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Abstract

When considering controversial thermodynamic scenarios such as Maxwell’s

demon, it is often necessary to consider probabilistic mixtures of states.

This raises the question of how, if at all, to assign entropy to them.

The information-theoretic entropy is often used in such cases; how-

ever, no general proof of the soundness of doing so has been given,

and indeed some arguments against doing so have been presented. We

offer a general proof of the applicability of the information-theoretic

entropy to probabilistic mixtures of macrostates, making clear the as-

sumptions on which it depends, in particular a probabilistic version

of the Kelvin statement of the Second Law. We briefly discuss the

interpretation of our result.
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1 Introduction

Suppose that we have two copies, A and B, of a thermodynamic system,

but in distinct thermodynamic states ΩA and ΩB, with entropies SA and

SB. Suppose also that there is a third copy, C, of the system, and that it is

prepared in ΩA or ΩB with equal probability. The natural way to describe the

state ΩC is to say that it is a probabilistic mixture of ΩA and ΩB. Suppose

we need to carry out a thermodynamic calculation involving C. What should

we say about its entropy SC? Consider the following three possible answers

to this question:

1. We cannot proceed since SC is either SA or SB but we do not know

which.

2. SC is the weighted average of SA and SB, namely 1
2
(SA + SB).

3. SC is the weighted average of SA and SB plus an additional term that

represents a contribution to the thermodynamic entropy due to the

probability distribution itself. In this particular case, SC = 1
2
(SA +

SB) + k ln 2 (where k is Boltzmann’s constant).

Which of these three answers is correct is the subject of controversy.

For example, Norton (2005) criticizes those (see, for example, Leff and Rex

(2003)) who defend the last answer. While we do not fully accept his critique

we agree with him that so far no general argument for its correctness has been

given. In what follows we offer a proof of it based on the Kelvin statement

of the Second Law of Thermodynamics. This formulation has the advantage

that it directly relates to practical and operational matters. Our result is in

fact more general than answer 3 above since we consider a mixture of any

(finite) number of states with an arbitrary probability distribution.
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In particular, consider a system M in the state ΩM
mix which is a probabilis-

tic mixture of n states ΩM
i with probability pi, and where the different ΩM

i s

may have different temperatures. We show that, if each ΩM
i has a well-defined

thermodynamic entropy SM
i , the correct expression for the thermodynamic

entropy SM
mix of ΩM

mix is:

SM
mix =

∑
i

piSi − k
∑

i

pi ln pi (1)

We refer to −k
∑

i pi ln pi as the information-theoretic entropy because it

is a form of the Shannon entropy of Information Theory (although rescaled

by k ln 2 from its usual form).

We make the following assumptions:

1. The standard Kelvin formulation of the Second Law of Thermodynam-

ics (see for example Uffink 2001) can be can be generalised to cover

probabilistic processes as follows:

It is impossible to perform a cyclic process with no other

result than that on average heat is absorbed from a reservoir,

and work is performed.

It is clear that if you could violate this generalisation you could, with

arbitrarily high probability, violate the original Kelvin statement by

performing the relevant cycle many times to generate a total quantity of

work that is approximately proportional to the average work produced

in a single cycle.

2. The n states ΩM
i are all distinct thermodynamic states in the sense

that they can be perfectly distinguished by a single measurement.
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3. In keeping with standard practice in discussions of thermodynamics and

the Second Law, we assume the legitimacy of the following idealisations

about physical systems and operations:

(a) There is a heat bath at temperature T0.

(b) There is a box with volume V containing a single molecule gas

and a number of removable partitions, and the molecule can be

treated thermodynamically as an ideal gas such that when it is

confined to a region of volume V its entropy is given by k ln V

plus a constant that depends on the temperature. We refer to this

combined system as G (note that any system that had equivalent

properties would do just as well).

(c) The controlled operations we use to couple G and M can be per-

formed in a thermodynamically reversible way.

(d) The moving of pistons and partitions can be done frictionlessly.

2 Derivation of the Main Result

Consider a process involving the systems M and G. Heat flow from the

reservoir will be written as positive ∆Q.

1. Initially M is in a standard (non-probabilistic) thermodynamic state

ΩM
0 with entropy SM

0 , and G is in the thermal state with all partitions

removed.

2. n − 1 partitions are inserted into the box so that the volume of the

ith region of the box is piV . Let ΩG
i (with entropy SG

i ) be the ther-

modynamic state in which the gas is confined to the ith region, where
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i = 1, ..., n. The gas is now in a probabilistic mixture of n states ΩG
i

with probability pi. There is no heat flow during this process, hence

< ∆Q >

T0

= 0. (2)

3. A controlled operation is performed from G onto M such that if G is in

the state ΩG
i , M is evolved reversibly from the state ΩM

0 into the state

ΩM
i which has entropy SM

i . M is now in a probabilistic mixture of n

states ΩM
i with probability pi. Note that if the process of transforming

ΩM
0 to ΩM

i involves a heat flow to or from the heat reservoir, this is

done via a Carnot engine to ensure reversibility.

< ∆Q >

T0

=
∑

i

pi(S
M
i − SM

0 ). (3)

4. A controlled operation is performed from M onto G such if M is in the

state ΩM
i , the partitions of G are all removed except those around region

i, and then pistons are inserted from either end up to the remaining

partitions. The last two partitions are then removed and the gas is

allowed to expand isothermally, doing work against the pistons and

inducing a heat flow into the box from the reservoir. When the gas is

originally in the ith partition we have:

∆Qi

T0

= ∆SG
i = k ln V − k ln piV = −k ln pi. (4)

Hence,
< ∆Q >

T0

= −k
∑

i

pi ln pi. (5)
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5. G is now in its initial state but M is now in the state ΩM
mix, which is a

probabilistic mixture of the states ΩM
i with probability pi. Every step

of this process is reversible so the effect has been to transform the state

of M from ΩM
0 to the state ΩM

mix reversibly.

The average total heat flow in the process is given by

< ∆Qrev >

T0

=
∑

i

pi(S
M
i − SM

0 )− k
∑

i

pi ln pi (6)

If there were another reversible process from the same inital state to the

same final state, it would have the same value for < ∆Qrev > (because oth-

erwise by the correct choice of the order in which to combine them we could

violate the probabilistic Kelvin statement of the Second Law of thermody-

namics of assumption 1). Hence we can define a unique entropy difference

between the two states as follows:

∆S =
< ∆Qrev >

T0

(7)

Similarly for an irreversible process from the same initial state to the

same final state, the total heat flow into the system < ∆Qirr > must be

less than < ∆Qrev > (because otherwise, again, by the correct choice of the

order in which to combine them we could violate the probabilistic Kelvin

statement of the Second Law of thermodynamics of assumption 1). Hence

we recover a probabilistic analogue of the entropic form of the Second Law:

For all processes, irreversible or otherwise, connecting the same initial and

final states,

∆S ≥ < ∆Q >

T0

. (8)

Finally from equations (??) and (??), and the fact that ∆S = SM
mix−SM

0

we have, as claimed,

SM
mix =

∑
i

piSi − k
∑

i

pi ln pi. (9)
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3 Discussion

We now offer a brief discussion of the interpretation of our result.

We imagine someone objecting that if what we have said is correct then

the thermodynamic entropy cannot be an objective property of a system.

This might be so if the probabilities pi were merely subjective, but we take

it that even in a deterministic universe it makes sense to talk about the

objective chance of a fair coin landing heads. In other words, even purely

epistemic probabilities may be objective.

What we mean by the objective probabilities is illustrated by the following

case. Consider two parties, a mixer and a resetter, who go through the

following cycle many times. The mixer begins with state ΩM
0 and transforms

it into the state ΩM
mix, extracting work Wmix on average. He or she then passes

the state to the resetter, who transforms it back to ΩM
0 with certainty, doing

some average amount of work Wreset, and then passes it back to the mixer. In

the best case, in which both implement their transformations of the system

in the most efficient way (i.e. reversibly), Wmix = Wreset. However, suppose

that the mixer misinforms the resetter about the probability distribution for

macrostates, that is he or she says that the state is ΩM
false. Then the resetter

will calculate that the maximum amount of work the mixer has extracted in

preparing ΩM
false is Wfalse. Then the resetter may find that Wreset < Wfalse,

and hence falsely believe that together they have implemented a cycle that

violates the probabilistic Kelvin statement of the Second Law. This is the

sense in which the probability distribution used in the information theoretic

calculation of the thermodynamic entropy must be the correct one.

Note also that our main result can be used in a direct proof of Landauer’s

Principle (Ladyman et al (forthcoming)), and is also useful in explaining
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how Maxwell’s Demon fails to break the Second Law because its memory

is a probabilistic mixture of macrostates (Bennett (1987)). On reflection

it is not so strange that uncertainty about the macrostate should carry a

thermodynamic cost since, as we also argue in Ladyman et al, it’s harder to

build machines that operate correctly on a family of macrostates rather than

a specific one.
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