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Abstract. We introduce a new interpretation of non-relativistic quantum mechanics (QM) called 
Relational Blockworld (RBW). We motivate the interpretation by outlining two results due to 
Kaiser, Bohr, Ulfeck, Mottelson, and Anandan, independently. First, the canonical commutation 
relations for position and momentum can be obtained from boost and translation operators, 
respectively, in a spacetime where the relativity of simultaneity holds.  
Second, the QM density operator can be obtained from the spacetime symmetry group of the 
experimental configuration exclusively. We show how QM, obtained from relativistic quantum 
field theory per RBW, explains the twin-slit experiment and conclude by resolving the standard 
conceptual problems of QM, i.e., the measurement problem, entanglement and non-locality. 
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INTRODUCTION 

Referring to quantum mechanics, Murray Gell-Mann writes [1], “We all know how 
to use it and how to apply it to problems; and so we have learned to live with the fact 
that nobody can understand it.” In seeking to “understand it,” we introduce a purely 
geometric (acausal and adynamical) account of non-relativistic quantum mechanics 
(QM) called Relational Blockworld. The ontology of this interpretation is one in which 
constructive objects (entities such as particles or waves with worldlines in spacetime) 
are not fundamental constituents of reality. Rather, constructive objects are composed 
of spatiotemporal relations and physical phenomena are described by the distribution 
of spatiotemporal relations throughout space and time as a whole, i.e., in the 
blockworld. This represents a radical departure from physics per the dynamical 
perspective, e.g., particles of force exchanged by particles of matter to explain 
phenomena. 

We justify this new worldview by outlining a result obtained independently by 
Kaiser [2], Bohr & Ulfbeck [3] and Anandan [4] which shows the Heisenberg 
commutation relations of QM follow from the relativity of simultaneity in the c  ∞ 
limit of the Poincaré group. We believe this legitimizes the use of a blockworld for the 
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ontology of non-relativisitic quantum mechanics. That relations, rather than 
objects/substances with worldlines, are fundamental in the blockworld is justified by 
the work of Bohr, Mottleson & Ulfbeck [5] who showed that the QM density matrix 
can be obtained from the spacetime symmetry group of the experimental configuration 
alone. We also outline their result herein.  

In order to emphasize that no thing propagates through the space between source 
and detector to cause an experimental “click,” we relate QM to relativistic quantum 
field theory (RQFT) per RBW and explain the twin-slit experiment. Per our ontology, 
the continuous distribution of oscillators in space (the field) per RQFT is replaced by a 
discrete, rarified distribution of RQFT “sources” alone (one at the experimental 
source, one at each slit, and one at the detector in the twin-slit experiment). The 
transition amplitude relating these discretely distributed RQFT sources and oscillators 
then provides QM’s familiar wave function giving rise to the twin-slit interference 
pattern per the Born rule.  

We conclude by using RBW to resolve the standard conceptual problems of QM, 
i.e., entanglement, non-locality and the measurement problem. An important 
consequence of this resolution is that we do not have to compromise relativity theory. 
Quite the contrary, per RBW the most vexing implication of special relativity – the 
lack of a moving Now due to the relativity of simultaneity (to which Einstein was 
“painfully resigned” [6]) – is also responsible for QM’s “only mystery” (per Feynman 
[7]), i.e., quantum interference. The trick is to appreciate that everything resides in a 
4D spacetime and nowhere else, and quantum phenomena cannot be modeled with 
worldlines if one is to do justice to its non-commutative structure. Thus while clicks in 
detectors are perfectly classical events, the clicks are not evidence of constructive 
quantum entities such as particles or waves with worldlines. Rather, the clicks are 
manifestations of spacetime relations distributed among the elements of the 
experimental configuration per the spacetime symmetries. Such acausal, global 
determination relations do not respect any common cause principle. This fact should 
not bother anyone who has truly transcended the idea that the dynamical or causal 
perspective is the most fundamental one.  

COMMUTATION RELATIONS AND RELATIVITY OF 
SIMULTANEITY 

Kaiser has shown that the non-commutivity of Lorentz boosts with spatial 
translations is responsible for the non-commutivity of the quantum mechanical 
position operator with the quantum mechanical momentum operator. He writes1, 

  
For had we begun with Newtonian spacetime, we would have the Galilean group 
instead of [the restricted Poincaré group]. Since Galilean boosts commute with 
spatial translations (time being absolute), the brackets between the corresponding 
generators vanish, hence no canonical commutation relations (CCR)! In the [c  ∞ 
limit of the Poincaré algebra], the CCR are a remnant of relativistic invariance 

                                                 
1 Kaiser (1981), p. 706. 



where, due to the nonabsolute nature of simultaneity, spatial translations do not 
commute with pure Lorentz transformations. [Italics his].  

 
Bohr & Ulfbeck2 also realized that the “Galilean transformation in the weakly 

relativistic regime” is needed to construct a position operator for QM, and this 
transformation “includes the departure from simultaneity, which is part of relativistic 
invariance.” Specifically, they note that the commutator between a “weakly 
relativistic” boost and a spatial translation results in “a time displacement,” which is 
crucial to the relativity of simultaneity. Thus they write3, 

 
“For ourselves, an important point that had for long been an obstacle, was the 
realization that the position of a particle, which is a basic element of non-relativistic 
quantum mechanics, requires the link between space and time of relativistic 
invariance.” 

 
So, the essence of non-relativistic quantum mechanics – its canonical commutation 
relations – is entailed by the relativity of simultaneity.  

To outline Kaiser’s result, we take the limit c → ∞ in the Lie algebra of the 
Poincaré group for which the non-zero brackets are 
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where expressions with subscripts m,n and k denote 1, 2 and 3 cyclic, Jm are the 
generators of spatial rotations, T0 is the generator of time translations, Tm are the 
generators of spatial translations, Km are the boost generators, i2 = -1, and c is the 
speed of light. We obtain  
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2 Bohr & Ulfbeck (1995), section D of part IV, p. 28. 
3 Ibid., p. 24. 



where M is obtained from the mass-squared operator in the c → ∞ limit since  
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Bohr & Ulfbeck point out that in this “weakly relativistic regime” the coordinate 
transformations now look like 

vtxX −=  

 2c
vxtT −=               (2) 

These transformations differ from Lorentz transformations because they lack the 
factor 
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which is responsible for time dilation and length contraction. And, these 
transformations differ from Galilean transformations by the temporal displacement 
vx/c2 which is responsible for the relativity of simultaneity, i.e., in a Galilean 
transformation time is absolute so T = t. Therefore, the spacetime structure of Kaiser et 
al. lies between Galilean spacetime and Minkowski spacetime and we see that the 
Heisenberg commutation relations are not the result of Galilean invariance, where 
spatial translations commute with boosts, but rather they result from the relativity of 
simultaneity per Lorentz invariance. 

Why is it that the dynamics of QM, given by the Schrödinger equation, are Galilean 
invariant? That is, why are the dynamics of QM unaffected by the relativity of 
simultaneity reflected in the geometry of Eq. (1)? To answer this question we operate 
on |ψ> first with the spatial translation operator then the boost operator and compare 
that outcome to the reverse order of operations. The spatial translation (by a) and 
boost (by v) operators in x are 
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respectively. These yield 
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Thus, we see that the geometric structure of Eq. (1) introduces a mere phase to |ψ> and 
is therefore without consequence in the computation of expectation values. And in 
fact, this phase is consistent with that under which the Schrödinger equation is shown 
to be Galilean invariant [8, 9]. 

DENSITY MATRIX FROM SYMMETRY GROUP 

To show how, in general, one may obtain the density matrix using only the 
irreducible representations (irreps) of the symmetry group D(g) and their averages 
<D(g)>, we start with Eq. (1.68) of Georgi [10] 
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where na is the dimensionality of the irrep, Da, and N is the group order. If we consider 
but one particular irrep, D, this reduces to the orthogonality relation of Bohr et al. 
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where n is the dimension of the irrep. Now multiply by [D(g′)]jk and sum over k and j 
to obtain 
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The first sum on the LHS gives 
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The sum over k then gives the trace of D(g-1)D(g′), so we have 
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which Bohr et al. write without subscripts, i.e., 
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If in a particular experiment we measure directly the click distributions associated 
with the various eigenvalues of a symmetry D(g), we obtain its average outcome 
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where λi are the eigenvalues of D(g) and p(λi) are the distribution frequencies for the 
observations of the various eigenvalues/outcomes.  

In terms of averages, Eq. (6) becomes 
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Since we want the density matrix to satisfy the standard relation 
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That this density operator is hermitian follows from the fact that the symmetry 
operators are unitary. That is, D(g-1) = D†(g) implies <D(g-1)> = <D(g)>*, thus 
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[The second-to-last equality holds because we are summing over all g and for each g 
there exists g-1.] So, the density operator of Eq. (10) will be hermitian and, therefore, 
its eigenvalues (probabilities) are guaranteed to be real. This is not necessarily the case 
for D(g), since we know only that they are unitary. However, we need only associate 
detector clicks with the eigenvalues of D(g) and in this perspective one does not 
attribute an eigenvalue of D(g) to a property of some ‘click-causing particle’. 
Therefore, whether or not the eigenvalues of any particular D(g) are real or imaginary 
is of no ontological or empirical concern. 

TWIN-SLIT EXPERIMENT 

Given our geometrical interpretation of QM, it should be clear that we do not take 
detector events to be indicators of the trajectories of classical-like particles or wave-
functions, propagating from the source to the detector as in Bohm’s mechanics or 
even, as it turns out, like disturbances in a field per RQFT. In RQFT for a scalar field 
without scattering we have for the transition amplitude [11] 
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According to [11], QM then obtains in (0+1) dimensions. In the derivation of Eq. (11) 
from QM, the field φ is obtained in the continuum limit of a discrete set of oscillators 
qa distributed in a spatial lattice. Any one of these qa is supposed to replace φ in Eq. 
(11) in order that it reduce to QM. However, each qa is fixed in space so the notion 
that we’re integrating over all possible paths in space (standard treatment) from a 
source to a detector when we compute Z is not ontologically consistent with the fact 
that we integrate over all values of q but not over all values of the index ‘a’ in qa. We 
rather suggest that the method for reducing RQFT to QM is to associate sources J(x) 
with elements in the experimental set up while assuming the q’s are distributed 
discretely therein. Thus, we want to obtain QM from the discrete version of 
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where Aij is the discrete matrix counterpart to the dynamical differential operator and 
Jm and qn are the discrete vector versions of J(x,t) and q(x,t), denoting their location in 
the spactime lattice. The solution to Eq. (13) for each path from qinitial at the source to 
qfinal at some point on the detector is 
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For the twin-slit experiment, which “has in it the heart of quantum mechanics. In 

reality, it contains the only mystery” [7], we have four J’s which must be taken into 
account when computing the amplitude between qinitial and qfinal , i.e., J1  J2  J3 and 
J1  J4  J3 (figure 1). The amplitude is then given by 

 





 +−+



 +− −−−− )(

2
exp)(

2
exp~ 3

1
4344

1
1413

1
2322

1
121 JAJJAJiJAJJAJiψ  (15) 

 
Typically, the source is equidistance from either slit so J1A12

-1J2 = J1A14
-1J4 and we 

have the familiar form 
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FIGURE 1.  Twin-Slit Experiment 
 

Since we are using the formalism of RQFT some might (erroneously) infer, in the 
parlance of particle physics, that we are creating a pair of particles at the source which 
propagate to each slit then annihilate at the detector. Recall however that we have a 
discrete distribution of q’s at the source, slits and detector per QM rather than the 
continuous field φ in the space between source, slits and detector. Thus it should be 
clear per our leitmotif that there is no particle (disturbance in the field per RQFT) 
propagating from the source through the slit(s) to the detector screen that causes a 
click thereupon. Rather the distribution of clicks at the detector evidences the 
spacetime relations (given here by Aij

-1) between the various elements of the 
experimental arrangement, i.e., the only ‘things’ with ontic status. 

RESOLVING THE CONCEPTUAL PROBLEMS OF QM 

The Measurement Problem 

According to the account developed here, we offer a deflation of the measurement 
problem with a novel form of a hidden-variables “statistical interpretation.” The 
fundamental difference between our version of this view and the usual understanding 
of it is the following: whereas on the usual view the state description refers to an 
“ensemble” which is an ideal collection of similarly prepared quantum particles, 
“ensemble” according to our view is just an ideal collection of spacetime regions Di 



“prepared” with the same spatiotemporal boundary conditions per the experimental 
configuration itself. The union of the click events in each Di, as i → ∞, produces the 
characteristic Born distribution. Accordingly, probability on our geometrical QM is 
interpreted per relative frequencies. It should be clear, also, that probabilities are 
understood as the likelihood that particular relations between the source and detector 
in spacetime are realized, from among a set of all equally likely relations between the 
source and detector. 

On our view, the wave-function description of a quantum system can be interpreted 
statistically because we now understand that, as far as measurement outcomes are 
concerned, the Born distribution has a basis in the spacetime symmetries of 
experimental configuration. Each “click,” which some would say corresponds to the 
impingement of a particle onto a measurement device with probability computed from 
the wave-function, corresponds to spacetime relations in the context of the 
experimental configuration. The measurement problem exploits the possibility of 
extending the wave-function description from the quantum system to the whole 
measurement apparatus, whereas the spacetime description according to RBW already 
includes the apparatus via the spacetime symmetries instantiated by the entire 
experimental configuration. The measurement problem is therefore a non-starter on 
our view. 

Entanglement & Non-locality 

On our geometric view of QM each detection event, which evidences spacetime 
relations between source and detector, selects a trajectory from a family of possible 
trajectories (one family per entangled ‘particle’). In the language of detection events 
qua relations, it follows that correlations are correlations between the members of the 
families of trajectories and these correlations are the result of the relevant spacetime 
symmetries for the experimental configuration. And, since an experiment’s spacetime 
symmetries are manifested in the Hamilton-Jacobi families of trajectories throughout 
the relevant spacetime region D, there is no reason to expect entanglement to diminish 
with distance from the source. Thus, the entanglement of families of trajectories is 
spatiotemporally global, i.e., non-local. That is, there is no reason to expect 
entanglement geometrically construed to respect any kind of common cause principle. 
Obviously, on our geometric interpretation there is no non-locality in the odious sense 
we find in Bohm for example, that is, there are no instantaneous causal connections 
(construed dynamically or in terms of production—bringing new states of affairs into 
being) between space-like separated events—no action at a distance. However our 
view is non-local in the sense that it violates the locality principle. The locality 
principle states: the result of a measurement is probabilistically independent of actions 
performed at space-like separation from the measurement. Keep in mind that in our 
blockworld setting, talk of “actions performed” gets only a purely logical-
counterfactual meaning—the entire experimental EPR set-up, its past, present and 
future, and the spacetime symmetries of that set-up are all just ‘there’—no one could 
really perform some alternative measurement on the other wing of the experiment 
without changing the entire spatiotemporal description of the experiment.  



Thus, correlations between space-like separated events that violate Bell’s 
inequalities are of no concern as long as spacetime symmetries instantiated by the 
experimental apparatus warrant the correlated spacetime relations. Since the non-local 
correlations derive from the spatiotemporal relations per the spacetime symmetries of 
the experiment, satisfaction of any common-cause principle is superfluous. 

Our account provides a clear description, in terms of fundamental spacetime 
relations in a blockworld, of quantum phenomena that does not suggest the need for a 
“deeper” causal or dynamical explanation. If explanation is simply determination, 
then our view explains the structure of quantum correlations by invoking what can be 
called acausal, global determination relations. These global determination relations 
are given by the spacetime symmetries which underlie a particular experimental set-
up. Not objects governed by dynamical laws, but rather acausal spacetime relations 
per the relevant spacetime symmetries do the fundamental explanatory work according 
to our version of geometrical quantum mechanics. We can invoke the entire spacetime 
configuration of the experiment so as to predict, and explain, the EPR-Bell 
correlations. Indeed, it has been the purport of this paper that the spacetime 
symmetries of the quantum experiment can be used to construct its quantum density 
operator, that such a spacetime is one for which simultaneity is relative, and that 
events in the detector regions evidence spatiotemporal relations. 
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