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Abstract

”The last remnant of physical objectivity of space-time” is disclosed in the case of a continuous
family of spatially non-compact models of general relativity (GR). The physical individuation of
point-events is furnished by the autonomous degrees of freedom of the gravitational field, (viz,
the Dirac observables) which represent - as it were - the ontic part of the metric field. The
physical role of the epistemic part (viz. the gauge variables) is likewise clarified as embodying the
unavoidable non-inertial aspects of GR. At the end the philosophical import of the Hole Argument is
substantially weakened and in fact the Argument itself dis-solved, while a specific four-dimensional
holistic and structuralist view of space-time (called point-structuralism) emerges, including elements
common to the tradition of both substantivalism and relationism. The observables of our models
undergo real temporal change: this gives new evidence to the fact that statements like the frozen-
time character of evolution, as other ontological claims about GR, are model dependent.
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I. INTRODUCTION

The fact that the requirement of general covariance might involve a threat to the phys-
ical objectivity of the points of space-time as represented by the theory of gravitation was
becoming clear to Einstein even before the theory he was trying to construct was completed.
It was during the years 1913-1915 that the threat took form with the famous Hole Argument
(Lochbetrachtung) (Einstein, 1914) 1. In the literature about classical field theories space-
time points are usually taken to play the role of individuals, but it is often implicit that
they can be distinguished only by the physical fields they carry. Yet, the Hole Argument
apparently forbids precisely this kind of individuation, for it entails that different - so-called
diffeomorphic - models of general relativity (GR) be taken as physically equivalent, under
the menace of indeterminism for the theory. Since, on the other hand, the Argument is a
direct consequence of the general covariance of GR, this conflict eventually led Einstein to
state (our emphasis):

That this requirement of general covariance, which takes away from space and time the last
remnant of physical objectivity, is a natural one, will be seen from the following reflexion...
(Einstein, 1916, p.117).

Although Einstein quickly bypassed the seeming cogency of the Hole Argument against
the implementation of general covariance on the purely instrumentalist grounds of the so-
called Point-Coincidence Argument2, the issue remained in the background of the theory
until the Hole Argument received new life in recent years with a seminal paper by John
Stachel (1980). This paper, followed seven years later by Earman and Norton’s philosophi-
cal argument against the so-called space-time manifold substantivalism (Earman & Norton,
1987), opened a rich philosophical debate that is still alive today. The Hole Argument was
immediately regarded by virtually all participants in the debate (Bartels, 1984; Butterfield,
1984, 1987, 1988, 1989; Maudlin, 1988; Rynasiewicz, 1994, 1996, and many others) as being
intimately tied to the deep nature of space and time, at least as they are represented by the
mathematical models of GR. From 1987 onward, the debate centered essentially about the
ontological position to be taken in interpreting the so-called Leibniz equivalence, which is
the terminology introduced by Earman and Norton to characterize philosophically the rela-
tion between diffeomorphic models of GR satisfying the assumptions of the Hole Argument.
It must be acknowledged that until now the debate had a purely philosophical relevance.
Indeed, from the physicists’ point of view, GR has indeed been immunized against the Hole
Argument - leaving aside any underlying philosophical issue - by simply embodying the
Argument in the statement that mathematically different solutions of Einstein’s equations
related by passive - as well as active (see later) - diffeomorphisms are physically equivalent.
From the technical point of view, the natural reading of the consequences of the Hole Ar-
gument was then that the mathematical representation of space-time in GR unavoidably
contains superfluous structure.

The main scope of this paper is to show that the immunization statement quoted above
cannot be regarded as the last word on this matter from both the physical and the philo-
sophical point of view, and that GR contains in itself the remedy for isolating what seems

1 For a beautiful historical critique see Norton 1987, 1992, 1993.
2 The assertion that ”the reality of the world-occurrence (in opposition to that dependent on the choice of

reference system) subsists in space-time coincidences.”
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to be superfluous structure of the mathematical representation. In this connection, we wish
to remember that, already in 1984, Michael Friedman was very explicit about the unsat-
isfactory epistemological status of the widespread understanding of the relation between
diffeomorphic models in terms of Leibniz equivalence, when he wrote (our emphasis):

Further, if the above models are indeed equivalent representations of the same situation (as
it would seem they must be) then how do we describe this physical situation intrinsically?
Finding such an intrinsic characterization (avoiding quantification over bare points) appears
to be a non-trivial, and so far unsolved mathematical problem. (Note that it will not do simply
to replace points with equivalence classes of points: for, in many cases, the equivalence class
in question will contain all points of the manifold (Friedman, 1984, p.663.)

Friedman’s thought was then that the Hole Argument leaves an unsolved problem about
the characterization of intrinsic space-time structure, rather than an ontological question
about the existence of space-time. Now, we claim that we have solved this problem, in this
same spirit, to the extent in which a degree of intrinsic-ness can be reached in GR. Clearly,
given the enormous mathematical variety of possible solutions of Einstein’s equations one
should not expect that a clarification of Friedman’s question is obtained in general. We shall
indeed conclude that some of the main questions we discuss can be clarified for the general
class of globally hyperbolic space-times, while some others for a definite continuous family
of generic solutions corresponding to spatially non-compact, asymptotically-flat space-times
(hereafter called by the acronym C-K)3, but not for the spatially compact ones.

Conceptually, our solution is developed in three parts:
i) unveiling the physical meaning of Leibniz equivalence and thereby, through the disclo-

sure of the alleged superfluous structure, dis-solving the philosophical bearing of the Hole
Argument. This can be done for all the globally hyperbolic models of GR;

ii) constructing a physical individuation of point-events in terms of the autonomous degrees
of freedom of the gravitational field (Dirac observables, hereafter called DO). This can be
achieved for the C-K models of GR, and discloses a highly non-local and holistic space-time
structure. From the philosophical side, the non-uniformity and dynamical richness of space-
time structure so unveiled lends itself to support a new structuralist view4 that we call point
structuralism. This view appears to be a tertium quid that tries in some sense to overcome
the crudeness of the historical debate on the nature of space-time by including elements
common to the traditions of both substantivalism and relationism5. Note, furthermore, that
though conceptually independent of our specific methodology (see later on), the disclosure of

3 The Christodoulou-Klainermann space-times (Christodoulou & Klainermann, 1993), which are also priv-
ileged from the point of view of the inclusion of elementary particles.

4 As already advocated by Mauro Dorato some years ago (Dorato, 2000).
5 The substantivalist position is a form of realism about certain spatiotemporal structures, being committed

to believing in the existence of those entities that are quantified over by our space-time theories, in
particular space-time points. It conceives space-time, more or less, as a substance, that is as something
that exists independently of any of the things in it. In particular, the so-called manifold substantivalism
identifies space-time with the bare mathematical manifold of events glued together by the topological and
differential structure. On the other hand, the strong relationist position is the view that space-time arises
as a mere abstraction from the spatiotemporal properties of other things, so that spatio-temporal relations
are derivative and supervenient on physical relations obtaining among events and physical objects. Note
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this space-time structure follows from the choice of the individuation procedure and not from
the Hole Argument in itself. Concerning the Hole Argument, our analysis of it entails only
a negative philosophical import. Indeed, any attempt to uphold manifold substantivalism or
any other metaphysical doctrine about space-time points, in the face of the Hole Argument,
becomes definitely irrelevant. Finally:

iii) as a by-product of our analysis concerning the C-K class, we show a coherent inter-
pretation of the ADM Hamiltonian formulation of metric gravity in which the so-called weak
ADM energy does generate real temporal modifications of the DO. This gives new evidence
to the fact that statements like the assertion of the so-called frozen-time picture of evolution,
as other ontological claims about GR, are model-dependent.

The concrete realization of point i) constitutes the conceptual basis for the development
of the whole program. We will show that physical equivalence of solutions means much
more than mere difference in mathematical description: actually it entails equivalence of
the descriptions of gravitational phenomena given in different global, non-inertial frames,
which are extended space-time laboratories (hereafter called NIF), with their (dynamically
determined) chrono-geometrical conventions and inertial potentials6. In fact, in developing
our program of resolution of Friedman’s question, we have been naturally led to rephrase GR
in terms of generalized inertial effects, viz. those effects which are unavoidably met with by
any empirical access to the theory due to a global consequence of the equivalence principle.
Incidentally, although abandoned later on, the methodological pre-eminence of non-inertial
frames in dealing with GR was evident in Einsteins original attitude towards gravitation.
Since then, this attitude has never been recovered in the literature. Note, on the other hand,
that today extended laboratories like GPS cannot avoid the issue of inertial effects and that
contemporary gravitational experiments in space will tend to get a final clarification of this
topic.

Technically, this work is based on a full implementation of Dirac’s theory of constraint as
applied to metric gravity. The recourse to the Hamiltonian formalism is necessary for our
goals for many important reasons.

i) The Hamiltonian approach guarantees that the initial value problem of Einstein’s
equations is mathematically well-posed, a circumstance that does not occur in a natural
way within the configurational Lagrangian framework (or ”manifold way”) because of the
non-hyperbolic nature of Einstein’s equations (Friedrich & Rendall, 2000; Rendall, 1998).
This is a crucial point which we will come back to in Section VI, with greater technical
detail. The Hole Argument, in fact, is inextricably entangled with the initial-value problem
of GR, even if it has never been explicitly discussed in that context in a systematic way7.

that both a simple anti-substantivalist position and a tipical relationist position do not deny the reality
of space-time (they are not merely anti-realist), but assert that space-time has no reality independently
of the bodies or fields it contains. The crucial question for our notion of spatiotemporal structuralism, is
therefore the specification of the nature of fields that are indispensable for the very definition of physical
space-time (e.g. the gravitational field with its causal structure) as distinguished from other physical
fields.

6 A precise definition of NIF is given in Section IV.
7 Actually, David Hilbert was the first person to discuss the Cauchy problem for Einstein’s equations and

to realize its connection to the Hole phenomenology (see Hilbert, 1917). He discussed the issue in the
context of a general-relativistic generalization of Mie’s special-relativistic nonlinear electrodynamics, and
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ii) In the context of the Hamiltonian formalism, we can resort to Bergmann and Komar’s
theory of general coordinate-group symmetries (see Bergmann & Komar, 1972) to clarify
the significance of active diffeomorphisms as dynamical symmetries of Einstein’s equations.
This point also is crucial: to fully understand the role played by active diffeomorphisms in
the original configurational formulation of the Hole Argument, it is necessary to interpret
them as the manifold-way counterparts of on shell8 Hamiltonian gauge transformations,
which are passive by definition. It will be seen, again, that a basic misunderstanding on the
philosophical bearing of the Hole Argument follows directly from a loose and non-algorithmic
account of the Cauchy surface as a purely geometrical entity within the manifold M4 9. On
the other hand, we stress that reaching our conclusions within the Lagrangian formulation
would be technically quite awkward if not impossible, since the Legendre pull-back of the
non-point canonical transformations of the Hamiltonian formulation would require tools like
the infinite-jet bundle formalism.

iii) The most important reason in favor of the Hamiltonian approach is that, on the basis of
the so-called Shanmugadhasan canonical transformation (Shanmugadhasan, 1973; Lusanna,
1993), this approach provides a neat distinction between physical observables (the four DO)
connected to the (two) autonomous degrees of freedom of the gravitational field, on one
hand, and gauge variables, on the other. The latter - which express the typical arbitrariness
of the theory and must be fixed (gauge-fixing) before solving Einstein’s equations for the
autonomous degrees of freedom - turn out to play a fundamental role, no less than the DO,
in both clarifying the real import of the Hole Argument and, even more, showing the need
for skipping the manifestly covariant perspective in order to get a full understanding of the
physical basis of GR. As said above, the experimental set up for any kind of measurements
made within the GR theoretical framework requires the constitution of a NIF. This is exactly
what is done - chrono-geometrically - by a complete gauge-fixing which, in turn, amounts
to a complete breaking of general covariance. It should be stressed once more that breaking
general covariance is a theoretical necessity for the procedure of solving Einstein’s equation
and not a question of free choice, let alone a drawback. The basic role of the gauge variables
is, therefore, that of specifying the way in which the generalized inertial effects, typical of
any NIF, affect the intrisic gravitational degrees of freedom described by the four DO.

After the Shanmugadasan transformation, this mechanism realizes a characteristic func-
tional split of the metric tensor into an ontic and an epistemic part that can be described
as follows: i) the ontic part, which is constituted by the four DO and will be found to spec-
ify the intrinsic structure of space-time, describes, physically, the tidal-like effects10; ii) the

pointed out the necessity of fixing a special geometrically adapted (”Gaussian” in his terms, or geodesic
normal as known today) coordinate system, to assure the causality of the theory (in this connection see
Howard & Norton, 1993).

8 We distinguish off-shell considerations, made within the Hamiltonian variational framework before re-
stricting to the dynamical solutions, from on-shell considerations, made after such a restriction.

9 Our stance about the content and the implications of the original Hole Argument contrasts with the
manifestly covariant and generalized attitude towards the Hole phenomenology expounded by John Stachel
in many papers (see e.g. Stachel & Iftime, 2005, and references therein). We will come back to this point
and defend our approach in Sections III and VI.

10 Note that, unlike the Newtonian case where tidal forces are entirely determined by the variation of the
action-at-a-distance generated by the Newton potential of massive bodies on test particles, in GR we can
have tidal forces even in absence of matter, since they are due to the autonomous degrees of freedom of
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epistemic part, which is encoded in the metric at the beginning as arbitrary information and
is furnished by the gauge variables, describes, physically, the generalized inertial effects and,
after a complete gauge-fixing, specifies the way in which the ontic component of the metric
field manifests itself in a definite NIF. Genuine gravitational effects are always dressed in
inertial-like appearances which undergo inertial changes when going from a given NIF to
another NIF.11.

iv) Finally, an additional important feature of the solutions of GR dealt with in our
Hamiltonian formulation is the following. The ADM formalism (Arnowitt, Deser & Misner,
1962) for spatially compact space-times without boundary implies that the Dirac Hamiltonian
generates purely harmless gauge transformations, so that, being zero on the reduced phase
space (see Section IV), it cannot engender any real temporal change. This is the origin of the
so-called frozen evolution description; in this connection see Earman, 2002, Belot & Earman,
1999, 2001. However, in the case of the C-K family of spatially non-compact space-times,
internal mathematical consistency (requiring the addition of the DeWitt surface term to the
Hamiltonian (DeWitt, 1967), see later) entails that the generator of temporal evolution,
namely the (now non-weakly vanishing) Dirac Hamiltonian, be instead the so-called weak
ADM energy. This quantity does generate real temporal modifications of the DO.

The dual role of the metric field discussed above highlights the fact that, while from
the mathematical point of view of the constrained Hamiltonian formalism, GR is a theory
like any other (e.g., electromagnetism and Yang-Mills theory), from the physical point of
view it is radically different. Technically, this can be traced to general covariance itself,
i.e. to the invariance under a group of diffeomorphisms acting on space-time, instead of
invariance under the action of a local inner Lie group, like in standard gauge theories.
However, physically, matters are much more complex. First of all, in GR we cannot rely
from the beginning on empirically validated, gauge-invariant dynamical equations for the
local fields, as it happens with electro-magnetism, where Maxwell equations can be written
in terms of the gauge-invariant electric and magnetic fields. On the contrary, Einstein’s
general covariance (viz. the basis of the gauge freedom of GR) is such that the introduction
of extra (gauge) variables does make the mathematical description of the geometrical aspects
of GR mathematically handy and elegant, but, by ruling out any background structure at
the outset, it also makes its physical interpretation more intriguing. In GR the distinction
between what is observable and what is not, is unavoidably entangled with the constitution
of the very stage, space–time, where the play of physics is enacted: a stage, however, which
also takes an active part in the play. In other words, the gauge-fixing mechanism also
plays the double role of making the dynamics unique (as in all gauge theories), and of
fixing the appearance of the spatiotemporal dynamic background. Summarizing, as it will
be explained, for both the vacuum case and the case with matter fields, the gauge-fixing
(with the correlated break of general covariance) completes the structural properties of
the general-relativistic space-time. Such fixing is necessary to solve Einstein’s equations,
reconstruct the four-dimensional dynamic chrono-geometry emerging from the initial values
of the four Dirac observables, and allow empirical access to the theory through the definition
of a dynamically-selected NIF.

the gravitational field.
11 We are perfectly aware that we are here overstating the philosophical import of terms like ontic and

epistemic and their relationships. Nothing, however, hinges on these nuances in what follows.
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At the end of our technical developments, it should be clear why people (philosophers,
especially) should free themselves from the bewitching fascination of manifest general covari-
ance in order to fully understand the subtle hindrances underlying Friedman’s question. For
general covariance represents a horizon of a priori possibilities for the physical constitution
of the space-time, possibilities that must be actualized in non-covariant form within any
given solution of the dynamical equations.

The overall perspective emerging from our analysis amounts to a new way of looking at
the various aspects of the issue of the objectivity of the space-time properties of GR. This
will be discussed in detail in Section VI. It will be argued there that the issue of objectivity
must be called into question not only for the particular case of point-events, but also for
many of the basic spatiotemporal features of the theory, such as causal structure, one-way
velocity of light (see Alba & Lusanna, 2005a) and the like. Concerning point events, we shall
defend the thesis that, as relata within a structure they do exist and possess some abstract
kind of intrinsic properties. However, their physical properties are relational being conferred
on them in a holistic and non-local way by the whole structure of the metric field and the
extrinsic curvature on a simultaneity hyper-surface. In a definite physical sense, point-events
are literally identifiable with the local values of the autonomous degrees of freedom of the
gravitational field (DO). In this way both the metric field and the point-events maintain -
to paraphrase Newton - their own manner of existence and this justifies our terminology of
”point-structuralism”. Furthermore, this conception does not dissolve physical entities into
mathematical structures, so that it supports a moderate entity-realist attitude towards both
the metric field and its point-events, as well as a theory-realist attitude towards Einstein’s
field equations. However, the degree of objectivity that, on the basis of our solution of
Friedman’s question, should be attributed to the physical individuation of point-events as
well as to other basic structures of space-time is a matter of discussion. This work should
be considered a case study for the defence of a thesis about the physical nature of point-
events and other important spatiotemporal elements in certain classes of models of GR. Our
conclusion will be that all these structures maintain - in a definite sense - a weak form of
physical objectivity.

Although great part of the technical developments underlying this work have already
been treated elsewhere (Pauri & Vallisneri, 2002; Lusanna & Pauri, 2006-I, 2006-II, hereafter
denoted by LPI and LPII, respectively, where additional properties of the Christodoulou-
Klainermann family of space-times are also discussed), some technical elements are intro-
duced here for the first time. For a more general philosophical presentation, see Dorato &
Pauri, 2004.

Section II is devoted to a synopsis of Noether and dynamical symmetries of GR within
the configurational description in a mathematical manifold M4, together with a brief pre-
sentation of the Q group of Bergmann & Komar (1972). This is the largest group of passive
dynamical symmetries of Einstein’s equations and is instrumental to our understanding of
the Hole Argument. The latter is expounded in detail in Section III. The basic ingredients
of the ADM formulation as applied to the Christodoulou-Klainermann family of space-times
and its canonical reduction, the chrono-geometric meaning of the gauge-fixings, and the con-
stitution of the NIF are discussed in Section IV, together with the issue of temporal change.
In Section V we show how the ontic part of the metric (the autonomous degrees of freedom of

8



the gravitational field) may confer a physical individuation of space-time points12. In Section
VI we take up the results obtained in the previous Sections and re-discuss them with respect
to the issue of the objectivity of space-time structures in general. The concluding remarks
are devoted to a philosophical assessment of our results in view of the traditional debate
between substantivalism and relationism, as well as in view of some more recent discussions
about structural realism.

II. NOETHER AND DYNAMICAL SYMMETRIES

Standard general covariance, which essentially amounts to the statement that Einstein’s
equations for the metric field 4g(x) have a tensor character, implies first of all that the basic
equations are form invariant under general coordinate transformations (passive diffeomor-
phisms), so that the Lagrangian density in the Einstein-Hilbert action is singular. Namely,
passive diffeomorphisms are local Noether symmetries of the action, so that Dirac constraints
appear correspondingly in the Hamiltonian formulation. The singular nature of the vari-
ational principle of the action entails in turn that four of Einstein’s equations be in fact
Lagrangian constraints, namely restrictions on the Cauchy data, while four combinations of
Einstein’s equations and their gradients vanish identically (contracted Bianchi identities).
Thus, the ten components of the solution 4gµν(x) are in fact functionals of only two ”de-
terministic” dynamical degrees of freedom and eight further degrees of freedom which are
left completely undetermined by Einstein’s equations even once the Lagrangian constraints
are satisfied. This state of affairs makes the treatment of both the Cauchy problem of the
non-hyperbolic system of Einstein’s equations and the definition of observables within the
Lagrangian context (Friedrich & Rendall, 2000; Rendall, 1998) extremely complicated.

For the above reasons, standard general covariance is then interpreted, in modern termi-
nology, as the statement that a physical solution of Einstein’s equations properly corresponds
to a 4-geometry, namely the equivalence class of all the 4-metric tensors, solutions of the
equations, written in all possible 4-coordinate systems. This equivalence class is usually
represented by the quotient 4Geom = 4Riem/P Diff M4, where 4Riem denotes the space
of metric tensor solutions of Einstein’s equations and P Diff is the infinite group of pas-
sive diffeomorphisms (general coordinate transformations). On the other hand, any two
inequivalent Einstein space-times are different 4-geometries or ”universes”.

Consider now the abstract differential-geometric concept of active diffeomorphism DA

and its consequent action on the tensor fields defined on the differentiable manifold M4 [see,
for example, (Wald, 1984, pp.438-439)]. An active diffeomorphism DA maps points of M4 to
points of M4: DA : p→ p′ = DA · p. Its tangent map D∗

A maps tensor fields T→ DA∗ ·T in
such a way that [T ](p)→ [D∗

A ·T ](p) ≡ [T
′
](p). Then [D∗

A ·T ](p) = [T ](D−1
A ·p). It is seen that

the transformed tensor field D∗
A · T is a new tensor field whose components in general will

have at p values that are different from those of the components of T . On the other hand,
the components of D∗

A ·T have at p′ - by construction - the same values that the components
of the original tensor field T have at p: T

′
(DA · p) = T (p) or T ′(p) = T (D−1

A · p). The new

12 There is an unfortunate ambiguity in the usage of the term space-time points in the literature: sometimes
it refers to elements of the mathematical structure that is the first layer of the space-time model, other
times to the points interpreted as physical events. We will adopt the term point–event in the latter sense
and simply point in the former.
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tensor field D∗
A · T is called the drag-along (or push-forward) of T . There is another, non-

geometrical - so-called dual - way of looking at the active diffeomorphisms (Norton, 1987).
This duality is based on the circumstance that in each region of M4 covered by two or more
charts there is a one-to-one correspondence between an active diffeomorphism and a specific
coordinate transformation. The coordinate transformation TDA

: x(p)→ x′(p) = [TDA
x](p)

which is dual to the active diffeomorphism DA is defined so that [TDA
x](DA · p) = x(p).

Essentially, this duality transfers the functional dependence of the new tensor field in the
new coordinate system to the old system of coordinates. By analogy, the coordinates of the
new system [x′] are said to have been dragged-along with the active diffeomorphism DA. It
is important to note here, however, that the above dual view of active diffeomorphisms, as
particular coordinate-transformations, is only implicitly defined for the moment .

In the abstract coordinate-independent language of differential geometry, Einstein’s equa-
tions for the vacuum

4Gµν(x)
def
= 4Rµν(x)− 1

2
4R(x) 4gµν(x) = 0. (2.1)

can be written as G = 0, where G is the Einstein 2-tensor (G = Gµν(x) dxµ
⊗

dxν in the
coordinate chart xµ). Under an active diffeomorphism DA : M4 7→ M4, DA ∈ ADiff M4,
we have G = 0 7→ D∗

A G = 0, which shows that active diffeomorphisms are dynamical
symmetries of Einstein’s tensor equations, i.e. they map solutions into solutions.

We have clarified elsewhere (LPI) the explicit relationships13 existing between passive and
active diffeomorphisms on the basis of an important paper by Bergmann and Komar (1972),
in which it is shown that the largest group of passive dynamical symmetries of Einstein’s
equations is not P Diff M4 [x

′ µ = fµ(xν)], but rather a larger group of transformations of
the form

Q : x
′ µ = fµ(xν , 4gαβ(x)),

4g
′
µν(x

′
(x)) =

∂hα(x
′
, 4g

′
(x

′
))

∂x′ µ
∂hβ(x

′
, 4g

′
(x

′
))

∂x′ ν
4gαβ(x). (2.2)

In the case of completely Liouville-integrable systems, dynamical symmetries can be re-
interpreted as maps of the space of Cauchy data onto itself. Although we do not have
a general proof of the integrability of Einstein’s equations, we know that if the initial
value problem is well-posed and defined14, as it is in the ADM Hamiltonian description,
the space of Cauchy data is partitioned in gauge-equivalent classes of data: all of the Cauchy

13 At least for the infinitesimal active transformations.
14 It is important to stress that in looking for global solutions of Einstein’s equations as a system of partial

differential equations, a number of preliminary specifications must be given. Among other things: a) the
topology of space-time; b) whether the space-time is spatially compact or asymptotically flat at spatial
infinity; c) whether or not in the spatially compact case there is a spatial boundary; d) the nature of the
function space and the class of boundary conditions, either at spatial infinity or on the spatial boundary,
for the 4-metric and its derivatives (only in the spatially compact case without boundary there is no
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data in a given class identify a single 4-geometry or ”universe”. Therefore, under the
given hypothesis, the dynamical symmetries of Einstein’s equations fall into two classes
only: a) those mapping different ”universes” among themselves, and b) those acting within
a single Einstein ”universe”, mapping gauge-equivalent Cauchy data among themselves.
It is remarkable that, at least for the subset Q′ ⊂ Q (passive counterpart of a subset

ADiff
′
M4 ⊂ ADiff M4) which corresponds to mappings among gauge-equivalent Cauchy

data, the transformed metrics do indeed belong to the same 4-geometry, i.e. the same equiv-
alence class generated by applying all passive diffeomorphisms to the original 4-metrics:
4Geom = 4Riem/P Diff M4 = 4Riem/Q′15.

Note finally that: a) an explicit passive representation of the infinite group of ADiff M4

is necessary anyway for our Hamiltonian treatment of the Hole Argument, as well as for
any comparison of the various viewpoints existing in the literature concerning the solutions
of Einstein’s equations; b) the group Q′ describes the dynamical symmetries of Einstein’s
equations which are also local Noether symmetries of the Einstein-Hilbert action. The 4-
metrics reached by using passive diffeomorphisms are, so to speak, only a dense subset of
the metrics obtainable by means of the group Q.

In conclusion, what is known as a 4-geometry, is also an equivalence class of solutions of
Einstein’s equations modulo the subset of dynamical symmetry transformations ADiff ′ M4,
whose passive counterpart is Q

′
. Therefore, following Bergmann & Komar (1972), Wald

(1984), we can state 16

need of boundary conditions, replaced by periodicity conditions, so that these models of GR show the
well-known Machian aspects which influenced Einstein and Wheeler). After these specifications have been
made, a model of GR is identified. What remains to be worked out is the characterization of a well-posed
initial value problem. Modulo technicalities, this requires choosing a 4-coordinate system and finding
which combinations of the equations are of elliptic type (restrictions on the Cauchy data) and which are
of hyperbolic type (evolution equations), namely the only ones requiring an initial value problem. At
the Hamiltonian level, the elliptic equations are the first-class constraints identifying the constraint sub-
manifold of phase space (see Section IV), while the hyperbolic equations are the Hamilton equations in
a fixed gauge (a completely fixed Hamiltonian gauge corresponds on-shell to a 4-coordinate system, see
Section IV). When the gauge variables can be separated from the Dirac observables, only the latter need
an initial value problem (the gauge variables are arbitrary, modulo restrictions upon their range coming
from the structure of the gauge orbits inside the constraint sub-manifold). Finally, given a space-like
Cauchy surface in a 4-coordinate system (or in a fixed Hamiltonian gauge), each admissible set of Cauchy
data gives rise to a different ”universe” with the given boundary conditions. Clearly, each universe is
defined modulo passive diffeomorphisms changing both the 4-coordinate system and the Cauchy surface
(or modulo the Hamiltonian gauge transformations changing the gauge and the Cauchy surface) and also
modulo the (on-shell) active diffeomorphisms.

15 Note, incidentally, that this circumstance is mathematically possible only because P Diff M4 is a non-
normal dense sub-group of Q

′
.

16 Eqs.(2.3) are usually taken for granted in mathematical physics, at least at the heuristic level. Since,
however, the control in large of the group manifold of infinite-dimensional groups like P Diff M4 and Q

′

is, as yet, an open mathematical issue, one cannot be more rigorous on this point: see also the end of
Section III. For more details about these issues, the interested reader should see LPI and LPII, where a
new subset Qcan of Q is introduced, namely the Legendre pullback of the on-shell Hamiltonian canonical
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4Geom = 4Riem/P Diff M4 = 4Riem/Q′ = 4Riem/ADiff ′ M4. (2.3)

III. THE HOLE ARGUMENT AND ITS DIS-SOLUTION: A FIRST LOOK

Although the issue could not be completely clear to Einstein in 1916, as shown by Norton
(1987, 1992, 1993), it is precisely the nature of dynamical symmetry of the active diffeo-
morphisms that has been considered as expressing the physically relevant content of general
covariance, as we shall presently see.

Remember, first of all, that a mathematical model of GR is specified by a four-dimensional
mathematical manifold M4 and by a metrical tensor field g, where the latter represents both
the chrono-geometrical structure of space-time and the potential for the inertial-gravitational
field. Non-gravitational physical fields, when they are present, are also described by dynam-
ical tensor fields, which appear to be sources of Einstein’s equations. Assume now that M4

contains a hole H: that is, an open region where all the non-gravitational fields vanish so
that the metric obeys the homogeneous Einstein equations. On M4 we can define an active
diffeomorphism D∗

A that re-maps the points inside H, but blends smoothly into the identity
map outside H and on the boundary. By construction, for any point x ∈ H we have (in the
abstract tensor notation) g′(DAx) = g(x), but of course g′(x) 6= g(x) (in the same notation).
The crucial fact is that from the general covariance of Einstein’s equations it follows that if
g is one of their solutions, so is the drag-along field g′ ≡ D∗

Ag.
What is the correct interpretation of the new field g′? Clearly, the transformation involves

an active redistribution of the metric over the points of the manifold in H, so the critical
question is whether and how the points of the manifold are primarily individuated. Now,
if we think of the points of H as intrinsically individuated physical events, where intrinsic
means that their identity is autonomous and independent of any physical field, the metric
in particular - a claim that is associated with any kind of manifold substantivalism - then
g and g′ must be regarded as physically distinct solutions of Einstein’s equations (after
all, g′(x) 6= g(x) at the same point x). This appeared as a devastating conclusion for the
causality of the theory, because it implied that, even after we specify a physical solution for
the gravitational and non-gravitational fields outside the hole - in particular, on a Cauchy
surface for the initial value problem - we are still unable to predict a unique physical solution
within the hole.

According to Earman and Norton (1987), the way out of the Hole Argument lies in
abandoning manifold substantivalism: they claim that if diffeomorphically related metric
fields were to represent different physically possible ”universes”, then GR would turn into
an indeterministic theory. And since the issue of whether determinism holds or not at
the physical level cannot be decided by opting for a metaphysical doctrine like manifold
substantivalism, they conclude that one should refute any kind of such substantivalism.
Since, however, relationism does not amount to the mere negation of substantivalism, and
since the literature contains so many conflicting meanings of the term ”relationism”, they do

transformations. In LPI and LPII it is shown that it also holds 4Geom = 4Riem/Qcan, since, modulo
technicalities, we have Qcan = Q′. Note that P Diff M4 ∩ Qcan are the passive diffeomorphisms which
are re-interpretable as Hamiltonian gauge transformations.
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not simply conclude that space-time is relational. They state the more general assumption
(which - they claim - is applicable to all space-time theories) that ”diffeomorphic models
in a space-time theory represent the same physical situation”, i.e. must be interpreted as
describing the same ”universe” (Leibniz equivalence).

The fact that the Leibniz equivalence seems here no more than a sophisticated re-phrasing
of what physicists consider a foregone conclusion for general relativity, should not be taken
at face value, for the real question for an opposing ”weak substantivalist” is whether or not
space-time should be simply identified with the bare manifold deprived of any physical field,
and of the metric field in particular, as Earman and Norton do, instead of with a set of points
each endowed with its own metrical fingerprint17. Actually, this ”weak substantivalist” could
sustain the conviction - as we ourselves do - that the metric field, because of its basic causal
structure, has ontological priority (Pauri, 1996) over all other fields and, therefore, it is not
like any other field, as Earman and Norton would have it.

We do believe that the bare manifold of points, deprived of the infinitesimal Pythagorean
structure defining the basic distinction between temporal and spatial directions, let alone the
causal structure which teaches all the other fields how to move, can hardly be seen as space-
time. We insist, therefore, that in order to be able to speak of space-time the definition of a
metric field is a necessary condition. Consequently, and in agreement with Stachel (1993), we
believe that asserting that g and D∗

Ag represent one and the same gravitational field implies
that the mathematical individuation of the points of the differentiable manifold by their
coordinates has no physical content unless a metric tensor is specified 18. Stachel stresses
that if g and D∗

Ag must represent the same gravitational field, they cannot be physically
distinguished in any way. Accordingly, when we act on g with D∗

A to create the drag-along
field D∗

Ag, no element of physical significance can be left behind: in particular, nothing that
could identify a point x of the manifold itself as the same point of space-time for both g and
D∗

Ag. Instead, when x is mapped onto x′ = D∗
Ax, it carries over its identity, as specified

by g′(x′) = g(x). This means, for one thing, that ”the last remnant of physical objectivity”
of space-time points, if any, should be sought for in the physical content of the metric field
itself. Note, however, that while this point of view about the Hole Argument casts new
light upon the fact that g and g′ must represent the same physical situation, it still does
not explain the source of the superfluous structure of the mathematical representation and,
therefore, not even the origin of the prima facie difference between g and g′.

Anyway, these remarks led Stachel to the important conclusion that vis á vis the physical
point-events, the metric actually plays the role of individuating field. Precisely, Stachel
suggested that this individuating role could be implemented by four invariant functionals
of the metric, which Komar and Bergmann (Komar 1958; Bergmann & Komar, 1960) had
already considered. Stachel, however, did not follow up this proposal by providing a concrete
realization in terms of solutions of Einstein’s equations, something that we instead will
presently do. At the same time we will show in Section VI that Stachel’s suggestion, as it
stands, remains at a too abstract level and fails to exploit the crucial distinction between

17 See, for example, Bartels, 1994 and Maudlin, 1988.
18 Coordinatization is the only way to individuate the points mathematically since, as stressed by Hermann

Weyl: ”There is no distinguishing objective property by which one could tell apart one point from all
others in a homogeneous space: at this level, fixation of a point is possible only by a demonstrative act as
indicated by terms like this and there.” (Weyl, 1946, p. 13). See also Schlick, 1917, quoted in M.Friedman,
2003, p.165.
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ontic and arbitrary epistemic content of the Bergmann-Komar invariant functionals of the
metric. This content, in fact, must be specified in order to calculate the functionals on the
solutions.

We conclude this Section by summarizing the implications of our analysis of the meaning
and philosophical import of the Hole Argument. The force of the indeterminacy argument
apparently rests on the following basic facts: (i) a solution of Einstein’s equations must be
preliminarily individuated outside (and, of course, inside) the Hole, otherwise there would be
no ’meat’ for the Argument itself. Although the original formulation of the Hole Argument,
as well as many subsequent expositions of it, are silent on this point, we will see that
the Hole Argument is unavoidably entangled with the initial value problem; (ii) the active
diffeomorphism D∗

A, which is purportedly chosen to be the identity outside the hole H, is a
dynamical symmetry of Einstein’s equations, so that it maps solutions onto solutions, which
in general will be equivalent (as 4-geometries or Einstein ”universes”) or not ; (iii) since D∗

A

is, by hypothesis, the identity on the Cauchy hyper-surface, it cannot map a solution defining
a given Einstein ”universe” onto a different ”universe”, which would necessarily correspond
to inequivalent Cauchy data; but (iv) nevertheless, we are told by the Hole Argument that
D∗

A engenders a ”different” solution inside the Hole.
As we shall later see with greater evidence, in spite of the prima facie geometric obvi-

ousness of the identity condition required for D∗
A outside the Hole, it is quite illusory to

try to explain all the facets of the relations of the Argument with the initial value problem
in the purely abstract way of differential geometry. The point is that the configurational
four-dimensional formulation cannot exploit the advantage that the Hamiltonian formula-
tion possesses of working off-shell. This is crucial since in the present context the four-
dimensional active diffeomorphisms - qua dynamical symmetries of Einstein’s equations -
must be directly applied to solutions of GR. These solutions, however, cannot be exhaus-
tively managed in the four-dimensional configurational approach in terms of initial data
because of the non-hyperbolicity of Einstein’s equations 19. The Hole Argument needs the
Cauchy problem to be formulated outside the Hole explicitly and in advance, a fact that
requires abandoning the Lagrangian way in favor of Hamiltonian methods. At this point,
the results of the previous Section (the passive counterpart of D∗

A must belong to Q′, or
belong to Q but not to Q′) leave us with the sole option that, once rephrased in the pas-
sive Hamiltonian language, the active diffeomorphism D∗

A exploited by the Argument must
lie in the subset Q′ (ADiff

′
M4). Then, however, it must necessarily map Cauchy data

onto gauge-equivalent Cauchy data, precisely those gauge-equivalent data that generate the
allegedly ”different” solution within the Hole. In the end, the ”difference” will turn out
to correspond to a mere different choice of the gauge for the same solution. Thus Leibniz
equivalence boils down to mere gauge equivalence in its strict sense 20, an effect that - let us
stress it again - cannot be transparently displayed in the configurational geometric descrip-

19 The reader should avoid the impression that our criticisms about the weakness of the configurational
approach be dictated by personal preferences for Hamiltonian methods or be simple questions of taste.
The issue is in fact very important. In LP2 we gave a detailed analysis of the drawbacks one can encounter
by adopting trusting confidence in a mixing of Lagrangian and geometric considerations involving a non-
algorithmic attitude towards the Cauchy surface. A brief reconsideration of this analysis is given in Section
VI.

20 The physical meaning of this equivalence will be clarified in Section IV.
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tion. On the other hand, were the active diffeomorphism D∗
A, once passively rephrased, to

belong to the group Q but not to the subset Q
′
(i.e. were it originally lying in ADiff M4,

but not in ADiff
′
M4)), then it would not correspond to a mere gauge equivalence and it

would necessarily modify the Cauchy data outside the Hole. Therefore it would lead to a
really different Einstein ”universe” but it would violate the assumption of the Hole Argu-
ment that D∗

A be the identity on the Cauchy hyper-surface. In any case, it is seen that the
disappearance of the ”indeterminacy” rests upon the necessity of formulating the Cauchy
problem before talking about the relevant properties of the solutions.

We conclude that - to the extent that the Cauchy problem is well-posed, i.e. in every
globally hyperbolic space-time and not necessarily in the C-K class only - exploiting the origi-
nal Hole Argument to the effect of asking ontological questions about the general relativistic
space-time is an enterprise devoid of real philosophical impact, in particular concerning the
menace of indeterminism. There is clearly no room left for upholding ”manifold substanti-
valism”, ”different worlds”, ”metric essentialism” or any other metaphysical doctrine about
space-time points in the face of the Hole Argument. Of course, such metaphysical doctrines
could still be defended, yet independently of the Hole Story.

IV. CHRISTODOULOU-KLAINERMANN SPACE-TIMES, 3+1 SPLITTING,
AND ADM CANONICAL REDUCTION

The Christodoulou-Klainermann space-times are a continuous family of space-times that
are non-compact, globally hyperbolic, asymptotically flat at spatial infinity (asymptotic
Minkowski metric, with asymptotic Poincaré symmetry group) and topologically trivial
(M4 ≡ R3 ×R), supporting global 4-coordinate systems.

The ADM Hamiltonian approach starts with a 3+1 splitting of the 4-dimensional mani-
fold M4 into constant-time hyper-surfaces Στ ≡ R3, indexed by the parameter time τ , each
equipped with coordinates σa (a = 1,2,3) and a three-metric 3g (in components 3gab). The
parameter time τ and the coordinates σa (a = 1,2,3) are in fact Lorentz-scalar, radar co-
ordinates adapted to the 3+1 splitting (Alba & Lusanna, 2003, 2005a). They are defined
with respect to an arbitrary, in general accelerated, observer, a centroid Xµ(τ), chosen as
origin of the coordinates, whose proper time may be used as the parameter τ labelling the
hyper-surfaces. On each hyper-surface all the clocks are conventionally synchronized to the
value τ . The simultaneity (and Cauchy) hyper-surfaces Στ are described by the embedding
functions xµ = zµ(τ, σa) = Xµ(τ) + F µ(τ, σa), F µ(τ, 0a) = 0.

All this machinery builds up, at the chrono-geometric level, a global, extended frame of
reference, realizing a non-rigid, non-inertial, laboratory (the only one existing in GR due
to the equivalence principle)21. This global laboratory will be called a NIF. As we shall
presently show, any chrono-geometrically possible NIF is the result of a complete gauge-
fixing, a procedure that determines the appearance of gravitational phenomena by uniquely
specifying the form of the inertial forces (Coriolis, Jacobi, centrifugal,...) in each point of a
NIF. A crucial difference of this structure in GR with respect to the Newtonian case (see also
footnote 10), besides the fact that inertial effects are unavoidable (they cannot be traced
here to ”apparent forces” in that they cannot be removed by a choice of reference frame),

21 All the details of this structure can be found in LPI, where it is shown in particular how two congruences
of time-like observers are naturally associated to a NIF .
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is that the inertial potentials may also depend upon generalized tidal effects in addition to
the coordinates of the non-inertial frame22.

An important point to be kept in mind is that the explicit functional form of the embed-
ding functions and - consequently - of the chrono-geometry of the 3 + 1 splitting of M4,
thought to be implicitly given at the outset, remains undefined until the solution of Einstein’s
equations is worked out in a fixed gauge. Likewise, it is only after the solution emerges from
given initial data of the four DO in that gauge that a subset of the chrono-geometrically
possible NIF becomes dynamically selected NIF together with their dynamically determined
”conventions”: see later on.

Now, start at a point on Στ , and displace it infinitesimally in a direction that is normal
to Στ . The resulting change in τ can be written as 4 τ = Ndτ , where N is the so-called
lapse function. Moreover, the time displacement dτ will also shift the spatial coordinates:
σa(τ + dτ) = σa(τ) + Nadτ , where Na is the shift vector. Then the interval between (τ, σa)
and (τ +dτ, σa +dσa) is: ds2 = N2dτ 2− 3gab(dσa +Nadτ)(dσb +N bdτ). The configurational
variables N , Na, 3gab (replacing the 4-metric g) together with their 10 conjugate momenta,
index a 20-dimensional phase space23. Expressed (modulo surface terms) in terms of the
ADM variables, the Einstein-Hilbert action is a function of N , Na, 3gab and their first
time-derivatives, or equivalently of N , Na, 3gab and the extrinsic curvature 3Kab of the
hyper-surface Στ , considered as an embedded manifold.

Since Einstein’s original equations are not hyperbolic, it turns out that the canonical
momenta are not all functionally independent, but satisfy four conditions known as primary
constraints (they are given by the vanishing of the lapse and shift canonical momenta).
Another four secondary constraints arise when we require that the primary constraints be
preserved through evolution (the secondary constraints are called the super-hamiltonian
H0 ≈ 0, and the super-momentum Ha ≈ 0, (a = 1, 2, 3) constraints, respectively). The
eight constraints are given as functions of the canonical variables that vanish on the con-
straint surface. The existence of such constraints implies that not all the points of the
20-dimensional phase space physically represent meaningful states: rather, we are restricted
to the constraint surface where all the constraints are satisfied, i.e. to a 12-dimensional (20 -
8) surface which, however, does not possess the geometrical structure of a true phase space.
When used as generators of canonical transformations, the eight constraints map points on
the constraint surface to points on the same surface; these transformations are known as
gauge transformations.

In order to obtain the correct dynamics for the constrained system, we must consider
the Dirac Hamiltonian, which is the sum of the DeWitt surface term (DeWitt, 1967) 24

22 Let us stress that the scalar radar coordinates are intrinsically frame-dependent since they parametrize a
NIF centered on the arbitrary observer. Furthermore, they are not ordinary coordinates xµ in a chart of
the Atlas A of M4. They should be properly called pseudo-coordinates in a chart of the Atlas Ã defined
by adding to M4 the extra-structure of all its admissible 3+1 splittings: actually the new coordinates
are adapted to this extra-structure. If the embedding of the constant-time hyper-surfaces Στ of a 3+1
splitting into M4 is described by the functions zµ(τ, σa), then the transition functions from the adapted

radar-coordinates σA = (τ ; σa) to the ordinary coordinates are ∂zµ(τ, σa)
∂σA .

23 Of course, all these variables are in fact fields.
24 The DeWitt surface term is uniquely determined as the sum of two parts: a) the surface integral to

be extracted from the Einstein-Hilbert action to get the ADM action; b) a surface integral due to an
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[present only in spatially non-compact space-times and becoming the ADM energy after
suitable manipulations (Lusanna, 2001; DePietri & Lusanna & Martucci & Russo, 2002)],
of the secondary constraints multiplied by the lapse and shift functions, and of the primary
constraints multiplied by arbitrary functions (the so-called Dirac multipliers). If, follow-
ing Dirac, we make the reasonable demand that the evolution of all physical variables be
unique - otherwise we would have real physical variables that are indeterminate and there-
fore neither observable nor measurable - then the points of the constraint surface lying on
the same gauge orbit, i.e. linked by gauge transformations, must describe the same physical
state. Conversely, only the functions in phase space that are invariant with respect to gauge
transformations can describe physical quantities.

In order to eliminate this ambiguity and create a one-to-one mapping between points in
the phase space and physical states, we must impose further constraints, known as gauge
conditions or gauge-fixings. The gauge-fixings can be implemented by arbitrary functions
of the canonical variables, except that they must intersect each gauge orbit exactly once
(orbit conditions) in order to allow a well-posed definition of the reduced phase space. The
number of independent fixings must be equal to the number of independent gauge variables
(i.e., 8 in our case). The canonical reduction follows a cascade procedure. Precisely, the
gauge-fixings to the super-hamiltonian and super-momentum constraints come first (call it
Γ4): they determine the 3-coordinate system and the off-shell shape of Στ (i.e., the off-
shell convention for clock synchronization); the requirement of their time constancy then
determines the gauge-fixings to the primary constraints: they determine the lapse and shift
functions. Finally, the requirement of time constancy for these latter gauge-fixings deter-
mines the Dirac multipliers. Therefore, the first level of gauge-fixing gives rise to a complete
gauge-fixing, say Γ8, and is sufficient to remove all the gauge arbitrariness.

The Γ8 procedure reduces the original 20-dimensional phase space to a copy Ω4 of the
abstract reduced phase-space Ω̃4 having 4 degrees of freedom per point (12 - 8 gauge-fixings).
Abstractly, the reduced phase-space Ω̃4 with its symplectic structure is defined by the quo-
tient of the constraint surface with respect to the 8-dimensional group of gauge transfor-
mations and represents the space of the abstract gauge-invariant observables of GR: two
configurational and two momentum variables. These observables carry the physical content
of the theory in that they represent the autonomous degrees of freedom of the gravitational
field (remember that at this stage we are dealing with a pure gravitational field without
matter).

A Γ8-dependent copy Ω4 of the abstract Ω̃4 is realized in terms of the symplectic structure
(Dirac brackets) defined by the given gauge-fixings and coordinatized by four DO [call such
field observables qr, ps (r,s = 1,2)]. The functional form of these DO (concrete realization
of the gauge-invariant abstract observables in the given complete gauge Γ8) in terms of the
original canonical variables depends upon the chosen gauge, so that such observables - a

integration by parts required by the Legendre transformation from the ADM action to phase space [see
(Lusanna, 2001) after Eq.(5.5) and (Hawking & Horowitz, 1996)]. By adding a surface term different from
the ADM one, we would get another action with the same equations of motion but an a-priori different
canonical formulation. Still another option is to consider the metric and the Christoffel connection as
independent configuration variables: this is the first-order Palatini formalism, which has much larger
gauge freedom, also including second class constraints. All these canonical formulations must lead anyway
to the same number of physical degrees of freedom.
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priori - are neither tensors nor invariant under P Diff . In each gauge Γ8, the original 8
gauge variables are now uniquely determined functions of the DO. Yet, off shell, barring
sophisticated mathematical complications, any two copies of Ω4 are diffeomorphic images
of one another.

It is very important to understand qualitatively the geometric meaning of the eight in-
finitesimal off-shell Hamiltonian gauge transformations and thereby the geometric signifi-
cance of the related gauge-fixings. i) The transformations generated by the four primary
constraints modify the lapse and shift functions which, in turn, determine both how densely
the space-like hyper-surfaces Στ are distributed in space-time and the appearance of gravito-
magnetism on them; ii) the transformations generated by the three super-momentum con-
straints induce a transition on Στ from one given 3-coordinate system to another; iii) the
transformation generated by the super-hamiltonian constraint induces a transition from one
a-priori given ”form” of the 3+1 splitting of M4 to another (namely, from a given notion of
distant simultaneity to another), by operating deformations of the space-like hyper-surfaces
in the normal direction.

It should be stressed that the manifest effect of the gauge-fixings related to the above
transformations emerges only at the end of the canonical reduction and after the solution
of the Einstein-Hamilton equations has been worked out (i.e. on shell). This happens
because the role of the gauge-fixings is essentially that of choosing the functional form in
which all the gauge variables depend upon the DO, i.e. - physically - of fixing the form
of the inertial potentials of the associated chrono-geometrically possible NIF. It must also
be emphasized that this important physical aspect is completely lost within the abstract
reduced phase space Ω̃4, which could play, nevertheless, another important role (see Sections
V and VI). It is only after the initial conditions for the DO have been arbitrarily selected on
a Cauchy surface that the whole four-dimensional chrono-geometry of the resulting Einstein
”universe” is dynamically determined, including the embedding functions xµ = zµ(τ, ~σ) (i.e.
the on-shell shape of Στ ), and therefore even the dynamically admissible NIF within the
set of chrono-geometrically possible NIF. In particular, since the transformations generated
by the super-Hamiltonian modify the rules for the synchronization of distant clocks, all
the relativistic conventions (including those for gravito-magnetism) associated to all of the
NIF in a given Einstein ”universe”, turn out to be dynamically-determined, gauge-related
options25.

Two important points must be emphasized.
i) In order to carry out the canonical reduction explicitly, before implementing the gauge-

fixings we must perform a basic canonical transformation at the off-shell level, the so-called
Shanmugadhasan transformation (Shanmugadhasan, 1973; Lusanna, 1993), moving from the
original canonical variables to a new basis including the DO as a canonical subset26. It should
be stressed here that it is not known whether the Shanmugadhasan canonical transformation,

25 Unlike the special relativistic case where the various possible conventions are non-dynamical options.
26 In practice, this transformation is adapted to seven of the eight constraints (Lusanna, 2001; DePietri,

Lusanna, Martucci & Russo, 2002): they are replaced by seven of the new momenta whose conjugate
configuration variables are the gauge variables describing the lapse and shift functions and the choice of
the spatial coordinates on the simultaneity surfaces. The new basis contains the conformal factor (or the
determinant) of the 3-metric, which is determined by the super-Hamiltonian constraint (though as yet
no solution has been found for this equation, also called the Lichnerowicz equation), and its conjugate
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and therefore the GR observables, can be defined globally in C-K space-times. In most of the
spatially compact space-times this cannot be done for topological reasons. A further problem
is that in field theory in general the status of the canonical transformations is still heuristic.
Therefore the only tool (viz. the Shanmugadhasan transformation) we have for a systematic
search of GR observables in every type of space-time still lacks a rigorous definition. In
conclusion, the mathematical basis of our analysis regarding the objectivity of space-time
structures is admittedly heuristic, yet our arguments are certainly no more heuristic than
the overwhelming majority of the theoretical and/or philosophical claims concerning every
model of GR.

The Shanmugadhasan transformation is highly non-local in the metric and curvature vari-
ables: although, at the end, for any τ , the DO are fields indexed by the coordinate point σa,
they are in fact highly non-local functionals of the metric and the extrinsic curvature over
the whole off-shell surface Στ . We can write, symbolically (3πcd are the momenta conjugate
to 3gab):

qr(τ, ~σ) = F[Στ ]
r
[
(τ, ~σ)| 3gab,

3πcd
]

ps(τ, ~σ) = G[Στ ]s

[
(τ, ~σ)| 3gab,

3πcd
]
, r, s = 1, 2. (4.1)

ii) Since, as already mentioned, in spatially compact space-times the original canonical
Hamiltonian in terms of the ADM variables is zero, the Dirac Hamiltonian happens to be
written solely in terms of the eight constraints and Lagrangian multipliers. This means,
however, that this Hamiltonian generates purely harmless gauge transformations, so that it
cannot engender any real temporal change. Therefore, in spatially compact space-times, in
a completely fixed Hamiltonian gauge we have a vanishing Hamiltonian, and the canonical
DO are constants of the motion, i.e. τ -independent.

In such models of GR with spatially compact space-times without boundary (nothing is
known if there is a boundary), one must re-introduce the appearance of evolution in a frozen
picture. Without deeply entering this debated topic (see the viewpoints of Earman, 2002,
2003, Maudlin, 2002, Rovelli, 1991, 2002, as well as the criticisms of Kuchar, 1992, 1993,
and Unruh, 1991), we only add a remark on the problem of time. In all of the globally
hyperbolic space-times (the only ones admitting a canonical formulation), the mathematical
time τ , labeling the simultaneity (and Cauchy) surfaces, must be related to some empirical
notion of time (astronomical ephemerides time, laboratory clock,...). In a GR model with
frozen picture there is no physical Hamiltonian governing the evolution in τ 27 and conse-
quently there exists the problem of defining a local evolution in terms of a clock built with
GR observables (with a time monotonically increasing with τ), as well as the problem of
parametrizing other GR observables in terms of this clock28.

momentum (the last gauge variable whose variation describes the normal deformations of the simultaneity
surfaces, namely the changes in the clocks’ synchronization convention).

27 Unless, following Kuchar (1993), one states that the super-Hamiltonian constraint is not a generator of
gauge transformations but an effective Hamiltonian instead.

28 See the concept of evolving constants of motion, and the partial and complete observables of Rovelli (1991,
2002), as well as a lot of other different point of views.
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Our advantage point, however, is that, in the case of spatially non-compact space-times
of the C-K class, the generator of τ -temporal evolution is the weak ADM energy29. In-
deed, this quantity does generate real τ -temporal changes of the canonical variables, changes
which can subsequently be rephrased in terms of some empirical clock monotonically in-
creasing in τ . It is important to stress that since the density EADM(τ, ~σ) of the weak

29 The ADM energy is a Noether constant of motion representing the total mass of the instantaneous ”3-
universe”, just one among the ten asymptotic ADM Poincarè charges that, due to the absence of super-
translations, are the only asymptotic symmetries existing in C-K space-times. Consequently, the Cauchy
surfaces Στ must tend to space-like hyper-planes normal to the ADM momentum at spatial infinity.
This means that: (i) such Στ ’s are the rest frame of the instantaneous ”3-universe”; (ii) asymptotic
inertial observers exist and should be identified with the fixed stars, and (iii) an asymptotic Minkowski
metric is naturally defined. This asymptotic background allows to avoid a split of the metric into a
background metric plus a perturbation in the weak field approximation. Due to point ii) the C-K space-
times provide a model of both the solar system and our galaxy but, as yet, not a well-defined model
for cosmology. If gravity is switched off, the C-K space-times collapse to Minkowski space-time and the
ADM Poincarè charges become the Poincarè special relativistic generators. These space-times provide,
therefore, the natural model of GR for incorporating particle physics which, in every formulation, is a
chapter of the theory of representations of the Poincarè group on Minkowski space-time in inertial frames,
the elementary particles being identified by the mass and spin invariants. If we change the boundary
conditions, allowing the existence of super-translations, the asymptotic ADM Poincarè group is enlarged
to the infinite-dimensional asymptotic SPI group (Wald, 1984) and we lose the possibility of defining the
spin invariant. Note that in spatially-compact space-times with boundary it could be possible to define a
boundary Poincarè group (lacking in the absence of boundary), but we know of no result about this case.
The mathematical background of these results can be found in Lusanna, 2001; Lusanna & Russo, 2002;
DePietri, Lusanna, Martucci & Russo, 2002; Agresti, DePietri, Lusanna & Martucci, 2004, and references
therein.
Let us add some further comments:
A) The fact that particle physics is defined in the spatially non-compact Minkowski space-time implies
that speaking of, e.g., nucleosynthesis in spatially compact cosmologies entails a huge extrapolation.
B) Classical string theories and super-gravity theories include particles, but their quantization requires
the introduction of a background space-time for defining the particle Fock space. The only well-developed
form of background-independent quantum gravity (loop quantum gravity), obtained by quantizing either
the connection or the loop representation of GR, leads to a quantum formulation inequivalent to Fock
space, so that it is as yet not known how to incorporate particle physics. We hope that our viewpoint,
taking into account the non-inertial aspects of GR, can be developed to the extent of being able to reopen
the program of canonical quantization of gravity in a background independent way by quantizing the DO
only. See Alba & Lusanna, (2005b), for a preliminary attempt to define relativistic and non-relativistic
quantum mechanics in non-inertial frames in Galilei and Minkowski space-times, respectively, in such a
way that the gauge variables describing the inertial effects (the appearances) remain c-numbers.
C) Finally, quantum field theory in background curved space-times does not admit a useful particle
interpretation of its states due to the absence of the notion of Fourier transform (no way of defining the
sign of energy and the usual Fock space). As a consequence, the particle notion is replaced by the notion
of detector and in this approach it is not clear how to recover the results of particle physics needed for
astrophysics.
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ADM energy
∫

d3σEADM(τ, ~σ) contains the potentials of the inertial forces explicitly, it is a
gauge-dependent quantity. This is nothing else than another aspect of the gauge-dependence
problem of the energy density in GR.

Thus, the final Einstein-Dirac-Hamilton equations for the DO, in a complete gauge, are

q̇r = {qr, HADM}∗, ṗs = {ps, HADM}∗, r, s = 1, 2, (4.2)

where HADM is intended to be the restriction of the weak ADM energy to Ω4 and where the
{·, ·}∗ are the Dirac brackets.

In conclusion, within the Hamiltonian formulation, we found a class of solutions in which
- unlike what has been correctly argued by Earman (Earman, 2002; Belot & Earman, 1999,
2001) for spatially-compact space-times - there is a real, NIF-dependent, temporal change.
But this of course also means that the frozen-time picture, being model dependent, is not a
typical feature of GR.

On the other hand, it is not clear whether the formulation of a cosmological model for GR
is necessarily limited to spatially compact space-times without boundary. As already said,
our model is suited for the solar system and the galaxy. It cannot be excluded, however,
that our asymptotic inertial observers (up to now identifiable with the fixed stars) might
be identified with the preferred frame of the cosmic background radiation with our 4-metric
including some pre-asymptotic cosmological term.

V. THE INTRINSIC GAUGE AND THE DYNAMICAL INDIVIDUATION OF
POINT-EVENTS

We know that only two of the ten components of the metric are physically essential: it
seems plausible then to suppose that only this subset can act as an individuating field, and
that the remaining components play a different role.

Consider the following four scalar invariant functionals (the eigenvalues of the Weyl ten-
sor), written here in Petrov’s compressed notation (see, e.g., Kramer, Stephani, MacCallum
& Herlit, 1980):

w1 = Tr (gWgW ),

w2 = Tr (gWεW ),

w3 = Tr (gWgWgW ),

w4 = Tr (gWgWεW ), (5.1)

where g is the 4-metric, W is the Weyl tensor, and ε is the Levi–Civita totally antisymmetric
tensor.

Bergmann and Komar (Komar, 1958; Bergmann & Komar, 1960; Bergmann, 1961, 1962)
proposed a set of invariant intrinsic pseudo-coordinates as four suitable functions of the
wT

30,

30 Modulo the equations of motion, the eigenvalues wT are functionals of the 4-metric and its first derivatives.
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Î [A] = Î [A]
[
wT [g(x), ∂g(x)]

]
, A = 0, 1, 2, 3. (5.2)

Indeed, under the hypothesis of no space-time symmetries, the Î [A] can be used to label
the point-events of space-time, at least locally. Since they are scalars, the Î [A] are invariant
under passive diffeomorphisms (therefore they do not define a coordinate chart in the usual
sense, precisely as it happens with radar-pseudo-coordinates).

Clearly, our attempt to use intrinsic pseudo-coordinates to provide a physical individu-
ation of point-events would prima facie fail in the presence of symmetries, when the Î [A]

become degenerate. This objection was originally raised by Norton (see Norton, 1988, p.60)
as a critique to manifold-plus-further-structure (MPFS) substantivalism (see for instance
Maudlin, 1988, 1990). Several responses are possible. Firstly, although to this day all the
known exact solutions of Einstein’s equations admit one or more symmetries, these mathe-
matical models are very idealized and simplified; in a realistic situation (for instance, even
with two masses alone) space-time would be filled with the excitations of the gravitational
degrees of freedom, and would admit no symmetries at all. Secondly, the parameters of the
symmetry transformations can be used as supplementary individuating fields, since, as no-
ticed by Stachel (1993), they also depend on the metric field, through its isometries. Thirdly,
and most importantly, in our analysis of the physical individuation of points we are argu-
ing a question of principle, and therefore we must consider generic solutions of Einstein’s
equations rather than the null-measure set of solutions with symmetries.

It turns out that the four Weyl scalar invariants can be re-expressed in terms of the
ADM variables, namely the lapse N and shift Na functions, the 3-metric 3gab and its con-
jugate canonical momentum (the extrinsic curvature 3Ka,b)

31. Consequently the Î [A] can
be exploited to implement four gauge-fixing constraints involving a hyper-surface Στ and its
embedding in M4. On the other hand, in a completely fixed gauge Γ8, the Î [A] become gauge
dependent functions of the DO of that gauge.

Writing

Î [A][wT (g, ∂g)] ≡ Ẑ [A][ŵT (3g, 3π, N,Na)], A = 0, 1, 2, 3; (5.3)

and selecting a completely arbitrary, radar-pseudo-coordinate system σA ≡ [τ, σa] adapted
to the Στ surfaces, we apply the intrinsic gauge-fixing defined by

χA ≡ σA − Ẑ [A]
[
ŵT [3g(σB), 3π(σD), N(σE), Na(σF )]

] ≈ 0, A,B,D,E, F = 0, 1, 2, 3;
(5.4)

to the super-hamiltonian (A = 0) and the super-momentum (A = 1,2,3) constraints. This is

a good gauge-fixing provided that the functions Ẑ [A] are chosen to satisfy the fundamental
orbit conditions {Ẑ [A],HB} 6= 0, (A,B = 0, 1, 2, 3), which ensure the independence of

31 Bergmann and Komar have shown that the four eigenvalues of the spatial part of the Weyl tensor depend
only upon the 3-metric and its conjugate momentum.
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the χA and carry information about the Lorentz signature. Then the complete Γ8 intrinsic
gauge-fixing procedure leads to the final result

σA ≡ Z̃ [A][qa(σB), pb(σ
D)|Γ)], A,B, D = 0, 1, 2, 3; a, b = 1, 2; (5.5)

where the notation |Γ) means the functional form assumed in the chosen gauge Γ8.
On-shell the last equation amounts to a definition of the radar-pseudo-coordinates σA as

four scalars providing a physical individuation of any point–event, in terms of the gravita-
tional degrees of freedom qa and pb. Therefore the scalars Z̃ [A], strongly identical to the radar
pseudo-coordinates, define the enlarged Atlas A of M4 referred to in footnote 22. In this
way, each of the point–events of space-time is endowed with its own metrical fingerprint ex-
tracted from the tensor field, i.e. the value of the four scalar functionals of the DO (exactly
four!)32. The price that we have paid for this achievement is that we have necessarily broken
general covariance! As already repeatedly stressed, every choice of 4-coordinates for a point
(every gauge-fixing, in the Hamiltonian language), in any procedure whatsoever for solving
Einstein’s equations, amounts to a breaking of general covariance, by definition. On the
other hand, the whole extent of general covariance can be recovered by exploiting the gauge
freedom. Our construction does not depend on the selection of a set of physically preferred
intrinsic pseudo-coordinates, because by modifying the functions I [A] we have the possibility
of implementing any (adapted) radar-coordinate system. Passive diffeomorphism-invariance
reappears in a different suit: we find exactly the same functional freedom of P Diff M4 in
the functional freedom of the choice of the pseudo-coordinates Z [A] (i.e. of the gauge-fixing).
What matters here is that any adapted radar-coordinatization of the manifold can be seen
as embodying the physical individuation of points, because it can be implemented as the
Komar–Bergmann intrinsic pseudo-coordinates after we choose the correct Z [A] and select
the proper gauge.

In conclusion, as soon as the Einstein-Dirac-Hamilton equations are solved in the cho-
sen gauge Γ8, starting from given initial values of the DO on a Cauchy hyper-surface Στ0 ,
the evolution in τ throughout M4 of the DO themselves, whose dependence on space
(and on parameter time) is indexed by the chosen coordinates σA, yields the following
dynamically-determined effects: i) reproduces the σA as the Bergmann-Komar intrinsic
pseudo-coordinates; ii) reconstructs space-time as a (on-shell) foliation of M4; iii) defines the
associated dynamically-admissible NIF; iv) determines a simultaneity and gravito-magnetism
convention.

Now, what happens if matter is present? Matter changes the Weyl tensor through Ein-
stein’s equations and, in the new basis constructed by the Shanmugadhasan transformation,
contributes to the separation of gauge variables from DO through the presence of its own
DO. In this case we have DO for both the gravitational field and the matter fields, which
satisfy coupled Einstein-Dirac-Hamilton equations. Since the gravitational DO will still pro-
vide the individuating fields for point-events according to our procedure, matter will come
to influence the evolution of the gravitational DO and thereby the physical individuation of
point-events and the dynamically-admissible NIF. Of course, a basic role of matter is the

32 The fact that there are just four independent invariants for the vacuum gravitational field should not be
regarded as a coincidence. On the contrary, it is crucial for the purpose of point individuation and for the
gauge-fixing procedure we are proposing.
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possibility of building apparatuses for the measurement of the gravitational field, i.e. for an
empirical localization of point-events. As shown elsewhere (Pauri & Vallisneri, 2002; LPI
and LPII), as a dynamical theory of measurement is lacking, the epistemic circuit of GR
can be approximately closed via an experimental three-step procedure that, starting from
concrete radar measurements and using test-objects, ends up in a complete and empirically
coherent intrinsic individuating gauge fixing, i.e. in an empirical construction of a net of
radar coordinates and in a measurement of the metric in such coordinates.

Finally, let us emphasize that, even in the case with matter, time evolution is still ruled by
the weak ADM energy. Therefore, the temporal variation corresponds to a real change and
not merely to a harmless gauge transformation as in other models of GR. The latter include,
as already stressed in Section IV, the spatially compact space-time without boundary. Note
furthermore that, since the DO of every completely fixed gauge in these spatially compact
models are τ -independent, the gauge fixing with A = 0 in (5.5) is inconsistent: it is therefore
impossible to realize the time-direction in terms of DO, and the individuation of point-events
breaks down. This is compatible with the Wheeler-DeWitt interpretation according to which
in such models we have only a local time evolution (in the direction normal to Στ ) generated
by the super-hamiltonian constraint (see for instance Kuchar, 1993). It is seen that our
individuation procedure fails in spatially compact models of GR on the same grounds that
prevent a real time evolution for them. More precisely, in such models it is possible to get
at best a physical individuation of the point-events belonging to the 3-space on a fixed time
slice, but not to space-time on the whole 33.

VI. ”THE LAST REMNANT OF PHYSICAL OBJECTIVITY OF SPACE-TIME”:
A FINAL LOOK

The main results we have so far obtained are: i) a NIF-dependent temporal evolution
of the physical observables; ii) the dis-solution of the Hole Argument; iii) a NIF-dependent
physical individuation of point-events in terms of the autonomous degrees of freedom of the
gravitational field (the metrical fingerprint we were looking for); while results i) and iii) are
valid for the C-K class only, result ii) is valid for every globally-hyperbolic space-time.

We want to scrutinize such results from the point of view of the issue of objectivity of
general relativistic space-time structures.

Concerning the first result, we can only stress that the NIF-dependence of the generator
of temporal evolution is nothing else than another manifestation of the endless problem of
energy of GR.

Concerning the searched for explanation of Leibniz equivalence, our analysis of the corre-
spondence between symmetries of the Lagrangian configurational approach and those of the
Hamiltonian formulation has shown the following. Solutions of Einstein’s equations that, in
the configurational approach, differ within the Hole by elements of the subset ADiff

′
M4,

33 This, by the way, is just what happens in loop quantum gravity: one starts with a fixed classical time slice
(a Cauchy surface) as a given 3-space and makes the quantization. This 3-space appears explicitly in all
the construction (see Nicolai, Peeters and Zamaklar, 2005). Up to now there has been no accepted solution
for the issue of temporal evolution in spatially compact space-times (the problem of the super-hamiltonian
constraint) and, therefore, of the spatiotemporal interpretation of the quantization.
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which correspond to mappings among gauge-equivalent Cauchy data, belong to the same 4-
geometry, i.e. the same equivalence class generated by applying all passive diffeomorphisms
to any of the original 4-metrics: 4Geom = 4Riem/P Diff M4 = 4Riem/Q′. In this case, as
seen at the Hamiltonian level, they are simply solutions differing by a harmless Hamiltonian
gauge transformation on shell and describing, therefore, the same Einstein ”universe”. Fur-
thermore, it is possible to engender these allegedly different models of GR within the hole,
by appropriate choices of the initial gauge fixing (the functions Ẑ [A]). Since we know that
the physical role of the gauge-fixings is essentially that of choosing the functional form of the
inertial potentials in the NIF defined by the complete gauge (the epistemic part of the game),
the ”differences” among the solutions generated within the Hole by the allowed active dif-
feomorphisms amount to the different inertial appearances of the autonomous gravitational
phenomena (the ontic part of the game) in different NIFs.

In the end, this is what, physically, Leibniz equivalence reduces to. This conclusion,
together with the physical individuation of point-events achieved by exploiting the intrinsic
gauge, make up our answer to Friedman’s question. The extent of intrinsic-ness of such an
answer will be specified presently.

As already anticipated, our analysis contrasts with Stachel’s attitude towards the Hole
Argument. Leaving aside Stachel’s broad perspective on the significance and the possibil-
ity of generalizations of the Hole story (see Stachel & Iftime, 2005), let us confine our-
selves to a few comments about Stachel’s original proposal for the physical individuation
of points of M4 by means of a fully covariant exploitation of the Bergmann-Komar invari-
ants Î [A]

[
wT [g(x), ∂g(x)]

]
, A = 0, 1, 2, 3. First of all, remember again that the effect of the

Hole Argument reveals itself on solutions of Einstein’s equations and that the active dif-
feomorphisms that purportedly maintain the physical identity of the points are, therefore,
dynamical symmetries. Now, how are we guaranteed that the functional dependence of the
covariant quantities Î [A]

[
wT [g(x), ∂g(x)]

]
be concretely characterized as relating to actual

solutions of Einstein’s equations ? Since in the actual case we know that these quantities
depend upon 4 DO and 8 gauge variables, we have, hidden under general covariance, a gauge
arbitrariness that unavoidably transfers itself on the individuation procedure and leaves it
undefined. Indeed, speaking of general covariance in an abstract way hides the necessity of
getting rid of the above arbitrariness by a gauge-fixing that, in turn, necessarily breaks gen-
eral covariance. In other words, a definite individuation entails a concrete characterization
of the epistemic part of the game, which is precisely what we have done. The result is, in
particular, exactly what Stachel’s suggestion was intended for, for our intrinsic gauge shows
that active diffeomorphisms of the first kind (i.e. those belonging to Q′ in their passive
interpretation) do map individuations of point-events into physically equivalent individua-
tions. Indeed, since the on-shell Hamiltonian gauge transformation connecting two different
gauges is the passive counterpart in Q′ of an active diffeomorphisms DA ∈ ADiff

′
M4, it

determines the drag-along coordinate transformation TDA
of Section II connecting the 4-

radar-coordinates of the two gauges, i.e. the dual view of the active diffeomorphism. While
the active diffeomorphism carries along the identity of points by assumption, its passive
view attributes different physically-individuated radar-coordinates to the same (mathemati-
cal) point. It is seen, therefore, that for any point-event a given individuation by means of
DO is mapped into a physically-equivalent, NIF-dependent, individuation.

It is worth stressing again that the main reason why we succeeded in carrying out a con-
crete realization of Stachel’s original suggestion to its natural end lies in the possibility that
the Hamiltonian method offers of working off-shell. In fact, the 4-D active diffeomorphisms,
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qua dynamical symmetries of Einstein’s equations, must act on solutions at every stage of
the procedure and fail to display the arbitrary epistemic part of the scalar invariants. On the
other hand, the Hamiltonian separation of the gauge variables (characterizing the NIF and
ruling the generalized inertial effects) from the DO (characterizing generalized tidal effects)
is an off-shell procedure that brings in the wanted metrical fingerprint by working indepen-
dently of the initial value problem. Once again, this mechanism is a typical consequence of
the special role played by gauge variables in GR34.

Consider now the results achieved by exploiting the intrinsic gauge. First of all, let us
state that results iii) are derived on the following assumptions only: a) the recourse to
Hamiltonian methods, which are necessary to keep the initial value problem under control;
b) the analysis of the Q group of Bergmann & Komar that provides the unique way for
connecting the Bergmann-Komar intrinsic pseudo-coordinates to our radar coordinates. It
should, therefore, be stressed that the uniqueness of the mathematical basis (the way in
which the four scalar eigenvalues of the Weyl tensor can be equated to four scalar radar
pseudo-coordinates by means of the intrinsic gauge) shows that this methodology constitutes
the only possible way of disclosing the proper point-events ontology of the class of space-times
we are referring to. For given initial data of the DO (identifying an Einstein’s ”universe”),
any other kind of gauge-fixing procedure would lead to gauge-equivalent solutions in which
the underlying point-events ontology simply would not be manifestly shown. Therefore, there
are no different formulations or methodologies to compare that could affect the conclusions
(philosophical or not) to be drawn from the theory.

As to the physical individuation, our results are tantamount to claiming that the physical
role of the gravitational field without matter is exactly that of individuating physically the
points of M4 as point-events, by means of the four independent phase-space degrees of
freedom. As pointed out above, the mathematical structure of the canonical transformation
that separates the DO from the gauge variables is such that the DO are highly non-local
functionals of the metric and the extrinsic curvature over the whole (off-shell) hyper-surface

34 According to a main conjecture we have advanced elsewhere (see LPI & LPII), a canonical basis of scalars
(coordinate-independent quantities), or at least a Poisson algebra of them, should exist, making the above
distinction between DO and gauge variables fully invariant. An evaluation of the degrees of freedom in
connection with the Newman-Penrose formalism for tetrad gravity (Stewart, 1993) tends to corroborate
the conjecture. In the Newman-Penrose formalism we can define ten coordinate-independent quantities,
namely the ten Weyl scalars. If we add ten further scalars built using the extrinsic curvature, we have
a total of twenty scalars from which one should extract a canonical basis replacing the 4-metric and its
conjugate momenta. Consequently, it should be possible to find scalar DO (the Bergmann observables,
see LPII) and some scalar gauge variables (for instance a scalar version of the shift functions, allow-
ing a coordinate-independent description of gravito-magnetism). In any case, the three gauge variables
connected to the choice of the 3-coordinates (or at least certain combinations of them) cannot be made
scalar, since they appear in those terms inside the ADM energy density which describe the potentials of
the intrinsically coordinate-dependent inertial effects. The individuating functions of (5.3) would depend
on scalars only and the distinction between DO and gauge observables would become fully invariant. Yet,
even in the case that the main conjecture might be proved, the gauge-fixing procedure would always break
general covariance and one should not forget, furthermore, that the concept of radar-coordinates contains
a built-in frame-dependence (see Section IV). Finally, and above all, the energy density EADM (τ, ~σ) would
remain a NIF-dependent quantity anyway.
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Στ . The same is clearly true for the intrinsic pseudo-coordinates [see Eq.(5.3)].
This said, we can even state that the existence of physical point-events in our mod-

els of general relativity appears to be synonymous with the existence of the DO for the
gravitational field. We advance accordingly the ontological claim that - physically - Ein-
stein’s vacuum space-time in our models is literally identifiable with the autonomous degrees
of freedom of such a structural field, while the specific (NIF-dependent) functional form
of the intrinsic pseudo-coordinates associates such coordinates to the points of M4. The
autonomous gravitational degrees of freedom are - so to speak - fully absorbed in the in-
dividuation of point-events. On the other hand, when matter is present, the individuation
methodology maintains its validity and shows how matter comes to influence the physical
individuation of point-events.

At this point, looking back at our results on their whole but with a special attention to iii),
we should make a clear assessment of the degree of physical objectivity of our individuation
procedure vis a’ vis the radical statement made by Einstein in the passage quoted in the
Introduction. What matters, of course, is the NIF-dependence of the physical identity of
point-events we have achieved for a given Einstein’s ”universe”. Clearly, a really different
physical individuation is obtained starting with different initial conditions for the Dirac
observables (i.e. for a different ”universe”).

Now, can the freedom of choice among the dynamically-possible NIF be equated with
”taking away from space and time the last remnant of physical objectivity” as Einstein
claimed ? We do believe that the answer is certainly ”no”. On the other hand, however,
we should acknowledge that what we have gained does not seem to be a kind of objectivity
in the usual sense, since the values of the DO which individuate the point-events are NIF-
dependent. It is only in the abstract reduced phase space Ω̃4, defined in Section IV by taking
the quotient with respect to all the gauge inertial effects, that abstract DO live: they are
the ”strictly intrinsic” qualifiers of the generalized tidal effects (i.e. of the proper degrees of
freedom of the gravitational field), which are then concretely realized by the ordinary Dirac
observables in each NIF. For any given Einstein’s ”universe” with its topology, the abstract
DO in Ω̃4 are locally functions of the points x of an abstract mathematical manifold M̃4

that is the equivalence class of all our concrete realizations of space-time, each one equipped
with its gauge-dependent individuation of points, NIF and inertial forces. The point over
which such fields reside could be called intrinsic to the extent that they are no longer
NIF-dependent, and synthesize the essential properties of all the appearances shown by
the gauges. Admittedly, the global existence of Ω̃4 over M̃4 is subjected to a huge set of
mathematical hypotheses which we will not take into account here. Locally, however, the
Dirac fields certainly exist and we could introduce a coordinate system defined by their
values as intrinsic individuating system for the given ”universe”. Given the abstract nature
of the NIF-independent DO, these considerations possess a purely mathematical value. At
any rate, we take them as meaningful enough to justify the affix ”point” to our notion of
”point-structuralism”35.

35 Recall the following passage by Bergmann and Komar: ”[...] in general relativity the identity of a world
point is not preserved under the theory’s widest invariance group. This assertion forms the basis for the
conjecture that some physical theory of the future may teach us how to dispense with world points as
the ultimate constituents of space-time altogether.” (Bergmann & Komar, 1972, p.27). Now the abstract
reduced phase space Ω̃4 would be just the germ of such a theory. The theory would be an abstract and highly
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The important question, however, is another one, namely, what kind of would-be fully ob-
jective spatiotemporal structures of our models of GR should the discovered NIF-dependence
of the point-events individuation be compared to ? Here, again, the fascination of general
covariance must be put to the test, and again we will find that the problem has to do
with an excessively self-confident utilization of the configurational (and fully general covari-
ant) geometric interpretation of a complex mathematical notion like that of Cauchy-surface.
This point was dealt with in great detail in LPII, Section 3. Here we shall limit ourselves
to exploiting the notion of Bergmann observable (BO) as an ’acid test’ for any off-hand
attribution of ”true objectivity”, or NIF-independence, or ”unique predictability”, to spa-
tiotemporal structures in GR. Briefly, a BO is a configurational quantity defined in M4 which
is both coordinate-independent (i.e. it is a scalar field or an invariant under P Diff ) and also
”uniquely predictable from initial data”. The essential point is that - under the current gen-
eral covariance wisdom - quantities which are ”invariant” under the passive diffeomorphisms
are often confidently, but wrongly, taken to be also ”uniquely predictable from the initial
data”. In LPII,3 we considered, in particular, the example of the four-dimensional scalar
curvature R(p), calculated at any point p of M4 lying in the ”future” of a Cauchy-surface.
This quantity, taken to be a BO, has been considered by Earman (see Earman, 2002) to
the effect of showing that the observables in GR cannot undergo any kind of change at
all, let alone temporal change. Now, the problem is exactly the same raised above for the
Bergmann-Komar scalars in Stachel’s perspective: how could we be sure by definition that
a scalar field - qua fully covariant entity - when rewritten in terms of ADM variables, does
not contain arbitrary gauge elements that can jeopardize the conclusion to be drawn from
its seemingly symmetric simplicity ? For this is exactly what happens in this case: as a
matter of fact, R(p) turns out to be a gauge-dependent (or NIF-dependent) quantity and
therefore not predictable; in conclusion it is not a BO! This lack of predictability, however,
cannot be perceived within the configurational and fully covariant approach of M4: the
shallow geometric interpretation of the Cauchy surface fails the ’acid test’. The same NIF-
dependence characterizes, for instance, quantities like the following off-shell scalars with
respect to P Diff M4: the bilinears 4Rµνρσ

4Rµνρσ, 4Rµνρσ εµναβ 4Rαβ
ρσ and - as already said

- the four eigenvalues of the Weyl tensor exploited in Section V. What is more important is
that the same does hold, in particular, for the one-way velocity of light, for the line element
ds2 and, therefore, for the very causal structure of space-time.

This technical de-tour highlights the important fact that, as soon as one leaves the rar-
efied atmosphere of full general covariance and soils his hands with the dirty facts of the
empirical front of GR, i.e. - theoretically - with the epistemic component of the inertio-
gravitational field, one realizes that all of the fundamental features of space-time structure
are - in our language - NIF-dependent. While the local equivalence principle dissolves the
absolute structures of the special theory of relativity, the global consequences of the (local)

non-local theory of classical gravitation that, transparency aside, would be stripped of all the epistemic
machinery (the gauge freedom) which is indispensable for both an empirical access to the theory and the
reconstruction of the local field gµν(x). In other words - inversely seen - the gauge structure contributes
to the re-construction of the spatiotemporal local and continuum representation. We see that even in
the context of classical gravitational theory, the spatiotemporal continuum plays the role of an epistemic
precondition of our sensible experience of macroscopic objects, playing a role which is not too dissimilar
from that enacted by Minkowski micro-space-time in the local relativistic quantum field theory (see Pauri,
2000).
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equivalence principle are precisely the pervasive non-inertials factors that show themselves
as NIF-dependence. It seems therefore reasonable that we do not expect for the physical
individuation of point-events, in our models, a degree of objectivity greater than that of all
the other physically relevant structures in GR. To conclude, we will state that all of these
structures are - unvoidably - weakly, or NIF-objective.

We would like to surmise that the disclosure of the physical meaning of Leibniz equivalence
renders even more glaring the ontological diversity of the gravitational field with respect to
all other fields, even beyond its prominent causal role. It seems substantially difficult to
reconcile the nature of the gravitational field with the standard approach of theories based
on a background space-time (to wit, string theory and perturbative quantum gravity in
general). Any attempt at linearizing such theories unavoidably leads to looking at gravity
from the perspective of a spin-2 theory in which the graviton stands at the same ontological
level as other quanta. In the standard approach of background-dependent theories of gravity,
photons, gluons and gravitons all live on the stage on an equal footing. From the point of
view set forth in this paper, however, non-linear gravitons are at the same time both the
stage and the actors within the causal play of photons, gluons, and other material characters
such as electrons and quarks.

Note finally that the individuating relation (5.5) is a numerical identity that has an in-
built non-commutative structure, deriving from the Dirac–Poisson structure hidden in its
right-hand side. The individuation procedure transfers, as it were, the non-commutative
Poisson-Dirac structure of the DO onto the individuated point-events, even though the
coordinates on the l.h.s. of the identity are c-number quantities. One could guess that such
a feature might deserve some attention in view of quantization, for instance by maintaining
that the identity, interpreted as a relation connecting mean values, could still play some role
at the quantum level.

VII. CONCLUDING REMARKS: AN INSTANTIATION OF STRUCTURAL RE-
ALISM AS ”POINT-STRUCTURALISM”

We conclude by spending a few words about the implications of our results for some issues
surrounding the recent debate on scientific structural realism, as well as for the traditional
debate on the absolutist/relationist dichotomy.

It is well-known that the term scientific realism has been interpreted in a number of dif-
ferent ways within the literature on philosophy of science, in connection with the progressive
sophistication of our understanding of scientific knowledge. Such ways concern, e.g., realism
about observable or unobservable entities, and realism about theories. A further ramification
of meanings has been introduced more recently by the so-called structural realism (the only
attainable reality are relations between (unobservable) objects), which originated a division
between the so-called epistemic structural realists (entity realism is unwarranted) and the
ontic structural realists (the relations exhaust what exists) (see Simon, 2003).

From the logical point of view, we can assume that the concept of structure refers to
a (stable or not) set of relations among a set of some kind of constituents that are put in
relations (the relata). The specification expressed by the notion of structural realism intro-
duces some kind of ontological distinction between the role of the relations and that of the
constituents. At least two main exemplary possibilities present themselves as obvious: (i)
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there are relations in which the constituents are (ontologically) primary and the relation
secondary; (ii) there are relations in which the relation is (ontologically) primary while the
constituents are secondary, and this even without any prejudice against the ultimate on-
tological consistency of the constituents. In the case of physical entities, following Stachel
(see Stachel, 2005) one could cautiously recover in this connection the traditional distinc-
tion between essential and non-essential properties (accidents) in order to characterize the
degree of (ontological) primacy of the relations versus the relata and vice versa (and this
independently of any metaphysical flavor possibly connected to the above distinctions). For
example, one could say that in the extreme case (i) only accidental properties of the con-
stituents can depend upon the relational structure, while in the extreme case (ii) at least
one essential property of the constituents depends upon the relational structure (saying that
all the essential properties of the relata depend upon the relation would be tantamount to
claiming that there exist only relations without constituents, as the ontic structural realist
has it).

A further complication is connected to the nature of the structure we are considering.
For while at the logical level (leaving aside the deep philosophical issue concerning the
relationships between mathematical structures and substances) the concept of mathematical
structure (e.g. a system of differential equations, or even the bare mathematical manifold
of point which provides the first layer of our representations of the real space-time ) can be
taken to be sufficiently clear for our purposes, the definition of physical structure immediately
raises existential philosophical problems. For example, we believe that it is very difficult to
define a physical structure without bringing in its constituents, and thereby granting them
some kind of existence and defending some sort of entity realism. Analogously, we believe
that it is very difficult to defend structural realism without also endorsing a theory realism
of some sort. However, both theses are not universally shared.

Having said this, let us come back to the results we obtained in the previous sections.
The analysis based on our intrinsic gauge has disclosed a remarkable and rich local structure
of the general-relativistic space-time for the considered models of GR. In correspondence to
every intrinsic gauge (5.5) we achieved a gauge-related physical individuation of point-events
in terms of the DO of that gauge, i.e. in terms of the ontic part of the gravitational field,
as represented in the clothes furnished by the NIF. Such individuation is characterized by
a highly non-local functional dependence of the DO upon the values of the metric and the
extrinsic curvature over the whole (off-shell) space-like hyper-surface Στ of distant simul-
taneity. Since the extrinsic curvature has to do with the embedding of the simultaneity
hyper-surface in M4, the DO do involve geometrical elements external to the hyper-surface
itself. In fact, the temporal gauge (fixed by the scalar Z [0]) in the identity (5.5) refers to a
continuous interval of hyper-surfaces, and the gauge-fixing identity itself is intrinsically four-
dimensional. We have, therefore, an instantiation of metrical holism which, though local in
the temporal dimension and characterized by a dynamic stratification in 3-hypersurfaces, is
four-dimensional. Admittedly, the distinction between ontic and epistemic parts, as well as
the form of the space-like surfaces of distant simultaneity, are NIF-dependent.

Thus we have discovered that ontologically the identity of point-events is conferred upon
them by a complex relational structure in which they are holistically enmeshed. This re-
lational structure includes all the elements of the complete gauge fixing Γ8 summarized by
a NIF, and supported by a definite solution of Einstein’s equations throughout M4, corre-
sponding to given initial values for the DO in that gauge (a definite Einstein ”universe”). We
propose to define such physical identity of point-events as weakly-objective or NIF-objective,
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with the important notice, however, that this weak degree of objectivity is the maximum
that can be attained for all of the relevant spatiotemporal structures in a formulation in
which the initial value problem for the C-K models of GR is well-posed. Although the
holistic structure appears to be ontologically prior to its constituents (the point-events) as
to their physical identity, we cannot agree with Cao’s assertion (see Cao, 2003, p.111) that
the constituents, as mere place-holders, derive their meaning or even their existence from
their function and place in the structure. Indeed, at any level of GR, the empirical level
above all, one cannot avoid quantifying over points, and we have just attributed a physical
meaning36 to the radar-coordinate indexing of such point-events. Such an indexing makes
the latter as ontologically equivalent to the existence of the gravitational field in vacuum as
an extended entity, since the autonomous degrees of freedom of the gravitational field are
- so to speak - fully absorbed in the individuation of point-events. From this point of view,
our dressed point-events are not under-determined by empirical evidence. Quite in general,
we cannot see how a place-holder can have any ontological function in an evolving network
of relationships without possessing at least some kind of properties. For our results do in
fact confer a sort of causal power on the gravitationally-dressed points.

Furthermore, as already said, we could even dare a little more concerning the identity
of points, since some kind of abstract intrinsic individuality survives beneath the variety of
descriptions displayed by all the gauge-related NIF and common to all these appearances.
This kind of intrinsic identity - in the vein suggested by Bergmann and Komar - is just
furnished by the abstract Dirac fields residing within the phase-space Ω̃4, which is nothing
else but a quotient with respect to all of the concrete realizations and appearances of the
NIF. Accepting this suggestion for the sake of argument we would be led to a peculiar
space-time structure in which the relation/relata correspondence does not fit with any of the
extreme cases listed above, for one could assert that while the abstract essential properties
belong to the constituents as seen in Ω̃4 (so that abstract point-events in M̃4 would be like
natural kinds), the totality of the physically concrete accidents are displayed by means of the
holistic relational structure. This is the reason why we propose calling this peculiar kind of
space-time structuralism point-structuralism. Admittedly, it is important not to be misled
into thinking that this abstract intrinsic-ness has a direct physical meaning.

Summarizing, this view holds that space-time point-events (the relata) do exist and we
continue to quantify over them; however, their properties can be viewed both as extrinsic
and relational, being conferred on them in a holistic way by the whole structure of the metric
field and the extrinsic curvature on a simultaneity hyper-surface, and, at the same time -
at an abstract level only - as intrinsic, being coincident with the autonomous degrees of
freedom of the gravitational field represented by the abstract NIF-independent Dirac fields
in Ω̃4. In this way - although point-events cannot be viewed as genuine individuals - both the
metric field and point-events maintain their own manner of existence, so that the structural
texture of space-time in our models does not force us to abandon an entity realist stance
about both the metric field and its points. We must, therefore, deny the thesis according to
which metrical relations can exist without their constituents (the point-events).

Concerning the traditional debate on the dichotomy substantivalism/relationism, we be-
lieve that our analysis may indeed offer a tertium-quid solution to the debate.

36 Even operationally, in principle (see Pauri & Vallisneri, 2002; LPI and LPII, already quoted in Section
V).
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First of all, let us recall that, in remarkable diversity with respect to the traditional
historical presentation of Newton’s absolutism vis á vis Leibniz’s relationism, Newton had
a much deeper understanding of the nature of space and time. In two well-known passages
of De Gravitatione, Newton expounds what could be defined an original proto-structuralist
view of space-time (see also Torretti, 1987, and DiSalle, 1994). He writes (our emphasis):

Perhaps now it is maybe expected that I should define extension as substance or accident or
else nothing at all. But by no means, for it has its own manner of existence which fits neither
substance nor accidents [ . . . ] The parts of space derive their character from their positions,
so that if any two could change their positions, they would change their character at the same
time and each would be converted numerically into the other qua individuals. The parts of
duration and space are only understood to be the same as they really are because of their
mutual order and positions (propter solum ordinem et positiones inter se); nor do they have
any other principle of individuation besides this order and position which consequently cannot
be altered. (Hall & Hall, 1962, p.99, p.103.)

On the other hand, in his relationist arguments, Leibniz could exploit the conjunction of
the Principle of Sufficient Reason and the Principle of the Identity of Indiscernibles because
Newtonian space was uniform, as the following passage lucidly explains (our emphasis):

Space being uniform, there can be neither any external nor internal reason, by which to
distinguish its parts, and to make any choice between them. For, any external reason to
discern between them, can only be grounded upon some internal one. Otherwise we should
discern what is indiscernible, or choose without discerning. (Alexander, 1956, p.39).

Clearly, if the parts of space were real, Leibniz Principles would be violated. Therefore,
for Leibniz, space is not real. The upshot, however, is that space (space-time) in general
relativity, far from being uniform may possess, as we have seen, a rich structure. This is
just the reason why - in our sense - it is real, and why Leibniz equivalence called upon for
general relativity happens to hide the very nature of space-time, instead of disclosing it.

We claim that our results lead to a new kind of structuralist conception of space-time.
Such structuralism is not only richer than that of Newton, as one could expect because of
the dynamical structure of Einstein space-time, but richer in an even deeper sense. Not only
the independent degrees of freedom of the metric field are able to characterize the ”mutual
order and positions” of points dynamically, since each point-event ”is” - so to speak - the
”values” of the autonomous degrees of freedom of the gravitational field; their capacity is
even stronger, since such mutual order is altered by the presence of matter.

This new structuralist conception turns out to include elements common to the tradition
of both substantivalism and relationism. Although the metric field does not embody the
traditional notion of substance, it is taken to represent a genuine and primitive element of
physical reality and its definition is a necessary condition in order to be able even to speak
of space-time. In this sense exists and plays a role for the individuation of point-events by
means of its structure. On the other hand, our point-structuralism does not support even
the standard relationist view. In fact, the holistic relationism we defend does not reduce
the whole of spatiotemporal relations to physical relations (i.e. it is not eliminativist), nor
does it entails that space-time does not exist as such, being reducible to physical relations.
Our dressed point-events are ”individuals” in a peculiar sense: they exist as autonomous
constituents, but one cannot claim that their properties do not depend on the properties of
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others. Not only relations, but also their carriers do exist, even if they do bring intrinsic
properties in a very special sense.

Let us finally consider what John Earman wrote in his 1989 book:

The absolute-relational contrast is far from being a dichotomy. A possible, third alternative,
which I shall call the property-view of space-time, would take something from both camps: it
would agree with the relationist in rejecting a substantival substratum for events while joining
with the absolutist in recognizing monadic properties of spatiotemporal locations. (Earman,
1989, p.14).

Clearly, stricto sensu, we cannot say that our view of space-time is a property-view in
Earman’s sense. All quantities definable with respect to our gravitationally-dressed point-
events are not irreducible monadic spatiotemporal properties. For they are reducible on the
grounds that the physical identity of our point-events is NIF-relational. Still, due to the
underlying abstract structure of autonomous gravitational degrees of freedom represented
by the abstract NIF-independent Dirac fields in Ω̃4, we feel allowed to talk of a weak-property
view of space-time.

We acknowledge that the validity of our results is restricted to the class of models of
GR we worked with. Yet, we were interested in exemplifying a question of principle, so
that we can claim that there is a class of models of GR embodying both a real notion of
NIF-dependent temporal change, a NIF-dependent physical individuation of points and a new
structuralist and holistic view of space-time.
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