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abstract 

 
In this article it is intended a closer look at the renormalization procedure used in quantum 

electrodynamics to cope with the divergent integrals that appear in higher-order calculations within the 

theory.  The main focus will be the charge renormalization that reveals, in a clearer way than the mass 

renormalization, structural limitations present in quantum electrodynamics that are even more aggravating 

than the ones usually pointed at when considering the renormalization procedure. In this way we see that 

the possibility of charge renormalization is due to limitations of the theory in the temporal description of 

the interactions. 

 

1 Introduction 

 

The appearance of divergent integrals in higher-order calculations in quantum 

electrodynamics where the so-called radiative corrections are taken into account has 

been seen as, at least, indicating that the theory fails for high energies. As J. Schwinger 

stated, “electrodynamics unquestionably requires revision at ultra-relativistic energies” 

(Aramaki 1989, 93). Even considering the accuracy of the theory at lower energies, 

Schwinger considered that the renormalization procedure, that permits avoiding the 

infinites in the results of the calculations, ultimately has to be excluded from physics 

(Cao 1993, 50). Regarding this problem the position of P. Dirac was even less 

sympathetic: “I am very dissatisfied with the situation, because this so-called “good 

theory” does involve neglecting infinities which appear in its equations” (Kragh 1990, 

184). 

In general the position of leading physicists was very critical regarding quantum 

electrodynamics, and some pinpointed to structural problems that go beyond the high 

energy behaviour of quantum electrodynamics. N. Bohr considered that the whole 

program only made sense taking into account the weakness of the coupling constant, 

which means applying the theory only in situations where the electron interacts weakly 

with the electromagnetic field (Rueger 1992, 317). There were others, like L. Landau, 

that considered that the limitations of quantum electrodynamics were even more drastic, 

because they would be due to very basic structural problems in the design of the theory: 

“for them the very concept of a local field operator and the postulation of any detailed 

mechanism for interaction in a microscopic spacetime region were totally unacceptable” 

(Cao 1993, 47).  

In this article I’ll present another aspect which reveals once again the limitations of 

the renormalization procedure, now related to the even more intrinsic limitation of any 

quantum theory in what regards the temporal description of physical processes. 

In section 2 the historical emergence of the problem of infinites in quantum 

electrodynamics is considered, as the ‘provisory’ solution attained in the late forties 

with the completion of a renormalization program. In section 3 some details of the 

renormalization program are considering using as a ‘case study’ the calculation of the 

self-energy of the electron, and considering in particular the role of the cut-off 

procedure that provides a ‘regularization’ of the theory previous to the renormalization 

proper. In section 4 it is addressed not only the dubious mathematical procedure related 

with the calculation of the photon’s self-energy, but also the even more dubious 
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procedure – from a physical point of view – of attaching the infinite constant that pops 

out in the photon self-energy calculation to the charge of the electrons ‘connected’ by 

the photon. In particular the charge renormalization procedure is considered in a 

second-order radiative correction to the calculation of the Møller scattering amplitude. 

In this way the limitations of the theory regarding the temporal description of physical 

processes and its relation to the possibility of a charge renormalization procedure are 

made clear. 

 

2 The emergence and submergence of infinites in quantum electrodynamics  
 

When in 1929-30, W. Heisenberg and W. Pauli presented in two papers a relativistic 

quantum theory of the interaction between the quantized Maxwell and Dirac fields, they 

moved from Heisenberg’s first view that the self-energy of the electron didn’t constitute 

a problem and the infinite Coulomb self-energy could be neglected, to a more 

circumspect position recognizing that this problem might even render the theory 

inapplicable (Darrigol 1984, 484-486).  

The fact that the self-energy problem could not simply be traced back to a similar 

situation occurring already in classical electrodynamics was soon revealed by J. R. 

Oppenheimer (1930) that found out a new (infinite) contribution to the self-energy 

without any classical counterpart.  

The situation of quantum electrodynamics during the thirties didn’t improve. On the 

contrary. 

To solve inconsistencies of his electron theory related to the existence of negative-

energy solutions, Dirac proposed his hole theory. From this a new infinite problem 

popped out. In Dirac’s hole theory we have an infinite sea filled with negative-energy 

electrons. This made Dirac considers that the electromagnetic field is generated by “the 

difference in the electric density from its value when the world is in its normal state (i.e. 

when every state of negative energy and none of positive energy is occupied)” (Pais 

1986, 387). But when considering in more detail the effect an ‘external’ electromagnetic 

field (that properly considered, could simply result from the presence of a sole electron 

above the negative-energy sea), Dirac concluded that it had “an effect of polarization of 

the distribution of negative-energy electrons” (Dirac 1934a, 208). The calculation of the 

density matrix of the sea electrons, in the simple case of an external electrostatic field, 

gave a logarithmically divergent result. Dirac considered that “we cannot assume that 

the theory applies when it is a question of energies greater than the order of 137mc
2
” 

(Dirac 1934a, 211). So, he used a cut-off to render the results finite. With the finite 

result in his hands, Dirac concluded that “there is no induced electric density except at 

the places where the electric density producing the field is situated, and at these places 

the induced electric density cancels a fraction of 1/137 of the electric density producing 

the field” (Dirac 1934a, 212).  

In a development of this work, Dirac tried to deal with the infinite in the density 

matrix not with the arbitrary cut-off prescription, but by “finding some natural way of 

removing the infinites […] so as to leave finite remainders” (Dirac 1934b, 153). The 

uniqueness of this subtraction method was soon questioned (Miller 1994, 60). 

Heisenberg tried to improve Dirac’s method, and in the process, due to his use of a 

second-quantized version of Dirac’s formalism in which electron and positrons were 

treated in a symmetrical way, come up with the existence of an “infinite self-energy of 

the light-quanta” (Heisenberg  1934, 186). 



In what regards the self-energy problems there was not much improvement during 

the thirties. The only solid result was V. F. Weisskopf demonstration that the electron 

self-energy is ‘only’ logarithmically divergent (Pais 1986, 385). 

Things changed drastically in 1947. 

H .A. Bethe coming from a conference in Shelter Island, held from March 30 to 

April 2, 1948, did some calculations on a train going from New York to Schenectady. In 

the conference Lamb presented his recent experimental results on the shift of the 2
2
S1/2 

state relative to the P states in the hydrogen atom. According to Bethe: “Kramers 

suggested that what one really ought to do was to renormalize the mass of the electron, 

taking into account its interaction with its own electromagnetic field. Then only those 

parts of the self-energy which are not contained in the mass of the particle would be 

observable” (Mehra 2001, 1039). 

The idea of renormalization in the case of the electron’s charge was basically 

present in Dirac’s report to the Solvay conference of 1933 (Dirac 1934a). His ideas are 

stated more clearly in a letter to N. Bohr written after the preparation of the report: “We 

then have a picture in which all the charged particles of physics electrons, atomic nuclei, 

etc. have effective charges slightly less than their real charges, the ratio being about 

136/137. The effective charges are what one measures in all low energy experiments, 

and the experimentally determined value of e must be the effective charge of an 

electron, the real value being slightly bigger” (Schweber 1994, 116). 

An equivalent approach regarding the electron self-energy started to emerge in the 

end of the thirties in Dirac’s own work, and in H. A. Kramers’s investigation of the 

renormalization of the electromagnetic mass at the classical level as a first step into 

dealing with the problem at the quantum level. Kramers’s intention was to sidestep the 

problem by obtaining a consistent model for a finite size electron – that avoided the 

classical self-energy divergence –, considering from the start the experimental mass of 

the electron (that contained the mechanical and electromagnetic mass). In this way 

Kramers “tried to present the theory in such a fashion that the questions of the structure 

and the finite extension of the particles are not explicitly involved and that the quantity 

that is introduced as the ‘particle mass’ is from the very beginning the experimental 

mass” (Kramers 1938, 254).   

But mass renormalization was only put to use in quantum electrodynamics in 1947, 

in the quantum-mechanical (non-relativistic) train-ride calculation of Bethe. 

A few months after the conference, J. Schwinger worked on a non-covariant 

relativistic calculation of the Lamb shift using the mass a charge renormalization recipe, 

and obtained finite results to order e
2
/ħc. Schwinger, knowing of G. Breit’s suggestion 

that the electron might have an intrinsic magnetic moment different from the predicted 

by the Dirac equation – that explained the discrepancy with the experimental results 

regarding the hyperfine structure of the hydrogen atom –, calculated the so-called 

anomalous magnetic moment, which accounted for the previous hyperfine discrepancies 

between theory and experiment (Mehra 2001, 1045). Schwinger published his result in a 

short note from last December 1947. This note didn’t include the precise results of his 

Lamb shift calculations due to discrepancies between the Coulomb (Lamb shift) and the 

magnetic field (anomalous magnetic moment) calculations. The calculations were done 

using non-covariant hole-theoretic methods. Afterwards, Schwinger developed a 

covariant formulation of the Heisenberg and Pauli quantum electrodynamics, but “there 

were a great many ambiguities in the procedure” (Schweber 1994, 333) of identifying 

the divergent contributions. Also the calculation method was terribly complicated and 

might become insurmountable in higher-order calculations. 



Back in Cornell in early July, Bethe gave a lecture on his non-relativistic calculation 

of the Lamb shift, which R. P. Feynman attended to. According to Feynman:  

 
He explained that it gets very confusing to figure out exactly which infinite term 

corresponds to what in trying to make the correction for the infinite change in mass. If there 

were … any modification whatever at high frequencies, which would make this correction 

finite, then there would be no problem at all to figuring out how to keep track of everything 

… if in addition this method were relativistically invariant, then we would be absolutely 

sure how to do it without destroying relativistically invariance (Feynman 1965, 170). 

 

Feynman considered first the case of determining a relativist cut-off for classical 

electrodynamics. Using his path-integral method, Feynman, following Bethe idea, 

replaced a delta function appearing in the interaction term of the action by an invariant 

function dependent on a cut-off parameter that made all results finite, corresponding this 

procedure to a ‘regularization’ of the theory. Feynman would then renormalize the 

mass, putting the mechanical mass and the now finite electromagnetic mass under the 

umbrella of the experimental mass.  

Feynman didn’t manage to derive the Dirac equation using his path-integral method. 

So, by ‘guessing’ he was able to use an invariant regularization method based on a cut-

off with the Dirac theory of the electron (Mehra 1994, 229-234).  

Feynman developed is “little theory of electrodynamics in which the interaction is 

not exact on a delta function” (Schweber 1994, 427) as if it was different from the 

conventional electrodynamical theory. In his 1948 paper on the relativistic cut-off, 

Feynman presented his method as “a model, for which all quantities automatically do 

come out finite” (Feynman 1948, 1430). This doesn’t mean that Feynman rejected the 

renormalization method. In his calculations he performed the mass and charge 

renormalization, but he saw his method as an “attempt to find a consistent modification 

of quantum electrodynamics” (Feynman 1949, 778). Because it was inconsistent, the 

correct physics had to be obtained by making the renormalization of mass and charge, 

and obtaining expressions independent of the cut-off parameter by making the cut-off 

parameter go to infinity after renormalization (Feynman 1962, 145). 

With this tricky procedure in the edge of the abysm, be it with Schwinger’s direct 

absorption of infinites in phenomenological parameters (the experimental mass and 

charge), or Feynman’s inconsistent cut-off electrodynamics with last minute cut-off 

independent expressions, it is difficult to consider renormalization as “a sound and 

remarkable ingenious way of extracting information from an imperfect theory” (Teller 

1988, 88), as a closer look can show.  

 

3. The electron self-energy and the meaning of the cut-off regularization 

 

The problems in the calculation of the electron self-energy are all concentrated in 

this apparently harmless integral: 
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 (Mandl 1984, 187). 

 

As it stands this integral is divergent. From Lorentz invariance Σ(p) can be put in the 

form 

 

     (p)m)p(m)Bp(A(p) c∑−/+−/+=∑  (Mandl 1984, 189), 



 

where, in particular, A = Σ(p) | mp =/ . This term provides a correction δm = –e0
2
A of 

electromagnetic origin to the ‘mechanical’ mass of the electron, which in more classical 

language could be seen as resulting from the interaction of the electron with its own 

field, and in a more quantum language as resulting from the virtual emission and 

reabsorption of photons by the electron. For k Ø ∞ the integral is logarithmically 

divergent (this is the famous ultra-violet divergence). A way out is to make a “change in 

the foundamental laws” (Feynman 1961, 137): the photon propagator 1/k
2
 is multiplied 

by a relativistic invariant convergence factor, assume by Feynman to be c(k
2
) = –λ2

/(k
2 

– λ2
). This change has to be seen as a formal calculational device, a mathematical trick 

to get ride of the logarithmically divergence in the integral. If we try to see it as a new 

theory distinct from the one derived from classical electrodynamics we obtain a non-

hermitian interaction Lagrangian that implies that probability is not conserved. Also 

from a physical point of view the use of this convergence factor is equivalent to 

consider “an additional interaction of the electron-positron field with a vector field 

whose quanta have mass λ and whose propagators are –(k
2 

– λ2
)
 -1

” (Schweber 1961, 

519). With this prescription it is possible to calculate the integral, with the result: 
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where Λ is a cut-off parameter. 

It turns out that the only contribution from the self-energy not renormalizable is the 

finite integral Σc(p). From this term the radiative correction (due to the electron self-

energy) to the lowest-order calculations is obtained. 

If we stopped here, we would have an experimentally measurable radiative 

correction dependent on an arbitrary cut-off parameter Λ. This problem wouldn’t be 

visible in what regards δm because we consider it to be ‘absorbed’ in the experimental 

measurable mass mexp = mmech + δm, that is seen as an amalgamation of the 

‘mechanical’ mass and this electromagnetic mass, and whose magnitude – as a 

phenomenological parameter – is determined not by the theory but from experiments. 

To get things right, after the renormalization we have to make the cut-off parameter go 

to infinity, so that the radiative correction term “remains well-defined and finite in this 

limit and independent of the details of the regularization procedure” (Mandl 1984, 191). 

This method to overturn the problem of infinites in quantum electrodynamics was 

summarized by Feynman in one of his QED rules: “(1) Put in an arbitrary cutoff factor 

c(k
2
) = – [λ2

/(k
2 

– λ2
)] for each propagator 1/k

2
. (2) Express everything in mexp = m – 

δm. (3) Take the limit as λ Ø ∞ and keep mexp fixed.” (Feynman 1962, 143). 

It is usually considered that the divergence problem in quantum electrodynamics is 

due to a failure of the theory at ultra-relativistic energies. This might lead to the idea 

that the cut-off parameter serves like a “boundary line separating the knowable region 

from the unknowable” (Cao 1993, 52). But since there is no indication on where to put 

this cut-off, it seams that “we cover our ignorance by calculating only quantities which 

are independent of the exact value of the cut-off” (Teller 1988, 87). This procedure 

would result in a change from the approximative regularized version of the theory to a 

recovered quantum electrodynamics with renormalized mass and charge. This means 

changing “the status of the cutoff from a tentative, and tantalizing, threshold energy to a 

purely formalistic device” (Cao 1993, 53). 



Even if Feynman was trying to achieve a consistent regularized theory, and 

published his method as a provisory one while searching for a “correct form of f+ [the 

function that substitutes the delta function appearing in the interaction term] which will 

guarantee energy conservation” (Feynman 1949, 778) it ended up being what Bethe had 

envisaged from the beginning: a mathematical calculational device designed to 

overcame the diverge problem in some integrals. Also from a physical point of view the 

regularized theory is completely different from quantum electrodynamics. It hasn’t a 

divergence problem because of the presence of an auxiliary vector field. This field can 

be seen as a formal mathematical device if, and only if, after the renormalization we 

recover a cut-off independent theory. If we tried to maintain the regularized theory, so 

that we didn’t have to deal with the problem of infinites in the calculations with 

quantum electrodynamics, we would be working not with quantum electrodynamics but 

with another field theory. 

The divergence of the integrals and the use of the cut-off trick don’t reveal where 

the theory stops being good and a ‘true’ theory should come into play. It reveal 

structural problems in the design of the theory, that are impossible not to see when we 

have some integrals, that should (from a physical point of view) provide small radiative 

corrections to lower-order calculations, and end up blowing apart in a proliferation of 

infinites. 

Considering the second-order term of the scattering matrix S2(x1, x2) in 

configuration space, the mathematical expression of the terms related with the divergent 

part of the electron’s self-energy are dependent on δ(x1– x2). This means that “all the 

divergences in S2(x1, x2) come from terms proportional to δ(x1– x2) and to its 

derivatives which differ form zero only in the infinitesimal neighbourhood of the point 

x1= x2” (Bogoliubov 1959, 299). The divergence problem doesn’t arise solely from the 

fact that there is in the theory no upper bound to the energy of the virtual quanta. It 

results from the ‘coincidence’ in the theory of the inexistence of this natural limit for the 

energy of virtual quanta and from the local character of the interaction between the 

fields in quantum electrodynamics.  

 

4 Charge renormalization and temporality in quantum electrodynamics 
 

That the divergence in the calculation of the electron self-energy reveals structural 

problems related with distinct aspects of the theory doesn’t mean that the theory hasn’t 

other less noticed limitations not related to the divergence of the integrals and that 

would be present even if they were not divergent. This can be seen with a close look at 

the second-order calculation of the photon self-energy. Again we have a divergent 

integral and again a regularization scheme is used and a renormalization is done. 

The (second-order) photon self-energy leads to a modification of the photon 

propagator: Dµν’(k)= gµνD(k)+ D(k)Πµν(k)D(k), where  Πµν(k) is a quadratically 

divergent integral and D(k) is the bare-photon propagator. Considering the requirement 

of Lorentz invariance, the second-order tensor Πµν(k) must have the form Πµν(k) = 

C(k
2
)kµkν + D(k

2
)gµν (Jauch 1976, 189). As it stands, for k

2
 = 0 we have Πµ

µ
(0) ≠ 0. 

This would mean that the propagator we obtain taking into account this second-order 

correction is not the propagator for a zero mass photon but the propagator for a massive 

neutral vector boson (Sakurai 1967, 275). To recover our photon we must remember 

that Πµν(k) must be gauge invariant. Imposing this condition, we must have Πµν(k)k
ν
 = 

0. From this we obtain the ambiguous result that the quadratically divergent integral  
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must be identically zero. The only way to skip this situation is to consider that “the 

integral is, strictly speaking, meaningless, since it is divergent” (Schweber 1961, 552). 

The pragmatic view is that we need a ‘functioning’ theory that is gauge invariant 

and provides a zero mass for the photon in the first terms of the perturbation expansion 

of the S-matrix that are used in practice. This implies when evaluating Πµν(k) = (kµkν – 

k
2
 gµν)C(k

2
) to take into account the divergent integral Πµ

µ
(0) and subtracting it from C 

(k
2
), which leads to a logarithmically divergent integral. 

Using a gauge invariant regularization scheme we have Π( k
2
)= C + k

2Πf
(k

2
), where 
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Πf
(k

2
) is a finite correction term, and C is logarithmically divergent as  ΛØ ∞.  

With this procedure we obtain a second-order finite (regularized) modified photon 

propagator. 

The next step is to incorporate the regularized constant C in a parameter of the 

theory whose value is experimentally determined, so that we can take the cut-off limit to 

infinity and recover quantum electrodynamics from the regularized ‘theory’. 

Considering, for example, the second-order correction to Møller scattering due to 

the self-energy of the photon, the change in the Møller scattering amplitude amounts to 
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The trick is to consider the (infinite) constant 1 – C not as a correction factor related to 

the photon propagator itself, but, as can be seen more clearly in the limit k
2
 Ø 0, the 

factor can be seen as a correction to the electron charge ‘attached’ to the two vertices of 

the Feynman diagram representing the second-order correction to the scattering 

amplitude. In this way we relate this (infinite) correction to the coupling constant.  

In the limit k
2
 Ø 0 the modified photon propagator is given by D’F(k) = (1 – C) 

DF(k). We renormalize the theory considering that (1 – C)
 ½

 is a correction to the 

unobservable electron bare charge ebare, so that what is observed is eobs= (1 – C)
 ½ 

ebare. 

The distinctive flavour of this renormalization procedure when compared with the 

mass renormalization is that we are, so to speak, passing the problems of the photon to 

the electrons.  

Looking closely at the second-order self-energy correction to the Møller scattering, 

the infinite arising in the photon propagator is absorbed by the charge of the electrons 

‘located’ at each ‘vertice’ of the interaction.  This is possible because the description of 

the scattering by an S-matrix perturbative approach is done in a way that what appears 

in between the initial and final asymptotic states is not described as a process occurring 

in time, but the situation is such that “the S-matrix describes the scattering in the 

operational spirit of Heisenberg’s matrix mechanics. It gives transition probabilities 



which correspond to measurable relative frequencies. But it treats the scattering itself as 

a black box” (Falkenburg 2007, 131). In this way there is no incompatibility between 

the charge renormalization and the general procedure followed. But if in some way a 

temporal description was possible, it is clear that it would be incompatible with the 

charge renormalization procedure, because we can only have charge renormalization in 

a (statistical) ‘atemporal’ description of the interaction going on inside the unobservable 

black box.  

This result is of course in agreement with the lower-order calculation of the Møller 

scattering, which, by itself, reveals the limitations of quantum electrodynamics in the 

temporal description of physical processes when compared with classical 

electrodynamics (cf. Valente 2008). 

 

Conclusions  

 

The previous results drive us back to the battery of criticism over quantum 

electrodynamics.  

The fact is that, as Bohr clearly indicated, the theory was design based on different 

fields that have a small coupling constant. This is the strength and at the same time the 

weakness of the theory, as it is clearly exemplified in the description of scattering. All 

the description of the interaction between the fields is done from the point of view of 

free non-interacting fields, where the interaction is described using a perturbative 

approach that is mathematically clenched to the use of operators acting on free states. 

We see that in part the possibility of renormalization is due to the ‘non-detailed’ 

approach to the description of interactions built from (apparently) clearly separated 

concepts: the Dirac and Maxwell fields. 

But it is clear that when we go beyond the lowest-order approximations, and the 

mass and charge renormalization are needed to render the results finite, the theory falls 

into a conceptual contradiction: it is developed firmly from the idea of two clearly 

independent fields, but at the same time the more exigent experimentally testable results 

that are provided by the theory demand considering the mass and charge of the electron 

as having a non detachable contribution from the Maxwell field. In this way the 

observed ‘particle’ – the electron – is constructed from contributions from the two 

fields, and there is really no observational meaning to the so-called bare mass and bare 

charge. 

This point is precisely what made Pauli, already in the thirties, to have a critical 

view regarding his and Heisenberg’s quantum electrodynamics. Not only he disliked all 

of the ‘subtraction physics’ that was being tried, but principally he felt the lack of 

explanatory depth in the theory, that he expected could only be achieved with a unified 

field theory that didn’t treat the Dirac and Maxwell fields as independent physical 

entities (Rueger 1992, 314).  

The situation is ‘aggravated’ by the fact that besides this conceptual mismatch 

between the physical ideas used and the physical-mathematical implication of the 

theory, the procedure of charge renormalization is only possible due to the intrinsic 

limitations of the theory, that provides only statistical predictions for ensembles of 

systems, and where the time evolution is not related, as in classical physics, with the 

evolution in space of a physical system, but with the “wave giving the symbolic 

representation of its state” (Bohr 1935, 697). 
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