
The Einstein–Podolsky–Rosen Argument
and the Bell Inequalities∗

In 1935 Einstein, Podolsky, and Rosen (EPR) published an important paper
[17] in which they claimed that the whole formalism of quantum mechanics
together with what they called “Reality Criterion” imply that quantum me-
chanics cannot be complete. That is, there must exist some elements of reality
that are not described by quantum mechanics. There must be, they concluded,
a more complete description of physical reality behind quantum mechanics.
There must be a state, a hidden variable, characterizing the state of affairs in
the world in more details than the quantum mechanical state, something that
also reflects the missing elements of reality.

Under some further but quite plausible assumptions, this conclusion im-
plies that in some spin-correlation experiments the measured quantum me-
chanical probabilities should satisfy particular inequalities (Bell-type inequali-
ties). The paradox consists in the fact that quantum probabilities do not satisfy
these inequalities. And this paradoxical fact has been confirmed by several
laboratory experiments in the last three decades. The problem is still open
and hotly debated among both physicists and philosophers. It has motivated
a wide range of research from the most fundamental quantum mechanical ex-
periments through foundations of probability theory to the theory of stochastic
causality as well as the metaphysics of free will.
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1 The Einstein–Podolsky–Rosen argument

1.1 The description of the EPR experiment

Instead of the thought experiment described in the original EPR paper [17]
we will formulate the problem for a more realistic spin-correlation experiment
suggested by Aharonov and Bohm [10] in 1957.
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Figure 1: The Bohm–Aharonov spin-correlation experiment

Consider a source emitting two spin- 1
2 particles (Fig. 1). The (spin-

)state space of the emitted two-particle system is H2 ⊗ H2, where H2 is a 2-
dimensional Hilbert space (for a brief introduction to quantum mechanics, see
[30], Chapter 1). Let the quantum state of the system be the so called singlet
state: Ŵ = PΨs , where Ψs = 1√

2
(ψ+v ⊗ ψ−v − ψ−v ⊗ ψ+v). ψ+v and ψ−v de-

note the up and down eigenvectors of the spin-component operator along an ar-
bitrary direction v. In the two wings, we measure the spin-components along
directions a and b, which we set up by turning the Stern–Gerlach magnets into
the corresponding positions. Let us restrict our considerations for the spin-up
events, and introduce the following notations:

A = The < spin of the left particle is up > detector fires
B = The < spin of the right particle is up > detector fires
a = The left Stern–Gerlach magnet is turned into position a
b = The right Stern–Gerlach magnet is turned into position b
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In the quantum mechanical description of the experiment, events A and B are
represented by the following subspaces of H2 ⊗ H2:

A = span {ψ+a ⊗ ψ+a, ψ+a ⊗ ψ−a}
B = span {ψ+b ⊗ ψ+b, ψ+b ⊗ ψ−b}

(The same capital letter A, B, etc., is used for the event, for the corresponding
subspace, and for the corresponding projector, but the context is always clear.)
Quantum mechanics provides the following probabilistic predictions:

p(A|a) = tr (PΨs A) = p(B|b) = tr (PΨs B) =
1
2

(1)

p(A ∧ B|a ∧ b) = tr (PΨs AB) =
1
2

sin2 ^(a, b)
2

(2)

where ^(a, b) denotes the angle between directions a and b. Inasmuch as we
are going to deal with sophisticated interpretational issues, the following must
be explicitly stated:

Assumption 1
p (X|x) = tr

(
ŴX

)
(3)

That is to say, whenever we compare quantum mechanics with empir-
ical facts, “quantum probability” tr

(
ŴX

)
is identified with the condi-

tional probability of the outcome event X given that the corresponding
measurement x is performed.

This assumption is used in (1)–(2).
The two measurements happen approximately at the same time and at two

places far distant from each other. It is a generally accepted principle in con-
temporary physics that there is no super-luminal propagation of causal effects.
According to this principle we have the following assumption:

Assumption 2 The events in the left wing (the setup of the Stern–
Gerlach magnet and the firing of the detector, etc.) cannot have causal
effect on the events in the right wing, and vice versa.

One must recognize that, in spite of this causal separation, (2) generally
means that there are correlations between the outcomes of the measurements
performed in the left and in the right wings. In particular, if ^(a, b) = 0,
the correlation is maximal: the outcome of the left measurement “determines”,
with probability 1, the outcome of the right measurement. That is, if we ob-
serve ‘spin-up’ in the left wing then we know in advance that the result must
be ‘spin-down’ in the right wing, and vice versa. The actual correlations depend
on the particular measurement setups. The very possibility of perfect correla-
tion is, however, of paramount importance:

Assumption 3 For any direction b in the right wing one can chose
a direction a in the left wing—and vice versa—such that the outcome
events are perfectly correlated.
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1.2 The Reality Criterion

From this fact, that the measurement outcome in the left wing “determines”
the outcome in the right wing, in conjunction with the causal separation of
the measurements, one has to conclude that there must exist, locally in the
right wing, some elements of reality which pre-determine the measurement
outcome in the right wing. Einstein, Podolsky, and Rosen formulated this idea
in their famous Reality Criterion:

If, without in any way disturbing a system, we can predict with cer-
tainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of reality corresponding to
that quantity. ([17] p. 777)

It is probably true that no physicist would find this thesis implausible. In our
example, the value of the spin of the right particle in direction b can be pre-
dicted with 100% certainty by performing a far distant spin measurement on
the left particle in direction b, that is without in any way disturbing the right
particle. Consequently, there must exist some element of reality in the right
wing, that corresponds to the value of the spin of the right particle in direction
b, in other words, there must exist something in the right wing that determines
the outcome of the spin measurement on the right particle.

One might think that if this is true for a given direction b then—by the
same token—it must be true for all possible directions. However, this is not
necessarily the case. This is true only if the following condition is satisfied:

Assumption 4 The choices between the measurement setups in the
left and right wings are entirely autonomous, that is, they are indepen-
dent of each other and of the assumed elements of reality that deter-
mine the measurement outcomes.

Otherwise the following conspiracy is possible: something in the world pre-
determines which measurement will be performed and what will be the out-
come. We assume however that there is no such a conspiracy in our world.

Thus, taking into account Assumptions 2, 3 and 4, we arrive at the conclu-
sion that there are elements of reality corresponding to the values of the spin
of the particles in all directions. (Of course, it does not mean that we are able to
predict the spin of the right particle in all directions simultaneously. The reason
is that we are not able to measure the spin of the left particle in all directions
simultaneously.)

1.3 Does quantum mechanics describe these elements of real-
ity?

The answer is no. However, the meaning of this “no” is more complex and
depends on the interpretation of wave function (pure state).

The Copenhagen interpretation asserts that a pure state ψ provides a complete
and exhaustive description of an individual system, and a dynamical variable
represented by the operator Â has value a if and only if Âψ = aψ. Conse-
quently, spin has a given value only if the state of the system is the correspond-
ing eigenvector of the spin-operator. But spin-operators in different directions
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do not commute, therefore there is no state in which spin would have values in
all directions. Thus, in fact, the EPR argument must be considered as a strong
argument against the Copenhagen interpretation of wave function.

According to the statistical interpretation, a wave function does not provide
a complete description of an individual system but only characterizes the sys-
tem in a statistical/probabilistic sense. The wave function is not tracing the
complete ontology of the system. Therefore, from the point of view of the sta-
tistical interpretation, the novelty of the EPR argument consists in not proving
that quantum mechanics is incomplete but pointing out concrete elements of
reality that are outside of the scope of a quantum mechanical description.

It does not mean, however, that statistical interpretation remains entirely
untouched by the EPR argument. In fact the statistical interpretation of quan-
tum mechanics, as a probabilistic model in general, admits different ontolog-
ical pictures. And the EPR argument provides restrictions for the possible
ontologies. Consider the following simple example. Imagine that we pull
a die from a hat and throw it (event D). There are six possible outcomes:
< 1 >, < 2 >, . . . < 6 >. By repeating this experiment many times, we ob-
serve the following relative frequencies:

p (< 1 > |D) = 0.05
p (< 2 > |D) = 0.1
p (< 3 > |D) = 0.1
p (< 4 > |D) = 0.1
p (< 5 > |D) = 0.1
p (< 6 > |D) = 0.55

(4)

p (D) = 1, therefore p (< 1 >) = 0.05,... p (< 6 >) = 0.55. Our probabilis-
tic model will be based on these probabilities, and it works well. It correctly
describes the behavior of the system: it correctly reflects the relative frequen-
cies, correctly predicts that the mean value of the thrown numbers is 4.75, etc.
In other words, our probabilistic model provides everything expected from a
probabilistic model. However, there can be two different ontological pictures
behind this probabilistic description:

(A) The dice in the hat are biased differently. Moreover, each of them is bi-
ased by so much, the mass distribution is asymmetric by so much, that
practically (with probability 1) only one outcome is possible when we
throw it. The distribution of the differently biased dice in the hat is the
following: 5% of them are predestinated for < 1 >, 10% for < 2 >, ... and
55% for < 6 >. That is to say, each die in the hat has a pre-established
property (characterizing its mass distribution). The dice throw—as a
measurement—reveals these properties. When we obtain result < 2 >,
it reveals that the die has property ‘2’. In other words, there exists a real
event in the world, namely

<̃ 2 > = the die we have just pulled from the hat has property ‘2’

such that

p
(
<̃ 2 >

)
= p (< 2 > |D) (5)

p
(
< 2 > |<̃ 2 >

)
= 1 (6)
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That is, in our example, event <̃ 2 > occurs with probability 0.1 indepen-
dently of whether we perform the dice throw or not.

(B) All dice in the hat are uniformly prepared. Each of them has the same
slightly asymmetric mass distribution such that the outcome of the throw
can be anything with probabilities (4). In this case, if the result of the
throw is < 2 >, say, it is meaningless to say that the measurement re-
vealed that the die has property ‘2’. For the outcome of an individual
throw tells nothing about the properties of an individual die. In this case,
there does not exist a real event <̃ 2 > for which (5) and (6) hold.

By repeating the experiment many times, we obtain the conditional prob-
abilities (4). These conditional probabilities collectively, that is, the con-
ditional probability distribution over all possible outcomes, do reflect an
objective property common to all individual dice in the hat, namely their
mass distribution. (One might think that (A) is a hidden variable inter-
pretation of the probabilistic model in question, while the situation de-
scribed in (B) does not admit a hidden variable explanation. It is entirely

possible, however, that events <̃ 1 >, <̃ 2 >, . . . are objectively indeter-
ministic. On the other hand, in case (B), the physical process during the
dice throw can be completely deterministic and the probabilities in ques-
tion can be epistemic.)

We have a completely similar situation in quantum mechanics. Consider an ob-
servable with a spectral decomposition Â = ∑i aiPi. It is not entirely clear what
we mean by saying that “tr

(
ŴPi

)
is the probability of that physical quantity

A has value ai, if the sate of the system is Ŵ.” To clarify the precise mean-
ing of this statement, let us start with what seems to be certain. We assumed
(Assumption 1) that the quantity tr

(
ŴPi

)
is identified with the observed con-

ditional probability p (< ai > |a), where a denotes the event consisting in the
performing the measurement itself and < ai > denotes the outcome event cor-
responding to pointer position ‘ai’:

tr
(
ŴPi

)
= p (< ai > |a) (7)

If nothing more is assumed, then a measurement outcome becomes fixed dur-
ing the measurement itself, and we obtain a type (B) interpretation of quantum
probabilities. Let us call this the minimal interpretation. In this case, a mea-
surement outcome < ai > does not reveal a property of the individual object.
Of course, the state of the system, Ŵ, no matter whether it is a pure state or
not, may reflect a property of the individual objects, just like the conditional
probabilities (4) reflect the mass distribution of the individual dice.

One can also imagine a type (A) interpretation of tr
(
ŴPi

)
, which we call

the property interpretation. According to this view, every individual measure-
ment outcome < ai > corresponds to an objective property <̃ ai > intrinsic to
the individual object, which is revealed by the measurement. This property
exists and is established independently of whether the measurement is per-
formed or not. Just as in the example above, equation (7) can be continued in
the following way:

tr
(
ŴPi

)
= p (< ai > |a) = p

(
<̃ ai >

)
(8)
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where p
(
<̃ ai >

)
is the probability of that the individual object in question

has the property <̃ ai >.
Now, from the EPR argument we conclude that the ontological picture pro-

vided by the type (B) interpretation is not satisfactory. For according to the
EPR argument there must exist previously established elements of reality that
determine the outcomes of the individual measurements. This claim is nothing
but a type (A) interpretation.

1.4 The EPR conclusion

One has to emphasize that the conclusion of the EPR argument is not a no-go
theorem for hidden variable models of quantum mechanics. On the contrary,
it asserts that there must be a more complete description of physical reality behind
quantum mechanics. There must be a state, a hidden variable, characterizing the
state of affairs in the world in more detail than the quantum mechanical state
operator, something that also reflects the missing elements of reality. In other words,
the pre-established value of the hidden variable has to determine the spin of
both particles in all possible directions. Perhaps it is not fair to quote Einstein
himself in this context, who was not completely satisfied with the published
version of the joint paper (see [19]), but in this final conclusion there seems to
be an agreement:

I am, in fact, firmly convinced that the essentially statistical char-
acter of contemporary quantum theory is solely to be ascribed to
the fact that this theory operates with an incomplete description of
physical systems. (Quoted by [5], p. 90.)

Also, the EPR paper ended with:

While we have thus shown that the wave function does not pro-
vide a complete description of the physical reality, we left open the
question of whether or not such a description exists. We believe,
however, that such a theory is possible.

The question is: do these missing elements of reality really exist? We will an-
swer this question in section 3 after some technical preparations.

2 Under what conditions can a system of empir-
ically ascertained probabilities be described by
Kolmogorov’s probability theory?

The following mathematical preparations will provide some probability theo-
retic inequalities which are not identical with but deeply related to the Bell-type
inequalities; they play an important role in distinguishing classical Kolmogoro-
vian probabilities from quantum probabilities.
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2.1 Pitowsky theorem

Imagine that somehow we assign numbers between 0 and 1 to particular
events, and we regard them as “probabilities” in some intuitive sense. Under
what conditions can these “probabilities” be represented in a Kolmogorovian
probabilistic theory? As we will see, such a representation is always possible.
Restrictive conditions will be obtained only if we also want to represent some
of the correlations among the events in question.

Consider the following events: A1, A2, . . . An. Let

S ⊆ {(i, j)|i < j; i, j = 1, 2, . . . n}

be a set of pairs of indexes corresponding to those pairs of events the correla-
tions of which we want to be represented. The following “probabilities” are
given:

pi = p (Ai) i = 1, 2, . . . n
pij = p

(
Ai ∧ Aj

)
(i, j) ∈ S (9)

We say that “probabilities” (9) have Kolmogorovian representation if there is
a Kolmogorovian probability model (Σ, µ) with some X1, X2, . . . Xn ∈ Σ ele-
ments of the event algebra, such that

pi = µ (Xi) i = 1, 2, . . . n
pij = µ

(
Xi ∧ Xj

)
(i, j) ∈ S (10)

The question is, under what conditions does there exist such a representa-
tion? It is interesting that this evident problem was not investigated until the
pioneer works of Accardi [1, 2] and Pitowsky [26] in the late 80’s.

For the discussion of the problem, Pitowsky introduced an expressive
geometric language. From the probabilities (9) we compose an n + |S|-
dimensional, so called, correlation vector (|S| denotes the cardinality of S):

−→p =
(

p1, p2, . . . pn, . . . pij, . . .
)

Denote R(n, S) ∼= Rn+|S| the linear space consisting of real vectors of this type.
Let ε ∈ {0, 1}n be an arbitrary n-dimensional vector consisting of 0’s and 1’s.
For each ε we construct the following −→u ε ∈ R(n, S) vector:

uε
i = εi i = 1, 2, . . . n

uε
ij = εiε j (i, j) ∈ S (11)

The set of convex linear combinations of uε’s is called a classical correlation
polytope:

c(n, S) =

−→
f ∈ R(n, S)

∣∣∣∣∣∣−→f = ∑
ε∈{0,1}n

λε
−→u ε ; λε ≥ 0; ∑

ε∈{0,1}n
λε = 1


In 1989, Pitowsky proved ([26], pp. 22–24) the following theorem:
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Theorem The correlation vector −→p admits a Kolmogorovian representation if and
only if −→p ∈ c(n, S).

Beyond the fact that the theorem plays an important technical role in the
discussions of the EPR–Bell problem and other foundational questions of quan-
tum theory, it shades light on an interesting relationship between classical
propositional logic and Kolmogorovian probability theory. We must recognize
that the vertices of c(n, S) defined in (11) are nothing but the classical two-
valued truth-value functions over a minimal propositional algebra naturally
related to events A1, A2, . . . An. Therefore, what the theorem says is that prob-
ability distributions are nothing but weighted averages of the classical truth-
value functions.

2.2 Inequalities

It is a well known mathematical fact that the conditions for a vector to fall into
a convex polytope can be expressed by a set of linear inequalities. What kind
of inequalities express the condition −→p ∈ c(n, S)?

The answer is trivial in the case of n = 2 and S = {(1, 2)}. Set {0, 1}2

has four elements: (0, 0), (1, 0), (0, 1), and (1, 1). Consequently the classical
correlation polytope (Fig. 2) has four vertices: (0, 0, 0), (1, 0, 0), (0, 1, 0), and
(1, 1, 1).

(0 0 0) (1 0 0)

(0 1 0)

(1 1 1)

Figure 2: In the case of n = 2, classical correlation polytope has four vertices

The condition −→p ∈ c(2, S) is equivalent with the following inequalities:

0 ≤ p12 ≤ p1 ≤ 1
0 ≤ p12 ≤ p2 ≤ 1
p1 + p2 − p12 ≤ 1

(12)

Indeed, from (12) we have:

−→p = (1 − p1 − p2 + p12)

 0
0
0

 + (p1 − p12)

 1
0
0


+ (p2 − p12)

 0
1
0

 + p12

 1
1
1


Another important case is when n = 3 and S = {(1, 2), (1, 3), (2, 3)} . The
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corresponding set of inequalities is the following ([26], pp. 25–26):

0 ≤ pij ≤ pi ≤ 1
0 ≤ pij ≤ pj ≤ 1
pi + pj − pij ≤ 1

p1 + p2 + p3 − p12 − p13 − p23 ≤ 1
p1 − p12 − p13 + p23 ≥ 0
p2 − p12 − p23 + p13 ≥ 0
p3 − p13 − p23 + p12 ≥ 0

(13)

These are the Bell–Pitowsky inequalities.
Finally we mention the case of n = 4 and

S = {(1, 3), (1, 4), (2, 3), (2, 4)}

One can prove ([26], pp. 27–30) that the following inequalities are equivalent
with the condition −→p ∈ c(4, S):

0 ≤ pij ≤ pi ≤ 1
0 ≤ pij ≤ pj ≤ 1 i = 1, 2 j = 3, 4
pi + pj − pij ≤ 1

−1 ≤ p13 + p14 + p24 − p23 − p1 − p4 ≤ 0
−1 ≤ p23 + p24 + p14 − p13 − p2 − p4 ≤ 0
−1 ≤ p14 + p13 + p23 − p24 − p1 − p3 ≤ 0
−1 ≤ p24 + p23 + p13 − p14 − p2 − p3 ≤ 0

(14)
Let us call them the Clauser–Horne–Pitowsky inequalities.

3 Do the missing elements of reality exist?

The elements of reality the EPR paper is talking about are nothing but what the
property interpretation calls properties existing independently of the measure-
ments. In each run of the experiment, there exist some elements of reality, the
system has particular properties <̃ ai > which unambiguously determine the
measurement outcome < ai >, given that the corresponding measurement a is
performed. That is to say,

p
(
< ai > |<̃ ai > ∧ a

)
= 1 (15)

(This condition—coming from Assumptions 2 and 3 and the Reality
Criterion—is sometimes called “Counterfactual Definiteness” [30].) According
to the “no conspiracy” assumption we stipulated in Assumption 4,

p
(
<̃ ai > ∧ a

)
= p

(
<̃ ai >

)
p (a) (16)

so (15) and (16) imply that

p
(
<̃ ai >

)
= p (< ai > |a) = tr

(
ŴPi

)
(17)
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X2
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X1

X2

X3

X3

X4

X3

X4

X4

X3

...

Run 5

Run 4

Run 3

Run 2

Run 1

Figure 3: In each run of the experiment, some of the things in question (elements of
reality, properties, “quantum events”, etc.) occur

That is, the relative frequency of the element of reality <̃ ai > corresponding
to the measurement outcome < ai > must be equal to the corresponding quan-
tum probability tr

(
ŴPi

)
. However, this is generally impossible. According

to the Laboratory Record Argument [42] below, there are no things (elements of
reality, properties, “quantum events”, etc.) the relative frequencies of which
could be equal to quantum probabilities.

Imagine the consecutive time slices of a given region of the world (say, the
laboratory) corresponding to the consecutive runs of an experiment (Fig. 3).
We do not know what “elements of reality”, “properties”, “quantum events”,
etc., are, but we can imagine that in every such time slices some of them occur,
and we can imagine a laboratory record like the one in Table 1. ‘1’ stands for the
case if the corresponding element of reality occurs and ‘0’ if it does not. We put
‘1’ into the column corresponding to a conjunction if both elements of reality
occur. In order to avoid the objections like “the two measurements cannot
be performed simultaneously”, or “the conjunction is meaningless”, etc., let
us assume that the pairs (X1, X3), (X1, X4), (X2, X3), and (X2, X4) belong to
commuting projectors.

Now, the relative frequencies can be computed from this table:

ν1 =
N1

N
, ν1 =

N2

N
, . . . ν24 =

N24

N
(18)
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Run X1 X2 X3 X4 X1 ∧ X3 X1 ∧ X4 X2 ∧ X3 X2 ∧ X4

1 1 1 1 0 1 0 1 0
2 0 0 1 0 0 0 0 0
3 1 0 0 1 0 1 0 0
4 0 1 1 1 0 0 1 1
5 1 0 0 0 0 0 0 0
6 0 1 0 1 0 0 0 1
7 0 1 0 1 0 0 0 1
8 1 0 0 1 0 1 0 0
...

...
...

...
...

...
...

...
...

99998 1 0 0 0 0 0 0 0
99999 0 0 1 0 0 0 0 0

N=100000 0 1 0 1 0 0 0 1
N1 N2 N3 N4 N13 N14 N23 N24

Table 1: An imaginary laboratory record about the occurrences of the hidden elements
of reality

Notice that each row of the table corresponds to one of the 24 possible classical
truth-value functions over the corresponding propositions. In other words, it
is one of the vertices −→u ε (ε ∈ {0, 1}4) we introduced in (11). Let Nε denote the
number of type-−→u ε rows in the table. The relative frequencies (18) can also be
expressed as follows:

νi = ∑
ε∈{0,1}4

λεuε
i

νij = ∑
ε∈{0,1}4

λεuε
ij

where λε = Nε
N . Clearly, λε ≥ 0 and ∑ε∈{0,1}4 λε = 1. That is to say, the

correlation vector consisting of the relative frequencies in question satisfies the
condition −→ν = (ν1, ν2, . . . ν24) ∈ c(4, S) in section 2.1. (Consequently—due to
Pitowsky’s theorem—it admits a Kolmogorovian representation.)

One can generalize the above observation in the following stipulation: The
elements of a correlation vector −→p admit a relative frequency interpretation if
and only if −→p satisfies the condition −→p ∈ c(n, S).

So in the above example, −→ν ∈ c(4, S) if and only if −→ν satisfies the Clauser–
Horne–Pitowsky inequalities (14). But, in general, quantum probabilities do
not satisfy these inequalities. Consider the EPR experiment in section 1.1.
Assume that the possible directions are a1 and a2 in the left wing, and b1
and b2 in the right wing. We will consider the following particular case:
^ (a1, b1) = ^ (a1, b2) = ^ (a2, b2) = 120◦ and ^ (a2, b1) = 0. According
to (1)–(2), the quantum probabilities are the following:

p(A1|a1) = p(A2|a2) = p(B1|b1) = p(B2|b2) =
1
2

(19)

p(A1 ∧ B1|a1 ∧ b1) = p(A1 ∧ B2|a1 ∧ b2)

= p(A2 ∧ B2|a2 ∧ b2) =
3
8

(20)
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p(A2 ∧ B1|a2 ∧1 b) = 0 (21)

Let X1 = A1, X2 = A2, X3 = B1, and X4 = B2. The question is whether the
corresponding correlation vector −→p =

(
1
2 , 1

2 , 1
2 , 1

2 , 3
8 , 3

8 , 0, 3
8

)
satisfies the condi-

tion of Kolmogorovity or not. Substituting the elements of −→p into (14), we find
that the system of inequalities is violated. Quantum probabilities measured in
the EPR experiment violate the Clauser–Horne–Pitowsky inequalities, there-
fore they cannot be interpreted as relative frequencies. Consequently, there can-
not exist quantum events, elements of reality, properties, or any other things which
occur with relative frequencies equal to quantum probabilities. (To avoid any mis-
understanding, the restriction of a quantum probability measure to the Boolean
sublattice of projectors belonging to the spectral decomposition of one single
maximal observable does, of course, admit a relative frequency interpretation.
It must be also mentioned that quantum probabilities, in general, can be inter-
preted in terms of relative frequencies as conditional probabilities [42].)

In brief, given the existence of the predicted perfect correlations by quantum me-
chanics (Assumption 3), according to the EPR argument, there ought to exist partic-
ular elements of reality, which, according to the Laboratory Record Argument, cannot
exist. To resolve this contradiction, we have to conclude that at least one of Assump-
tion 1, 2 and 4 fails.

In the next section we will arrive at similar conclusions in a different con-
text.

4 Bell’s inequalities

4.1 Bell’s formulation of the problem

When the EPR paper was published, there already existed a hidden variable
theory of quantum mechanics, which achieved its complete form in 1952 [8, 9].
This is the de Broglie–Bohm theory, which also called Bohmian mechanics. (For
a historical review of the de Broglie–Bohm theory, see [16]. For the Bohmian
mechanics version of the standard text-book quantum mechanics, see [11] and
[22].) This theory is explicitly non-local in the following sense: One of its cen-
tral objects, the so called quantum potential which locally governs the behavior
of a particle, explicitly depends on the simultaneous coordinates of other, far
distant, particles. This kind of non-locality is, however, a natural feature of all
theories containing potentials (like electrostatics or the Newtonian theory of
gravitation). Such a theory is expected to describe physical reality only in non-
relativistic approximation, when the finiteness of the speed of propagation of
causal effects is negligible, but, according to our expectations, it fails on a more
detailed spatiotemporal scale. What is unusual in the EPR situation is that the
real laboratory experiments do reach this relativistic spatiotemporal scale, but
the observed results are still describable by simple (non-local) quantum/Bohm
mechanics.

In his 1964 paper [4, 5], John Stuart Bell proved that

In a theory in which parameters are added to quantum mechan-
ics to determine the results of individual measurements, without
changing the statistical predictions, there must be a mechanism
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time

A

J−(A) B

S

D+(S)

C

Figure 4: A local, deterministic, and Markovian (LDM) world. Event A is determined
by the history of the universe inside of the backward light-cone J−(A). The state of
affairs along a Cauchy hyper-surface S completely determines the history within the
dependence domain D+(S). (For these basic concepts of relativity theory, see [21, 45].)
In other words, all the relevant information from the past is encoded in the state of
affairs in the present. More exactly, all information from a past event B influencing A
must be encoded in the corresponding region C

whereby the setting of one measuring device can influence the read-
ing of another instrument, however remote. ([5], p. 20.)

The argument was based on the violation of an inequality derivable from a
few plausible assumptions. Instead of Bell’s original inequality, it is better to
formulate the argument by means of the Clauser–Horne inequalities, which
are more applicable to the spin-correlation experiment described in section 1.1.
This difference is, however, not significant.

Bell was concerned with the following problem: Can the whole EPR exper-
iment be accommodated in a classical world, that is, in a world which is com-
patible with the world-view of pre-quantum-mechanical physics? This pre-
quantum-mechanical world is local, deterministic and Markovian (LDM), that
is, it satisfies the following assumption:

Assumption 2’ Our world is

1. Local—No direct causal connection between spatially separated
events (Assumption 2).

2. Deterministic—Event A is uniquely determined by the pre-
history in the backward light-cone J−(A). (Fig. 4)

3. Markovian—All the relevant information from the past is en-
coded in the state of affairs in the present.

Electrodynamics is the paradigmatic LDM theory of this pre-quantum-
mechanical world view.

It should be clear that Assumption 2’ prescribes determinism only on the
level of the final ontology, but it does not exclude stochasticity of an epistemic
kind. At first sight Assumption 2’ seems to be much stronger than Assump-
tion 2. It is because the three metaphysical ideas, locality, determinism, and
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Markovity, seem to be clearly distinguishable features of a possible world.
However, further reflection reveals that these concepts are inextricably inter-
twined. In all pre-quantum-mechanical examples the laws of physics are such
that locality, determinism, and Markovity are provided together. If, however,
our world is objectively indeterministic—this, of course, hinges on the very
issue we are discussing here—then it is far from obvious how the phrase “no
direct causal connection between . . .” is understood (also see section 6).

Anyhow, the question we are concerned with is this: Can all physical events
observed in the EPR experiment be accommodated in an LDM world, including the
emissions, the measurement setups, the measurement outcomes, etc., with relative fre-
quencies observed in the laboratory and predicted by quantum mechanics?

4.2 The derivation of Bell’s inequalities

We have eight different types of event: the measurement outcomes, that is, the
detections of the particles in the corresponding up-detector, A1, A2, B1, B2, and
the measurement setups a1, a2, b1, b2. Let us imagine the space-time diagram
of one single run of the experiment (Fig. 5). The positive dependence domain

a   a1 2
b   b1 2

µ λ ν

D  (S)

S

+

B   BA   A1 2 1 2

Figure 5: The space-time diagram of a single run of the EPR experiment

of the Cauchy surface S, D+(S), contains all events we observe in a single run
of the experiment. According to the classical views, the Cauchy data on S un-
ambiguously determine what is going on in domain D+(S), including whether
or not events A1, A2, B1, B2, a1, a2, b1, and b2 occur. The occurrence of a type-X
event means that the state of affairs in the dependence domain D+(S) falls into
the category X. Which events occur and which do not, can be expressed with
the following functions:

uX (µ, λ, ν) =
{

1 if D+(S) falls into category X
0 if not (22)

Taking into account that an event cannot depend on data outside of the back-
ward light-cone,

uAi (µ, λ, ν) = uAi (µ, λ)
uBi (µ, λ, ν) = uBi (λ, ν)
uai (µ, λ, ν) = uai (µ, λ)
ubi (µ, λ, ν) = ubi (λ, ν)

i = 1, 2 (23)

The whole experiment, that is the statistical ensemble consist of a long se-
quence of similar space-time patterns like the one depicted in Fig. 5. In the
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Figure 6: The statistical ensemble consists of the consecutive repetitions of space-time
pattern in Fig. 5

consecutive situations, the existing values of parameters (µ, λ, ν) determine
what happens in the given run of the experiment (Fig. 6). One can count the
relative frequencies of the various (µ, λ, ν) combinations. Therefore, probabil-
ities p (µ) , p (λ) , p (ν) , p (µ ∧ λ) , . . . p (µ ∧ λ ∧ ν) can be considered as given.
Applying (23), the probabilities (relative frequencies) of the eight events can be
expressed as follows:

p (Ai) = ∑
µ,λ

uAi (µ, λ) p (µ ∧ λ) (24)

p (Bi) = ∑
λ,ν

uBi (λ, ν) p (λ ∧ ν) (25)

p (ai) = ∑
µ,λ

uai (µ, λ) p (µ ∧ λ) (26)

p (bi) = ∑
λ,ν

ubi (λ, ν) p (λ ∧ ν) (27)

p
(

Ai ∧ Bj
)

= ∑
µ,λ,ν

uAi (µ, λ) uBj (λ, ν) p (µ ∧ λ ∧ ν) (28)

p
(
ai ∧ bj

)
= ∑

µ,λ,ν
uai (µ, λ) ubj (λ, ν) p (µ ∧ λ ∧ ν) (29)

.
Due to the common causal past, there can be correlations between the
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left signal from the far universe

right signal from the far universe

common causal past

b1

B1

a2a1

A2A1 B2

b2

µ λ ν

Figure 7: Due to the common causal past, there can be correlation between the Cauchy
data belonging to the three spatially separated regions. One can, however, assume that
the measurement setups are governed by some independent signals coming from the
far universe

Cauchy data belonging to the three spatially separated regions (Fig. 7). Hence-
forth, however, we assume that

p (µ ∧ λ ∧ ν) = p (µ) p (λ) p (ν) (30)

This assumption can be justified by the following intuitive arguments:

1. Our concern is to explain correlations between spatially separated events
observed in the EPR experiment. It would be completely pointless to ex-
plain these correlation with similar correlations between earlier spatially
separated events. Because then we could say that a correlation observed
in a here-and-now experiment can be explained by something around the
Big Bang.

2. In general, µ, λ, and ν stand for huge numbers of Cauchy data, depending
on how detailed the description of the process in question should be.
Yet it is reasonable to assume that these parameters only represent those
data that are relevant for the events observed in the EPR experiment. For
example, one can imagine a scenario in which the role of µ and ν is merely
to govern the choice of measurement setups in the left and in the right
wing, and the values of µ and ν are fixed by two independent assistants
on the left and right hand sides. In this case, it is quite plausible that the
free-will decisions of the assistants are independent of each other, and
also independent of parameter λ.

3. If for any reason we do not like to appeal to free will, we can assume
that parameters µ and ν, responsible for the measurement setups, are de-
termined by some random signals coming from the far universe (Fig. 7).
Also, we can assume that the left and right signals are independent of
each other and independent of the value of λ—unless we want the expla-
nation to go back to the initial Big Bang singularity.
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Applying Bayes rule and taking into account assumption (30), the conditional
probability p

(
Ai ∧ Bj|ai ∧ bj ∧ λ

)
can be expressed as follows:

p
(

Ai ∧ Bj ∧ ai ∧ bj ∧ λ
)

p
(
ai ∧ bj ∧ λ

)
=

∑µ,ν uAi (µ, λ) uai (µ, λ) uBj (λ, ν) ubj (λ, ν) p (µ) p (ν) p (λ)

∑µ,ν uai (µ, λ) ubj (λ, ν) p (µ) p (ν) p (λ)

=
∑µ uAi (µ, λ) p (µ) p (λ)

∑µ uai (µ, λ) p (µ) p (λ)
∑ν uBj (λ, ν) p (ν) p (λ)

∑ν ubj (λ, ν) p (ν) p (λ)

=
∑µ uAi (µ, λ) uai (µ, λ) p (µ) p (λ)

∑µ uai (µ, λ) p (µ) p (λ)

×∑ν uBj (λ, ν) ubj (λ, ν) p (ν) p (λ)

∑ν ubj (λ, ν) p (ν) p (λ)

=
p (Ai ∧ ai ∧ λ)

p (ai ∧ λ)
p

(
Bj ∧ bj ∧ λ

)
p

(
bj ∧ λ

)
So, parameter λ, standing for the Cauchy data carrying the information shared
by the left and right wings, must satisfy the following so-called “screening off”
condition:

p
(

Ai ∧ Bj|ai ∧ bj ∧ λ
)

= p (Ai|ai ∧ λ) p
(

Bj|bj ∧ λ
)

(31)

Bell restricted the concept of LDM embedding with a further requirement
which is nothing but Assumption 4. In this context it says the following: The
choice between the possible measurement setups must be independent from
parameter λ carrying the shared information. In other words,

uai (µ, λ) = uai (µ)
ubi (λ, ν) = ubi (ν)

i = 1, 2 (32)

In this case, it immediately follows from (24)–(29) that

p(Ai|ai) = ∑
λ

p (Ai|ai ∧ λ) p (λ)

p(Bi|bi) = ∑
λ

p (Bi|bi ∧ λ) p (λ) i, j = 1, 2 (33)

p(Ai ∧ Bj|ai ∧ bj) = ∑
λ

p
(

Ai ∧ Bj|ai ∧ bj ∧ λ
)

p (λ)

For example:

p (Ai|ai) =
p (Ai ∧ ai)

p (ai)
=

∑µ,λ uAi (µ, λ) uai (µ, λ) p (µ) p (λ)

∑µ,λ uai (µ, λ) p (µ) p (λ)

=
∑µ,λ uAi (µ, λ) p (µ) p (λ)

∑µ,λ uai (µ, λ) p (µ) p (λ)
=

∑λ

(
∑µ uAi (µ, λ) p (µ)

)
p (λ)

∑µ uai (µ) p (µ)

(?)
= ∑

λ

(
∑µ uAi (µ, λ) p (µ)

∑µ uai (µ) p (µ)

)
p (λ) = ∑

λ

p (Ai|ai ∧ λ) p (λ)
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Equality (?) would not hold without condition (32).
It is an elementary fact that for any real numbers 0 ≤ x1, x2, y1, y2 ≤ 1

−1 ≤ x1y1 + x1y2 + x2y2 − x2y1 − x1 − y2 ≤ 0

Applying this inequality, for all λ we have

−1 ≤ p (A1|a1 ∧ λ) p (B1|b1 ∧ λ) + p (A1|a1 ∧ λ) p (B2|b2 ∧ λ)
+p (A2|a2 ∧ λ) p (B2|b2 ∧ λ) − p (A2|a2 ∧ λ) p (B1|b1 ∧ λ)

−p (A1|a1 ∧ λ) − p (B2|b2 ∧ λ) ≤ 0

Taking into account (31), we obtain:

−1 ≤ p (A1 ∧ B1|a1 ∧ b1 ∧ λ) + p (A1 ∧ B2|a1 ∧ b2 ∧ λ)
+p (A2 ∧ B2|a2 ∧ b2 ∧ λ) − p (A2 ∧ B1|a2 ∧ b1 ∧ λ)

−p (A1|a1 ∧ λ) − p (B2|b2 ∧ λ) ≤ 0
(34)

Multiplying this with probability p (λ) and summing up over λ, we obtain the
following inequality:

−1 ≤ p (A1 ∧ B1|a1 ∧ b1) + p (A1 ∧ B2|a1 ∧ b2)
+p (A2 ∧ B2|a2 ∧ b2) − p (A2 ∧ B1|a2 ∧ b1)

−p (A1|a1) − p (B2|b2) ≤ 0
(35)

Similarly, changing the roles of A1, A2, B1, and B2, we have:

−1 ≤ p (A2 ∧ B1|a2 ∧ b1) + p (A2 ∧ B2|a2 ∧ b2)
+p (A1 ∧ B2|a1 ∧ b2) − p (A1 ∧ B1|a1 ∧ b1)

−p (A2|a2) − p (B2|b2) ≤ 0
(36)

−1 ≤ p (A1 ∧ B2|a1 ∧ b2) + p (A1 ∧ B1|a1 ∧ b1)
+p (A2 ∧ B1|a2 ∧ b1) − p (A2 ∧ B2|a2 ∧ b2)

−p (A1|a1) − p (B1|b1) ≤ 0
(37)

−1 ≤ p (A2 ∧ B2|a2 ∧ b2) + p (A2 ∧ B1|a2 ∧ b1)
+p (A1 ∧ B1|a1 ∧ b1) − p (A1 ∧ B2|a1 ∧ b2)

−p (A2|a2) − p (B1|b1) ≤ 0
(38)

Inequalities (35)–(38) are due to Clauser and Horne [14], but they essentially
play the same role as Bell’s original inequalities of 1964. Therefore they are
called Bell–Clauser–Horne inequalities.

According to Assumption 1, the conditional probabilities in the Bell–
Clauser–Horne inequalities are nothing but the corresponding quantum prob-
abilities, the values of which are given in (19)–(21). These values violate the
Bell–Clauser–Horne inequalities.

So, in a different context, we arrived at conclusions similar to section 1.4. That is
to say, one of Assumption 1, Assumption 2’ and Assumption 4 must fail.

Notice that the Clauser–Horne–Pitowsky inequalities (14) and the Bell–
Clauser–Horne inequalities (35)–(38) are not identical—in spite of the obvious
similarity. The formers apply to some numbers that are meant to be the (ab-
solute) probabilities of particular events, and express the necessary condition of
that these “probabilities” admit a Kolmogorovian representation and—in the
Laboratory Record Argument—a relative frequency interpretation. In contrast
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the Bell–Clauser–Horne inequalities apply to conditional probabilities, and we
derived them as necessary conditions of LDM embedability.

Finally, it worthwhile mentioning, that the spin-correlation experiment de-
scribed in section 1.1 has been performed in reality, partly with spin- 1

2 particles,
partly with photons [15]. (The experimental scenario for spin- 1

2 particles can
easily be translated into the terms of polarization measurements with entan-
gled photon pairs.) In the experiments with photons, the spatial separation
of the left and right wing measurements has also been realized. (The first ex-
periment in which the spatial separation was realized is [3]. The best condi-
tions have been achieved in [46].) So far, the experimental results have been
in wonderful agreement with quantum mechanical predictions. Therefore, the
violation of the Bell-type inequalities is an experimental fact.

In the particular case when the values of p (Ai|ai ∧ λ), p (Bi|bi ∧ λ), and
p

(
Ai ∧ Bj|ai ∧ bj ∧ λ

)
on the right hand side of (33) are only 0 or 1, λ is called

a deterministic hidden variable. The above derivation of the Bell–Clauser–Horne
inequalities simultaneously holds for both stochastic and deterministic hidden
variable theories. Notice that the screening off condition (31) is not automat-
ically satisfied by any deterministic hidden variable. What we automatically
have in the deterministic case is the following:

p
(

Ai ∧ Bj|ai ∧ bj ∧ λ
)

= p
(

Ai|ai ∧ bj ∧ λ
)

p
(

Bj|ai ∧ bj ∧ λ
)

This is different from condition (31), except if the following are also satisfied:

p
(

Ai|ai ∧ bj ∧ λ
)

= p (Ai|ai ∧ λ) (39)

p
(

Bj|ai ∧ bj ∧ λ
)

= p
(

Bj|bj ∧ λ
)

(40)

that is to say, the outcome in the left wing is independent of the choice of
the measurement setup in the right wing, and vice versa. Conditions (39)–(40),
sometimes called “parameter independence” [44], are, however, automatically
satisfied by LDM embedability.

Thus, the distinction between deterministic and stochastic hidden variable
theories is not so significant. As we have seen, the necessary condition of their
existence is common to both of them.

When we say that the hidden variable model is “stochastic”, it means epis-
temic stochasticity. Parameter λ does not fully determine the measurement out-
comes: the value of uAi (µ, λ) also depends on µ, and the value of uBj (λ, ν) also
depends on ν. But the LDM world, as a whole, is deterministic: whether events
Ai and Bj occur is fully determined by µ, λ, and ν.

5 Possible resolutions of the paradox

5.1 Conspiracy

There is an easy resolution of the EPR/Bell paradox, if we allow the conspiracy
that was prohibited by Assumption 4 [12, 40]. It is hard to believe, however,
that the “free” decisions of the laboratory assistants in the left and right wings
depend on the value of the hidden variable which also determines the spins of
the two particles.
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Figure 8: The schema of a typical quantum measurement. The source is producing
objects on which the measurement is performed. The very existence of an object can
be observed via the detection of an outcome event. Therefore, we have no information
about the content of the original ensemble of objects emitted by the source. The quan-
tum probabilities are identified with the frequencies of the different outcomes, relative
to a sub-ensemble of objects producing any outcome

5.2 Fine’s interpretation of quantum statistics

Assumption 1 seems to be the most robust one. One might think that (7) is
a simple empirical fact. There is, however, a resolution of the problem which
is entirely compatible with Assumptions 2’ and 4, but violates Assumption 1
in a very a sophisticated way. This is Arthur Fine’s interpretation of quantum
statistics [18]. The basic idea is this. To determine ‘What does quantum proba-
bility actually describe in the real world?’ we have to analyze the actual empir-
ical counterpart of tr

(
ŴPi

)
in the experimental confirmations of quantum the-

ory. Consider the schema of a typical quantum measurement (Fig. 8). Contrary
to classical physics where getting information about the existence of a physical
entity and measuring one of its characteristics are two different actions, in a
typical quantum measurement these two actions coincide. Therefore we have
no independent information about the content of the original ensemble of ob-
jects emitted by the source. In fact, the theoretical “probability” predicted by
quantum mechanics is identified with the ratio of the number of detections in
one channel relative to the total number of detections, that is,

tr
(
ŴPi

)
=

Ni

∑i Ni
(41)

Now, if, as it is usually assumed, a non-detection were an independent ran-
dom mistake of an inefficient detector or something like that, then the right
hand side of (41) would be still equal to p (< ai > |a). This is, however, a com-
pletely implausible assumption within the context of a hidden variable theory.
(This is the most essential point of Fine’s approach.) For if there are (hidden)
elements of reality, for instance the particle has some hidden properties, that
pre-determine the outcome of the measurement and in general pre-determine
the behavior of the system during the whole measurement process, then it is
quite plausible that they also pre-determine whether the entity in question can
pass through the analyzer and can be detected, or not. If so, then the right hand
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side of (41) is a relative frequency on a “biased” ensemble, therefore

p
(
<̃ ai >

)
= p (< ai > |a) 6= tr

(
ŴPi

)
and the the Clauser–Horne–Pitowsky inequalities as well as the Bell–Clauser–
Horne inequalities can be—and, in fact, are—satisfied. This is, of course, not
the whole story. The concrete hidden variable theory has to describe how the
hidden properties determine the whole process and how the relative frequen-
cies of the hidden elements of reality are related to quantum probabilities. There
exist such hidden variable models for several spin-correlation experiments and they are
entirely compatible with the real experiments performed in the last few years. For
further reading see [19, 20, 23, 41, 43].

5.3 Non-locality, but without communication

In spite of the above mentioned developments and in spite of the fact that the
no-action-at-a-distance principle seems to hold in all other branches of physics,
the painful conclusion that Assumption 2 is violated is more widely accepted
in contemporary philosophy of physics.

Many argue that the violation of locality observed in the EPR experiment is
not a serious one, because the spin-correlations are not capable of transmitting
information between spatially separated space-time regions. The argument is
based on the fact that, although the outcome in the right wing is (maximally)
correlated with the outcome in the left wing, the outcome in the left wing itself
is a random event (with probability 1

2 it is ‘up’ or ‘down’) which cannot be
influenced by our free action. We cannot send Morse code signals from the left
station to the right one with an EPR equipment.

Others argue that this is a misinterpretation of the original no-action-at-
a-distance principle which completely prohibits spatially separated physical
events having any causal influence on each other, no matter whether or not the
whole process is suitable for transmission of information. Consider the exam-
ple depicted in Fig. 9. In case (A) the telegraph works normally. By pressing
the key we can send information from one station to the other. It is no wonder
that the pressing of the key at the sender station and the behavior of the reg-
ister at the receiver station are maximally correlated. We have a clear causal
explanation of how the signal is propagating along the cable connecting the
two stations. Next, imagine that something goes wrong and the key randomly
presses itself (case (B)). The random sequence of signals generated in this way
is properly transmitted to the receiver station, but the system is not suitable
to send telegrams. Still we have a clear causal explanation of the correlation
between the behaviors of the key and the register. Finally, case (C), imagine the
same situation as (B) except that the cable connecting the two stations is bro-
ken. In this situation, it would be astonishing if there really were correlations
between the random behavior of the key and the behavior of the register, and
it would cry out for causal explanation, no matter whether or not we are able
to send information from one station to the other.

As this simple example illustrates, no matter whether or not we are able to
communicate with EPR equipment, the very fact that we observe correlations
which cannot be accommodated in the causal order of the world is still an
embarrassing metaphysical problem.
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Figure 9: In case (A) the telegraph works normally. In case (B) something goes wrong
and the key randomly presses itself. The random signal is properly transmitted but the
equipment is not suitable for sending a telegram. Case (C) is just like (B), but the cable
connecting the two equipments is broken

5.4 Modifying the theory

In order to resolve the paradox, there have been various suggestions to modify
the underlying physical/mathematical/logical theories by which we describe
the phenomena in question. Some of these endeavors are based on the observa-
tion that the violation of the Bell-type inequalities is deeply related to the non-
classical feature of quantum probability theory [35, 26, 24, 25]. More exactly,
it is rooted in the (non-distributive lattice) structure of the underlying event
algebra which essentially differs from the classical Boolean algebra. According
to some of these approaches, the fact in itself that the Bell-type inequalities are
violated has nothing to do with such physical questions as locality, causality or
the ontology of quantum phenomena. It is just a simple mathematical conse-
quence of quantum probability theory and/or quantum logic ([26], pp. 49–51;
182–183).

According to another approach, it is quantum mechanics itself that has to
be modified. So called relational quantum mechanics [6, 33, 7] introduces a
new concept: the relative quantum state. It turns out that the relative quan-
tum state of the right particle changes if the left particle is measured and vice
versa. Therefore, it is argued, the two particles are not causally separated at a
quantum level.

Some papers, motivated by the problem of quantum gravity, suggest space-
time structures that are intrinsically based on quantum theory. These results
have remarkable interrelations with the EPR–Bell problem [38, 39, 37]. The EPR
events, which are spatially separated in classical space-time, turn out not to
be spatially separated in some other space-time structures based on quantum
mechanics.
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Another branch of research attempts to develop, within the framework of
algebraic quantum field theory, an exact concept of “separation” of subsystems
[27, 31, 28, 29].

What is common to all these efforts is that they aim to improve the concep-
tual/theoretical means by which we describe and analyze the EPR–Bell prob-
lem. All these approaches, however, encounter the following difficulty: The
violation of the Bell-type inequalities is an experimental fact. It means that the
EPR–Bell problem exists independently of quantum mechanics, and indepen-
dently of any other theories: what is important from (1)–(2) is that

p(A|a) = p(B|b) =
1
2

(42)

p(A ∧ B|a ∧ b) =
1
2

sin2 ^(a, b)
2

(43)

We observe correlations in the macroscopic world, which have no satisfactory
explanation. It is hard to see how we could resolve the EPR–Bell paradox by
changing something in our theories, by introducing new concepts, by chang-
ing, for example, the notion of a quantum state, by applying “quantum logic”,
“quantum space-time”, etc. For, until the modified theory can reproduce the exper-
imentally observed relative frequencies (42)–(43), the modified theory will contradict
to Assumptions 1, 2/2’, and 4. (Note that Fine’s approach differs from the other
proposals in claiming that (42)–(43) are not what we actually observe in the real
experiments).

6 No correlation without causal explanation

How correlations between event types are related to causality between partic-
ular events is an old problem in the history of philosophy. Although the un-
derlying causality on the level of particular events does not necessarily yield to
correlations on the level of event types, it is a deeply rooted metaphysical con-
viction, on the other hand, that there is no correlation without causal explanation.
If there is correlation between two event types then there must exist something
in the common causal past of the corresponding particular events that explains
the correlation. This something is called a “common cause”. “Particular event”
means an event of a definite space-time locus, a definite piece of the history of
the universe, that is the totally detailed state of affairs in a given space-time
region.

The interesting situation is, of course, when the correlated events are not in
direct causal relationship; for example, they are simultaneous or, at least, spa-
tially separated. (In order to distinguish direct causal relations from common-
cause-type causal schemas, in other words real causal processes from pseudo-
processes, Reichenbach [32] and Salmon [34] introduced the so called mark-
transmission criterion: a direct causal process is capable of transmitting a lo-
cal modification in structure (a “mark”); a pseudo-process is not. Consider
Salmon’s simple example: as the spotlight rotates, the spot of light moves
around the wall. We can place a red filter at the wall with the result that the
spot of light becomes red at that point. But if we make such a modification in
the travelling spot, it will not be transmitted beyond the point of interaction.
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The “motion” of the spot of light on the wall is not a real causal process. On
the contrary, the propagation of light from the spotlight to the wall is a real
causal process. If we place a red filter in front of the spotlight, the change of
color propagates with the light signal to the wall, and the spot of light on the
wall becomes red. It is not entirely clear, however, how the mark-transmission
criterion is applicable for objectively random uncontrollable phenomena, like
the EPR experiment. It also must be mentioned that the criterion is based on
some prior metaphysical assumptions about free will and free action.)

The idea that a correlation between events having no direct causal relation
must always have a common-cause explanation is due to Hans Reichenbach
[32]. It is hotly disputed whether the principle holds at all. Many philosophers
claim that there are “regularities” in our world that have no causal explana-
tions. The most famous such example was given by Elliot Sober [36]: The bread
prices in Britain have been going up steadily over the last few centuries. The
water levels in Venice have been going up steadily over the last few centuries.
There is therefore a “regularity” between simultaneous bread prices in Britain
and sea levels in Venice. However, there is presumably no direct causation
involved, nor a common cause. Of course, “regularity” here does not mean
correlation in probability-theoretic sense (p(A∧ B)− p(A)p(B) = 1 · 1− 1 = 0).
So, it is still an open question whether the principle holds, in its original Re-
ichenbachian sense, for events having non-zero correlation. Various examples
from classical physics have been suggested which violate Reichenbach’s com-
mon cause principle. There is no consensus on whether these examples are
valid. There is, however, a consensus that the EPR–Bell problem is a serious
challenge to Reichenbach’s principle.

Another much-discussed problem is how to define the concept of com-
mon cause. As we have seen, in Bell’s understanding, the common cause
is the hidden state of the universe in the intersection of the backward light
cones of the correlated events. This view is based on the LDM world view
of the pre-quantum-mechanical physics. According to Reichenbach’s defini-
tion ([32], Chapter 19) a common cause explaining the correlation p(A ∧ B) −
p(A)p(B) 6= 0 is an event C satisfying the following condition:

p (A ∧ B|C) = p (A|C) p (B|C) (44)
p (A ∧ B|¬C) = p (A|¬C) p (B|¬C) (45)

Reichenbach based his common-cause concept on intuitive examples from the
classical world with epistemic probabilities. However, as Nancy Cartwright
[13] points out, we are in trouble if the world is objectively indeterministic. We
have no suitable metaphysical language to tell when a world is local, to tell the
difference between direct and common-cause-type correlations, to tell what a
common cause is, and so on. These concepts of the theory of stochastic causal-
ity are either unjustified or originated from the observations of epistemically
stochastic phenomena of a deterministic world.
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