
Geometric derivation of quantum uncertainty

A. Kryukov
Department of Mathematics, University of Wisconsin Colleges, 780 Regent Street, Madison, WI 53708

Quantum observables can be identified with vector fields on the sphere of normalized states.
Consequently, the uncertainty relations for quantum observables become geometric statements. In
the Letter the familiar uncertainty relation follows from the following stronger statement: Of all
parallelograms with given sides the rectangle has the largest area.
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Quantum observables can be identified with vector
fields on the space of states. Namely, given a self-adjoint
operator Â on a Hilbert space L2 of square-integrable
functions one can introduce the associated linear vector
field Aϕ on L2 by

Aϕ = −iÂϕ. (1)

This field is defined on a dense subset D in L2 on which
the operator Â itself is defined. Clearly, to know the vec-
tor field Aϕ is the same as to know the operator Â itself.
Moreover, the commutator of observables and the com-
mutator (Lie bracket) of the corresponding vector fields
are related in a simple way:

[Aϕ, Bϕ] = [Â, B̂]ϕ. (2)

The field Aϕ associated with an observable, being re-
stricted to the sphere SL2 of unit normalized states, is
tangent to the sphere. Indeed, the equation for the inte-
gral curves of Aϕ has the form

dϕτ
dτ

= −iÂϕτ . (3)

The solution to (3) through initial point ϕ0 is given by
ϕτ = e−iÂτϕ0. Here e−iÂτ denotes the one-parameter
group of unitary transformations generated by −iÂ, as
described by Stone’s theorem. It follows that the integral
curve through ϕ0 ∈ SL2 will stay on the sphere. One
concludes that, modulo the domain issues, the restriction
of the vector field Aϕ to the sphere SL2 is a vector field
on the sphere.

Under the embedding, the inner product on the Hilbert
space L2 gives rise to a Riemannian metric (i.e., point-
dependent real-valued inner product) on the sphere SL2 .
For this one considers the realization L2R of the Hilbert
space L2, i.e., the real vector space of pairs X =
(Reψ, Imψ) with ψ in L2. If ξ, η are vector fields on
SL2 , one can define a Riemannian metric Gϕ : TRϕSL2 ×
TRϕS

L2 −→ R on the sphere by

Gϕ(X,Y ) = Re(ξ, η). (4)

Here the tangent space TRϕS
L2 to SL2 at a point

ϕ is identified with an affine subspace in L2R, X =

(Reξ, Imξ), Y = (Reη, Imη) and (ξ, η) denotes the L2-
inner product of ξ, η. Note that the obtained Rieman-
nian metric Gϕ is strong in the sense that it yields an
isomorphism Ĝ : TRϕSL2 −→

(
TRϕS

L2
)∗ of dual spaces.

The Riemannian metric on SL2 yields a (strong) Rie-
mannian metric on the projective space CPL2 . For this
one defines the metric on CPL2 so that the bundle projec-
tion π : SL2 −→ CPL2 would be a Riemannian submer-
sion. The resulting metric on CPL2 is called the Fubini-
Study metric. To put it simply, an arbitrary tangent
vector X ∈ TRϕSL2 can be decomposed into two compo-
nents: tangent and orthogonal to the fibre {ϕ} through
ϕ (i.e., to the plane C1 containing the circle S1 = {ϕ}).
The differential dπ maps the tangent component to zero-
vector. The orthogonal component of X can be then
identified with dπ(X). If two vectors X,Y are orthog-
onal to the fibre {ϕ}, the inner product of dπ(X) and
dπ(Y ) in the Fubini-Study metric is equal to the inner
product of X and Y in the metric Gϕ. Note that the
obtained Riemannian metrics on SL2 and CPL2 are in-
variant under the induced action of the group of unitary
transformations on L2.

Having a Riemannian metric on the manifolds SL2

and CPL2 opens a way for formulating the unitary and
non-unitary processes in quantum mechanics in geomet-
rical terms. Namely, as shown in Refs.[10]-[12] (see also
Ref.[13] for the mathematical considerations), both the
Schrödinger evolution and the process of collapse of a
state can be thought of as geodesic motions on the sphere
of states furnished with an appropriate strong Rieman-
nian metric. Such a geometrization of quantum dynamics
goes beyond the existing methods of geometrical quan-
tum mechanics pioneered in Refs.[1],[2] (see Refs.[3]-[6]
for extension of these ideas and review of other recent
developments), and the geometric considerations related
to Berry’s phase (Refs.[7]-[9] amongst many others). In-
deed, in those papers the metric on spaces of states is
fixed and, consequently, is not dynamical.

The goal of this work is to demonstrate that the more
basic notions of expected value, variance and uncertainty
relation also have a clear geometric interpretation. This
interpretation is based directly on the association of ob-
servables with vector fields on the sphere of states and
does not employ the Hamiltonian formalism on the phase
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space. This makes the interpretation particularly trans-
parent and naturally leads one to a geometric uncertainty
identity.

Let’s begin with the standard uncertainty relation for
observables Â, B̂:

∆A∆B ≥ 1
2

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣ . (5)

Here ∆A2 = (ϕ, Â2ϕ) − (ϕ, Âϕ)2 and similarly for ∆B2

and ϕ is the state of the system under consideration. It
is implicit in (5) that the state ϕ is in the domain of
all operators involved. As an immediate corollary of the
relation one sees that, in general, the standard deviations
∆A,∆B of non-commuting observables cannot be made
arbitrarily small at the same time (i.e., for the same state
ϕ). This constitutes a version of the famous uncertainty
principle of Heisenberg [14].

In light of the identification (1) of observables with
vector fields on the sphere of states SL2 ⊂ L2, each term
in (5) obtains a simple geometric interpretation. Namely,
the equality

A ≡ (ϕ, Âϕ) = (−iϕ,−iÂϕ), (6)

signifies that the expected value of an observable Â in
the state ϕ is the projection of the vector −iÂϕ ∈ TϕSL2

on the vector −iϕ = −iIϕ ∈ TϕSL2 , associated with the
identity operator I. Because

(ϕ, Â2ϕ) = (Âϕ, Âϕ) = (−iÂϕ,−iÂϕ), (7)

the term (ϕ, Â2ϕ) is just the norm of the vector −iÂϕ
squared. Note that the expected value (ϕ, Â⊥ϕ) of the
operator Â⊥ ≡ Â−AI in the state ϕ is zero. Therefore,
the vector −iÂ⊥ϕ = −iÂϕ− (−iAϕ), which is the com-
ponent of −iÂϕ orthogonal to −iϕ is orthogonal to the
entire fibre {ϕ}. Accordingly, the variance

∆A2 = (ϕ, (Â−AI)2ϕ) = (ϕ, Â2
⊥ϕ) = (−iÂ⊥ϕ,−iÂ⊥ϕ)

(8)
is the norm squared of the component −iÂ⊥ϕ. As dis-
cussed, the image of this vector under dπ can be identified
with the vector itself. It follows that the norm of −iÂ⊥ϕ
in the Fubini-Study metric coincides with its norm in
the Riemannian metric on SL2 (and in the original L2-
metric).

Consider the evolution equation

dϕt
dt

= −iÂϕt (9)

for the state ϕt with the initial condition ϕt|t=0 = ϕ. By
projecting both sides of this equation by dπ, one obtains

d{ϕt}
dt

= −iÂ⊥ϕt. (10)

The left hand side of (10) at t = 0 is the velocity of evo-
lution of the projection of ϕt at the point {ϕ} ∈ CPL2 .

By the above, the norm of the right hand side at t = 0 is
the uncertainty of Â in the state ϕ:

‖ − iÂ⊥ϕ‖ = ∆A. (11)

So the uncertainty ∆A is equal to the speed of the state
{ϕt} at the point {ϕ} under the evolution (9). In the
case when Â is equal to the Hamiltonian ĥ of the system,
one obtains the result of Ref.[8]: the energy uncertainty
is the speed of evolution of the state in the projective
space.

One concludes that the left hand side of (5) is the prod-
uct of norms of the projections of vectors −iÂϕ, −iB̂ϕ
onto T{ϕ}CP

L2 . In geometric terms, the left hand side
is therefore the area A|XY | of a rectangle with sides of
lengths ‖− iÂ⊥ϕ‖, ‖− iB̂⊥ϕ‖. Let’s show that the right
hand side of (5) can be estimated via the area of parallel-
ogram formed by vectors −iÂ⊥ϕ, −iB̂⊥ϕ. For this note
that [Â, B̂] = [Â⊥, B̂⊥] and, therefore,

(ϕ, [Â, B̂]ϕ) = (Â⊥ϕ, B̂⊥ϕ)− (B̂⊥ϕ, Â⊥ϕ)

= 2iIm(Â⊥ϕ, B̂⊥ϕ) = 2iIm(−iÂ⊥ϕ,−iB̂⊥ϕ). (12)

The form Im(ξ, η) is an anti-symmetric 2-form on vec-
tors ξ, η. Let {ek} be an orthonormal basis in L2, such
that e1 = −iÂ⊥ϕ and the vector −iB̂⊥ϕ is in the linear
envelop C2 of the vectors e1, e2. Let E1 = e1, E2 = ie1,
E3 = e2, E4 = ie2, ... be the corresponding orthonormal
basis in the realization L2R. Note that the linear envelop
R4 of the vectors E1, E2, E3, E4 is a subspace of the tan-
gent space TRϕS

L2 and the Riemannian metric on the
sphere yields the Euclidean metric on R4. Let’s denote
the realization of the vectors ξ = −iÂ⊥ϕ, η = −iB̂⊥ϕ
by X and Y and let’s denote the components of X and
Y in the basis {Ek} by xk and yk respectively. Because
xk = yk = 0 for k > 4, one has

Im(ξ, η) = Im
∑
k

ξkηk = (x2y1 − x1y2) + (x4y3 − x3y4),

(13)
and so the right hand side of (5) is equal to

|(x1y2 − x2y1) + (x3y4 − x4y3)|. (14)

On the other hand, the area squared A2
XY of the paral-

lelogram on vectors X, Y is equal to

(x1y2 − x2y1)2 + (x1y3 − x3y1)2 + (x1y4 − x4y1)2

+(x2y3 − x3y2)2 + (x2y4 − x4y2)2 + (x3y4 − x4y3)2.(15)

By the choice of {Ek}, we have x2 = x3 = x4 = 0. By
comparing (14) and (15) one concludes that

AXY ≥
1
2

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣ . (16)

As a result, the obvious geometric inequality

A|XY | ≥ AXY , (17)
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implies the uncertainty relation (5).
It is well known that the uncertainty relation (5) can

be somewhat strengthened to take the form

∆A2∆B2 ≥ 1
4

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣2 +

1
4

∣∣∣(ϕ, {Â⊥, B̂⊥}ϕ)∣∣∣2 ,
(18)

where {Â⊥, B̂⊥} stands for the anticommutator of the
operators Â⊥, B̂⊥. Note that

(ϕ, {Â⊥, B̂⊥}ϕ) = (Â⊥ϕ, B̂⊥ϕ) + (B̂⊥ϕ, Â⊥ϕ)

= 2Re(Â⊥ϕ, B̂⊥ϕ) = 2Re(−iÂ⊥ϕ,−iB̂⊥ϕ). (19)

So the second term on the right of (18) is simply the
square of Riemannian inner product of vectors −iÂ⊥ϕ,
−iB̂⊥ϕ. With the help of (12) one can now identify the
right hand side of (18) with |(−iÂ⊥ϕ,−iB̂⊥ϕ)|2. Us-
ing (11), one concludes that (18) is simply the Cauchy-
Schwarz inequality

‖ − iÂ⊥ϕ‖2‖ − iB̂⊥ϕ‖2 ≥ |(−iÂ⊥ϕ,−iB̂⊥ϕ)|2 (20)

for the vectors −iÂ⊥ϕ,−iB̂⊥ϕ.
Recall that the left hand side of the uncertainty rela-

tions (5), (17), (18) is the product of lengths of vectors
X,Y . In particular, in the basis Ek one has:

∆A2∆B2 = x2
1(y2

1 + y2
2 + y2

3 + y2
4). (21)

Note that the right hand sides of the uncertainty re-
lations (5), (17) and (18) are formed by the terms of
(21). In particular, these uncertainty relations follow
from (21). Moreover, the right hand side of (21) is exactly
the sum of the Riemannian inner product term squared(

Re(−iÂ⊥ϕ,−iB̂⊥ϕ)
)2

= G2
ϕ(X,Y ) = x2

1y
2
1 and the

area term squared A2
XY = x2

1(y2
2 + y2

3 + y2
4). It follows

that the uncertainty relation can be written in the form
of the “uncertainty identity”

∆A2∆B2 = A2
XY +G2

ϕ(X,Y ), (22)

with X = −iÂ⊥ϕ and Y = −iB̂⊥ϕ.
One concludes, once again, that AXY = 0 is a neces-

sary condition for vanishing uncertainty ∆A∆B. This
condition is satisfied when vectors −iÂ⊥ϕ and −iB̂⊥ϕ
are linearly dependent over R. Another necessary condi-
tion that follows from (22) is the condition of orthogo-
nality of the vectors −iÂ⊥ϕ and −iB̂⊥ϕ in the Rieman-
nian metric. The necessary and sufficient condition for
∆A∆B = 0 is the vanishing of both terms on the right
hand side of (22). In particular, for bounded operators
Â, B̂, the uncertainty ∆A∆B vanishes iff at least one of
the vectors −iÂ⊥ϕ, −iB̂⊥ϕ vanishes. That is, iff ϕ is an
eigenstate of either Â or B̂. For example, for the Pauli
matrices, ∆σx∆σy = 0 iff ϕ is an eigenstate of either σ̂x
or σ̂y.

Assume now that [Â, B̂] = cI, where c is a number.
Recall that AXY ≥ 1

2

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣ and so the first term

on the right of (22) is at least |c/2|. Therefore, the un-
certainty ∆A∆B is at least |c/2|. This minimal value
of the uncertainty can only be achieved if AXY = |c/2|
and Gϕ(X,Y ) = 0. Recall that in the basis Ek one has

A2
XY = x2

1

(
y2
2 + y2

3 + y2
4

)
and 1

2

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣ = |x1y2|.

Therefore, to achieve the minimum value one must have
y2
3 + y2

4 = 0. It follows that −iB̂ϕ = λ
(
−iÂϕ

)
for some

complex λ. The condition Gϕ(X,Y ) = 0 reads in the
basis Ek as x1y1 = 0. It follows that y1 must be zero,
which means that the constant λ is purely imaginary. In
particular, for the momentum and position operators p̂
and x̂ these conditions yield Gaussian states for which
∆p∆x = ~/2.

Note that the terms on the right of (22) can be written
as ‖X‖2 ‖Y ‖2 sin2 θ and ‖X‖2 ‖Y ‖2 cos2 θ, where θ is the
angle between the vectors X and Y . In particular, when
θ = 0 the uncertainty comes from the inner product term
Gϕ(X,Y ) only and when θ = π/2, the uncertainty is due
to the area term. By replacing B̂ with a real linear com-
bination of the operators Â, B̂, one can change θ in any
desirable way while preserving the uncertainty ∆A∆B.

The standard uncertainty relations (5), (18), the de-
rived geometric uncertainty relation (17) and the uncer-
tainty identity (22) are mathematical statements. The
mystery of the uncertainty principle lies not so much in
these statements, but rather in a physical interpretation
of operators and states entering the statements. So, what
is the significance of the provided derivation in this re-
spect?

The quantum evolution of a system yields a path on
the sphere of states. The projection π : SL2 −→ CPL2

gives then a path on the projective space CPL2 of phys-
ical states. As advocated in Refs.[10]-[12], the evolution
of state along the manifolds SL2 and CPL2 should be
treated as a fundamental physical process, rather than
just a way of describing changes in probability distri-
butions of measured quantities. As shown in Ref.[12],
by choosing an appropriate Riemannian metric on the
sphere SL2 , one can ensure that the Schrödinger path of
the state is a geodesic on the sphere. Moreover, at least
in the finite dimensional spaces of states, the process of
collapse can be also modeled by a geodesic motion of the
state in the metric perturbed by the measuring device.
The Born rule for probability of collapse can be derived
from simple additional assumptions (see Ref.[12]).

One is faced then with a new point of view on quantum
mechanics that makes that theory quite similar to Ein-
stein’s general relativity, but considered on a manifold
of states rather than on space-time. The approach turns
out to be fruitful in explaining various paradoxical results
in quantum theory via the geometry of the manifold of
states. Moreover, the formalism allows one to naturally
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embed the physics of macroscopic particles on the clas-
sical Riemannian space into the theory (see Ref.[10]). In
light of this, the provided geometric derivation of the un-
certainty relation and the uncertainty identity seems to
be another piece of the puzzle falling into place.

What is the physical interpretation of quantum uncer-
tainty in the the new geometrical setting? The answer
depends on the one’s definition of the uncertainty. Here
are some possible definitions together with their geomet-
ric interpretation.

(α) Note first of all that the set of eigenstates of two
non-commuting observables Â, B̂ form two non-identical
(often, non-overlapping) subsets SA, SB of the sphere of
states. If the intersection SA ∩ SB is empty, the state
cannot belong to both of them at once. If the state is
close in the Riemannian metric to one of these subsets,
it cannot be arbitrarily close to the other one, hence, the
uncertainty principle.

Mathematically, the principle can be formulated in this
case via the triangle inequality on the sphere of states.
Namely, if ϕ is the state of the system and d(ϕ, SA),
d(ϕ, SB), d(SA, SB) are the distances in the Riemannian
metric between ϕ and SA, ϕ and SB , SA and SB respec-
tively, then

d(ϕ, SA) + d(ϕ, SB) ≥ d(SA, SB). (23)

By projecting on CPL2 , one obtains a similar inequality
for physical states.

In such an interpretation the uncertainty of an ob-
servable Â is the distance from the state to the set of
eigenstates of Â in the Riemannian metric. The uncer-
tainty relation (23) shows that for two observables with
no common eigenvectors the state cannot be made arbi-
trarily close to both SA and SB at once. For example,
for spin states ϕ of a non-relativistic electron one has
d({ϕ}, {Sσx

}) + d({ϕ}, {Sσy
}) ≥ π

2 .
(β) More commonly, the uncertainty of an observable

Â in state ϕ is defined as the standard deviation ∆A. Re-
call that ∆A is the norm of the velocity vector −iÂ⊥ϕ of
the evolution d{ϕt}

dt = −iÂ⊥ϕt. The velocity vector van-
ishes at the eigenstates (and only at the eigenstates) of
the operator Â. Therefore, the uncertainty ∆A vanishes
only at the eigenstates as well.

Note that in the case of the space CP 1 of spin states
of a non-relativistic electron, the standard deviation ∆A
of any observable Â with −iÂ ∈ su(2) can be identified
with the distance d({ϕ}, {SA}) between the state and the
set of eigenstates of Â (see Ref.[12]). In other words, the
speed of evolution of the state in CP 1 is proportional
to the distance d({ϕ}, {SA}). In this particular case the
definitions (α) and (β) coincide.

(γ) The uncertainty can be understood as the product
∆A∆B of standard deviations of two observables for a

system in a given state ϕ (or, in some cases, as the infi-
mum of the set of such products for all possible states).
Suppose that the velocity vectors −iÂ⊥ϕ, −iB̂⊥ϕ, con-
sidered as vectors in the real space L2R, are linearly de-
pendent. Then the area of the parallelogram based on
these vectors vanishes. In this case the right hand side
of the geometric uncertainty relation (17) also vanishes.
This provides one with a simple geometrical necessary
condition for vanishing ∆A∆B.

(δ) A related and most common understanding of
quantum uncertainty is based on the standard uncer-
tainty relation (5). This relation is often used to iden-
tify quantum uncertainty in the sense (γ) with non-
commutativity of quantum observables under consider-
ation. Note however that according to (18), the lower
bound of the product of standard deviations of two com-
muting observables on a given set of states may be posi-
tive [15]. Conversely, even if two observables do not com-
mute, they could still have a common eigenvector so that
the standard deviations of both observables on this vec-
tor would vanish. In other words, the non-commutativity
of observables Â, B̂ is neither necessary nor sufficient for
a nontrivial uncertainty relation.
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