
1

The Explanatory Potential of Artificial Societies

Till Grüne-Yanoff

Department of Social and Moral Philosophy

Helsinki University

till.grune@helsinki.fi

Accepted for publication in Synthese

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/11921741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:till.grune@helsinki.fi


2

Abstract  It is often claimed that artificial society simulations contribute to the explanation

of social phenomena. At the hand of a particular example, this paper argues that artificial

societies often cannot provide full explanations, because their models are not or cannot be

validated. Instead, artificial societies may sometimes provide potential explanations. It is

shown that these potential explanations, if they contribute to our understanding, considerably

differ from the standard kind of potential causal explanations. Instead of possible causal

histories, simulations offer possible functional analyses of the explanandum. The paper

discusses how these two kinds of potential explanations differ, and how possible functional

analyses can be appraised.
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1. Introduction

Artificial societies are often claimed to be explanatory (Axtell et al. 2002, Cedermann 2005,

Dean et al. 1999, Epstein 1999, Sawyer 2004, Tesfatsion 2006). Often these claims are

ambiguous about how agent-based simulations are explanatory, and what they explain. In this

paper, I show that an important class of agent-based simulations cannot fully explain a

phenomenon. I further argue that agent-based simulations do not contribute to our

understanding of a phenomenon by presenting its possible causal histories. Instead, I develop

an account of possible functional explanations, and show how agent-based simulations can

provide such potential explanations by offering possible functional analyses of a

phenomenon.

Artificial societies simulate social phenomena. Phenomena are things in the world that are

identifiable by the data their produce, but which are rarely observable themselves. For

example, the history of a tribe is a large-scale social phenomenon that is evidenced by all

sorts of documents: written record, eyewitness reports, pottery shards, ruins, etc. To simulate

such a phenomenon is to construct a process whose output in relevant ways imitates the

‘target’ data that represents this phenomenon.1

Artificial societies simulate social phenomena with agent-based models. In such models, an

aggregate state of the simulating system is determined by the states of individual agents.

Each agent (which may represent people, firms, nation-states, etc.) is characterised by a

number of attributes and a set of behavioural rules. Agents are heterogeneous, because the

model can specify different attributes for different agents.2 Agents are autonomous, because

their interactions are determined by their individual behavioural rules (e.g. when to migrate,
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or how to estimate a future parameter), not by any global rule covering all simultaneously.

Agents influence the environment through their actions, but are in turn influenced by the

environment they and their peers create. The simulation imitates the target data by computing

the individual agents’ behaviour in response to some input environmental data, by computing

the effects of the individual behaviours on the environment, and by computing the

repercussions these environmental effects have on individual agents.

Epstein and Axtell (1996), who popularised the term ‘Artificial Societies’, showed how

manipulating the attributes and behaviour rules of the model agents allows the generation of

patterns akin to migration, markets, wars, etc. However, the similarity is fleeting and can be

seen only by abstracting from many features of real-world phenomena. Only in a very

abstract sense do these patterns represent real-world phenomena. Certainly, these simulations

do not imitate the target data of any particular phenomenon. Due to this absence of a serious

explanandum, the question whether these simulations explained did not really arise.

This changed with the publication of papers that explicitly purported to simulate particular

real-world phenomena by imitating their target data. Such simulations, it is claimed, explain

the phenomena or essentially contribute to their explanation. By essential contribution is

meant that generation is necessary for explanation, according to the motto ‘If you didn’t

grow it, you didn’t explain its emergence’ (Epstein 1999, 43).

Section 2 presents an example of such a purported explanation. Section 3 argues that the

example, as well as simulations of its kind, lacks the evidential support necessary for full

causal explanations. Section 4 discusses the claim that simulations offer potential

explanations. It argues that they do not contribute to our understanding of the phenomenon
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by providing possible causal histories; but instead may contribute to our understanding by

providing possible functional analyses. The difference between potential functional and

potential causal explanation is investigated, and criteria for the appraisal of the right possible

functional analyses for potential functional explanations are given. Section 6 concludes.

2. An Example of Generative Explanation

The chosen example purports to generatively explain the history of a pre-historical settlement

of Ancestral Puebloans (often called Anasazi) in Long House Valley, northern Arizona, from

800 to about 1300 AD. The computation takes as input paleo-environmental data, including

meteorological, groundwater and sediment deposition and fertility estimates for the

reconstructed kinds of farmland. On the basis of this input, it reproduces the main features of

the settlement’s actual history, as witnessed by archaeological evidence – including

population ebb and flow, changing spatial settlement patterns, and eventual rapid decline.

The computation from input to output is performed through two kinds of intervening

variables. First, a dynamic resource landscape of the studied area is theoretically

reconstructed from the paleo-environmental data. In particular, annual potential maize

production per hectare is estimated for five different categories of potential farming land.

Secondly, annual decisions of (re-)settlement, land cultivation and procreation, as well as

annual deaths of household-agents are computed on the basis of the estimated maize crop,

agents’ attributes and behavioural rules. Agents’ attributes (like lifespan, vision, movement

capacities, nutrition requirements and storage capacities) are
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derived from ethnographic and biological anthropological studies of historic Pueblo groups and

other subsistence agriculturalists throughout the world (Dean et al 1999, 187).

Agents’ behavioural rules, governing movement and selection of farming and settling sites

are modelled as ‘anthropologically plausible rules’ (Dean et al 1999, 180) – in effect

optimization under very limited information.3

The original model (Dean et al. 1999) employs fairly homogenous agent attributes. It

reproduces ‘the qualitative features of the history’, but yields populations that were

substantially too large. Attempts to reduce the population in that model by changing agent

attributes result in premature population collapse.

In a follow-up paper (Axtell et al. 2002), greater levels of both agent and landscape

heterogeneity are incorporated. Individual agents’ onset of fertility, household fission and

death, and harvest per hectare are drawn from uniform distributions. Increasing heterogeneity

improves the ‘fit’ of the model to the historical record. Fit is measured by calculating the

differences between simulated households and historical record for each period. Differences

are cumulated according to a stochastic norm (a variant of the standard deviation measure).

Depending on which norm is used, optimizing the model with respect to the distribution

parameters yields a ‘best-fitting’ model. The ‘best fitting’ single run of the model is depicted

in figure 1.



7

[Insert here Fig1.TIFF]

Fig. 1. Best single run of the model according to the L1 norm. (c) Nature 2002

As shown, this ‘best fit’ still does not accurately replicate the historical findings. In

particular, it simulates a higher population early on, and does not replicate the complete

eclipse of the settlement in around 1300. The authors point out that better fits can be

achieved by increasing the number of household attributes and their heterogeneity, possibly

introducing non-uniform distributions.

The authors of both papers are convinced that their research contributes to the explanation of

Anasazi population dynamics:

Close fit [of the generated data to the observed data] indicates explanatory power (Dean et al.

1999, 180).

Ultimately, “to explain” the settlement and farming dynamics of Anasazi society in Long

House Valley is to identify rules of agent behaviour that account for those dynamics (Dean et

al. 1999, 201).

To “explain” an observed spatiotemporal history is to specify agents that generate—or grow—

this history. By this criterion, our strictly environmental account of the evolution of this society

during this period goes a long way toward explaining this history (Axtell et al 2002, 7278).
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According to these quotes, generating the history of the Ancient Puebloan settlement in an

agent-based simulation either explains it or at least contributes to its explanation. Crucially,

the simulation itself is claimed to carry the central explanatory role: it is the fit of the

generated data, or the identification of generating agents and their rules of behaviour, that

purportedly does the explaining. In the following, I investigate a number of possible accounts

for this explanatory potential of artificial societies. The Anasazi example is helpful in this,

because it lacks, as will be shown in sections 3 and 4, certain features that make other kinds

of models explanatory.

3. Causal explanation

There are some indicators that the simulation researchers believe they are striving for causal

explanation. First, the authors of the Anasazi project suggest that the simulation explains

what it generates: a singular event, or a series of singular events in time (i.e. a history). The

view that the generandum is the explanandum is expressed in the above Axtell et al. (2002,

7278) quote that growing the history of this society goes a long way toward explaining that

history. One of the co-authors is even more explicit in another paper:

This data set [the settlement’s history] is the target – the explanandum (Epstein 1999, 44).

It is widely accepted that to explain an event requires identifying its predominant causes.

Hence, the claim that the generandum is the explanandum implies that artificial societies

strive for causal explanation.
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Second, some proponents of generative explanation have explicitly claimed that social

scientists do and should employ agent-based simulations to

‘seek causal explanations grounded in the repeated interactions of agents operating in

realistically rendered worlds’ (Tesfatsion 2006, 9, my emphasis).

This view is shared by some philosophers:

The parallels [of artificial society simulations] with causal mechanism approaches in the

philosophy of science are striking (Sawyer 2004, 222).

While striving for causal explanations with artificial societies is a legitimate goal, the

chances of reaching this goal are small. To clarify why, let’s compare the present case to a

kind of simulation that does provide causal explanations: vehicle crash simulations. These

analyze an actual vehicle ‘system’ into its components, by imposing a three-dimensional grid

onto the vehicle and by measuring the relevant properties of each grid cell. Postulating

specific impacts, they then calculate the behaviour of these components on the basis of the

equations of motion. The macro-effect of the impact on the whole car is thus constituted by

its micro-effects on the individual cells. Because the computation of these micro-effects is

strictly governed by (well-confirmed) causal regularities, the simulation offers a good causal

explanation of specific crash deformations: given the impact, it accounts for how the

mechanical forces travelled through the vehicle to the specific area, and what effects they

witnessed there. Further, it details the material properties of the specific area, so that it

accounts for the fracturing of the relevant area of the windshield, given the impacting forces.

Now, doesn’t the same account apply to the Anasazi model? No. Any account of causal

explanation requires that the causal regularities included in the explanans must be true, or at
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least well-confirmed. The above car crash simulation bases its explanatory potential on the

laws of kinematics, which are well-confirmed and widely believed to be true. Further, it

precisely measures the actual vehicle properties. In analogy, agent-based simulations would

have to derive their explanatory potential from the agents’ behavioural rules applied in a

precisely specified environment. The decisive question is what evidence one has to judge

these rules to be true.

I think we have little evidential support for them. The fact that they generate the

explanandum doesn’t count much, as indefinitely many other rules generate it similarly well.

For example, similar results are obtained by using individuals of varying ages instead of

households as the agents in the model (Axtell et al. 2002, 7278). Hence evidential support

has to come from sources different than the simulation itself. I consider three potential

sources: direct observation, well-confirmed theory, or results from externally valid

behavioural experiments. The Ancient Puebloan society has long ceased to exist, and no

documents concerning the behavioural rules of their members have been preserved. Direct

observation of Ancient Puebloans’ behaviour is therefore impossible. The authors instead

claim that ‘detailed regional ethnographies provide an empirical basis for generating

plausible behavioural rules for the agents’ (Dean et al 1999, 181). Unfortunately, they do not

detail the nature of these ethnographical studies, so that it remains unjustified why the results

from these studies may be transferable to the agents under study. Recent research has shown

that behavioural rules vary widely among small-scale agricultural societies (Henrich et al.

2004). In particular, this research shows that agents of different contemporary small-scale

societies have widely differing attitudes towards mutual help, cooperation and sharing.
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Behavioural dispositions of this sort may well have significant influences on variables

included in the simulation, like fertility, migration and death, particularly in times of crisis. It

is therefore questionable whether studying agents’ behaviour in groups that resemble Ancient

Puebloan society in its settlement features yields well-confirmed regularities covering the

Ancient Puebloan’s behaviour.

This leaves behavioural experiments as a source of evidence for the required causal

regularities. Some researchers indeed advocate using experiments this way:

If we took two microspecifications as competing hypotheses about individual behaviour, then

… behavioural experiments might be designed to identify the better hypothesis

(microspecification) and, in turn, the better agent model’ (Epstein 1999, 48).

Obviously, there is again a problem of external validity here. The Ancient Puebloans are

dead, and who could stand in for them in experiments so that the experimental results would

legitimately cover this historical people as well? But let’s bracket this issue for the moment,

to see another issue with experimental validation that applies to all artificial societies.

Behavioural experiments are performed under strict control of the agent’s environment.

While this feature insures the exactness of the experimental results, it also limits the

applicability of the results to agents in environments different from those controlled for in the

experiment.

To ensure the external validity of the relevant experiments, one has to have good grounds to

believe that the differences between the experiment and the target system do not create an

error in the transfer of results from one to the other. This is a problem for agent-based

simulation, because they employ the same behavioural rules under extremely changing
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environments. Take again the Anasazi model. The agents’ behavioural rules are assumed to

remain stable throughout (at least) four fundamentally different environments: (i) in a

situation where a small group of settlers colonises an unpopulated valley; (ii) in a situation of

rapid population increase, where farming density forces new households to occupy low-

fertility lands or migrate; (iii) in a situation of stagnation and slow decline, where

environmental factors (draught, strong winters) are perceived as a threat and cultivated plots

are given up; and finally (iv) in a situation of cataclysmic decline, where most of the

population leaves the settlement area or dies. To transfer results of the experiment to the

target system, it would have to be shown that none of these differences mattered.

Beyond the considerable practical problems of performing such experiments, this constitutes

a methodological problem. Results from behavioural experiments have up to today not been

synthesised to anything like a grand theory with regularities of large scope. Rather,

experiments ‘contribute to the library of phenomena that the applied scientists will borrow

and exploit on a case-by-case basis’ (Guala and Mittone 2005, 511). However, such

piecemeal insights, while instructive for specific cases, do not provide decisive evidence for

behavioural regularities required for artificial societies.

For the sake of the argument, let’s imagine that experiments could provide decisive evidence

for such broad-scoped regularities. What sort of experiments would that have to be?

Experiments that would differentiate environments ‘finely enough’ and test the behavioural

rules under all these environmental conditions. But such a gigantic test series, while

providing the necessary evidence, would also trivialise the role of agent-based simulations:

Because the experiments would have to be run in the all the relevant social environments,



13

experimental design would construct in vivo what simulation would reproduce in silico. All

the interesting information could then already be gleaned off the experiments, and there

would be no need for simulations anymore at all. Hence, there is little evidential support for

the behavioural rules of the Anasazi model at present, and there even are some reasons to

believe that such evidence may not be available in principle.

4. Potential Explanation

If an agent-based simulations cannot be a full explanation for the reasons spelled out above,

it may still contribute to an explanation. Some proponents suggest as much:

If a microspecification, m, generates a macrostructure of interest, then m is a candidate

explanation (Epstein 1999, 43)

This suggestion gives a new meaning to the claims about the simulations’ explanatory

potential reviewed in section 2. That projects like the Anasazi simulation have ‘explanatory

power’, or that they ‘go a long way toward explaining’ does not mean anymore that they

provide an explanation (and this is just as well, since my arguments in the previous section

showed that they do not explain). Instead, it is now suggested that they offer a contribution

towards an explanation.

It is important to be very clear about this distinction. An explanation does very important

things for us: it answers our question about relevant causes, it increases our belief in the

explanandum in the right way, or it provides a deductive argument for the explanandum, etc.

To be sure, it is sometimes difficult to adequately describe what exactly an explanation does;
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but in each particular case, most of us will be able to identify whether a certain cognitive

procedure gives an explanation or not. If it does, then the procedure does something that is

important to us and therefore merits our attention. However, once one admits that a certain

procedure only contributes to an explanation, or provides a candidate explanation, it is not

clear anymore that this procedure merits our attention. The contribution, after all, may be

insignificant, or the candidate not worthy of further thought. Interpreting agent-based

simulations as only providing contributions or candidates, instead of full explanations,

therefore raises the question: why bother? At least for explanatory purposes, these

simulations may be insignificant, and their explanatory potential equal to nil. It is therefore

important to clarify what sort of contributions agent-based simulation like the Anasazi model

make, and what kind of candidates they offer.

One way to interpret the above claims sympathetically is to see a candidate explanation as an

incompletely developed full explanation. This interpretation matches well with the concept of

a potential explanation, as it is sometimes used in the philosophy of science. Unfortunately,

what makes a procedure a potential explanation are either not investigated at all, or, where

proposals are made, they remain controversial. I will therefore try to clarify this notion to the

extent that it can be made useful for the present discussion.

Hempel provided the first and best-developed notion of potential explanation. He defined a

potential explanation as a set of propositions having all the characteristics of an explanation

except, possibly, for truth (Hempel 1965, 338). This definition leant on his deductive-

nomological account of explanation: a cognitive procedure is a potential explanation, if the

explanadum is deducible from a set of lawlike statements. Statements are lawlike if they are
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(i) exceptionless, (ii) if they contain purely qualitative predicates, and (iii) if they have a very

wide scope. The problems with this account are well known and need not be rehearsed here

(for a concise sketch, see Woodward 2003, 154-161). But its rejection leaves us with the

problem that it takes away the formal condition for a potential explanation.4

The obvious alternative is to account for the simulations’ contribution as providing potential

causal explanations. Modifying Lewis (1986), one may say that agent-based simulations

contribute to the explanation of a social phenomenon by providing information about its

possible causal histories – specifically, about the possible causes that operate on the micro-

level: agents’ properties and their behavioural rules. Simulations, one could argue, are

particularly good at such a task, because they force researchers to be explicit about all factors

and conditions, and because many inconsistencies in the model will become obvious when

writing the code.

According to this interpretation, simulations are a rigorous practices of articulating the ways

how a phenomenon could have possibly been produced. Following Lipton (2001, 59-60),

such articulations may contribute to our understanding of the phenomenon. Thus, agent-

based simulations may be explanatorily worthwhile projects.

However, from an explanatory point of view, such an articulation has serious shortcomings.

Any collection of such possible histories will be very large. As Axtell et al. (2002, 7278)

point out, for example, substituting random variables for the current fixed parameters of

nutrition needs, birth and death rates yields simulation results with a fit as close as the

original model. Just by varying the parameters, one obtains a large set of possible causal

histories. Variation of the agents’ behavioural rules further enlarges this set. But the larger
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the pool of potential explanations, the smaller the contribution to a full explanation. Singling

out two or three ways how an event could have been produced gets us a big step closer to

actually explaining it – all that is needed is to decide between these options, maybe by

empirical evidence, or by the explanatory virtues they have. Identifying thousands of ways

how the event could have been produced, however, doesn’t get us closer to full explanation

at all – all the explanatory work is still left to be done by making a selection from this huge

set. The generative richness of agent-based models is thus not an asset, but an

embarrassment, as it in fact reduces their explanatory potential.

One may wonder whether there are ways to pre-select potential explanations from the vast

pool of possibilities generated by the simulation. The use of empirical research may help in

some cases, but as argued in section 3, our capacity to perform the necessary research in

cases like the Anasazi simulation is very limited. Instead, what is needed is a ‘filter’ that

selects possible causal histories through criteria that are independent from our evidence for

certain causes. If such a filter existed, the resulting small set of alternative possible causal

histories might significantly contribute to our understanding of the phenomenon. Alas, the

most natural places to look for such a filter turn out to be barren.

Lipton (2001, 83-84) has argued that sometimes the pragmatics of the question to be

explained may yield such a selection criterion. Most of our why-questions explicitly or

implicitly come with a class of contrastive cases. When answering the question ‘why did you

shout?’, it is important to know whether the inquirer implies ‘..and not whistle?’, or

‘…instead of  remaining quiet?’. To explain the contrast the inquirer is interested in, one has

to identify in which causes the contrasting events differ. Only these differentiating (possible)
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causes have explanatory relevance for explaining the contrast. From the set of all possible

causal histories of the contrasting events, all those histories that do not contain these

differentiating possible causes can therefore be eliminated; what remains is a refined set of

the potential causal explanations of this specific contrast.

The problem with this selection technique is that it requires the explanatory project to be at

least implicitly contrastive. Most why-questions have that form, but the researchers who

developed the agent-based simulations commonly do not ask such questions. Rather, as

shown in section 2, they want to explain the settlement and farming dynamics, the history

and the archaeological data. They use their simulations to answer the question how that

history developed, how the data was generated, and they do not have any contrast in mind

beyond the ‘how so, and not in any other way?’. This renders the Lipton’s selection

technique inapplicable here.

Another approach would invoke formal criteria for potential causal explanations. In the style

of Hempel, we may hope to describe what causal explanations are, and then specify potential

causal explanations as causal explanations, minus, possibly, truth.

However, this approach is fraught with various problems. First, we do not have an

uncontroversial descriptive account of causal explanation. Various proposals exists (for

example, Salmon’s mark-transmission account, and Woodward’s counterfactual account),

but each of them has its shortcoming, and, even importantly, there are many cognitive

procedures that fall under none of the theoretical accounts but are widely accepted intuitively

as causal explanations.
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But even if one could agree on some such conditions, a second problem arises – namely that

these conditions are either too wide to perform any selection, or too narrow to allow any

possible causal histories to be selected. A common if controversial claim is, for example, that

causal explanations identify relevant causal mechanisms. Early attempts to characterise

genuine mechanisms are the mark-transmission account (Salmon 1984) and the preserved-

quantity account (Salmon 1998). These characterisations, however, use criteria most adept

for physical processes. Although the behaviour of agents is of course realised by physical

processes, the agent-based simulations do not describe these physical processes, but instead

describe processes on a behavioural and intentional level. It is therefore unclear whether any

possible history generated by the simulation satisfies the proposed criteria; hence these

criteria are not helpful for the selection task at hand.5

More recent accounts of causal-mechanical explanation adopt a much wider account of

mechanism. Craver et al. (2000, 3), for example, define mechanism as organised collections

of entities and activities that produce regular changes. Under such an account of mechanism,

it seems that all possible histories generated by the simulation would pass the selection task.

Thus, such accounts are not useful for the selection task at hand, because they are too

permissive.

Woodward’s counterfactual account characterises causal explanation as a matter of

exhibiting systematic patterns of counterfactual dependence. Counterfactuals describe the

outcomes of interventions: not only do they show that the explanandum is to be expected

given the initial conditions, but they also show how these explananda would change if the

initial conditions were changed (Woodward 2003, 191). Whether a set of propositions is a
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potential causal explanation depends on the invariance of the counterfactual statement. A

generalising statement is invariant across certain changes if it holds up to some appropriate

level of approximation across these changes. As Cartwright (2002) showed, such a condition

must not be expected to hold universally. Instead, we need independent evidence for the

invariance of the relevant counterfactual statements in order to say whether they function as

potential explanations. Given that such evidence is hard to come by – as argued in section 3 –

Woodward’s counterfactual account is not useful for the selection task, either.6

Of course, other accounts of causal explanations may exists or may be developed in the

future that would provide better selection criteria for possible causal histories. But in the

current state of agent-based simulations, no attempts are made to justify any selection

procedure – neither by the discussed nor by any other criteria. Instead, the possible causal

histories that are generated by agent-based simulations little more than ‘Just So Stories’ with

little or no explanatory potential.7

In accordance with this conclusion, some authors see the role of simulation in ‘explor[ing]

the theoretical structure of the data’ (Küppers, G. and J. Lenhard (2005, 9 ), or in

‘computational theorising’ (Axtell, quoted in Ep99, 46). From that vantage point, of course,

agent-based simulations are but sophisticated ways of formulating hypotheses, and are not in

the business of explanation or potential explanation. But closer investigation of simulation

practice shows that this is not its commonly pursued goal. Pursuing the formulation of

hypotheses with the help of simulations would require identifying all the models that

simulate the target data. In particular, as Axelrod has argued, researchers should seek to

replicate one model’s simulation results with another model (Axelrod 1997, 33-34). But, as
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he points out further, this is not at all common practice amongst researchers in the field.

Instead, they provide a single simulation of a data set, and argue – as shown in section 2 –

that this one simulation contributes to explanation.

Instead of rejecting this practice as simply misguided, I will now try to develop a (non-

causal) account of simulations’ explanatory potential. Let’s start with another simulation

example (from climate research), where the authors deliberately falsify a specific causal

relations in their simulation models (cf. Küppers and Lehnhard 2005). The relevant model

was first built using only six basic equations, which express well-accepted laws of

hydrodynamics. It reproduced the patterns of wind and pressure of the entire atmosphere for

a simulation period of about four weeks. After that period, the system ‘exploded’ — the

stable flow patterns dissolved into chaos. Consecutive attempts to correct supposed ‘errors’

of the model – inaccurate deviations of the discrete model from the true solution of the

continuous system – remained fruitless. Consequently, the modellers gave up on modelling

the causal process. Instead, they focussed on imitating the dynamics alone, trying to find a

stable simulation procedure. Assumptions were introduced that partly contradicted

experience and physical theory. For example, it was assumed that the kinetic energy in the

atmosphere would be preserved. This is definitely not the case in reality, where part of this

energy is transformed into heat by friction. Moreover, dissipation is an important factor for

the stability of the real atmosphere. In assuming the preservation of kinetic energy, the blow-

up of instabilities was ‘artificially’ limited, for the purpose of reproducing the data over a

longer period than in the original model.
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Clearly, this simulation does not improve our understanding of the causes that produced the

climate, because it incorporates at least one relevant causal relationship that we know is not

true. Therefore, it does not provide a potential causal explanation. However, I think that one

still can attribute explanatory power to this and similar simulations, if one uses a different

notion of potential explanation.

The trick is in seeing these simulations not as providing possible causal histories, but

possible functional analyses. In the climate model, using the relevant causal regularities

alone did not yield a successful simulation of the actual climate data. Instead, some well-

supported causal regularity had to be falsified in order to achieve generative success. That

move damaged the simulation’s causal explanatory power. But it did not damage the

simulations contribution to a functional analysis of the climate system. The simulation

showed that for some reason (e.g. omission of factors, measurement errors, etc.) the included

causal regularities did not suffice to dampen the dynamic instabilities of the system. By

including an artificial ‘instability-dampener’, the simulation introduced a functional

component into the simulation system that in the real climate system is fulfilled by one or

many separate causal factors. The simulation model does not identify these factors (for all we

know, the lack of dampening may be the result of slight misspecifications of all of the

included factors). Instead, it identifies a functional component missing in the existing model,

and it specifies the role of this element in the generation of the target data, in the context of

the existing model. The simulation therefore cannot be reasonably used as a possible causal

history of the target data; but it can be used as a possible functional analysis of its production

process.
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This argument can be made clearer with the help of Cummins’ account of functional

analysis. Functional analysis proceeds by analysing a capacity  of a system into a number

of other capacities  of the system or its part such that their organisation amounts to the

manifestation of  (Cummins 1975). Cummins’ account differs substantially from standard

views on functional explanation, which purport to explain the presence of an entity by

reference to its effects (Hempel 1965, Little 1991, Kincaid 1996). Cummins claims that

functional analysis explains a capacity  of a system by reference to the capacities  of the

system’s components. The explanandum of the analysis is thus the system’s ing. The

explanans consists of three parts:

i. An analytical account A of the system’s ing

ii. The claim that A involves a component x’s ing

iii. The claim that x can

To employ the above example again, the climate researchers constructed a computational

system that performed . They built this system from a number of components x,y,z, each of

which they designed with a specific capacity in mind (e.g. ‘instability-dampener’). They

wrote a program such that the capacities x, y, z, when interacting properly, resulted in the

system’s ing. The program then could be used as a possible functional analysis of the real-

world climate system. It suggests an analogy between the organisational structure of the

simulator and the real-world system. This analogy claims that a computational process,

which imitates a system’s behaviour, also shares its organizational properties. Due to their

different constitutions (symbols and functions vs. human agents and institutions) the two
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systems’ dispositions will analyse into different simpler operations. But on some level of

description, both systems’ simpler operations may be governed by the same organizational

properties in order to constitute the same dispositions, as depicted in figure 2.

[Insert here Fig2.ESP]

Fig. 2 Computer and target system share the same organisational properties specified by the computer program

It is correct, as Kincaid (1996, 106) has pointed out, that Cummins-style functional

explanations – if they are full explanations – are just a kind of causal explanations. To

validate the organisation of the system and the effects its components have would be to

validate a causal relation between a component and its effect. But as a potential functional

explanation – improving our understanding without giving a full explanation – providing a

possible functional analysis differs in at least three aspects from providing a possible causal

history.
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First, functional analysis individuates not according to possible factors or mechanisms, but

according to possible functions. In the climate simulation, for example, the dampening of the

accumulating instability is performed by a single component. By suggesting the simulation as

a possible functional analysis of the real-world climate system, the researchers do not suggest

that the stability of the real-world system is produced by a single component, factor or

mechanism. Rather, when attributing the function to the system, they admit that there are

many ways how the real-world system could realise this function.

Potential causal explanations, in contrast, purport to give possible individuations of the

relevant causal factors producing the explanadum. Causal explanation often requires getting

into the details of the causal mechanisms involved that produced the event to be explained.

This puts tighter constraints on potential causal explanations than on potential functional

ones: given what is known about the causal relationships in the real-world climate system, a

single component that preserves kinetic energy in the atmosphere (and hence dampens

dynamic instabilities) can be excluded as a possible causal factor. Thus, while the climate

simulation provides a potential functional explanation that contributes to our understanding

of the functional organisation of the real-world climate system, it does not provide a potential

causal explanation of it.

Second, possible functional analyses are transferable across different causal contexts. For

example, the Ising model is used both for analysing ferromagnetic systems – with reference

the behaviour of interacting atom magnetic moments – as well as to analyse market dynamics

– with reference to socially influenced individual decisions – (Brock and Durlauf 2001).
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Presumably, a ferromagnet and a financial market do not behave according to the same

causal mechanisms. However, their possible functional organisation (on some level of

description) can be analysed with the same model, and this model may improve our

understanding how each system acquires the capacities it has through the interactions of its

subsystems.

Third, the driving power behind potential function explanations is the constitutive

relationship between capacities on different levels. Functional analysis shows how lower-

level capacities constitute higher-level capacities. The capacity of the Anasazi population to

disperse in times of draught, for example, is constituted by the capacities of the household

agents to optimise under constraints, and their capacity to move. The dispersion is nothing

but the individual movings. Thus it is wrong to claim that the movings cause the dispersion.

A functional analysis of the population dynamics is a potential explanation because it

identifies these constitutive relationships, not because it identifies any causal relationships.

Of course, the simulation always has to make causal assumptions about the influence on the

lower-level variables as well, otherwise it cannot generate a dynamic. This is why any full

functional explanation, Cummins-style, is a variant of a causal explanation. But potential

functional explanations propose only constitutional relationships between capacities of

different levels, while potential causal explanations propose causal relationships between

capacities of the same level.

With the notion of potential functional explanation just developed, I can now clarify the

explanatory potential of the Anasazi simulation. The Anasazi modellers constructed a
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computational system that generated the data set ‘population dynamic’ from the data set

‘meteorological and soil conditions’ (the system’s ing). The model on which the simulation

is based specifies its subsystems x,y,z (the households, settlement areas and farming plots)

and their capacities x, y, z (movement, fertility, housing, crop yields etc.). It organises

these capacities in a specific ‘program’ (the behavioural rules of the households, the yield

functions of the farming plots) so that their combined operation, when fed with the

meteorological and soil data, yield the population data. Thus, the program could yield a

possible functional analysis of the Anasazi settlement system.

However, as discussed in section 2, the program of the 1999 and 2002 simulations alone did

not yield a perfect fit; in particular, they did not replicate the complete eclipse of the

settlement in around 1300. The authors therefore concluded that a further functional

component had to be introduced into the model:

The fact that environmental conditions may not have been sufficient to drive out the entire

population suggests that additional push and pull factors impelled the complete abandonment

of the valley after 1300. (Axtell et al. 2002, 7278, my emphasis)

The authors argue for ‘push and pull factors’ from a functional perspective: they do not cite

independent causal regularities demanding such factors, but rather argue that the capacities of

the system components alone are not sufficient to produce the system capacity.

Because they do not actually provide a simulation that that includes such a functional ‘pull’

component, and that generates results close enough to the observation data, I conclude that

the Anasazi simulations do not provide potential functional explanations.
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Had the ‘pull’ factors been included, and had the simulation then been successful, it would

have provided a potential functional explanation. But would any form of inclusion provided

equally good functional explanations? If that was the case, one could object that potential

functional explanation suffered from the same deficit as potential causal explanations: there

would be a large number of possible functional analyses, and the provision of such a large set

of possibilities would not significantly increase our understanding of the explanandum.

Hence providing possible functional explanations would not amount to potential

explanations, either.

Fortunately, this conclusion is unwarranted, as we have criteria for the quality of functional

analyses. It is useful to go back once more to Cummins, who argues that:

the explanatory interest of an analytical account is roughly proportional to (i) the extent to

which the analyzing capacities are less sophisticated than the analysed capacities, (ii) the extent

to which the analysing capacities are different in type from the analyzed capacities, and (iii) the

relative sophistication of the program appealed to. (Cummins 1975, 764)

The original Anasazi models do quite well on all three counts. The agents’ behavioural rules

are very simple and few, but they nevertheless create a complex population dynamic. Most of

difference this is attributable to the particular way the simulation has them interact. However,

simply plucking in a ‘pull’ component (e.g. assuming that the number of emigrants pulls with

them an exponentially related number of other agents) would deteriorate the explanatory

quality considerably, as it would be too close in kind to the population dynamic itself.

Instead, some simple behavioural rule must be found that accounts for this component, and

this is were the difficulty of finding a good potential functional explanation lays.
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Thus, the quality of its functional analyses can be assessed by the formal properties of the

simulation. This gives us a good handle for selecting the best possible functional analyses,

which in turn will constitute potential functional explanations.

6. Conclusion

Most full explanations elucidate the causes of the explanandum. On the way towards such

full explanations, however, scientists use different strategies to build their explanations.

Often, the way to full explanations is delayed or even blocked. This is the case with the

Anasazi simulation and similar examples: their models are not and may never be sufficiently

validated. Therefore, they may never mature to a full explanation. Despite this, many feel

that such simulation contribute to our understanding. They provide potential explanations of

some sort, which identify possible explanatia. Because of the differences in explanatory

strategies, these potential explanations may differ considerably, and may have to be

appraised in different ways, too. I argued that the Anasazi simulation and similar models do

not provide potential causal explanations. Instead, simulations of the Anasazi kind contribute

to our understanding because they provide potential functional explanations. These differ

from potential causal explanations in at least three ways. Understanding this difference will

help to explain how simulations qua simulations can contribute to our understanding, even if

their underlying models are not validated; and it will help to apply the right appraisal criteria,

and hence to weed out good from deficient potential functional explanations derived from

agent-based simulations.
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1 The underlying aim of the simulation is therefore to imitate the real-world process that

produced all this data (cf. Hartmann 1996, Humphreys 2004).

2 Of course, even homogeneous agents may be in different states at any given time: for

example, they will be at different spatial locations. Heterogeneity of agents, in contrast,

implies that agents differ in their fundamental propensities – e.g. they rate of fertility, fission

or death.

3 In particular, the behavioural rules are: Agents cease to exist if they cannot secure 800 kg of

maize for themselves annually, or if they reach a threshold age. Food intake is determined by

harvest yields from farmed plot, and storage from previous years. Households choose to

change their farmed plots when harvest estimates (based on current year harvests) and storage

combined are insufficient for survival. Households choose most productive available

(unfarmed & unsettled) plots that are within 1.6 km of a water source. Households settle on

available (unfarmed) locations closest to farmed plots. Households procreate annually (after a

maturing period of 16 years) with probability of 0.125.

4 In any case, the Anasazi model would satisfy neither criterion (i) nor criterion (iii).

Regarding criterion (i), there is no reason to believe that any of these rules are exceptionless.

For example, additional criteria like kinship proximity may have been an important criterion

of farmland choice. Regarding criterion (iii), the purported scope of the behavioural rules is

narrow: it only applies to small-scale subsistence maize agriculturalists in an arid region of

the American continents. According to the D-N account, therefore, the Anasazi model would

not provide potential explanations, which is explicitly acknowledged by some of the artificial

society researchers (e.g. Epstein 1999, fn. 12).

5 Salmon explicitly acknowledged this difficulty, but gave it a particular twist. In ‘Explanation

in Archaeology’, for example, he argues that causal explanation in archaeology may be

difficult because getting to the details of causal mechanism is a problem - in particular,

because ‘causal explanations often appeal to entities such as atoms, molecules or bacteria’

(Salmon 1998, 359). So he interprets the inapplicability of his account to archaeology as a

sign that archaeology does not offer causal explanations. This would hold similarly for the
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Anasazi simulation (which essentially deals with archaeological data), and each and every one

of its possible causal histories. Salmon’s account, thus, seems far too narrow for the purpose

at hand.

6 In addition, we have good reasons to believe that in the Anasazi simulation, the modelled

behavioural rules are not invariant. Recent research into social norms shows that agents’

choices strongly depend on the social context in which they are made. Different social norms

will be activated depending on how a situation is understood (Bicchieri 2006, 93-96).

Bicchieri’s research indicates that some of the variable changes which the simulation

performs on are likely to influence the activation of social norm scripts. Take for example the

rule of farm plot choice, which specifies that households choose available plots if available,

and otherwise migrate. It is, however, plausible that under dense cultivation conditions,

households disregard the availability condition and fight over land plots. In these cases, a

change in availability will affect the choice rule itself, thus undermining its invariance. Hence

Woodward’s invariance criterion would be violated.

7 ’Just So Stories’ are fanciful origin stories by Rudyard Kipling, first published in 1902.

They are fantastic accounts of how various natural phenomena came about, for example how

the elephant gots its trunk or the Leopard got its spots.


