. Such
features will be reproducible in an essentially classical theory with suitable restrictions on
possibilities of state preparation.

Some of the recent work in quantum information theory has shown that some of the
features of quantum mechanics that one might be inclined to think of as peculiarly quantum
can, indeed, be recovered from a theory in which the preparable states are probabilistic
mixtures of such classical states. The no-cloning theorem is a case in point. Arbitrary
pairs of quantum states cannot be cloned; those pairs that can be cloned are orthogonal
pairs. Though originally formulated in the context of quantum mechanics, it admits of
a formulation applicable to classical mixed states, which are probability measures over a
classical phase space. A pair of classical states is orthogonal iff the probability measures
have disjoint support, and it can be shown that cloneable pairs are orthogonal in this sense.
The similarity between these two theorems suggests that they are special cases of a more
general theorem, and indeed, this is the case. Implicit in the proof of Lemma 3 of Clifton,
Bub, and Halvorson (2003) is a proof that a pair of pure states of a C∗-algebra are cloneable
iff they are orthogonal. Barnum, Barrett, Leifer, and Wilce (2006) prove a theorem of much
greater generality. Within the convex sets framework (see section 4, below), they prove that
a finite set of states on a compact, finite-dimensional state space is cloneable if and only if
it is a jointly distinguishable set of states.

Some, notably Fuchs (2002) Spekkens (2001, 2007), have found in this fact—that
some phenomena that might be thought to be distinctively quantum can be reproduced in a
classical theory by imposing restrictions on state preparation—encouragement for the view
that quantum probabilities are just like classical probabilities, epistemic probabilities bound

2



up with limitations on state preparation. A natural alternative is to conclude that those
features that can be reproduced in an essentially classical setting ought not to have been
considered distinctively quantum in the first place. This, is, I think, the right lesson to
draw. If this is right, then we must seek deep distinctions between the classical and the
quantum elsewhere. To anticipate a conclusion to be drawn below, a case can be made that
Schrödinger (1936) was right to locate the essential difference between the classical and the
quantum in its treatment of combined systems. However, Schrödinger’s conclusion that it
is entanglement that distinguishes the quantum from the classical requires qualification—as
we shall see.

In this paper, I will compare and contrast two approaches to the construction of
neutral frameworks in which theories can be compared. The first is the algebraic framework,
which begins with an algebra, among the elements of which are included the observables of
the theory. The second is the operational approach, which motivates the introduction of the
convex sets framework. I will end with a discussion of one particular model, the toy theory
devised by Rob Spekkens (2001, 2007), which, with minor modifications, fits neatly within
the convex sets framework and which displays, in an elegant manner some of the similarities
and differences between classical and quantum theories.

2 Algebraic frameworks

Clifton, Bub, and Halvorson (2003) (henceforth CBH) undertook the task of characterizing
quantum mechanics in terms of information-theoretical constraints. They adopted a frame-
work in which a physical theory is associated with a C∗-algebra, the self-adjoint elements of
which represent the bounded observables of the theory. For the definition of a C∗-algebra,
see the appendix; for our purposes it suffices to know that the set of all bounded operators
on a Hilbert space is a C∗-algebra, as is any subalgebra of these that is closed under the
operation of taking adjoints, and is complete in the operator norm. Moreover, the set of all
bounded, continuous complex-valued functions on a classical phase space is a C∗-algebra, as
is the set of all bounded, measurable complex-valued functions on a classical phase space.
Thus, classical mechanics also admits of a C∗-algebra representation, as was shown by Koop-
man (1931) . The difference between the quantum case and the classical case is that, in the
classical case, the algebra is abelian.

A state on a C∗-algebra A is a positive linear functional ρ : A → C, normalized so
that ω(I) = 1. For self-adjoint A, the number ω(A) is to be interpreted as the expectation
value of the observable corresponding to A, in state ω. The set of states is a convex set: for
any states ρ, σ, and any real λ ∈ (0, 1), the functional defined by

ω(A) = λ ρ(A) + (1− λ) σ(A)

is also a state, a mixture of ρ and σ. A state that is not a mixture of any two distinct states
is called pure. General state evolution is represented by completely positive norm-preserving
linear maps, also known as non-selective operations.
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A state is dispersion-free iff ρ(A2) = ρ(A)2 for all self-adjoint A. Any dispersion-
free state is pure. It can be shown that a C∗-algebra is abelian iff all its pure states are
dispersion-free. It can be also shown that a theory involving an abelian C∗-algebra admits
of an essentially classical representation, in which the states are probability distributions on
the set of its pure states (see Kadison and Ringrose 1983, Thm. 4.4.3). Thus within the
C∗-algebraic framework, the classical theories are those whose algebras are abelian.

Within this framework, CBH characterize quantum theory via three properties of the
algebra:

i). Algebras associated with distinct physical systems commute.

ii). Any individual system’s algebra of observables is noncommutative.

iii). Spacelike separated systems at least sometimes occupy entangled states.

As CBH (2003, 1570) point out, the first two conditions entail that the state space
of a composite systems contains nonlocally entangled states. What the third requirement is
meant to do is to guarantee that these states are physically accessible. Thus, CBH allow for
theories in which the set of preparable states is a proper subset of the full state space of the
algebra of observables. If the set of preparable states is taken to be the full set of states of
a C∗-algebra, then the third condition is redundant.

Though CBH describe their conditions as “definitive of what it means to be a quantum
theory in the most general sense” (1563), it should be noted that these three properties do
not suffice to characterize quantum mechanics. In a quantum theory, there are no states that
are dispersion-free in all observables. This is not entailed by CBH’s conditions, as can be
shown by the following simple example. Let A, B be two separated systems, and associate
with each of these the algebra M(C)⊕M(C2)— that is, the algebra of 3×3 complex matrices
of the form:  α 0 0

0 β γ
0 δ ε


Associate with the composite system the algebra that is the tensor product of the algebras
associated with A and B.

All three of CBH’s conditions are satisfied. However, unlike either quantum mechanics
or classical mechanics, some of the pure states are dispersion-free, and some are not. The
state corresponding to the vector,  1

0
0


is an eigenvector of every observable. To ensure that the state space of our theory is quantum
mechanical, some additional condition is needed. Plausible candidates are symmetry condi-
tions; one might impose, for example, the condition that, for any pair of pure states ρ, σ on
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A (or B), there is an automorphism of the algebra A taking ρ into σ. This condition would
entail that either all pure states are dispersion-free (in which case the algebra is abelian, and
the state space is a classical simplex), or that none are (as in the quantum case).

The virtues of the C∗-algebraic formulation are that there is a rich and well-worked
out theory of C∗-algebras, and that both classical and quantum theories—including quantum
mechanics and quantum field theories—are readily formulated in such terms. This rich theory
comes at a price, however. The assumption that the set of observables be the self-adjoint part
of a C∗-algebra requires that sums and products of observables be well-defined even when
the observables are incompatible ones. When self-adjoint operators A, B fail to commute,
the product AB will not correspond to any observable; nevertheless, our definition of state
requires that states assign numbers to such products, numbers that are not interpretable as
expectation values of the results of measurement. The embedding of our observables into
an algebra imposes non-trivial algebraic relations between expectation values assigned to
observables.

It would be difficult to argue—or at least, at this point nobody knows how to argue—
that any plausible physical theory would admit of a C∗-algebraic formulation. If we further
require that the set of preparable states be the full state space of some C∗-algebra, then
the C∗-algebraic framework becomes decidedly too restrictive. Halvorson (2004) discusses
the case of a theory that he calls the Schr*dinger theory, in which elementary systems are
like quantum systems, but in which entangled states decay into mixtures when the systems
are separated. Such a theory is locally quantum, but admits of no Bell-inequality violating
correlations. Such a theory was suggested by Schrödinger (1936), who pointed out that at
the time there was little in the way of experimental evidence of nonlocally entangled states.
Though there is now abundant evidence of nonlocal entanglement, it does not seem that the
Schr*dinger theory is one that could, or should, have been ruled out in advance of experiment.
Moreover, we would like a framework in which we can consider some admittedly artificial
constructions, such as Spekkens’ toy theory, discussed in section 5, below. As Halvorson
(2004) has shown, the state space of the Spekkens theory is not the state space of a C∗-
algebra.

Within the algebraic approach, one can also consider weakening of the algebraic
assumptions. One can, for example, consider Jordan-Banach (JB) algebras, or Segal algebras
(see Halvorson (2004) for definition and discussion), both of which contain C∗-algebras as
special cases. Seeking a further widening of the algebraic framework, with constraints limited
to those that, arguably, any reasonable physical theory must share, one is led naturally to
effect algebras.1

An effect algebra is meant to represent the set of yes-no tests that can be performed on
a physical system. It contains distinguished elements 0 and u (the unit element), representing

1The notion of an effect algebra has occurred in the writings of many authors working on the foundations
of quantum mechanics. The presentation here is based on that of Beltrametti and Bugajski (1997). It should
be pointed out that, despite the name, an effect algebra is not an algebra: mutiplication is not defined, and
addition is a partial operation.
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the two trivial tests whose outcomes, independent of the state, are ‘no’ and ‘yes,’ respectively.
There is a partial operation ⊕. a ⊕ b is defined when a and b can represent alternative
outcomes of a single experiment. The partial operation ⊕ is assumed to be symmetric and
associative. Moreover, it is assumed that, for each effect a, there is a complementary effect
ā such that a⊕ ā = u. As a final condition: a⊕ u is defined only when a = 0. A resolution
of the identity is a set {ai, ..., an} such that

n∑
i=1

ai = u.

Associated with an n-outcome experiment is a resolution of the identity representing its
possible outcomes.

An element a of a C∗-algebra A is said to be positive iff a = b∗b for some b ∈ A. We
can define a partial order ≤ on A by: a ≤ b iff a + c = b for some positive c. The set of
positive elements a of A such that 0 ≤ a ≤ I forms an effect algebra, with a ⊕ b defined to
be a+ b when 0 ≤ a+ b ≤ I, and undefined otherwise.

The conditions defining an effect algebra, unlike those defining C∗-algebras or JB-
algebras, have clear significance in terms of their intended association with experiments.
This gives us a broad framework within which we add conditions to delimit interesting
classes of physical theories.

Though restricting ourselves to the C∗-algebraic framework excludes some theories
that we might want to consider, such a framework nonetheless has a role to play. As men-
tioned, the C∗ framework is broad enough to include both classical and quantum theory.
Moreover, it lends itself readily to hybrid theories, as it permits hybrid systems, composite
systems having both classical and quantum subsystems. This is useful for considering what
can be done by a combination of classical and quantum information processing. Moreover,
a deep theorem by Alfsen, Hanche-Olsen, and Shultz, discussed in section 4, below, shows
that the C∗-assumption entails that the simplest systems are equivalent either to a classical
bit or a qubit. This is an indication that the theory is too restrictive to be regarded as a
general framework for physical theories, and suggests, rather that it is the minimally general
framework that is broad enough to include both the classical and the quantum.

3 The operational approach

Lucien Hardy (2001, 2002) sets out to characterize quantum mechanics within a framework
whose basic concepts are framed in terms of performable operations. Hardy invites the
reader to imagine concrete devices: state preparation devices, transformation devices, and
measurement devices, and characterizes quantum mechanics in terms of relations between
possibilities of state preparation, transformation, and measurement. States, on this ap-
proach, are associated with preparation devices, and are regarded as compendia of probabil-

6



ities regarding the outcomes of any measurement that can be performed. Similar discussions
can be found in Holevo (1982), Ludwig (1983), and D’Ariano (2006).

To take such concepts as basic may seem to smack of an operationalism that eschews
on principle any talk of a reality not directly accessible to observation and manipulation.
This is not, however, a necessary concomitant of this approach. If one wishes to construct
a framework capable of embracing as wide an array as possible of physical theories, it can be
a useful strategy to restrict one’s attention to the features that any physical theory might be
expected to have. Whatever else it might do, a physical theory should specify a set of possible
states of a physical system, and say something about operations that can be performed on
systems and experiments that can be done. The states, however (or whether) they may be
conceived ontologically, ought, in the context of the physical theory, to yield probabilities
for outcomes of any experiment that might be performed. The operationalism associated
with this approach can be thought of as a methodological operationalism. Someone who
takes as the goal of theorizing an account of a reality existing independently of us and our
experimental manipulations might nonetheless wish to adopt a framework that begged no
questions about what that reality is like. The framework itself is neutral between an attitude
on which operational concepts are the only meaningful ones, and one that seeks to use them
as a springboard for theorizing about the nature of physical reality.

It is also neutral between an attitude that rests content with taking the concepts
of preparation, transformation, and experiment as primitives and does not seek to explain
them within the theory to be constructed, and an attitude that seeks to ”close the circle,”
to borrow a phrase from Abner Shimony (1993), by construing the experimental apparatus
as among the physical systems to be dealt with by the theory, and the processes by which
states are prepared and experimental results obtained to be among the dynamical evolutions
allowed by the theory. It is this latter, of course, that has proved problematic in connection
with quantum mechanics!

States are associated with preparation procedures, and yield probabilities over the
results of experiments, given the preparation procedure. These probabilities might or might
not represent the epistemic state of some human agent. An agent might be in doubt about
what probabilities are most appropriate to associate with a given preparation procedure. She
might, for example, be uncertain whether a given combination of a preparation and a two-
outcome experiment yielded equal probabilities for both outcomes. The conjecture that the
probabilities are equal can be subjected to test; by repetition our agent can satisfy herself,
to any degree of precision and confidence required, about what probabilities she ought to
associate with a given combination of preparation and experiment.

Proponents of a subjectivist interpretation of probability in quantum mechanics some-
times assert that it is nonsensical to speak of an unknown quantum state (see, e.g. Fuchs
and Schack 2004). And indeed, if the probabilities associated with a state had to be epis-
temic probabilities, then a state could be unknown only if an agent were ignorant of her
own state of mind. However, it is surely not nonsensical to say that a system has been
subjected to some state preparation procedure, though no-one knows what procedure was
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applied. In quantum information theory situations are routinely invoked in which one agent
has prepared a state, and another has to guess what state it is. This situation would not be
fundamentally different if it were automated; we can imagine a machine subjecting a system
to some preparation procedure, making a record of which procedure was applied.

The operational approach gives us the following picture: we have a set of states,
associated with preparation procedures, a set of possible transformations of the states, and
a set of possible experiments that can be performed. The mathematical framework that
lends itself naturally to this picture is the convex sets framework, to be discussed in the next
section.

4 The convex set approach

Given any two preparation procedures ρ, σ and any real number λ ∈ [0, 1], there will be
a third, according to which one utilizes either procedure ρ or σ, with probabilities λ and
1−λ, respectively. Thus, we expect the set of states of any reasonable physical theory to be
convex: it will contain all mixtures of states that it contains.

The convex set approach starts with a convex state space Ω.2 Extremal points of this
state space — that is, states that cannot be expressed as a nontrivial mixture of other states
— are called pure. An affine linear functional on Ω is a mapping a : Ω → R that respects
mixtures; that is,

a(λ ρ+ (1− λ) σ) = λ a(ρ) + (1− λ)a(σ).

for all ρ, σ ∈ Ω, λ ∈ (0, 1). Among affine linear functionals are the constant functionals,
taking on the same value on every state; we single out the unit functional u and the zero
functional 0. There is a natural partial ordering on A(Ω), the set of affine linear functionals:
a ≤ b iff a(ω) ≤ b(ω) for all ω ∈ Ω. If 0 ≤ a ≤ u, a is called an effect. The set of effects
on a state space Ω will be denoted by E(Ω). The notion of an effect generalizes the notion,
familiar from the quantum context, of an effect as a positive operator with spectrum in
[0, 1]. A resolution of the identity u in terms of effects generalizes the notion of a positive
operator-valued measure (POVM).

The set of effects has a natural structure as an effect algebra in the sense of section
(2) , and, conversely, the set of all probability measures on an effect algebra forms a convex
state space. Relations between these frameworks are further discussed in Beltrametti and
Bugajski (1997).

There is a natural affine structure on the set of effects: for any effects a, b, and any
λ ∈ (0, 1), the functional c defined by

c(ω) = λ a(ω) + (1− λ) b(ω)

2The presentation of the convex set framework presented here is heavily indebted to the presentations in
Beltrametti and Bugajski (1997), and in Barnum et al. 2006.
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is also an effect. Thus, we can distinguish between effects that can be written as a nontrivial
mixture of other effects, and those that cannot. The former are called mixed effects, the
latter, pure. A resolution of the identity in terms of pure effects is what corresponds, in the
context, to a quantum projection-valued measure (PVM).

Effects map states to probabilities. Equivalently, we can think of states as mapping
effects to probabilities. For any state ω ∈ Ω, there is an affine linear mapping ω̂ : E(Ω) → R
defined by

ω̂(a) = a(ω).

It will be convenient, when defining the tensor product space, to work with these dual states,
which map effects to probabilities.

To specify an observable A, one specifies a measure space 〈sp(A),MA〉, and an affine
mapping αA from states to probability measures on 〈sp(A),MA〉. The set sp(A) is the
outcome space of A, the set of possible results of an A-experiment, MA, a σ-algebra of
subsets of A, which are the measurable subsets of sp(A). For any measurable set ∆ ∈ MA,
we can define pA∆ : Ω → R by,

pA∆(ω) = αA(ω)(∆).

This is an affine mapping yielding the probability, in state ω, that a measurement of A will
yield a result in ∆. Since 0 ≤ pA∆(ω) ≤ 1 for all ω ∈ Ω, pA∆ is an effect. Functions of an
observable are readily definable; for any measurable function f on sp(A), f(A) is defined
to be the observable whose outcome space is f(sp(A)), with the probability that f(A) ∈ ∆
equal to the probability that A ∈ f−1(∆). A set {Ai} of observables is said to be a compatible
set iff there is an observable C and measurable functions {fi} on sp(C) such that Ai = fi(C).
Where A is real-valued—that is, sp(A) ⊆ R—we will write ω(A) for the expectation value
of A in state ω.

One also specifies a set of affine linear mappings of the state space into itself, repre-
senting the physically possible operations on the system. Given a transformation T : Ω → Ω,
we define the conjugate transformation T † : E(Ω) → E(Ω), which maps effects to effects, by

T †a(ω) = a(Tω)

for all ω ∈ Ω. Obviously, the identity will be among the possible transformations, and it is
assumed that transformations can be composed. It is not assumed that all transformations
are invertible.

To sum up: with a physical system is associated a triplet 〈Ω,O, T 〉, where Ω is a
convex set representing the state space of the system, O is a set of observables on Ω, and T
is a semi-group of transformations of Ω.

Given two physical systems S = 〈Ω,O, T 〉, S ′ = 〈Ω′,O′, T ′〉, there is a plurality of
choices of state space for the composite system. At minimum the set of experiments that
can be performed on the combined system should include experiments performed on S, S ′

separately. Consider the set of experiments in O with outcome space {0, 1} (the set of
‘yes-no’ experiments). For any such experiment A, there is an effect a ∈ E(Ω) such that,
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for any ω ∈ Ω, a(ω) is the expectation value of A in state ω. Since we want to consider
theories in which the set of permitted observables falls short of all observables definable on
the state space Ω, we want to leave open the possibility that not every effect in E(Ω) yields
the expectation value for some yes-no experiment. Let E(Ω) be the set of effects on Ω that
do figure in this way in some experiments in O. We specify a state in a tensor product space
Ω⊗Ω′ by specifying, for every pair a ∈ E(Ω), b ∈ E(Ω′), an expectation value for the product
observable a ⊗ b: a ⊗ b is measured by measuring a and b separately, and the outcome of
the a ⊗ b experiment is taken to be the product of the component experiments. A state ω
in Ω ⊗ Ω′ is defined to be an affine bilinear mapping ω : E(Ω) × E(Ω′) → [0, 1], normalized
so that ω(u, u′) = 1.3 Given α ∈ Ω, β ∈ Ω′, we define the product state α⊗ β by

(α⊗ β) (a, b) = α(a) β(b)

for all a ∈ E(Ω), b ∈ E(Ω′). The minimal tensor product Ω ⊗sep Ω′ is defined to be the
convex hull of the set of product states. A state in Ω⊗ Ω′ is said to be separable iff it is in
this minimal tensor product; entangled, otherwise. The maximal tensor product Ω ⊗max Ω′

contains all normalized affine bilinear mappings ω : E(Ω)×E(Ω′) → R. In general, a theory
may specify a tensor product space that is a convex proper subset of the maximal tensor
product space. The quantum tensor product, since it includes entangled states, exceeds the
minimal tensor product. It falls short of the maximal tensor product, however; see Barnum
et al. (2005) for discussion.

The possible transformations of the composite system should, at minimum, include
transformations performed separately on the individual systems. For any transformations
T ∈ T , T ∈ T ′, define the transformation T ⊗ T ′ : Ω⊗max Ω′ → Ω⊗max Ω′ by

(T ⊗ T ′)ω(a, b) = ω(T †a, T ′†b). (1)

We will require our tensor product space to be closed under T ⊗ T ′, for all T ∈ T , T ∈ T ′.
In his opening lecture at the Boston conference, Abner Shimony raised the question

whether there could be entanglement without potentiality. If by ‘potentiality’ we mean that
there are pure states in which some pure observables do not take on definite values, then
it becomes a theorem in the convex set framework that there is no entanglement without
potentiality.

Theorem 1 Let A, B be physical systems, with state spaces ΩA, ΩB. If ψ is an entangled
pure state in ΩA⊗ΩB, then there exists a pure effect a ∈ E(ΩA⊗ΩB) such that 0 < ψ(a) < 1.

Proof. Let ψA, ψB be the marginals of ψ, defined by

ψA(a) = ψ(a, uB)

ψB(b) = ψ(uA, b)

3Here we depart slightly from Barnum et al. (2006), who define a tensor product state as an affine bilinear
mapping defined on all pairs of effects on the component spaces.
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for all effects a ∈ E(ΩA), b ∈ E(ΩB). Here uA and uB are the unit effects in E(ΩA) and
E(ΩB), respectively. By Lemma 3 of Barnum et al. (2006), if either marginal is pure, then
ψ is a product state. Since, by assumption, ψ is entangled, both marginals are mixed.

As ψA is a mixed state, let it be a nontrivial mixture of distinct states ρ, σ ∈ ΩA. If
ρ(a) = σ(a) for all pure effects a, then ρ(a) = σ(a) for all effects a, and ρ = σ. Therefore,
there exists a pure effect a such that ρ(a) 6= σ(a). It follows from this that ψA(a) is not
equal to 0 or 1, as it could take on one of these extremal values only if both ρ(a) and σ(a)
took on the same extremal value. Thus, ψ(a, uB) = ψA(a) ∈ (0, 1). �

The state space of an algebra, be it a C∗-algebra, a JB-algebra, or a Segal algebra, is
a convex set. Alfsen and Shultz (1978) characterize the state spaces of JB-algebras among
convex sets, and Alfsen, Hanche-Olsen, and Shultz (1980) characterize those convex sets that
are the state spaces of C∗-algebras. This gives us a way of linking the convex-set approach
to the algebraic approach. We will here not go into the full details of these characterizations,
which are presented in Alfsen and Shultz (2003), but focus instead on a central feature of
these characterizations.

First, some definitions. A face of a convex set Ω is a convex subset F ⊆ Ω that is such
that, if any state in F is a mixture of states ρ, ω ∈ Ω, then ρ and ω are also in F . The face
generated by ρ, ω, is the smallest face containing ρ and ω. In a simplex, the face generated
by two pure states is just the one-dimensional simplex consisting of ρ, ω, and all mixtures
of the two. The face generated by two pure quantum states, represented by state vectors
|ψ〉, |φ〉, consists of a set of pure states comprising all linear superpositions of |ψ〉 and |φ〉,
together with all mixtures of these. Thus, it is affinely isomorphic to the Bloch sphere. A
face F ⊆ Ω is norm exposed iff there is an effect a ∈ E(Ω) such that F is precisely the set of
states on which a takes on the value 0. A Hilbert ball is a convex set of states that is affinely
isomorphic to the closed unit ball of some (finite- or infinite-dimensional) real Hilbert space.
The Hilbert ball Bn is the closed unit ball in Rn.

If Ω is the state space of a JB-algebra, or, as a special case, a C∗-algebra, then the
faces generated by pairs of pure states take on a simple form.

Theorem 2 If a convex set Ω is the state space of a JB-algebra, then for any distinct pure
states ρ, ω ∈ Ω, the face generated by ρ, ω is a norm exposed Hilbert ball.

For proof, see Alfsen et al. (1978), or Alfsen and Shultz (2003, Proposition 9.10). For
discussion of the significance of this result for the Spekkens and Schr*dinger theories, see
Halvorson (2004).

Theorem 3 If a convex set Ω is the state space of a C∗-algebra, then, for any distinct pure
states ρ, ω ∈ Ω, the face generated by ρ, ω is norm exposed, and is either B1 or B3.

See Alfsen et al. 1980, or Alfsen and Shultz (2003, Theorem 11.59).
Theorem 3 entails that, in the state space of a C∗-algebra, the face generated by a

pair of pure states ρ and ω is either the one-dimensional simplex consisting of ρ and ω and
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all mixtures of these, or else is affinely isomorphic to the Bloch sphere. Thus, within the C∗-
algebra framework, the state space of quantum mechanics can be completely characterized
by the condition that any two pure states ρ, σ are connected by a continuous path through
the set of pure states within the face generated by ρ and σ — a cousin of Hardy’s (2001)
continuity axiom. For a classical theory, on the other hand, the set of pure states is totally
disconnected: any state that is “intermediate” between two classical states is a mixture of
the two.

Consider a system S, with state space ΩS, and let A be some subsystem of S. The
state space ΩA will be ΩA ⊗ ΩE, where E is the “environment” of A, that is, everything in
S that is not included in the subsystem A. For any pure state ε ∈ ΩE, the set ΩA ⊗ ε is a
face of Ω that is affinely isomorphic to ΩA. Thus, the state space of any subsystem of S will
be affinely isomorphic to a face of ΩS. The simplest subsystems will be those whose state
spaces are the faces generated by a pair of distinguishable states. Theorem 3 therefore says
that, in the state space of a C∗-algebra, these simplest systems will have state spaces that
are equivalent either to the state space of a classical bit, or to that of a qubit. Composite
systems might be hybrids of the two.

This is another reason for regarding the C∗-algebraic framework as too restrictive
for a framework meant to embrace physical theories in general. This limitation is also a
strength. Though it can make no claims to physical generality, the C∗-framework is a useful
one for comparing classical and quantum theories, and for discussing information processing
and transmission possibilities afforded by a combination of classical and quantum operations,
precisely because it is a framework in which the simplest systems are constrained to be either
classical bits or qubits.

The work of Clifton, Bub and Halvorson (2003) was motivated by a suggestion, which
they attribute to Chris Fuchs and Gilles Brassard, that quantum mechanics can be derived
from an appropriately chosen set of cryptographical principles. The C∗-algebraic framework
is too restrictive a starting point for such a project. A more appropriate starting point is the
convex set approach. The question arises: Is there a set of principles, with clear operational
(cryptographic or otherwise) significance, that distinguishes quantum state spaces among
the convex sets?

Alfsen and Shultz (1978) and Araki (1980) tell us how to single out, among convex
sets, those that are the state spaces of JB algebras. Alfsen et al. (1980) tell us how to
distinguish, among these, those that are state spaces of C∗-algebras. The further condition
that the face generated by any pair of pure states is affinely isomorphic to the Bloch sphere
distinguishes the quantum state spaces among these. These theorems, therefore, could form
a useful starting-point for a project that seeks to characterize quantum mechanics in terms
of information-theoretic principles. Araki’s work may be useful in this regard because his
conditions are expressed in terms more directly connected with operations than those of
Alfsen et al.. The information-theoretical principles proposed by Clifton, Bub and Halvorson
do not suffice to characterize quantum mechanics, because, even within the C∗-framework,
they do not entail that there are no states that are dispersion-free in all observables. The
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task of characterizing quantum mechanics in terms of possibilities of information processing
and transfer remains an open one.

5 The Spekkens Toy Theory

Consider a ball that can be in one of four boxes. A state of this system is specified by four
probabilities (p1, p2, p3, p4). Extremal states are those in which the ball is definitely in one of
the boxes. The state space is therefore a simplex consisting of four pure states and mixtures
of these, and can be depicted as a tetrahedron.

Now, suppose we impose a restriction on state preparations, to the effect that the
probability of the ball being in any one of the boxes cannot exceed 1

2
. This restriction chops

the vertices off our tetrahedron, leaving an octahedron whose vertices are the midpoints of
each edge of our original tetrahedral state space (see Figure 1). These six states, which are
the extremal points of the new state space, are those in which the probability is equally
divided between two of the boxes. These are the pure states of elementary systems in
the toy theory constructed by Spekkens (2004, 2007), the ‘states of maximal knowledge,’
as Spekkens puts it. In Spekkens’ theory, arbitrary mixtures of these pure states are not
permitted; Spekkens permits as a mixture only the state in which the probability is equally
divided among all four boxes. This seems to be an inessential restriction. Moreover, it is one
of questionable coherence, if the states are interpreted, as Spekkens would have them be,
as possible states of knowledge. A theory whose states are intended as states of knowledge
ought to include states of less-than-maximal knowledge. Suppose Alice’s belief state is a
Spekkens maximal-knowledge state about an elementary system of Spekkens’ theory, and
that Bob knows nothing about the system except that Alice’s belief state is either ρ1 or ρ2,
and that Bob’s degree of belief in the former is λ, in the latter 1− λ. Then Bob’s epistemic
state about the system is the corresponding mixture of states of maximal knowledge.

We will, therefore, take as a state space the convex hull of Spekkens’ pure states,
as suggested by Halvorson (2004). This is the octahedron we have just described, depicted
again in Figure 2. Note that, though we started with a simplex, the state space we have
ended up with is not a simplex. In particular, the maximally mixed state in the center (call
it ω0), can be decomposed as an equally weighted mixture of {x+, x−}, or of {y+, y−}, or
of {z+, z−}.

Given this state space, one can define observables that do not extend to observables
on our original tetrahedral simplex, and hence do not correspond to observable quantities
in the Spekkens theory. There is, for example, an affine functional on the octahedron that
takes on the value 0 on the (x+, y+, z+) face, and the value 1 on the (x−, y−, z−) face.
Were such a function extended to the embedding tetrahedron, it would have to take on a
value greater than 1 on vertex 4. The set of permitted observables will be a proper set of
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Figure 1: The state space of the Spekkens toy theory
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Figure 2: The octahedron re-oriented.
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the observables definable on the state space. Define the affine functionals:4

ax(x+) = 1, ax(x−) = 0, ax(y+) = ax(z+) = 1
2

ay(y+) = 1, ay(y−) = 0, ay(x+) = ay(z+) = 1
2

az(z+) = 1, az(z−) = 0, az(x+) = az(y+) = 1
2

(2)

We define the observables {σµ |µ = x, y, z}, analogous to the quantum spin observables. The
outcome space of σµ is {−1,+1}, and the probability in state ω of obtaining outcome +1
upon measuring σµ is aµ(ω). Take as our set of observables these three, together with the
identity observable I, which yields with certainty the result +1 in any state.

Now suppose we start with the Bloch sphere, which represents the state space of a
single qubit (equivalently, a spin-1

2
particle), and impose a restriction that the only prepara-

ble pure states are spin eigenstates in one of three mutually orthogonal directions: our
state preparation device is a Stern-Gerlach apparatus whose mounting permits only these
three orientations. Call these directions (x, y, z). Label the six preparable pure states
{x+, x−, y+, y−, z+, z−}. The convex hull of these states is once again our octahedron.
We place the same restrictions on measurement: only spin measurements in the same three
directions are permitted. What we thereby obtain is a state space and set of observables
that are isomorphic to those of elementary systems of the Spekkens theory. Thus, the same
structure, consisting of state space plus set of permitted observables, is obtainable on the one
hand by starting from a simplex, that is, an essentially classical state space, and imposing
restrictions on state preparation, and on the other by starting from a quantum state space
and imposing restrictions on state preparation and measurement. Moreover, as Spekkens
(2001) demonstrates in detail, many of the features of quantum theories that one might be
tempted to think of as characteristic of quantum mechanics already exist within this reduced
state space.

Though we have obtained the same structure of state space and observables in the two
cases, the resulting theories, will nevertheless be different if the permitted transformations
of the state spaces are different, and, since we require tensor product spaces to be closed
under transformations of the component systems, this will have consequences for the state
spaces of composite systems. Unitary transformations of the quantum state space of a qubit
correspond to rotations of the Bloch sphere. The transformations permitted in the Spekkens
theory are permutations of the four boxes. We thus have two natural choices for the group
of permitted transformations of our octahedral state space: TS, the group of transformations
resulting from permutations of the four boxes, or Tq, the set of rotations that take the
octahedron into itself. Each of these groups has 24 distinct elements, but, as we shall see,
the two groups are not isomorphic.

4The affine dimension of the Spekkens state space, like that of the Bloch sphere, is four. That is, to
specify any affine function, it suffices to specify its value on a set of four linearly independent states. We
could have chosen the same set of four for the definition of each of these functionals, say, {x+, y+, z+, ω0}.
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Obviously, any automorphism of the state space will have to leave the unique totally
mixed state ω0 fixed. To specify an automorphism, therefore, it suffices to specify its action
on the set of pure states {x+, y+, z+}, which any automorphism will take into a sets of pure
states containing no pair of opposite states. Both groups of transformations include cyclic
permutations of x+, y+, z+. Let T1 be the transformation 〈x+ → y+, y+ → z+, z+ → x+〉.
This corresponds, in the quantum domain, to a rotation of 2π/3 about the axis pointing in
the direction of x̂ + ŷ + ẑ. It is achieved by the Spekkens transformation that leaves box 4
invariant and permutes the other three by 〈1 → 3 → 2 → 1〉. Let T2 be the transformation
that takes x+ to x− and y+ to y−, and leaves z+ invariant. This is achieved, in the group
of rotations, by a rotation of π about the z-axis, and, in the group of Spekkens permutations,
by the swap 〈1 ↔ 2, 3 ↔ 4〉. Rotations about the other axes can be achieved by combining
this rotation with cyclic permutations of the axes; we thereby achieve any transformation
that inverts two axes while leaving the other invariant.

Let T S3 be the transformation that leaves z+ invariant while swapping x+ and y+.
This belongs to the Spekkens group of transformations, as it is effected by the swap 1 ↔ 2.
As it involves parity inversion, it is not a transformation resulting from a rotation of the
Bloch sphere, and so does not belong to the group of quantum transformations. We do,
however, have in the quantum group a transformation that leaves z+ invariant and takes
x+ to y+ and y+ to x−; this is a counterclockwise rotation of π/2 about the z-axis. Call
this T q3 .

The reader will be able to verify that the sets {T1, T2, T
S
3 }, {T1, T

q
3 } suffice to gen-

erate the Spekkens and quantum groups of transformations, respectively. We summarize
the generating sets of the Spekkens and quantum transformations in Table 1. For each
automorphism T of the state space Ω, we include also the conjugate automorphism T †.

Table 1: Generators of TS and Tq.
T T †

x+ y+ z+ σx σy σz

T1 y+ z+ x+ σz σx σy

T2 x− y− z+ −σx −σy σz

T S3 y+ x+ z+ σy σx σz

T q3 y+ x− z+ −σy σx σz

Let us now begin to construct tensor product spaces for the two theories. A state is
specified by specfying its value on the effects aµ⊗ aν , µ, ν ∈ {0, x, y, z} (where we take a0 to
be the unit effect u), or, equivalently, by specifying the expectation value it assigns to the
observables σµ ⊗ σν , µ, ν ∈ {0, x, y, z}, where σ0 is the observable yielding outcome 1 in all
states. The minimal tensor product contains all product states and convex combinations of
product states. In addition to these, Spekkens allows states whose marginals are maximally
mixed, but with maximal correlations between the states of the component systems. One
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Figure 3: The maximally correlated state χ.

such state is the state (call it χ) in which it is certain that both balls are in boxes with
the same label (that is, if ball 1 is in its box 1, then ball 2 is in its box 1 also, etc.), with
probabilities equally divided among the four possibilities. This state is symbolized in Figure
3. In this 4× 4 array, system 1’s box states are along the vertical axis, and system 2’s box
states along the horizontal; for the joint system to occupy the box (i, j) thus represents a
state in which ball 1 is in box j and ball 2 is in box i. The state χ is defined by

χ(σµ ⊗ σν) = δµν , µ, ν ∈ {0, x, y, z}. (3)

That is, the three observables {σx⊗σx, σy⊗σy, σz⊗σz} take on dispersion-free values, equal
to 1. Note that, since, quantum-mechanically,

(σx ⊗ σx) (σy ⊗ σy) = −σz ⊗ σz, (4)

this is not a state in the standard quantum tensor product.
If we include the state χ in our tensor product space, then all states obtainable from

it by permutations of the boxes will also be in the tensor product space (we can restrict
our attention to permutations on one subsystem, as we will not obtain any new states by
considering permutations of both subsystems). This gives us a set of 24 pure, maximally
entangled states, each of which can be represented by a 4 × 4 array with one element of
each row and each column shaded. For example, since we have the state χ, application of T1

produces the state in which σx⊗σx and σy⊗σy have definite value −1, and σz⊗σz has definite
value +1, and, by combining T1 with T2, we obtain common eigenstates of these observables
for other combinations of eigenvalues that multiply to +1 (note that, since the only sign-
changing element of our generating set for the Spekkens group is T1, and this changes two
signs, we will not be able to change the sign of the product of the three eigenvalues). These
four states are depicted in Figure 4.

By application of T S3 to χ, we get the + + + common eigenstate of {σy ⊗ σx, σx ⊗
σy, σz ⊗ σz}, and via applications of T1 and T2, the other eigenstates with eigenvalues that
multiply to +1. These states are depicted in Figure 5. Continuing the process, we obtain, for
each of the rows and each of the columns of the following array of observables, four common
eigenstates of the observables in that row (column), corresponding to each combination of
eigenvalues multiplying to +1.
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Figure 4: Common eigenstates of σx ⊗ σx, σy ⊗ σy, σz ⊗ σz.

+ + + +−− −+− −−+

Figure 5: Common eigenstates of σx ⊗ σy, σy ⊗ σx, σz ⊗ σz.

+ + + +−− −+− −−+

σx ⊗ σx σy ⊗ σy σz ⊗ σz

σz ⊗ σy σx ⊗ σz σy ⊗ σx

σy ⊗ σz σz ⊗ σx σx ⊗ σy

(5)

These states are the 24 pure entangled states of the Spekkens theory. Call the tensor product
space whose pure states consist of the product states together these 24 maximally entangled
states, ΨS. Note that the rows and columns of (5) are, in quantum theory, also sets of observ-
ables having joint eigenstates. In the quantum theory, however, eigenvalues of observables
in a row will multiply, not to +1, but to −1.

Suppose that we start constructing a quantum-like tensor product space for our theory
by starting with a pair of systems having our octahedral state space, and endowing it with
a state that is in the quantum tensor product. For example, we could start with the state
ξ, common to both the quantum and the Spekkens tensor product, defined by

ξ(σx ⊗ σy) = ξ(σy ⊗ σx) = ξ(σz ⊗ σz) = +1

ξ(σµ ⊗ σν) = 0, all other combinations.

(6)
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Application of the quantum group of transformations again yields common eigenstates for
each of the rows and columns of the array (5). For example, applying T q3 to ξ yields the
state φ−, with

φ−(σx ⊗ σx) = −1 φ−(σy ⊗ σy) = +1 φ−(σz ⊗ σz) = +1

Pairwise sign changes (combining applications of T1 and T2) yield the the other common
eigenstates of {σx ⊗ σx, σy ⊗ σy, σz ⊗ σz}, forming the set of Bell states {φ+, φ−, ψ+, ψ−},
which are defined by the conditions,

φ+(σx ⊗ σx) = +1 φ+(σy ⊗ σy) = −1 φ+(σz ⊗ σz) = +1

φ−(σx ⊗ σx) = −1 φ−(σy ⊗ σy) = +1 φ−(σz ⊗ σz) = +1

ψ+(σx ⊗ σx) = +1 ψ+(σy ⊗ σy) = +1 ψ+(σz ⊗ σz) = −1

ψ−(σx ⊗ σx) = −1 ψ−(σy ⊗ σy) = −1 ψ−(σz ⊗ σz) = −1,

(7)

together with the condition that, for µ 6= ν, φ+(σµ ⊗ σν) = φ−(σµ ⊗ σν) = ψ+(σµ ⊗ σν) =
φ−(σµ ⊗ σν) = 0. Let Ψq be the tensor product space whose set of pure entangled states
is the closure of the set of Bell states under Tq ⊗ I. Like the Spekkens tensor product, Ψq

contains 24 pure entangled states, consisting of 4 common eigenstates for each of the rows
and columns of (5). It shares with ΨS the eigenstates of observables in the colums of the
array; it differs from ΨS in having eigenvalues of observables in any row of (5) that multiply
to −1.

An alternative tensor product (call it Ψ̃q) can be constructed by including the state
χ and taking the closure under the quantum set of transformations. In this tensor product,
joint eigenstates of the rows of (5) will have eigenvalues multiplying to +1, with eigenvalues
of the columns multiplying to −1; this set of entangled states are those obtainable from the
quantum states by a parity inversion on one of the component systems. Choosing one or
the other of these tensor products amounts to a choice of relative orientation on the two
systems— that is, given an orientation of one, a choice of which orientation of the other will
be regarded as the “same” orientation. We can also construct a tensor product by including
both sets of entangled states.

Similar remarks apply to tensor products closed under the Spekkens transformations:
there is one such space, ΨS, containing χ and eigenstates of all rows and columns of (5) with
sets of eigenvalues multiplying to +1, another, Ψ̃S, containing the Bell states and eigenstates
of all rows and columns of (5) with eigenvalues multiplying to −1, and one that is the convex
hull of ΨS ∪ Ψ̃S.

Which tensor product we use will have consequences for whether or not a Kochen-
Specker obstruction will be forthcoming—it will be possible to construct a Kochen-Specker
obstruction in the spaces Ψq and Ψ̃q, but not in ΨS or Ψ̃S.
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Mermin’s simple Kochen-Specker obstruction (Mermin 1990), applicable to the Hilbert
space of a pair of qubits, begins with the observation that, in the following array, each row
and each column consists of mutually compatible quantum observables.

σx ⊗ I I ⊗ σx σx ⊗ σx

I ⊗ σy σy ⊗ I σy ⊗ σy

σx ⊗ σy σy ⊗ σx σz ⊗ σz

(8)

Because of the algebraic relations,

σx σy = −σy σx = i σz, (9)

we have,

(σx ⊗ σx) (σy ⊗ σy) = −σz ⊗ σz
(σx ⊗ σy) (σy ⊗ σx) = σz ⊗ σz.

(10)

The product of the elements each row of the array (8) is the identity I ⊗ I, as is the product
of the elements of each of the first two columns, whereas the product of the elements of the
third column is −I ⊗ I. This means that, if we tried to assign definite values to these nine
observables, satisfying the product rule that, whenever A, B are compatible observables,
v(AB) = v(A)v(B), we cannot succeed; the product of all nine of these values would have
to be both +1 and −1.

Return now to the convex set framework and the tensor products we have constructed
for pairs of octahedral state spaces. We have not introduced any notion of multiplication of
observables, and it is not clear how to make sense, in the general setting, of multiplication
of incompatible observables. Algebraic relations among compatible observables, however, do
make sense. Recall that a set {Ai} of observables is a compatible set if and only if there
is an observable C such that each Ai is a function of C. This will give rise to functional
relations among the observables Ai.

Consider, now, the four Bell states {φ+, φ−, ψ+, ψ−}. For each of these states, there
is an affine functional that takes on the value 1 on that state and 0 on the others: define
{aφ+ , aφ− , aψ+ , aψ−} by,

aφ+(ω) = 1
4
(1 + ω(σx ⊗ σx)− ω(σy ⊗ σy) + ω(σz ⊗ σz))

aφ−(ω) = 1
4
(1− ω(σx ⊗ σx) + ω(σy ⊗ σy) + ω(σz ⊗ σz))

aψ+(ω) = 1
4
(1 + ω(σx ⊗ σx) + ω(σy ⊗ σy)− ω(σz ⊗ σz))

aψ−(ω) = 1
4
(1− ω(σx ⊗ σx)− ω(σy ⊗ σy)− ω(σz ⊗ σz))

(11)
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These four affine functionals sum to the unit functional,

aφ+ + aφ− + aψ+ + aψ− = u. (12)

If they are effects—that is, if their values on any state are confined to the interval [0, 1]—then
we will be able to define a discrete observable C with outcome space sp(C) = {1, 2, 3, 4}, with
probabilities for the four outcomes yielded by the four effects {aφ+ , aφ− , aψ+ , aψ−}. If there
is such an observable C, the Bell states are a distinguishable set of states. The observables
{σx ⊗ σx, σy ⊗ σy, σz ⊗ σz} will be functions of C: take fi to be the functions on sp(C),
defined by

f1(n) = 2(δ1n + δ3n)− 1

f2(n) = 2(δ2n + δ3n)− 1

f3(n) = 2(δ1n + δ2n)− 1

(13)

Then we will have
σx ⊗ σx = f1(C)

σy ⊗ σy = f2(C)

σz ⊗ σz = f3(C)

(14)

Moreover, since
f1(x)f2(x) = −f3(x), (15)

for all x ∈ sp(C), we will have the functional relation

f1(C)f2(C) = −f3(C), (16)

or,
(σx ⊗ σx) (σy ⊗ σy) = −σz ⊗ σz. (17)

It is easy to check that, on the tensor product Ψq, the functionals {aφ+ , aφ− , aψ+ , aψ−}
are indeed effects. Therefore, we can add to the observables on Ψq an observable C, that
distinguishes the Bell states, and, having done so, we will obtain the algebraic relations (17).
In the tensor product Ψ̃q, each of these functionals takes on the value −1/2 on some state,
and so they are not effects. We will, however, be able to define effects on Ψ̃q that lead to
the “anti-quantum” functional relation, (σx ⊗ σx) (σy ⊗ σy) = σz ⊗ σz.

In a similar manner, we can define affine functionals that distinguish Ψq’s common
eigenstates of {σx ⊗ σy, σy ⊗ σx, σz ⊗ σz} and, on Ψq, are effects, and use these to add an
observable that induces the functional relation,

(σx ⊗ σy) (σy ⊗ σx) = σz ⊗ σz. (18)

It is worth noting in passing that, if we move to the larger tensor product space that is
the convex hull of Ψq ∪ Ψ̃q, it will no longer be possible to introduce an observable that
distinguishes the Bell states. This can be seen from the fact that any affine functional that
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takes on the value 1 on φ+ and 0 on the other Bell states will take on the value −1/2 on the
state φ̃+, defined by

φ̃+(I ⊗ σi) = φ̃+(σj ⊗ I) = 0

φ̃+(σi ⊗ σj) = −φ+(σi ⊗ σj).
(19)

for i, j ∈ {x, y, z}. This follows from the fact that the totally mixed state ω0 ⊗ ω0 can be
written either as an equally weighted mixture of the Bell states, or as an equally weighted
mixture of φ+ and φ̃+.

ω0 ⊗ ω0 =
1

4

(
φ+ + φ− + ψ+ + ψ−)

=
1

2

(
φ+ + φ̃+

)
. (20)

Similar remarks hold for the convex hull of ΨS ∪ Ψ̃S. On this space, there can be no positive
affine functional that takes on the value 1 on the state ξ and 0 on all the other eigenstates
of {σx ⊗ σx, σy ⊗ σy, σz ⊗ σz}.

By adding to the set of observables on Ψq an observable that distinguishes the Bell
states, and one that distinguishes the common eigenstates of {σx ⊗ σy, σy ⊗ σx, σz ⊗ σz},
we induce the algebraic relations (17), (18), that lead to a Mermin-style Kochen-Specker
obstruction. It is worth noting that we have obtained these relations, not by reference
to the quantum relation (9), which involves products of incompatible observables, but by
considerations of relations between compatible observables.

In a similar manner, we can induce algebraic relations among the same observables
in the Spekkens tensor product ΨS. We will, in this space, have the relation (18). However,
instead of the quantum relation (17), we will have

(σx ⊗ σx) (σy ⊗ σy) = σz ⊗ σz, (21)

and no Kochen-Specker obstruction will be forthcoming.
Thus, starting with the same state space for elementary systems, we obtain, depending

on which tensor product space we bestow on pairs of systems, either a theory, whose pure
states are those of the Spekkens toy theory, whose states which admit of a representation as
mixture of classical states, or a theory, obtained by using one of the quantum tensor products,
that admits of no non-contextual hidden-variables theory. Similarly, it is clear that whether
or not our theory will contain states with correlations that violate a Bell inequality will
depend on the tensor product used—though the tensor products we have so far constructed
contain no Bell inequality-violating correlations, we can, without contradiction (and without
disrupting the algebraic relations between observables we have obtained) extend our tensor
space (be it Spekkens or quantum) to include them.

All this begins to suggest that Schrödinger was right to find the essential distinction
between classical and quantum theory in the way that the latter treats compound systems.
However, it is not entanglement per se that is distinctively quantum; it matters which en-
tangled states the theory contains.
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8 Appendix

8.1 C∗- and JB algebras

A Banach space is a normed linear vector space that is complete with respect to the norm.
That is, every Cauchy sequence converges to a limit.

A Banach algebra A is a Banach space that is also an algebra with identity I, such
that the operation of multiplication is separately continuous. That is, for each B ∈ A, if
An → A, then AnB → AB, and, for each A ∈ A, if Bn → B, then ABn → AB.

An involution is a mapping A→ A∗ such that

i). (aA+ bB)∗ = āA∗ + b̄B∗

ii). (AB)∗ = B∗A∗

iii). (A∗)∗ = A

A C∗-algebra is a complex Banach algebra with an involution that satisfies ‖ A∗A ‖=‖ A ‖2.
A Jordan algebra is a vector space with a commutative bilinear product ◦ satisfying

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a)

A JB-algebra is a Jordan algebra equipped with a norm ‖ ‖ satisfying

i). ‖a ◦ b‖ ≤ ‖a‖ ‖b‖

ii). ‖a2‖ = ‖a‖2

iii). ‖a2‖ ≤ ‖a2 + b2‖,

which is complete with respect to this norm.
The self-adjoint elements of any C∗-algebra form a JB-algebra, with the symmetric

product,

a ◦ b =
1

2
(ab+ ba).

8.2 C∗-algebraic no-cloning

Theorem 4 If {ρ, ω} are a cloneable pair of distinct pure states of a C*-algebra then they
are orthogonal.

Proof. We define the transition probability of a pair of pure states by

p(ρ, ω) = 1− 1

4
‖ρ− ω‖2
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A nonselective operation cannot increase the norm distance between two states; therefore,
the transition probability cannot decrease under a nonselective operation. Hence, if there is
a nonselective operation that clones {ρ, ω},

p(ρ⊗ ρ, ω ⊗ ω) ≥ p(ρ, ω).

However, it follows from CBH’s Lemma 2 that, for pure states ρ, ω,

p(ρ⊗ ρ, ω ⊗ ω) = p(ρ, ω)2.

This gives us
p(ρ, ω)2 ≥ p(ρ, ω),

or,
p(ρ, ω)(1− p(ρ, ω)) ≤ 0.

Since p(ρ, ω) lies in the interval [0, 1], this is possible only if p(ρ, ω) is equal to 0 or 1.
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