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Abstract

We discuss from a philosophical perspective the way in which the
normal concept of time might be said to ‘emerge’ in a quantum the-
ory of gravity. After an introduction, we briefly discuss the notion of
emergence, without regard to time (Section 2). We then introduce the
search for a quantum theory of gravity (Section 3); and review some
general interpretative issues about space, time and matter (Section
4). We then discuss the emergence of time in simple quantum ge-
ometrodynamics, and in the Euclidean approach (Section 5). Section
6 concludes.
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1 Introduction

The discovery of a satisfactory quantum theory of gravity has been widely
regarded as the Holy Grail of theoretical physics for some forty years. In
this essay, we will discuss a philosophical aspect of the search for such a
theory that bears on our understanding of time: namely, the senses in which
our standard ideas of time, and more generally spacetime, might be not
fundamental to reality, but instead ‘emergent’ as an approximately valid
concept on sufficiently large scales.

In taking up this topic, our aim in part is to advertise to philosophers
of time an unexplored area that promises to be fruitful. That is: we main-
tain that beneath the sometimes rebarbative technicalities of the research
programmes in quantum gravity, there are conceptual topics that are suffi-
ciently related to current philosophical debates, that philosophers can both
contribute to those topics, and have some light shed on their own debates.
More specifically, we believe some general philosophical claims about emer-
gence, which we will state in Section P}, are well illustrated by some of these
research programmes. Furthermore, by addressing this topic, and illustrat-
ing it with these programmes, our discussion will complement the essays by
Barbour and Kuchaf (this volume).

We need first to introduce our topic: (this will also yield a prospectus of
the later Sections). The first thing to note is an ambiguity in ‘emergence’
and cognate words. In everyday language, ‘emergence’ suggests a process in
time, as in ‘the woman emerged from the crowd’, or even an evolutionary
process, as in ‘amphibians emerged from fishes’. But in this essay, we intend
‘emergence’ in the non-temporal, philosophical sense of, roughly, reduction,
or more often, some relation similar to (usually weaker than) reduction; as
in ‘the mental properties of a person emerge from their physical properties’;
or ‘the laws of chemistry emerge from the basic equations of physics’.

We shall discuss the notion of emergence (and reduction) in more detail in
Section [} But we can already state the broad idea of the emergence of time.
It is that the concept of time within present physical theories—by which
we mean Newtonian physics, special relativity, and general relativity—is an
approximation within a quite different conceptual framework that is associ-
ated with a quite different theory. Arguably, our present theories’ concept
of time stems from our psychological awareness of the temporal ordering of
events—a property that is reflected mathematically in physics by the use of



the real numbers (a totally ordered system)f] to represent ‘points’ in time.
In turn, these real numbers are regarded as the ‘temporal coordinate’ in a
four-dimensional differentiable manifold, whose remaining three coordinates
represent space. For Newtonian physics, this distinction between ‘temporal’
and ‘spatial’ coordinates is a fundamental ingredient in the corresponding
theories. In the case of relativity theory (special or general), the distinction
is coded in a metric tensor: essentially, a mathematical structure that spec-
ifies both spatial lengths and temporal intervals between points in a unified
spacetime.

In this context, the idea of the emergence of time is, roughly speaking,
that the concept of time as a continuum ordering of events is only an approxi-
mation, valid for sufficiently large scales of time and length (and, correspond-
ingly, sufficiently low energiesf]), to what is expected to be a quite different
concept in the, as yet, unknown full quantum theory of gravity. Note that,
for brevity, we shall often talk of the ‘emergence of time’, not always adding
‘and of space’ or ‘of spacetime’; but in the light of relativity’s unification
of space and time, it is reasonable to expect that both space and time are
emergent concepts.

It is already clear that a full discussion of the emergence of time in quan-
tum gravity would be a very daunting task. It would involve probing an
‘intellectual space’ with three different ‘coordinates’ which aspects of time
are emergent, in which sense, and in which of a range of quantum grav-
ity programmes. A full discussion would be beyond our—and we dare say,
anybody’s—competence, if all three coordinates are given a wide range of
values, which each get a detailed treatment.

It is not just that among the putative aspects of time are metaphysical
matters such as the relation of time to causation, and whether there is tem-
poral becoming: matters which are controversial, in themselves (c¢f. Tooley,
this volume) and in relation to present-day physical theories, let alone some
future theory of quantum gravity. Also, even while confining ourselves to
those aspects of time that are uncontentious parts of our present theories’
treatment (as in the above paragraph), the other ‘coordinates’ are problem-

4Those who have succumbed to the seductive allure of the archetype of ‘eternal
recurrence’—for example, in our own time: Nietzsche and T.S. Eliot—would want to
model points in time by the points on a circle, rather than the real line.

5In a quantum theory, the scales of time or length are related to the inverse of energy
via Planck’s constant.



atic. As we shall see in Section [, the general notion of emergence is vague,
and contentious. And once we settle on some such notion, there is a wide and
disparate range of quantum gravity programmes to consider. Furthermore,
most of these programmes face hard conceptual problems (as well as techni-
cal ones), that often involve how time is meant to emerge. We shall mention
some of these programmes and problems in Section [J; and in Section [, we
discuss some interpretative issues in more detail.

Thereafter, we shall confine ourselves to a fragment of the overall task.
Namely, we will consider just two forms of the canonical quantum gravity
programme: (i) quantum geometrodynamics, viewed as the general analysis
of the Wheeler-DeWitt equation (Section [.2—5.4); and (ii) the Euclidean
programme, which uses functional integrals of Euclidean 4-metrics to con-
struct specific solutions of the Wheeler-DeWitt equation (Section B.5).

These programmes are very closely related. Indeed, one could equally
well say, individuating ‘programmes’ rather differently, that the latter is part
of the former. Unsurprisingly, therefore, the latter faces much the same
conceptual problems as the former. It has, however, distinctive features
which merit the separate discussion in Section .5

We should emphasise at the outset that these two programmes are not
now among the main current approaches to quantum gravity. Yet there are
three good reasons for choosing them here: reasons relating to the present
state of the philosophical literature on quantum gravity, and to this volume.

First: the emergence of time is related to the so-called ‘problem of time’,
which has already been discussed by philosophers (for example, []); and
though this problem crops up in one form or another for all quantum gravity
programmes, it has been most studied, and is best understood, for quantum
geometrodynamics. Second, and related: Kuchaf (this volume) discusses
precisely this problem, for quantum geometrodynamics; so our choosing the
same programme gives us the opportunity to write a complementary essay.

Our third reason relates to the Euclidean programme, specifically to a
model of quantum cosmogenesis made within it by Hartle & Hawking [J], viz.
the ‘no-boundary proposal’. A considerable philosophical, as well as popu-
lar scientific, literature about the emergence of time has grown up around
this proposal. But we believe that much of that literature is marred by not
taking sufficient cognizance of the problem of time, which besets the Eu-
clidean programme as much as quantum geometrodynamics. In a nutshell:
by ignoring the problem of time, much of the literature makes it look as if



the no-boundary proposal treats the emergence of time as a process in time,
i.e., according to the temporal sense of ‘emergence’ noted above. And then,
unsurprisingly, the no-boundary proposal seems to face conundrums or even
contradictions. But these are an artefact of ignoring the problem of time. In
other words: we agree that the no-boundary proposal is very problematic:
but this is because it must confront the problem of time (to whose solution it
makes no contribution), not because of such conundrums—which we believe
rather facile.

2 Emergence in General

2.1 Prospectus

In this Section we discuss emergence in general, without regard to the idea
of time emerging. Although space is short, a brief discussion is called for,
for two reasons. First, philosophy has no definite and established usage,
for ‘emergence’ and cognate words. ‘Emergence’ tends to be used as an
alternative—usually, a weaker alternative—to ‘reduction’: a concept, or a
theory or some similar item (such as a law or a model) is said to be, not
reducible to another such item, but merely emergent from it. But this leaves
open what exactly emergence is (not least because ‘reduction’ also has no
definite and established meaning!), and even what are the items between
which it holds. So we need to clarify the terms.

Second, and more important, we also want to make some claims about
emergence and its relation to reduction: claims which will be illustrated by
the quantum gravity programmes discussed in Sections 4 and 5—but which
we think are worth stating in general. These claims will follow from some
criticisms (presented in Sections 2.2, 2.3) of a familiar, comparatively precise
notion of reduction, and an apparently weaker alternative, supervenience.

To keep the discussion short, we will fix on one traditional choice of the
items between which relations of reduction, supervenience and emergence
hold. Namely: theories, as understood in the syntactic conception (and in
formal logic), i.e., understood as sets of sentences closed under deduction.
But we believe our arguments and claims hold good, under other choices;
in particular, on the main rival conception of theories, viz. the semantic
conception according to which theories are classes of models.



We will begin (Section 2.2) by introducing a precise notion of reduction
for theories. It is, in logicians’ jargon, ‘definitional extension’. Apart from
the advantage of precision, this notion has been immensely influential in
twentieth century philosophy: in the first place, in logic and foundations of
mathematics, and then in philosophy of science. It has been the formal core
of many proposed analyses of the relation of reduction between scientific
theories. More precisely: on its own, definitional extension is too weak—
it applies in cases where intuitively there is irreducibility. So analyses of
reduction typically add informal clauses, to try and capture the idea that the
reduced theory is ‘just a part’ of the reducing theory, as regards its concepts,
explanatory resources etc. We will maintain that such considerations are so
heterogeneous that there seems little prospect of a general formal definition
of reduction.

This notion of definitional extension will also lead us to an apparently
weaker, but also quite precise, notion: supervenience (Section 2.3). Because
supervenience is apparently weaker, it has been a favoured candidate, espe-
cially in recent metaphysics, for capturing the idea of emergence, understood
as a weaker alternative to reduction. But we will point out that whether
supervenience is really weaker than definitional extension turns out to be a
subtle matter of logic. We will also claim that because supervenience, like
definitional extension, is a formal notion, it is sometimes too weak. That is
to say: it applies in cases where intuitively a theory is not emergent from
another.

In Section 2.4, we spell out the upshot of this discussion for the notion of
emergence, as some weaker alternative to reduction. Just as for reduction,
the factors that prompt us to talk of emergence are too informal, and vary
too much from one case to another, for there to be much prospect of a
satisfactory general, formal definition of emergence. And being emergent is
even compatible with reduction in our initial, precise (and often too weak!)
sense of definitional extension. We will conclude that, rather than seeking
such a general definition, we need to bear in mind the variety of ways that
theories can be related: in particular, with one theory being in some sense a
limit of the other, or an approximation to it.

2.2 Reduction



2.2.1 Introducing Definitional Extension The intuitive idea of one
theory T} being reduced to another T is the idea of T} being shown to be a
part of T5. The notion of definitional extension makes this idea precise in two
main ways. First, it focusses on the syntactic conception of theories. This
immediately gives a notion of 77 being a part of 75, viz. when the theorems
of T} are a subset of those of T;. (This is called T} being a sub-theory of
T5.) However, one needs to avoid confusion that can arise from the same
predicate (or other non-logical symbol) occurring in both theories, but with
different intended interpretations. This is usually addressed by taking the
theories to have disjoint non-logical vocabularies. Then one defines 77 to be
a definitional extension of Ty, if and only if one can add to T, a definition
of each of the non-logical symbols of T}, in such a way that 7} becomes a
sub-theory of T5. That is: In T3, once augmented with the definitions, we
can prove every theorem of T7. (The definitions must of course be judiciously
chosen, with a view to securing the theorems of 77.)

That is the principal idea of definitional extension. But there is a sec-
ond aspect, which concerns the question: which operations for compounding
predicates, and perhaps other symbols, does one allow oneself in building the
definitions of the terms of T;7 It has been usual in philosophy to consider a
very meagre stock of operations, viz. just the logical operations: the Boolean
operations of conjunction and negation, and the application of the quantifiers
‘all’ and ‘some’.

Of course, this restriction does not just reflect the influence of logic on
analytic philosophy. It also has a deeper rationale, relating to the striking
success of studies in logic and mathematics, from the mid-nineteenth century
onwards, in showing various pure mathematical theories to be definitional
extensions in the above sense, i.e., using just these logical operations, of
others. Indeed, by concatenating such deductions with judiciously chosen
definitions, one shows in effect that all of classical pure mathematics can
in this sense be deduced from the theory of sets. This remarkable result,
showing how large an expressive power can be obtained by applying this
small stock of logical operations to a small initial family of predicates, is the
source of the traditional philosophical restriction to considering just these
logical operations.

It is also of course a result whose impact on analytic philosophy, includ-
ing analytic philosophy of science, cannot be over-estimated! For recall that
the founding fathers of analytic philosophy were very concerned with apply-



ing the axiomatic method, and more generally the tools of modern logic, to
the natural sciences, especially physics. The programme of stating physi-
cal theories precisely, as theories in a formal language, and of investigating
their logical relations, preoccupied such authors as Reichenbach and Schlick.
More specifically, the idea of one such theory being a sub-theory—i.e., a defi-
nitional extension—of another became the core idea in analytic philosophers’
proposals for the relation of reduction between scientific theories.

We will turn to such proposals in a moment. But first, we should note
a general point about definitional extension: for it will be needed in Section
2.3. It concerns the stock of operations for compounding predicates etc. that
are used in building definitions. Namely: In discussing physical, rather than
pure mathematical, theories it is very natural to augment the tiny stock of
logical operations, discussed above, with some of the standard operations of
mathematics, such as taking derivatives, integrals, orthocomplements, com-
pletions etc. This arises from the fact that even quite simple physical theories
such as, for example, Newtonian mechanics of point particles interacting just
by gravity, are complicated from the viewpoint of logic and foundations of
mathematics; simply because such theories use mathematical apparatus (for
example, calculus) that is ‘high up’ in the deductive chain from basic logic
and set theory. So when we undertake to express such a theory in a for-
mal language, we naturally envisage adding the theory’s distinctive physical
vocabulary, and axioms governing it, to a so-called ‘underlying logic’ that
is much stronger than just basic logic and set theory; i.e., to one that con-
tains standard mathematical operations sufficient to yield the mathematical
apparatus; for example, calculus, which is needed by the theory.

2.2.2 Definitional Extension in Philosophy of Science The best-
known proposed analyses of reduction, as a relation between scientific the-
ories, are by Hempel and Nagel, in various papers from the 1940s to the
1970s. The standard reference is [[J] (Chapter 11):] Nagel adds to the core
idea of definitional extension some informal conditions, mainly motivated by
the idea that the reducing theory should explain the reduced theory; and
following Hempel, he conceives explanation in deductive-nomological terms.
Thus he says, in effect, that T reduces 77 if, and only if:

SFor other references, together with an evaluation of the proposals for reduction in
physics see, for example, Spector [[fj(Chapters 3-4, esp. p. 44).



1. T} is a definitional extension of T5; and also

2. In each of the definitions of the terms of T} (which Nagel calls a ‘bridge
law’), the definiens (in the language of T5) must play a role in T5; so it
cannot be, for example, a heterogeneous disjunction.

We need to make three comments on this sort of proposal; (the details of
Nagel’s clause 2. will not concern us). In effect, the first is a positive com-
ment about definitional extension. The second and third (in the next two
Paragraphs) are negative comments: in short, that definitional extension is
sometimes too weak for reduction, and that it is sometimes too strong.

We said above that it was very remarkable that in effect all of classical
pure mathematics was a definitional extension using just logical operations,
of set theory. But it is equally remarkable how many examples of definitional
extension there are in physics, at least once we give the reducing physical
theory a suitably strong underlying logic (i.e., a rich enough set of opera-
tions) so as to ‘extend its deductive reach’. Examples arise in almost any case
where there is a derivation of one physical theory from another; and there
are many such. For example: the elementary theory of equilibrium classical
statistical mechanics for a strictly isolated system, which postulates the mi-
crocanonical measure on the energy hypersurface, is a definitional extension
of the mechanics of the micro-constituents, once we use an underlying logic
strong enough to express calculus (of many variables).[]

This point is worth stressing, since it tends to be obscured by the tra-
ditional emphasis in the philosophical literature on the apparent defects of
definitional extension as a general analysis, or part of a general analysis, of
reduction. Though we now turn to discuss those defects, they should not ob-
scure the remarkable number of deductive interconnections between various
pieces of physics.

"The details, unimportant for the rest of this paper, are as follows. The notion that
this theory adds to the mechanics of the micro-constituents is exactly this microcanonical
measure. But within the mechanics together with an underlying logic containing calculus,
we can define both (i) the measure’s domain of definition, and (ii) the measure itself. (i) is
just the (Borel subsets of) the surface in phase space of given energy; and so is definable.
(ii) is defined by weighting the Lebesque measure p on phase space with the gradient
VE of the energy E; and both p and VE are definable. Incidentally: for its empirical
adequacy, the theory needs to assume that the micro-constituents do not interact; cf., for
example, [ (p. 36, 42-3, 111.)



2.2.3 Definitional Extension is too Weak The point that definitional
extension is sometimes too weak for reduction has been widely recognized.[]
We can express the point in general, as follows. Even if 77 is a definitional
extension of Ty, so that (roughly speaking) each of its predicates (or other
non-logical terms) is coextensive with a compound predicate built from T3’s
vocabulary: there may well be aspects of T}, crucial to its functioning as
a scientific theory, that are not encompassed by (are not part of) the cor-
responding aspects of T,. For example, one might think that despite the
strict (exceptionless) coextensiveness of predicates, T7’s properties are dif-
ferent from those of T, (including T5’s compound properties). Or one might
think that 77 has aspects to do with explanation, or modelling, or heuristics,
that are not encompassed by 7T, (even taken together with the coextensive-
ness, given suitable definitions, of predicates).

Clearly, what these aspects of T that ‘outstrip’ T, might be, varies from
case to case; and being informal, they are typically controversial. But both
the general point, and the controversial status of the details, is well illus-
trated by Nagel’s own proposed analysis of reduction, and the subsequent
literature. As we mentioned, Nagel’s own supplement to definitional exten-
sion, clause 2. above, was motivated by the idea that T, should explain
Ty, where explanation is conceived in deductive-nomological terms. And fol-
lowing Nagel, there were various rival proposals about how to supplement
definitional extension. Some authors focussed on ontological issues about
property-identity, and thus on the definitions of 7}’s terms (the bridge laws):
for example, requiring them to be statements of nomological coextensiveness.
Other authors focussed on whether reduction must include explanation, and
on what is required for an explanation; and so on.

Fortunately, we do not need to enter the controversy about which such
supplementary clauses might be right. We need only note two points.

(A) The first relates to our statement in Paragraph 2.2.2 that physics
provides many examples of definitional extension. Namely: though this
statement may seem contentious, in the light of various doctrines about the
‘disunity of physics’, we now see that it is not. For such doctrines say, in
effect, that whichever supplementary clauses are right, there are few pairs of

8But it is, we think, not as widely recognized as the converse ‘Feyerabendian’ objection
that definitional extension is too strong—discussed in the next Paragraph. Smith [ﬂ] (pp
30-32) is a laudable exception.



theories instantiating them—for physics is disunited. And that is compatible
with many instantiations of the ‘first clause’, definitional extension.

To put the same point in other words: physics abounds with examples of
definitional extension, provided that the derived theory is conceived narrowly
enough that it does not have properties, explanatory resources etc. that ‘ride
free’ of the deriving theory, and so block the derivation. Indeed, our example
of classical statistical mechanics was deliberately chosen to illustrate this.
Thus we concede that:

1. Whether statistical mechanics reduces to the mechanics of the individ-
ual microscopic constituents is much debated (as is whether thermody-
namics reduces to statistical mechanics);

2. As regards our example, one can take the view that the microcanon-
ical measure is a distinctively probabilistic concept, and so is merely
coextensive with its micromechanical definiens;

3. More generally, for the standard example of temperature: one can take
the view that although in elementary statistical mechanics, the temper-
ature of a sample of gas is definable as the mean kinetic energy of the
constituent molecules, a more sophisticated treatment shows that tem-
perature indeed has a ‘distinctive identity’ oustripping this definiens.
Its central role is to be a parameter describing a probability distribu-
tion, and as such it figures in the laws of statistical mechanics, and its
explanations of various phenomena, in many complex ways: prompting
the claim that statistical mechanics is indeed not reducible to micro-
mechanics.

Our point is simply that these concessions in no way undermine our example’s
claim of definitional extension.

(B) Our second point arising from the weakness of definitional extension
is simply that the ongoing controversy over how to supplement definitional
extension in an analysis of reduction suggests that there may well be no single
‘best’ concept of reduction—no ‘essence’ of reduction to be winnowed out by
analysis. The discussion of the next paragraph will support this suggestion.

2.2.4 Definitional Extension is too Strong We turn to the idea that
definitional extension, and thereby proposals like Nagel’s that incorporate it,

10



is sometimes too strong for reduction. Again, the idea is widely recognized:
Nagel’s proposal, and variants that keep his clause 1. (only adjusting his 2.),
are often now regarded as too strict. That is: there are intuitive cases of
T, reducing 77 without such a deduction of 7. This sort of objection goes
back at least to Feyerabend [[], who gives examples of T) reducing T; while
being inconsistent with it. For example, Feyerabend agrees with Nagel that
Newtonian gravitation theory reduces Galileo’s law of free fall; but he stresses
that it is inconsistent with the law, since it says (contrary to Galileo’s law)
that the acceleration of a body increases as it falls towards the Earth.

Along with many others, we agree with this objection, and the general
idea it prompts: that reduction often involves approximation. Indeed, Nagel
himself proposed that a case in which T7’s laws are a reasonable approxi-
mation to what strictly follows from 75 should count as reduction. More
generally, various authors have suggested, in the wake of the critique by Fey-
erabend et al., that reduction often involves 75 including some sort of ana-
logue, T say, of T;. They require this analogue to be close enough to T}, in
such matters as its theoretical properties and the postulates concerning them,
and /or its explanatory resources, and/or its observational consequences, that
one is happy to say that ‘T reduces T —rather than something indicating a
greater ‘gap’ between them, such as I} emerges from T5’, or even ‘T, replaces
T, or even ‘the theories are incommensurable’.

Here our deliberate vagueness about the conditions required of T is in-
tended to signal both that the various authors differ in their formulations,
and that controversy continues. Among the standard cases that get studied
are the pairs, Newtonian mechanics and special relativity, and thermody-
namics and statistical mechanics; (or better, precise fragments of these very
broad theories). While some authors cite them as examples of reduction or
emergence, on account of such factors as the first theory providing an ap-
proximation, or even some sort of mathematical limit, of the second; other
authors cite them as examples of replacement or even incommensurability, on
account of such factors as the conceptual and explanatory disparities between
them.

Again, we fortunately do not need to enter into the detailed formulations,
or the controversy. We only need two uncontroversial points arising from this
discussion:

1. The fact that definitional extension often seems too strict for reduction

11



prompts one to appeal to such concepts as approximation and limiting
relations; and more generally, to the reducing theory containing an
analogue of the reduced theory. So there are notions of reduction which
at least ‘come very close’ to the idea of emergence.

2. The controversy suggests, as at the end of Paragraph 2.2.3, that there
may well be no single ‘best’ concept of reduction; and so no sharp
division between reduction and such concepts as ‘emergence’, and even
‘replacement’ and ‘incommensurability’.

So much for reduction, approached in terms of definitional extension (using
as the stock of compounding operations either just the logical operations or
some richer stock including some standard mathematical operations). We
turn to supervenience.

2.3 Supervenience

Supervenience is a notion that is apparently weaker than definitional exten-
sion, but also quite precise. Because it is apparently weaker, it has been a
favoured candidate, especially in recent metaphysics, for capturing the idea
of emergence, understood as a weaker alternative to reduction. Indeed, since
supervenience is in effect an infinitistic analogue of definitional extension, su-
pervenience promises to make the reduction/emergence distinction as sharp
as the distinction finite/infinite: or at least it promises to do this, in so far
as reduction involves definitional extension. So at first sight, supervenience
promises to overcome the pessimism at the end of the last Subsection, about
sharply distinguishing reduction and emergence.

But we suspect that this promise is illusory. After presenting the idea of
supervenience, we will point out that whether supervenience is really weaker
than definitional extension turns out to be a subtle matter of logic. We will
also claim that because supervenience, like definitional extension, is a formal
notion, it is sometimes too weak. That is: it applies in cases where intuitively
a theory is not emergent from another.

So we begin by presenting supervenience. It is normally introduced as
follows. One says that one family of properties F} supervenes on another
family Fy, with respect to a given set O of objects (on which both F} and F
are defined), if and only if any two objects in O that match for all properties

12



in F3 also match for all properties in F;. Or equivalently, one defines with
the contrapositive: any two objects that differ in a property in F; must also
differ in some property or other in F3.

However, this definition turns out to be equivalent to an infinitistic ana-
logue of definitional extension. That is, it is equivalent to allowing each
definiens used in giving a definitional extension to be infinitely, rather than
finitely, long. The idea of allowing an infinite sequence of compounding
operations is at first sight mind-stretching; and one worries that technical
obstacles, even paradoxes, may be lurking. But if one takes as one’s stock
of operations, just the logical operations—the case on which the logic and
metaphysics literature have concentrated—the idea is tractable, and well un-
derstood. And it is indeed equivalent to supervenience as introduced above,
given natural ways of making each idea precise. Accordingly, supervenience
is sometimes called ‘infinitary reduction’, where ‘infinitary’ means ‘infinite
or finite’; and where ‘reduction’ just connotes ‘definitional extension’—no
informal conditions like Nagel’s 2. being required.]

In view of this equivalence, metaphysicians have found supervenience at-
tractive for formulating doctrines of emergence (though some might use an-
other word than ‘emergence’ for the relation, similar to but weaker than
reduction, that they are trying to articulate). For supervenience promises
to sidestep controversial issues, such as property-identity and explanation,
that, as we saw in Section 2.2, one has to address in order to get an analysis
of reduction.[Y

However, we shall now argue that this advantage is often illusory. There

9Here is the idea of the equivalence: suppose that supervenience as normally defined
holds. Then for each property P in Fi, one can construct a definition of it (as applied to
O) by taking the disjunction of the complete descriptions in terms of the family F» of all
the objects in O that instantiate P. This disjunction will indeed be infinite if there are
infinitely many ways objects can combine properties in F5 while possessing P. But in any
case, supervenience will ensure that objects matching in their complete F5-descriptions
match as regards P, so that the disjunctive definiens is indeed coextensive with P.

10A standard, relatively uncontroversial example is given by paintings. Most agree that
their aesthetic properties (such as ‘is well-composed’) supervene on a suitably rich set of
non-evaluative pictorial properties (such as ‘is magenta in extreme top-left corner’). And
many who are happy to accept supervenience have been sceptical that a property such
as ‘is well-composed’ could be a finitely long compound of pictorial properties—after all,
they point out, we hardly know how to begin writing such a definition, let alone how to
improve it and perfect it.

13



are two problems.

2.3.1 Is Supervenience Weaker? The relation of supervenience to (fi-
nite) definitional extension is more problematic than we have said—and than
most of the literature takes it to be!l It turns out to be a subtle matter of
logic whether supervenience really is weaker than definitional extension (and
thereby an attractive candidate for the notion of emergence). In fact there
are two points to be made here.

First, in the well-understood case where we consider only the logical oper-
ations, it turns out that under wide conditions (roughly: restriction to first-
order languages), supervenience is equivalent to definitional extension! This
is the content of Beth’s theorem, which says that for such languages, explicit
definability (i.e. definitional extension) and implicit definability (roughly,
our supervenience) are equivalent 7]

Second, once we consider not only logical operations, but also various
standard operations of mathematics—as urged at the end of Paragraph 2.2.1—
the relation between supervenience and definitional extension is much less
clear. And it is less clear in ways that threaten the idea that supervenience
is weaker. For on the one hand, there are in general no well-defined limits
to infinite iterations of such operations. And on the other hand, we noted
at the end of Paragraph 2.2.2 the power of definitional extension, once we
admitted these mathematical operations.[]

2.3.2 Supervenience can be too Weak for Emergence The second
problem is the analogue for supervenience of the objection in Paragraph 2.2.3
to definitional extension, viz. that it is sometimes too weak for reduction.

1180 far as we know, the first paper to spell out this out, as a threat to supervenience,
is Hellman & Thompson’s paper on physicalism @] They also suggest a reply to the
threat. They argue that we generally expect to cast scientific theories in higher-order
languages; for example, in order to escape Godel’s verdict of the incompletability of first-
order arithmetic. Since Beth’s theorem fails in general for such languages, supervenience
may yet be weaker than finite definitional extension in the philosophically important cases:
for example, for the formulation of physicalism.

12Besides, the fact that in a given case one knows no finite definitional extension, and
has little idea how to go about constructing one, hardly show that there is none: a finitely
long definition might be so long, say a million pages, as to be incomprehensible to the
human mind. Thus there might yet be a finite reduction of paintings’ aesthetic properties!
For more discussion of the ‘power of reduction’, cf. [f.
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That is: Paragraph 2.2.3 objected that 7} might be a definitional extension
of T3, yet not be reducible to Ty, since it had properties, explanatory resources
etc. that outstripped those of T5. A corresponding point can be made here:
T} might supervene on T5, and yet not be emergent from 75.

To make this point precisely, we need to allow for the fact that—setting
aside, now, the problem of Paragraph 2.3.1—supervenience is logically weaker
than (finite) definitional extension. That is, we need to allow for the fact that
supervenience corresponds to there being definitions of 73’s predicates (or
other terms) that are each finite or infinite; it does not correspond to there
being at least one definition that is infinite. This last one might well call
‘mere supervenience’; (or cumbersomely: ‘supervenience, but not its special
case, definitional extension’). So the point is that 77 might supervene on 75,
and yet not be emergent from To—and this is not just because T} is in fact a
definitional extension of 75, and not emergent from 75. In other words: the
point is that 7T} might ‘merely supervene’ on T,, and yet not be emergent
from T5.

How exactly this could happen will of course depend on one’s views about
emergence. For example, if one takes emergence (as against reduction) to
require a certain sort of ‘gap’ between the properties of T} and T3, then the
point will be that 7} might merely supervene on 75, without there being
such a gap. Similarly, if one instead takes emergence (as against reduction)
to require a certain sort of ‘gap’ between explanatory resources: 77 merely
supervening on 75 might not secure such a gap.

Admittedly, it is hard to give convincing examples of such cases, for
two reasons. First, as emphasised in Paragraph 2.3.1, real cases of mere
supervenience are hard to come by: for example, in first-order languages,
supervenience collapses into definitional extension. Second, it is a vague
and contentious matter what sort of ‘gap’ indicates emergence as against
reduction. Indeed, as we saw in Section 2.2: the controversy over the nature
of reduction, and especially over the informal clauses (about analogies, limits
and approximations between theories) that might supplement or replace the
formal notion of definitional extension, suggests that there may be no single
‘best’” concept of reduction, and no sharp division between reduction and
emergence.

Furthermore, this second reason makes us sceptical of the prospects of a
general, formal analysis of emergence; (as we were in Paragraph 2.2.3 and
2.2.4, about reduction). For the factors that prompt people to say one the-
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ory is emergent from, rather than reduced to, another—like the ‘distinctive
identity’ of properties, the autonomy of explanations etc.—are exactly the
factors that bedevil a general analysis of reduction. In other words, the
present problem—that supervenience threatens to be too weak for emer-
gence, because it is too formal to encompass such factors—is likely to face
other attempts to capture the idea of emergence, using purely formal meth-
ods. So it is a problem that will probably not be sidestepped by changing
formal notions [

2.4 Emergence

The upshot of this discussion is to give us a heterogeneous picture of emer-
gence. Though ‘emergence of 77 from 75’ connotes a greater gap between
the theories, than does ‘reduction’, 7} can be emergent in various ways. Fur-
thermore, being emergent is compatible with our initial, formal (and often
too weak!) notion of definitional extension.

For the sake of Sections 5, we should fill in this picture a bit: that is, give
more detail about the variety of relations, of limit and approximation, that
can exist between theories. For both limits and approximations, we want to
make two points; they are all illustrated by the theories discussed in Section
D.

1. As to limits, both points are warnings: that technically and conceptu-
ally, the situation can be much more subtle than the elementary idea of
a mathematical limit tends to suggest. For first, a limit can be singular
in the mathematical sense: and when one goes to such a limit, for some
characteristic theoretical parameter of a physical theory, the structure
of the theory can change radically. Indeed, the standard example of one
theory having another as a limit—special relativity having Newtonian
spacetime as its ¢ — oo limit—is a case of this: the theoretical structure
changes radically, with the spacetime metric becoming degenerate.

2. Second, the relation between two theories often involves more than
one limiting process; and these will in general not commute with one

13For example, we do not think it is sidestepped by formulating supervenience in terms
of the semantic conception of theories; nor by replacing supervenience, by some single, but
general, limiting relation between the theories.
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another. Again, a standard example—the relation between thermody-
namics and statistical mechanics—provides cases. (For example, Com-
pagner [[I7] discusses the relation between the thermodynamic and con-
tinuum limits (among others) of statistical mechanics.)

. Turning to approximation, we should resist the temptation to think
that approximation is always directed at showing that a theory is capa-
ble (given the validity of the approximation) of predicting or explaining
(‘saving’) some observable phenomenon. For the aim is often instead to
illuminate the theoretical content of a complex (perhaps computation-
ally intractable) theory, without regard to observational predictions,
even in some very extended sense of observation. (Both the tempta-
tion, and its being wrong, are apparent from the discussion of T'x in
Section 2.2.4: we are tempted to think of the reduced theory T) as
more observational than the reducing theory 75, so that T would be
an approximation directed at securing observations; but 7T might be
wholly theoretical, and both it and its analogue T might be aimed
primarily at illuminating T5.)

. We should distinguish various ways in which one theory (or piece of
theory) can approximate another. Of course the core idea is that val-
ues of physical quantities should be close to each other (more exactly:
in certain circumstances, close enough for certain purposes!) But such
closeness can obtain in various ways. Here are three broad (not exclu-
sive) ways, which will crop up in Section 5.

e Neglecting some quantities, and arguing that such neglect is justi-
fied, for example by analysing the stability under perturbation
of one’s calculation, is a well-nigh universal practice in physi-
cal theorizing. If the neglect is indeed justified, the full theory
is approximated by the fragment that neglects some quantities.
(An important special case of this is neglecting quantities describ-
ing components of some composite system, in favour of collective
quantities describing the whole.)

e Instead of selecting some quantities and neglecting others, one
might instead select some states. That is: there might be a subset
of one theory’s state-space, in which each state approximates a
state of another theory.
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e Very often, these first two ways are combined: a subset of states
approximates states of the other theory, only for some relevant
quantities. Typically, such an approximation is defined by an in-
equality (often a ‘much greater than’) between complicated quan-
tities, which is to be read as specifying those states that make it
true.

3 The Enterprise of Quantum Gravity

In order to discuss the emergence of time in quantum gravity, we first need
a brief review of what the enterprise of quantum gravity involves. That is
the task of this Section; we will end by stressing some ways that our topic
differs from emergence elsewhere in philosophy. This will lead in to a more
detailed discussion of some interpretative issues about space, time and matter
in Section 4.

3.1 The Planck Scale

It should be admitted from the outset, that the subject of quantum gravity is
exceptionally difficult and problematic, both in regard to mathematical and
to conceptual issues. Furthermore, these problems are compounded by the
almost complete lack of any unequivocal data to guide attempts to construct
such a theory. In this sense, twentieth-century physics is a victim of its
own success: the empirical success of general relativity and quantum theory
in their present forms means that we lack data bearing on how we might
reconcile them (or more generally, replace them).

Furthermore, it is very hard to see how we could get such data. This
is because simple dimensional arguments suggest that quantum gravity ef-
fects should be important at about a length-scale called the ‘Planck length’
Lp defined as Lp := (%)"/2; where G is Newton’s constant of gravitation,
which measures the strength of gravity; h is Planck’s constant, which is char-
acteristic of quantum theory; and c is the speed of light. The value of the
Planck length is around 10733cm, which is truly miniscule: the diameters
of an atom, nucleus, proton and quark are, respectively, about 1078, 10712,
10713, and 107 e¢m. So the Planck length is as many orders of magnitude
from the (upper limit for) the diameter of a quark, as that diameter is from
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our familiar scale of a centimetre!

The same point can also be made in regard to the other so-called ‘Planck
scales’: the Planck time, the Planck energy, and the Planck temperature.
These characterize physical regimes at which quantum gravity effects are
expected to be important, and—perhaps—where the continuum picture of
space and time breaks down. Like the Planck length, their values are such
that they are empirically inaccessible except in the very early universe. For
example, the Planck time Ly is about 107*2 seconds, and the Planck energy
is 1012 GeV.

3.2 Some Motivations for Studying Quantum Gravity

The central task of quantum gravity is to reconcile two of the main pillars of
twentieth-century theoretical physics: general relativity and quantum theory.
However, these two theories are disparate in significant ways, and they need
to be reconciled. More precisely:

1. General relativity is a classical theory of gravity, but—unlike all other
classical theories—it does not work within the framework of a fized
space and time, but is rather a theory of space and time. Specifically,
general relativity employs a continuous spacetime manifold, endowed
with a spacetime metric that determines the spatial lengths and times
elapsed along curves in the manifold. From a physical perspective,
the curvature associated with this metric is postulated to describe the
gravitational field: in particular, its value at any point is dependent
on the state of the (classical) matter at that point. This relation is
epitomised in the famous Einstein field equations. (Special relativity
also postulates a continuous spacetime manifold, but the metric is a
special case with zero curvature.)

2. Quantum ‘theory’ is not a theory per se but is rather a certain math-
ematical and conceptual framework within which specific theories are
constructed. Typically, these deal with various kinds of matter and
the forces they exert on each other, including the fundamental forces
other than gravity: the electromagnetic, weak and strong forces. Quan-
tum theories are conceptually very different from classical theories: in
particular, the state of a system does not assign real-number values
to physical quantities but only probabilities for obtaining such values
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if appropriate measurements are made. And, though they share with
general relativity the assumption that it is appropriate to coordinatise
space and time with real numbers, they do not treat gravity as curva-
ture of the corresponding spaces: they use either Newtonian spacetime
(which corresponds to a degenerate spacetime metric), or the flat metric
of special relativity.

The fact that general relativity treats matter classically, and gravity as cur-
vature, while our best theories of matter are quantum theories using a flat
metric, is enough to show that some sort of reconciliation is needed. But
there are also several other, more specific, motivations for seeking a quan-
tum theory of gravity. For example:

(i)

(i)

(iii)

Gravity is, at least prima facie, a force like the others, and these have
turned out to be quantum in nature.

There has been considerable success in developing unified, quantum-
theoretical descriptions of the non-gravitational forces (the most suc-
cessful example being the unified theory of the electromagnetic and
weak interactions), which naturally prompts the idea that gravity should
be unified with them.

In the 1960’s, spacetime singularities—at which the values of physical
fields like curvature and matter density become infinite—were proven
to be endemic to general relativity. It has long been conjectured that
quantum gravity could remove such defects in the classical theory;
rather as the intrinsic instability of the classical atom is resolved by the
introduction of quantum theory. The main justification for such an op-
timistic conjecture is the existence of the Planck length Lp ~ 10~33cms:
the hope is that the ‘zero-length’ spacetime singularities will no longer
arise because of quantum gravity effects that set in at this length scale.

Quantum theory has various internal problems of its own, and it has
been suggested that these could be resolved if general relativity is in-
troduced in an appropriate way. A long-standing example of such a
problem is the infinities that arise in relativistic quantum field theory
from the singular nature of quantum fields at a spacetime point; again,
it is the existence of the Planck length that encourages such specula-
tions.
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Another famous difficulty in quantum theory is the notorious ‘mea-
surement problem’” with its associated idea of a ‘reduction of the state
vector’. There have been several suggestions that reduction may be a
real physical process that is associated in some way with the gravita-
tional field. The key idea is that real reductions may arise for ‘large’
objects (thus avoiding the paradoxes associated with Schrédinger’s in-
famous cat); and the size of an object is well reflected in the strength
of gravitational field it produces.

These motivations are logically compatible, and one might wish to endorse
them all. But, in fact, when one tries to develop a detailed theory of quantum
gravity, it is extremely hard to implement any of them in a coherent way; and,
in practice, the specific approach to quantum gravity that is adopted often
depends strongly on which motivations are uppermost in the investigator’s
mind. Consequently, the quantum gravity community holds many different
views of what such a theory should do, and many different approaches have
been tried.

At first glance, there may seem to be a reasonable prognosis for the suc-
cess of such an endeavour. For example, there are various ‘quantization’
procedures whereby a quantum version of any given classical theory may be
constructed; and, therefore, one obvious approach to quantum gravity, is to
try to apply such a procedure to the classical theory of general relativity.
Another possibility is to construct a quantum theory that is not a quantiza-
tion of general relativity, but which nevertheless has that theory as a classical
limit—superstring theory is a good example of a structure of this type.

But despite much effort, using a variety of approaches and heuristic ideas,
it has turned out to be extremely difficult to find a quantum theory of gravity.
In particular, the approaches based on techniques that have been successful
for the other forces, run aground.

Of course, we cannot give even a brief review of all the attempts, and
the remaining live optionsf?, and in this Section, we will confine ourselves
to very brief treatments of a few topics. First, we describe two of the main
current approaches to quantum gravity. Second, and most relevant to our
theme of the emergence of time: we describe how these approaches assume
a manifold structure for spacetime, and how this can be questioned. (What

1 Our paper [@] reviews some of these, from a non-technical viewpoint; a more technical

review is [7].
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this assumption involves will be further discussed in Section 4.) Third, we
take note of some ways in which the emergence of time is expected to be very
unlike other cases of emergence.

3.3 The Two Main Approaches

There are currently two main approaches to quantum gravity, each of which
has several variants and more specific forms. The first exemplifies the strat-
egy mentioned above, of starting with a classical theory and quantizing it;
the second affords an example of moving in the opposite direction. The two
approaches are as follows:

The canonical approach: The basic idea here is first to recast Einstein’s
general relativity in Hamiltonian form, in which it describes the evolution
in time of 3-dimensional geometries, ¢.e., the geometry of an instantaneous
3-dimensional hypersurface (a spacelike ‘slice’) of the spacetime manifold (in
general, interacting with matter fields). The ensuing Hamiltonian theory is
then quantized by adapting to general relativity one or other of the standard
quantization procedures that has been successful in quantizing some of the
other fundamental forces.

Nowadays, this approach is mostly pursued in a different form, based on
ideas of Ashtekar. The idea of ‘splitting’ spacetime into 3-dimensional slices,
and conceiving dynamics as evolution from one slice to another, remains; but
the basic dynamical variable is now, not a 3-geometry, but a 3-connection
(roughly: a notion of parallelism for lines). This approach has lead to some
radically new perspectives on quantum geometry, not least via choosing the
basic variables to be loop-integrals of the 3-connection. However, for reasons
given in Section [, this essay will focus on the older form of the approach.

The superstring programme: Here, instead of quantizing general rela-
tivity, one starts with a very different theory whose basic items are quantized,
1-dimensional strings (or higher-dimensional extended objects) propagating
in a continuum spacetime. There is a certain sense in which normal general
relativity emerges as a low-energy limit of this theory; and the hope is that
the other fundamental forces of nature are also contained implicitly in the
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structure. Again, for the reasons given in Section [[, we shall not discuss this
important programme further in the present essay.

3.4 Should We Assume a Manifold?

We turn now to the issue of the extent to which it is appropriate in quan-
tum gravity to assume the same ‘continuum’ (i.e. manifold) structure for
spacetime as that employed in the classical theory of general relativity. The
first point to make is that, at least in their current forms, both the above
approaches to quantum gravity do indeed assume a manifold. However, in
considering this issue in general it is helpful to think of a ‘chain’ of succes-
sively richer structure, that can be added to a ‘bare’ set of points, to yield the
full classical structure of a manifold with a spacetime metric. For example,
if g is a Lorentzian metric on a spacetime manifold M, the pair (M, g) fits
naturally into the chain

set of spacetime points — topology — differential structure — (M, g)

(3.1)
where the lowest level (i.e., the left hand end) is a set M of bare space-
time points (with the cardinality of the continuum), which is then given the
structure of a topological space, which in turn is given the structure of a dif-
ferentiable manifold (only possible—of course—for very special topologies)
which is then equipped with a Lorentzian metric to give the final pair (M, g).
Note that a variety of intermediate stages can be inserted: for example, the
link ‘differential structure — (M, g)’ could be factorized as

differential structure — causal structure — (M, g). (3.2)

Given such a chain, one can often distinguish approaches to quantum
gravity (or their specific forms) by ‘how far along towards the right’ they
assume classical spacetime structure. And one can distinguish approaches
that match on this question, by differences in their detailed assumptions
about this classical structure, or in their treatments of the ‘right end of the
chain’: is it a quantization of the given classical structure, or something else
again?

Let us briefly illustrate this sort of classification with a comment about
each of the two main current approaches; (there will be further illustrations
in Sections 4 and 5.). The approaches match on the initial question—they
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both assume a manifold—but they differ on some of the basic features of this
manifold, such as its global topological structure and dimension. In a bit
more detail:

e In the canonical approach to quantum gravity, a manifold structure is
assumed for 3-dimensional physical space. Furthermore, in the classical
formalism with which one starts, a manifold structure is also assumed
for spacetime, which is taken, topologically, to be the product of a
(spatial) 3-manifold and the real line, representing time.

e In the original, perturbative, approach to superstring theory, the oscil-
lating strings are regarded as propagating in a background spacetime,
which also is taken to be a manifold, albeit with a dimension that
is possibly greater than four (the extra dimensions are thought to be
‘rolled up’, like the lateral dimension of a cylinder whose diameter is of
Planck size, and hence go unnoticed).

This use of a continuum model for spacetime in quantum gravity has been
questioned. Some more radical approaches propose that at sufficiently tiny
length-scales (sufficiently high energies) the postulate of a manifold breaks
down, and we need a quite different structure. In particular, much effort is
currently being devoted to finding a non-perturbative form of string theory
(the so-called ‘M-theory’) which is generally expected to involve a novel
mathematical model for spacetime: for example, there are tantalizing hints
that ‘non-commutative’ geometry may play a central role.

The idea that simple manifold concepts may not apply at small distances
was anticipated by Riemann in his famously prophetic Habilitationschrift of
1854:

“Now it seems that the empirical notions on which the metrical
determinations of space are founded, the notion of a solid body
and of a ray of light, cease to be valid for the infinitely small. We
are therefore quite at liberty to suppose that the metric relations
of space in the infinitely small do not conform to the hypotheses
of geometry; and we ought in fact to suppose it, if we can thereby
obtain a simpler explanation of phenomena.” [Translated by Clif-

ford, [[3]]
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Here then is a more radical sort of sense in which time, or better space-
time, might emerge. Of course, this radicalism comes with a price. The
usual tools of mathematical physics depend so strongly on the real-number
continuum, and its generalizations (from elementary calculus ‘upwards’ to
manifolds and beyond), that it is probably even harder to guess what non-
continuum structure is needed by such radical approaches, than to guess
what novel structures of dimension, metric etc. are needed by the more con-
servative approaches that retain manifolds. Indeed, there is a more general
point: space and time are such crucial categories for thinking about, and
describing, the empirical world, that it is bound to be ferociously difficult
to understand their emerging, or even some aspects of them emerging, from
‘something else’. (We develop this point slightly in Section 3.5.)

However, we are sympathetic to this radical sort of approach. And there
are a number of proposals of this kind. Given the preceding discussion, per-
haps the clearest examples are the suggestions to quantize structures that lie
to the left of manifold-structure, in the chain above. For example, there has
been work on quantizing topological structure [[4], and on the quantization
of causal sets [, [].

On the other hand, it would be precipitate to blame the difficulties into
which the conservative approaches (i.e., assuming manifolds) run, on their
use of manifolds. For first, precisely because they are conservative, it is easier
to develop them and to compare them with existing theories, and thereby
to discover their limitations. And second, as we said above, to a significant
extent the difficulties arise from the inaccessibility of the Planck scale (at
least, in regard to terrestrial experiments), and the associated lack of any
specific data to guide theoretical speculations. This leads to our fourth topic.

3.5 A Philosophical Warning

This inaccessibility not only implies a lack of data. It is so extreme that
it suggests that those aspects of reality that require a theory of quantum
gravity for their description hardly deserve such names as ‘appearance’, ‘phe-
nomenon’, or even perhaps ‘empirical reality’. Here of course our topic—the
emergence of time—touches on deep, in part Kantian, themes about empir-
ical knowledge and belief in general: themes which we cannot properly take
up here. But we should take note of the Kantian position that it is not
merely very difficult to dispense with space and time in thought about the
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empirical world (as we said above): it is downright impossible.

Scientists are understandably sceptical of claims that certain ways of
thought are necessary, not least because the history of science gives remark-
able examples of the creative, albeit fallible, forging of new concepts. But
in reply, it must here suffice to make three comments in regard to the Kan-
tian position. First, one might only require that certain aspects of space
and time, such as their being continua, emerge; and a Kantian might allow
that these aspects are in principle dispensable (though perhaps: in practice
very hard to dispense with!). Second: maybe the extreme inaccessibility just
discussed—the miniscule size of the Planck length and time etc.—puts these
aspects of reality (i.e., those requiring a theory of quantum gravity) outside
the realm of appearance in the Kantian sense.

Third, and more vaguely: we agree that our topic cannot provide an
‘ordinary case-study’ of emergence. And this is not just because philosophical
controversy continues about how to understand one theory as emerging from
another; nor just because we are so far from having a satisfactory theory
of quantum gravity that one of the two theories needed for a ‘case-study of
emergence’ is lacking. As noted above, our predicament is aggravated by
the continuum model of spacetime being so crucial to our normal physical
description of the world. So we must be wary of assuming that the emergence
of time will be like more familiar cases of emergence. In particular, we must
bear in mind that there is far from being a universal scientific agreement
on even the overall shape, let alone the details, of a satisfactory theory of
quantum gravity. Furthermore, current approaches to quantum gravity face
severe conceptual, as well as mathematical, difficulties, and we must be ready
for a complex and unfamiliar relation between the conceptual frameworks of
our present theories—using the standard notions of space and time—and
those of the, as yet, unknown theory of quantum gravity.

4 Three Interpretative Issues

In this Section, we discuss in more detail three interpretative issues that were
mentioned in Section [, and to which the emergence of time is closely tied.
These topics are: the idea of a ‘fixed’ theoretical structure; the role of matter
in understanding spacetime; and the interpretation of quantum theory. We
will discuss them in order in the next three Subsections, each leading in to the
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next; and we will illustrate the first two topics with some classical spacetime
theories including general relativity.

4.1 Fixity

Saying that a theoretical structure is ‘fixed’” in a given theory can have sev-
eral different meanings, but they all have the connotation that the structure
is ‘given once for all’ in the theory. So to avoid confusion, one needs to
distinguish these meanings: in fact, we will spell out three.[J] This is not
just a matter of clarifying terms: we shall see in Section [ that the problem
of time—which, as noted in Section [I], is entangled with the emergence of
time—arises essentially from the fact that in quantum theory, time is treated
as fixed (in all three of the meanings below), while in general relativity it is
not—it is an aspect of the physical system.

In short, our three meanings of ‘fixed’ are: being classical; being non-
dynamical; and being the same in all models of the theory. As is suggested
by the words ‘classical’ and ‘non-dynamical’, these meanings will be rather
vague. But we will at least distinguish them sufficiently to see that, with one
exception, they are mutually logically independent; and that is enough for
our present purposes.

The first meaning is common in discussions of quantum gravity. Here,
‘fixed’ is used to indicate that a structure present in a classical theory is not
quantized (in the given approach to quantum gravity). This is especially
common in discussions of programmes that proceed by quantizing a classical
theory; (recall the discussion of the chain in Section B.4).

Second, ‘fixed’ is used to mean ‘not subject to dynamical evolution’ (often
called, for short: non-dynamical). This usage is not peculiar to quantum
gravity, but occurs in a variety of discussions of spacetime structure. In
this sense, the metrical structure of spacetime is fixed in Newtonian physics
and in classical and quantum theories that work within a special relativistic
(Minkowski) spacetime. But it is not fixed in general relativity.

This second meaning is clearly logically independent of the first. The case
of quantum field theory in a curved spacetime shows that the first meaning of

15 Another source of confusion is that there is no established usage about which word to
use. All of the adjectives, ‘external’, ‘prior’, ‘absolute’; ‘primitive’ and their cognates are
sometimes employed. But for various reasons, we prefer ‘fixed’ and its cognates.
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‘fixed’—not quantized—does not imply the second, viz. being non-dynamical:
for example, the (unquantized) metric tensor might obey a form of Einstein’s
equations in which the right hand side is an expectation value of the energy-
momentum tensor of the quantized matter fields. And the converse is also
false: a structure can be non-dynamical but quantized. An obvious example
is a conserved quantity in standard quantum theory: for example, the total
angular momentum in a system (like the hydrogen atom) whose Hamiltonian
is spherically symmetric. It is clearly non-dynamical (in the sense that its
eigenvectors do not evolve in time; or, equivalently, the corresponding opera-
tor in the Heisenberg picture does not change in time.) but it is not classical
since it is represented by an operator J - J, and most states do not give it a
definite value.[9

The third meaning of ‘fixity’ is that a theoretical structure is ‘fixed’ if
it is ‘given once and for all’ in the very formulation of the theory, i.e. it is
the same in all the different descriptions that the theory allows of its subject
matter; such structure is often said to be part of the fixed ‘background’. So
the idea assumes a contrast between (i) the theory, that describes all the
patterns of behaviour of its subject-matter that are possible according to the
theory; and (ii) an individual pattern. An individual pattern is typically a
history of a system of the kind described by the theory, and is called a model;
and the theory’s main content is a set of dynamical laws (laws of evolution
over time)—in physical theories, usually differential equations. So a fixed
theoretical structure is common to all such models.

One naturally expects that it would be easier to make this third meaning
precise than the first two, about being classical and being non-dynamical.
But in fact it is surprisingly hard to make precise sense of a theoretical
structure being the same in all models of the theory. It turns out that even
when one uses a formal notion of model, and so can precisely define associated
notions such as isomorphisms of models, it is difficult to define ‘fixed’ in such
a way as to capture intuitions about what counts as fixed—even in a small

160f course, people also use ‘classical’ to mean a wider notion than ‘all quantities having
a definite value in all (pure) states’. For example, they say it of any mathematical structure
that is used in a classical theory; so that, for example, the assumption of a product
manifold structure for spacetime by geometrodynamics (Section 3.3) counts as classical.
(And they even say ‘fixed’ to indicate this wider sense of ‘classical’.) But even in this
wider sense of ‘classical’, being non-dynamical does not imply being classical: again, the
angular-momentum operator J-Jin elementary quantum theory is an example.
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handful of precise and well-understood theories, such as classical theories of
electromagnetism and gravity in Newtonian and relativistic spacetimes. In
fact, controversy continues about this.[.

We emphasise that this is not a mere problem of warring intuitions—
people agree about which theoretical structures are intuitively fixed in these
theories: for example, that the spacetime metric is fixed in special relativity,
but not general relativity. The problem is to frame a definition that captures
the intuitions.

This problem is illustrated by the fact that this third meaning is, for the
most part, logically independent of the first two. The exception is that the
third meaning presumably implies the second. Or in terms of the contrapos-
itive: being dynamical presumably implies being not fixed in the third sense.
For it would be an odd theory that has such little variety in the configu-
ration of matter fields, from model to model, as to make such an influence
completely uniform, giving fixity in the third sense. But the converse is false:
a structure could be unfixed in the third sense, but not dynamical—a sheer
happenstance of the world, varying from one model to another but uninflu-
enced. An obvious example of this is the global topological structure of time
in Newtonian theories, written as allowing topologies other than the real line.

And this third meaning is logically independent of the first. Being clas-
sical does not imply being fixed in the third sense: cf. the metric in general
relativity. And the converse implication also fails: for example, in the stan-
dard quantum theory of a system moving in 3-dimensional Newtonian space,

the algebraic form of the canonical commutation relations [Z;,p;] = id;;h
1,7 = 1,2, 3, is fixed in the third sense, but it is not classical since it involves
operators.

We do not need to pursue more precise definitions of these three mean-
ings of fixity. But we should make three remarks, in increasing order of
importance.

e First, we should note a trivial reason why fixity is vague, which can
cause confusion. It arises from the fact that, even in a single theory, a
word such as ‘time’ or ‘electromagnetic field” usually stands for a whole
cluster of mathematical structures, often hierarchically organized from
general (logically weaker) down to specific (stronger). Typically, some

1"The word ‘absolute’ is commonly used in place of our ‘fixed’; a recent discussion, with
full references to previous proposals (by authors such as Friedman and Torretti), is [E]
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general structures are fixed (in all three of our senses) even if specific
ones are not. For example, the fact that the set of all time points has
the cardinality of the continuum is fixed (in all three senses) in general
relativity, though its metrical, and global topological structure is not
(in the second and third senses). Similarly, the differentiable nature of
the electromagnetic field (away from point-particle charges) is fixed (in
all three senses) in classical electromagnetism. So to say, for example,
“time is not fixed in general relativity” is somewhat ambiguous: we
are really saying that some aspect of time—contextually determined as
being of interest: usually, its metric structure—is not fixed.

In discussing quantum gravity, one must beware of a temptation to
think that the third sense of fixity implies the first: that being the same
in all models implies being classical. The temptation arises because it
is common in quantum gravity programmes that quantize a classical
theory, to take as fixed in the third sense, a structure that is classical.
For example, around 1970 there was an (unsuccessful) programme to
quantize general relativity by quantizing metric perturbations around
the fixed, background spacetime metric of special relativity.

Finally, we emphasise that the problem of precisely defining the third
sense of fixity is closely connected with the diffeomorphism invariance
of theories such as general relativity, and thereby with the deep inter-
pretative issue of whether or not, and in what sense, spacetime points
are ‘real’. Here, ‘diffeomorphism invariance’ refers to the fact that the
physical content of the physical content is wholly unaffected by apply-
ing any smooth, invertible transformation (called a ‘diffeomorphism’)
between spacetime points, which thus function as mere ‘pegs’ on which
to ‘hang’ the fields; this is the force of Einstein’s famous ‘hole argu-
ment’. This feature suggests that—quite apart from difficulties at the
scale of the Planck-length—spacetime points should not be taken as
real objects, even in interpreting classical general relativity: rather
they are an artefact of the way we have formulated the theory. This
leads to the next Subsection.
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4.2 Spacetime and Matter

In the introduction to quantum gravity in Section f, we barely mentioned
something that everyday thought takes to be much more unproblematically
real than space and time: namely, matter! And Section [ will similarly say
little. Here, we will first discuss why matter comes to play second fiddle
to space and time; and then we will briefly sound a warning against taking
spacetime as in some way more basic than matter.

There are special technical reasons why so little was said about matter in
Section J; and also a deeper, general reason. From a technical perspective,
many of the conceptual issues surrounding the emergence of time, or the
problem of time, are much the same, whether or not one considers matter.
For example, as Kuchaf (this volume) says, “matter is not the heart of the
problem [of time in geometrodynamics|; it is gravity”.

The deeper, more general, reason arises from the way that matter has
come to be treated in twentieth-century physics. Namely, some of the most
distinctive characteristics of matter, at least as idealized by the mechanical
philosophy of the seventeenth century—such as impenetrability and continuity—
turn out to be only apparent; and others, such as massiveness, turn out to be
shared with invisible fields that extend in ‘empty space’ arbitrarily far from
their sources. Further, matter itself has come to be treated as a field, and
this involves being represented mathematically by an assignment of a math-
ematical object—at its simplest: an item like a real number, or a vector, or
a matrix—to each point of space or spacetime.

Thus, with the rise of classical field theory, culminating in general relativ-
ity, the field gradually became endowed with properties previously thought
peculiar to matter. Thus the electromagnetic field was discovered to possess
mechanical properties like momentum and angular momentum, and (after
the advent of special relativity) mass-energy. The ‘action-at-a-distance’ of
Newtonian gravity readily admits a translation into the language of fields;
and, of course, the theory of general relativity was couched in such language
from the outset. Furthermore, this assimilation of matter to the concept of a
field continued with quantum theory. Even elementary quantum theory has
a formulation (wave mechanics) which can be thought of as a field theory.
And this picture deepens with the advent of quantum field theory: here phys-
ical quantities describing matter are again represented by a field; albeit in a
transmogrified form in which an operator (rather than a simple real number)

31



is associated with each space, or space-time, point.

This development has of course had as great an influence on the philosoph-
ical understanding of space and time, as of matter itself. In short, the effect
has been for matter to now play second fiddle to space and time. As these
field theories, both classical and quantum, are presented to us, their basic
objects seem to be just spacetime points. All else—matter, fields, and even
the metrical structure of spacetime, the ‘chronogeometry’ of the world—are
represented as mathematical structures defined on these points; in particular,
as just emphasised, physical quantities for matter and fields are represented
by structures defined point by point. And so it is natural to presume that all
these are to be construed as properties of (and relations between) points, or
higher-order properties and relations. In short, we arrive at the doctrine now
called ‘substantivalism’: that spacetime points are genuine objects, indeed
are the basic objects of physical theory.

So much the worse, it seems, for the relationist tradition, stemming from
Leibniz through Berkeley and Mach, of denying that space, time (and space-
time), and their parts, are objects; and of conceiving them instead as a
system of spatiotemporal relations between bodies. For the bodies have be-
come diaphanous and omnipresent fields, which are themselves complicated
structures of properties and relations among spacetime points.

But we think one should be wary, both of this kind of argument for
substantivalism, and of the doctrine itself. Space permits only the briefest
statement of our reasons: we will mention two.

The first applies to any theory, such as general relativity, that is diffeo-
morphism invariant; or in the terminology of Section [L.1], to any theory whose
only fixed structure (in the third sense of ‘the same in all models’) is the local
topological and differential structure of a manifold—so that, intuitively, any
map preserving this structure (i.e., any diffeomorphism) preserves the con-
tent of the theory. As mentioned at the end of Section 4.1, diffeomorphism
invariance is widely taken to indicate that spacetime points are indeed not
objects: their appearing to be so is an artefact of how we formulate the
theory. This reason exemplifies a general point about objects or ontology.
Namely: we should be wary of taking as the basic objects of our ontology
(according to some theory) those items that are postulated as the initial el-
ements in a mathematical presentation of the theory. For it might be just
a happenstance of our formulation of the theory that these objects ‘come
first’: a happenstance avoided by another formulation that can be agreed, or
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at least argued, to be better.

The second reason applies to any theory of physical geometry (where
‘geometry’ can be taken as including time as well as space, as in ‘chrono-
geometry’). So it makes no presuppositions about what structure is fixed in
the sense of Section [.1]. It has as its target, not the doctrine that spacetime
points are ‘real” but rather the doctrine that the metric structure of space-
time is intrinsic to it. In short: even supposing that spacetime points (or
regions) are real, the fact that our only access, even in principle, to the met-
ric structure of spacetime is through the behaviour (perhaps ideal behaviour)
of matter—the proverbial rods and clocks—suggests that metric structure is
not intrinsic to spacetime, but rather a relational matter reflecting the nature
both of spacetime and of matter.

This last suggestion is very vague, but we cannot here develop it. It must
suffice to mention one well-explored way of doing so, namely the Machian
theories of Barbour et al. (For more details, see Barbour’s article in the
present volume, especially Section 4.) In a nutshell: these theories postulate

1. A space, often a relational one, i.e., a space whose geometry is fixed by
the spatial relations between bodies;

2. A ‘least-action’ principle on this space, which defines both the dynamics
of the system and the metric of time.

Incidentally, this definition of the temporal metric exemplifies the themes of
Section 2 and 4.1. For this metric is emergent in the sense that it is not
a basic postulate of the theory, and is also unfixed in the second and third
senses of Section [L.]. But it is reduced in the same strong sense as the
microcanonical measure in Section 2.2.2: i.e., it is explicitly definable in a
language sufficiently rich to express calculus.

To conclude: we think these two reasons should make one cautious about
any quantum gravity programme that postulates a spacetime manifold (whether
fixed or unfixed, in the senses of Section [L.1]) that, according to the theory,
can be ‘bare’ (matter-free). And there are several such programmes, includ-
ing the several approaches to quantum gravity based on the ideas of canonical
quantization.
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4.3 Interpreting Quantum Theory

We turn to the last piece of ‘stage-setting’ needed for Section [ issues con-
cerning the interpretation of quantum theory. This is a large and complex
subject, but fortunately our discussion can be very selective. Our topic of the
emergence of time means that we must be concerned primarily with whether
quantum theory has, or could have, the wherewithal to describe the classi-
cal spatio-temporal realm around us. Therefore we must take notice of the
measurement problem, with its implicit threat that physical quantities per-
taining to macroscopic objects take no definite value (but only a probability
distribution)—contrary to our experience. More generally, we must be con-
cerned with the interpretation of the quantum state-vector. But there are
many interpretative issues about quantum theory, such as entanglement and
non-locality, which we need not engage here .[q

In fact, we need to raise two issues. The first arises in elementary quantum
theory; the second has some aspects that are specific to quantum gravity.
They are, in order:

(1) classical limits, approximations and decoherence in quantum theory;

(2) the interpretation of the quantum state; especially the quantum state
of the Universe (which will be taken in the programmes focussed on in
Section [ as a functional of 3-geometries).

4.3.1 Classical limits, approximations and decoherence in quan-
tum theory

One of course expects the emergence of time (with ‘time’ taken in our usual
sense of ‘classical spacetime’) within a quantum gravity programme to involve
some sort (or sorts) of classical limit of quantum theory, and/or some sort
of classical approximation methods within quantum theory. And so it does,
in our chosen quantum gravity programmes, as we shall see in Section .
Indeed, we will see there examples of each of the variety of approximations
discussed in Section 2.4: (a) the neglect of some quantities; (b) the selection

18 Another sense of ‘describing the (unique) classical realm’ will occur in the discussion
in Section of the no-boundary proposal: a sense related to the idea of a theoretically
motivated boundary condition.
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of a subset of states; (c) combinations of (a) and (b), i.e., a subset of states
approximating another theory as regards some quantities.

Here we just register that these various ways also occur even in the context
of elementary quantum theory; and that the ideas and techniques used in
this context do get applied (often suitably adapted) by the quantum gravity
programmes discussed in Section [f.

e Asto (a): we said in Section 2.4 that it was well-nigh universal practice
in physical theorizing. In elementary quantum theory, (a) is also ap-
pealed to in foundational arguments. And this occurs in various ways.
First, various approaches to the measurement problem argue that one
need only avoid macroscopic indefiniteness of value, for a select sub-
set of quantities. Second, in the theory of decoherence (more details
below), neglecting some quantities (roughly, quantities defined on the
environment of the system one is concerned with) is the crucial point
in a physical argument that one avoids macroscopic indefiniteness of
value for some other quantities (defined on the system).

e As to (b): when a probabilistic theory such as quantum mechanics re-
places a deterministic one such as classical mechanics, one naturally
hopes that the expectation values of some quantities in the probabilis-
tic theory might obey the same equation of motion as the actual values
obeyed in the earlier theory. In general this is not so for quantum
mechanics; even for the basic quantity of classical equations of mo-
tion, viz. position. But there are circumstances in which it is so, or
approximately so, for some special states.

e As to (c): In some cases, expectation values for quantities such as
position, approximately obey the classical equation, because special
conditions relating both to the states involved, and to a selection of
quantities, hold good.

We emphasise that, for the most part, these ideas and techniques about
classical limits and approximations are not controversial. That is: they can
be invoked in order to address the measurement problem, or more generally
issues about the interpretation of the state-vector; but they do not in them-
selves solve such problems—they at most contribute to (the technical core
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of) a solution. In particular, this applies to the use of these ideas and tech-
niques in quantum gravity: so nothing in the use made of them in Section [
will count as solving these problems!

Similar remarks apply to another idea: decoherence. That is to say: de-
coherence is an important aspect of quantum theory’s ‘recovery’ of a classical
realm; it has been well-explored in the context of elementary quantum the-
ory, and has been invoked in the quantum gravity programmes in Section 5.
But we stress that it is not itself a solution to the measurement problem.

Here we just need to register the main idea. Roughly speaking, decoher-
ence is the physical process of the diffusion of coherence from a system to its
environment; here, ‘coherence’ refers to the characteristic interference terms
of a quantum superposition, that distinguish the superposition from a clas-
sically interpretable mixture of states. In a bit more detail: decoherence is
a process that rapidly puts macroscopic objects (including tiny ones such as
dust particles) that interact with their environment (even very slightly, such
as with the microwave background radiation) into mixtures, whose compo-
nents are, in typical cases, approximate position eigenstates. The process
diffuses the interference terms characteristic of the macro-object’s initial su-
perposition into the environment, so that its statistical behaviour is as if it
is in a mixture—and a mixture of states that have definite values for familiar
quantities like position, or quantities very ‘close’ to those like position. But
we stress that this mixture is ‘improper’, i.e., is not interpretable as a matter
of ignorance of which component is possessed. For a recent review, cf. [1g].

4.3.2 The meaning of a quantum state of the Universe

But we also need to say something about the interpretation of the quantum
state. This is not just a matter of it always being salutary to emphasise the
vulnerability of quantum theory! Though most quantum gravity programmes
put more pressure on the formalism of general relativity, than on the basic
formalism of quantum theory, the endeavour of quantum gravity does put
pressure on the interpretation of quantum theory—at least in the sense of
showing how debatable most interpretative tenets arel[] We will make two
main points. The first is specific to quantum gravity; the second is more
general, but will also be needed in Section 5.

19This pressure seems to us at least equal to the interpretative pressure that quantum
gravity put on general relativity; for example, the trouble it cause for substantivalism.
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(1) First, the endeavour of quantum gravity is closely related to quantum
cosmology, i.e., the attempt to have a quantum theory of the whole universe.
And in quantum cosmology, the traditional Copenhagen interpretation, with
its requirement of an observer external to the system, is obviously inapplica-
ble.

A related point is that among the variants of the Copenhagen interpre-
tation is one that requires, not an observer, but a ‘classical background’
external to the system. And, arguably, one obvious candidate for such a
background is the continuous spacetime manifold of our usual quantum the-
ories (both quantum mechanics and quantum field theories). But we admit
to giving this sort of interpretation little credence. For we see no good ar-
gument for the necessity of such a background manifold as, for example, (in
Bohr’s words) a ‘precondition of unambiguous communication’.f

(2) In general, the difficulty of interpreting the quantum state makes it
tempting to say something like (‘N’ for naive):

(N): / | W |* is the probability for the the values of a quantity A to be in A
A
(4.1)

where A is a subset of the spectrum of the self-adjoint operator A (represent-
ing the physical quantity A) to which the spectral theorem has been applied
to obtain a representation of vectors in the Hilbert space as functions on A’s
spectrum.

Indeed, it seems that (N) states the ‘core’ of the Born interpretation of
the quantum state; and yet avoids appealing to measurement, and also avoids
(i) extra values for quantities beyond the orthodox eigenvalue-eigenstate link
(‘hidden variables’), and (ii) a physical collapse of the quantum state. This
temptation to assert the proposition (N) is not specific to quantum gravity
or quantum cosmology: ¥ need not be the state of the universe.

But of course, (N) is hopelessly vague. First, it is clear that if the quan-
tum state does not collapse into having its support confined to A (as (ii)
requires), then the phrase ‘the values ...to be in A’ commits one to the
extra values vetoed by (i). For what can the phrase mean except that the

quantity concerned takes a value in A even though the support of ¥ is not
confined to A?

20Cf. the rejection in Section 3.4 of Kantian requirement for a manifold. No coincidence
of course, given the tenability of a Kantian reading of Bohr.
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And once we accept that there are some such extra values, we face various
well-known hard questions.

1. Is there a preferred quantity or quantities A which get such values
(rather than all quantities as suggested by the formal schema (N))?

2. If so, can we choose the quantity or quantities so as to help with the
measurement problem, i.e., so as to secure a description of a classical
realm?

3. There are also formal questions. Do the quantities and values chosen
avoid the traditional no-hidden-variable theorems: both the algebraic
theorems in the tradition of von Neumann, and the non-locality theo-
rems in the tradition of Bell? And how do the values change over time?
That is: if we accept such values, we are obliged to give a rule spec-
ifying how they evolve (deterministically or stochastically) over time.
And this rule must of course mesh with our answers to questions 1.
and 2. In particular, if in answer to question 2. we secured a classical
realm at an instant, the rule for the evolution of values should not lose
it later!

We need not consider how the various interpretations of quantum theory
(such as the pilot-wave and modal interpretations) address these questions.
But we should briefly discuss the Everettian interpretation, since it has been
considered attractive in interpretative (and, even more, in popular) discus-
sions of quantum gravity.

The basic Everettian idea is familiar from the philosophy of elementary
quantum theory. It is that the particular classical realm that is apparent
to us corresponds to just one component (summand) of the universal state-
vector—which always evolves deterministically, never collapsing. As to the
above questions, Everettians traditionally tended to answer questions 1. and
2. by proposing as the ‘preferred basis’ in terms of which to resolve the univer-
sal state-vector, the approximate position eigenstates (i.e., narrowly peaked
wave-functions) of measurement pointers: a proposal that was widely, and
we think rightly, criticized as giving too fundamental a role to the notion
of measurement; (for example, [I9]). But in recent years, they have instead
invoked the ubiquitous and very efficient process of decoherence to give a
principled, dynamically motivated, specification of the preferred basis. We
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think this is an improvement. In particular, it helps an Everettian explain
why the other classical realms he or she postulates as corresponding to the
other components of the universal state-vector remain ‘hidden’ from us: deco-
herence makes the interference terms, that would reveal these realms, quickly
become far too small to be detected. FJ

As to question 3. above, Everettians traditionally tended not to give a
rule of evolution (even a stochastic one) for the values of their preferred
quantities. But recently they have done so, often by adopting the ‘consistent
histories’ formula for multi-time probabilities

So much for the general problems of (N). If we apply (N) to quantum
geometrodynamics, in which ¥ is a wave-functional on 3-geometries, we get
yet more interpretative problems. We explain these in Section 5, especially
Section 5.3.

5 Quantum Geometrodynamics

5.1 Prospectus; the Problem of Time

So much by way of preliminaries! In the rest of this paper, we will discuss
how the idea of the ‘emergence’ of time appears in one particular approach
to quantum gravity: namely the canonical quantization programme, in the
form that leads to the famous Wheeler-DeWitt equation.

We shall discuss the emergence of time in two main contexts, the first
acting as a prerequisite of the second.ff] The first, discussed in Sections 5.2—
5.4, is the Wheeler-DeWitt equation per se. Here, the canonical quantisation
of general relativity leads to a quantum state-vector which is a functional
of 3-geometries; (this subject is known as ‘quantum geometrodynamics’).
But there are immense mathematical and conceptual difficulties about this
quantisation. Prominent among the conceptual difficulties is what is what
is perhaps the best-known philosophical topic arising from quantum gravity:
the so-called ‘problem of time’, discussed in detail in this volume by Kuchai.Fj

21For more discussion see, for example, Section VI, and [R1] Sections 2, 3.

22For more discussion see, for example, [21] Section 5, 6.

23For both contexts, we will be concerned mainly with the emergence of local, rather
than global, aspects of space and time. For discussion in this volume of the global structure
of time, see the essays by Torretti and Lucas.

24We heartily recommend Kuchaf, this volume, as a non-technical review. Among the
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We also will emphasise the problem of time, since as we shall see it is closely
linked to the emergence of time.

In order to discuss the emergence of time in the face of these various
difficulties, our strategy needs must be, after describing such a difficulty, to
set it aside—if only to raise another! More precisely, our plan, as regards
this first context, will be:

1. To introduce the problem of time in very general terms (in this Sub-
section).

2. To introduce the canonical quantisation of general relativity. This will
include discussing (i) the origin and status of the Wheeler-DeWitt equa-
tion; and (ii) the more specific forms of the problem of time, and their
relevance to the emergence of time (Section 5.2).

3. To discuss the problem of interpreting a solution of the Wheeler-DeWitt
equation, supposing we could somehow be given one (Section 5.3).

4. To discuss the idea, which arises from some of the material in Sections
5.2 and 5.3, that time is an approximate and state-dependent concept
pertaining to a semiclassical approximation to quantum geometrody-
namics.

In Section 5.5, we will turn to our second main context: the so-called
‘Euclidean’” programme, that aspires to produce a particular solution of the
Wheeler-DeWitt equation using a functional-integral over (Riemannian) met-
rics on a four-dimensional space. The goal is usually a theory of quantum
cosmogenesis—i.e., a theory that predicts a single, unique state for the quan-
tum universe.

The material in Sections 5.2-5.4 will be a prerequisite for this discussion.
Indeed, there are two main connections here. First, as we mentioned in Sec-
tion 1: the Euclidean programme’s treatment of the emergence of time is
beset by the problem of time; and one of our goals is to correct the impres-
sion in the popular literature about the Euclidean programme (especially
about the Hartle-Hawking no-boundary proposal) that one can discuss the
emergence of time without having to address the problem of time. Second,

more technical reviews are @, @], see also ] Our paper @] also discusses some other

aspects of quantum gravity from a philosophical perspective.
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more technically: the treatment of the emergence of time in the Euclidean
programme relies on the treatment in Section 5.4 in terms of semiclassical
approximations.

What then is the problem of time? As emphasized by Kuchaft, it is
really a cluster of problems that arise principally from the disparate ways
in which time is treated in quantum theory and in general relativity. The
main contrast goes back to the notion of fixity that we discussed in Section
BT in quantum theory, time is treated as a part of the fixed, theoretical
background structure, in all three of senses in Section [L.I}—classicality, non-
dynamicalness, and being the same in all models.

On the other hand, in general relativity—which is, after all, a unified the-
ory of space, time and gravity—time is only fixed in the first sense of being
classical. It is not fixed in the third sense in so far as, for example, what
counts as a timelike vector depends on the space-time geometry, and is hence
model-dependent. And since this geometry is the subject of dynamical laws,
we can also say that time is not fixed in the second sense. In short, time is
treated as an aspect of the system. Various conceptual and technical difficul-
ties in constructing a satisfactory theory of quantum gravity can be traced,
at least in part, to this underlying difference in the ‘ingredient’ theories.

The problem of time has been most studied in geometrodynamics, i.e.,
for the canonical (Hamiltonian) approach to quantum gravity, using standard
geometric variables. Accordingly, Kuchaf (this volume) confines his discus-
sion to this approach, and we shall follow him in this. But we note that
the problem of time takes on a very different appearance (and is generally
less studied as such) in other approaches to quantum gravity such as, for
example, the superstring programme.

Finally, by way of prospectus: we should add that Kuchai distinguishes
three main forms of the problem of time (as it appears in geometrodynamics),
discussing them in order. We will describe them in Section 5.2. But in short,
they are:

(i) the difficulty of finding an ‘internal time’ in classical general relativity;

(i) the difficulty of finding a time ‘buried’ in the Wheeler-DeWitt equation;
and

(iii) the difficulty of interpreting the Wheeler-DeWitt equation in a fun-
damentally timeless way, and accordingly treating time within our
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present-day theories, general relativity and quantum theory, as an ap-
proximate concept.

Our discussion in Section 5.2 will follow the same order as Kuchar; but since
our topic is the emergence of time, we will of course emphasise (iii).

5.2 The Canonical Quantisation of General Relativity
5.2.1 Two types of canonical quantisation

As we said in Section 3.3, the basic strategy of quantum geometrodynamics
is to cast general relativity in Hamiltonian form, so that it describes the
evolution in time of the geometry of a 3-dimensional spacelike hypersurface,
>; and then to quantize this Hamiltonian theory.

First, we should distinguish two different procedures, or ‘recipes’, for
quantizing a Hamiltonian theory. Both are called ‘canonical quantization’,
but the first (dating from the 1920s) suits a Hamiltonian theory in which the
number of variables in the formalism equals the number of physical degrees
of freedom of the system described. For example, the classical Hamiltonian
mechanics of a point particle moving in one dimension with position z, is
quantized by identifying a quantum state as a complex-valued function of
position ¢ (x), which is to evolve in time according to the Schrédinger equa-
tion (so that we write ¢ (x, t); or, better, 1;(x)): more generally, any physical
variable A becomes a linear operator A that acts on the quantum states 1.

The second type of canonical quantization (dating from the 1950s) suits a
Hamiltonian theory in which there are more variables in the formalism than
there are physical degrees of freedom; accordingly, the theory contains extra
equations that relate some variables to others. These equations are called
‘constraints’, and the theory (or the system) is called ‘constrained’. One
strategy for quantizing such a system is to use the constraints to eliminate
some variables (this is called ‘solving the constraints’), so as to get an un-
constrained theory, which is then quantized using the first procedure above.
But an alternative procedure is to quantize without solving the constraints.
Broadly speaking the idea is that given a classical constraint equation, ¢ = 0
say, where c is some function of the variables, one requires that the quantum
state ¢ obey ¢y = 0, where the ‘hat’ indicates that the variables in ¢ have
become operators. This is called ‘constrained quantization’ [

25Gtrictly speaking, this procedure is only correct for what are called ‘first-class’ con-
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5.2.2 The Wheeler-DeWitt Equation; its origin and status

It transpires that classical general relativity in Hamiltonian form is a con-
strained system; indeed the dynamics of the theory is coded in the constraints
(Kuchai’s ‘teorema egregium’, equation (5) of his paper in this volume). So
one strategy for quantizing the theory is to try to solve the constraints be-
fore quantizing. This turns out to involve trying to find a so-called ‘internal
time’ as a function of the canonical variables of classical general relativity:
a time which could then serve as a time for the Schrodinger equation of the
quantized theory. This is the most conservative strategy from the quantum
perspective since it manipulates classical general relativity to get the kind of
time that is used in ordinary quantum theory. Unfortunately, however, this
cannot be done by simply taking over one of the familiar ‘ordinary’ times of
classical general relativity (for example, local proper time, or the global time
variables characteristic of certain simple cosmological models). Rather, one
has to confront the extremely difficult problem of solving a collection of very
non-linear, coupled (elliptic) partial-differential equations. So far, this has
proved intractable. This, then, is the first form of the problem of time: the
problem of finding a time ‘before quantisation’.

Another strategy is to try constrained quantization. Thus one tries
to quantize the Hamiltonian form of general relativity, by postulating a
complex-valued function of 3-geometryFq ¥[h] which will be subject to appro-
priate operator constraints of the form C¥ = 0. Note that, by writing our
prospective quantum states as just functionals on superspace W[h], we have
ignored matter. To allow for matter fields, ¢ say, we need to write a quan-
tum state as W|[h, ¢]. However, for simplicity we will ignore this qualification

straints. We should also stress that there are other procedures for quantizing a classical
theory, the best known of which—called ‘path-integral’ quantization—was developed prin-
cipally by Feynman. It is more naturally adapted to a Lagrangian, rather than Hamilto-
nian, form of a classical dynamics; we shall return to it in Section 5.5.

26The square bracket indicates that the argument is itself a function (namely a specifica-
tion of a 3-geometry on an entire spacelike slice). Such a ‘function of a function’ is usually
called (by physicists) a ‘functional’. The set of all 3-geometries (on a given 3-manifold
Y) is called ‘superspace’. It is a infinite-dimensional space, since two 3-geometries can
differ from one another in infinitely many (independent) ways. Sometimes, the word ‘su-
perspace’ is used for the quotient set obtained by factoring out the action of the spatial
diffeomorphisms, associated with momentum constraint discussed below. This quotient
space is also infinite-dimensional.
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in what follows, writing just W[h] etc—despite our sympathy, expressed in
Section [.9, for the idea that matter is needed to make sense of geometry.

It transpires that general relativity has two types of constraint, called
the ‘momentum’ and the ‘Hamiltonian’ constraints. When we quantize by
requiring the ‘hatted constraints’ to send any state W[h] to 0, we find that the
momentum constraint is readily interpreted: it requires that ¥ should take
the same value at any pair of 3-geometries h, b’ that differ only by a (smooth)
permutation of the points of the 3-dimensional space ¥ on which they are
defined. That sounds reasonable since h, h’ seem physically equivalent, the
points just functioning as ‘pegs’ on which to ‘hang’ the fields.F]

But the quantum form of the Hamiltonian constraint is very obscure. In
the context of geometrodynamics, it is the famous Wheeler-DeWitt equation
which, for the sake of reference, we give here as

h2k? 52V [h
IR et By 2 (a) (hac(:c)hbd(:c) + hoo(2) haa(z) — hab(az)hcd(:c)) e § h]Cd R
(det h)'/2(x)
ez R®)(z2)W[h] =0 (5.1)
where k2 := 87G/c?, and R®)(z) is the curvature scalar formed from the

3-metric h.

From the classical analogue, one would expect this equation to express
the dynamical content of the theory. Thus one might expect W[h] to evolve
according to some sort of Schrodinger equation. But the Wheeler-DeWitt
equation (B.0]) contains no explicit time parameter, so that to make sense
of the equation as describing evolution, one apparently needs to find a time
‘buried’ in it and its associated formalism. And here we meet the problem
of time in its second form: it is very difficult to find such a time ‘after
quantisation’. This is the primary form taken by the problem of time in
geometrodynamics.

The difficulty of finding a buried time in the Wheeler-DeWitt equation
(and the related difficulty of finding an ‘internal time’ before quantisation)

2"This is one of several points where the problem of time is related to the diffeomorphism
invariance of general relativity, and Einstein’s ‘hole argument’. As discussed in Section
4.1, diffeomorphism invariance suggests that spacetime points should not be taken as real
objects, even in interpreting classical general relativity. In the canonical approach to
quantum gravity, this argument applies most immediately to points in space rather than
spacetime.
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prompts the idea that geometrodynamics, and perhaps quantum theory in
general, can—or even should—be understood in an essentially ‘timeless’ way.
For if that were so, then one would not expect time to appear in the basic
postulates of the theory: it would be an approximate concept, associated
perhaps with (i) some states (solutions) but not others; or with (ii) some
ranges of some variables but not other ranges. This then is the third form
of the problem of time: to identify such an approximate concept, and argue
that it is adequate. Thus we arrive at our own topic: the emergence of time.

Note however that the second and third forms of the problem of time—
finding a time ‘buried” in the Wheeler-DeWitt equation, and finding some
approximate notion of time in a timeless geometrodynamics—should not be
sharply distinguished. In particular, the line of work we shall discuss in Sec-
tion [.4-5.5—the use of ideas and techniques about semi-classical approx-
imations drawn from usual quantum theories—could arguably come under
either heading, since it involves extracting an approximate notion of time
from the Wheeler-DeWitt equation.

But before discussing this line of work (in Sections 5.4 and 5.5), we must
sound a note of warning. We must emphasize the extreme interpretative
difficulties that surround not only this line of work, but also all attempts to
interpret solutions of the Wheeler-DeWitt equation. Indeed, there are two
points to be made here. First, the difficulties of interpreting the quantum
state of the universe, discussed in Section §.3.7, persist; and they become
entangled with the problem of time (Section 5.3).

Second, much of the discussion that follows is generically deficient in the
sense that no one who properly studies the mathematics that lies behind the
Wheeler-DeWitt equation could seriously contemplate that the equation has
non-trivial solutions in any normal sense (other than in gross approximations
to the equation, such as that given by using minisuperspacefd): for example,
from one perspective, the notorious problem of the non-renormalisability of
perturbative quantum gravity rears its ugly head again at this point. True:
the main hope of the Ashtekar approach is that it may eventually yield gen-

28Models that take account of only a finite number of the dimensions of superspace
are called ‘minisuperspace’ models. Though this sort of restriction is radical, it need
not involve neglecting all but a tiny spatial patch of the 3-geometry; for a sufficiently
homogeneous 3-geometry might be specified by a finite number of numbers. The usual,
simplest example is where the entire 3-geometry is coded by a single number: the radius
of a perfectly homogeneous and isotropic universe.
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uine solutions to its own analogue of the Wheeler-DeWitt equation. However,
this analogue involve functions of spin-connections, or loops in 3-space, and
hence the interpretation would be quite different from that of geometrody-
namics.

This situation inevitably prompts the sceptical question why we are spend-
ing time and effort discussing possible philosophical implications of an equa-
tion that is mathematically meaningless! Are we as misguided as the medieval
scholastics are often taken to have been, in their discussions of how many an-
gels can dance on the head of a pin? We believe not. Indeed, as philosophers
know well, the scholastics’ discussions were not as misdirected as folklore sug-
gests. They addressed deep, maybe perennial, issues about personal identity
and spatiotemporal location, in terms of their era’s accepted ontology; which
included angels. We would like to think that our discussion stands up as

well f9

5.2.3 The problem of time vs. the emergence of time

At this point we should emphasise that although the problem of time and
the emergence of time are closely connected in various ways, they are distinct
topics; even within geometrodynamics. There are two main differences.[

Perhaps the most obvious difference is that the problem of time is mostly
about time rather than space; while as we said in Section [l], we intend ‘the
emergence of time’ to also cover the emergence of spacetime, and so space.
At a technical level, the tendency not to dwell on a ‘problem of space’ stems
from the fact that, as noted above, in constrained quantization, the momen-
tum constraint —which, from a spacetime perspective, shuffles spacetime
points within a given 3-dimensional spacelike slice—is much easier to deal
with, conceptually and technically, than the Hamiltonian constraint, which
is related, at least classically, to diffeomorphisms that map points from one
spacelike slice to another.

The second difference arises from the fact that the emergence of time is
about the emergence of classical spacetime, simply because all our present

290r at least, stands up as well to its own era’s scrutiny: as one might say—for them,
the Spanish Inquisition; for us, the Research Assessment Exercise!

30The difference is clearer if we go beyond geometrodynamics: Section E makes it clear
that the emergence of time can be discussed apart from geometrodynamics—to which our
formulations of the problem of time are clearly confined.
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theories—whether classical general relativity or a quantum theory of forces
other than gravity—treat spacetime classically. On the other hand, the prob-
lem of time is about ‘finding’ a time in quantum gravity theories: and so not,
in the first instance, about finding some kind of classical limit of, or classi-
cal approximation to, such theories. (A qualification: the third form of the
problem of time, above, is often focussed on finding such a limit or approx-
imation.) So the emergence of time is more directly connected to questions
about the classical limit (and, more generally, interpretation) of quantum
theory, than is the problem of time (except in its third form). We shall see
this sort of connection in more detail in Section p.4.

5.3 Interpreting V¥

Suppose we are given a solution to the Wheeler-DeWitt: a functional ¥ of
3-geometries. How should it be interpreted?

First of all, one must beware of a tempting error about the relation be-
tween superspace and Lorentzian 4-manifolds (spacetimes). It is tempting to
think that a curve in superspace determines a spacetime; and thus in cases
where Einstein’s equations are satisfied, a model of general relativity. But
in general, this is not so: a curve in superspace does not determine a space-
time, since the curve does not dictate how its points, the 3-geometries, are
embedded in the spacetime. Technically, the latter information is coded in
the ‘lapse function’ and the ‘shift vector’: if these are given, then a spacetime
is determined. Conversely, a spacetime can be foliated in many ways into a
1-parameter family of 3-dimensional slices each with a 3-geometry. So in this
sense, certain type of sheaf of curves is equivalent to a spacetime. Note that,
in some simple (minisuperspace) models which neglect all but a finite num-
ber of the infinite dimensions of superspace, the lapse and shift are in effect
fixed, and in this case a curve in superspace does determines a spacetime.

With this warning in hand, let us press the question: How should we
interpret U? One possibility might be to say that ¥ ‘predicts’ a spacetime
with a particular 4-geometry g if (i) it has a non-zero value on any 3-geometry
obtained by restricting g to a spacelike hypersurface of the spacetime; and
(ii) any 3-geometry h such that W[h| # 0 arises as the metric induced by ¢
on some 3-dimensional spacelike hypersurface.

However, such a view wholly neglects the way in which a wave-function
is used in standard quantum-theory to predict probabilities. With a view
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to recovering the Born-rule, it is tempting to return to the interpretation
labelled (N) at the end of Section 4.3, but now applied to superspace. That
is, it is tempting to say that

(N): / | W[h] |* Dhis the probability for the 3-geometry h to ‘be’ in the set A.
A

(5.2)
This has been called the naive Schrodinger interpretation [4]: hence the
‘N’; but what are we to make of it? Suppose we set aside all technical
worries about the definition of the measure symbolized by Dh. Suppose also
we set aside general worries about the meaning of (presumably objective)
probability for a state of the whole universe.[l] Still there is trouble, because
we expect theories to talk of probabilities of events at a given time, while W
and (N) make no reference to time.

To recover a time in the context of (N), it is natural to hope that ¥ will
take a form that ‘contains’ a time. The obvious idea is that—setting aside
the point above that a curve in superspace does not uniquely determine a
spacetime—W¥ should take non-negligible values only on a single curve in
superspace. If so, one might think of ¥ as ‘predicting’ the corresponding
spacetime. Or, perhaps more realistically, one might hope that ¥ takes non-
negligible values only on a ‘strip” around a curve in superspace; in which case
one might hope to identify some ensemble of curves all lying in this strip, and
even to use the values of | ¥[h] |? at various points in the strip to talk about
the probability of evolving from one point to the other. And one might hope
to make out some such interpretation in the more general case where U takes
non-negligible values on a criss-crossing set of strips.

But the trouble with schemes of this type is that there is no reason to
believe that, even if they existed, solutions to the Wheeler-DeWitt equation
would have anything like these properties. Also, we must emphasise that the
qualification “if they existed” should be taken very seriously: we recall our
earlier caveats about the mathematically ill-defined nature of the Wheeler-
DeWitt equation.

In addition to this particular reservation, a simple variable-counting ar-
gument shows that the sense in which ¥ ‘contains’ a time is quite different
from, and more subtle than, the above ideas about parameterizing curves

31Some modal metaphysicians are happy enough to talk of such probabilities; for exam-

ple, [@] .
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in superspace. In essence, it is a matter of time being a degree of freedom
(at every point in the 3-manifold ¥) within the argument, h, of ¥. More
precisely: to specify a 3-geometry on the space ¥ requires 6 real numbers
at every point of ¥; three of these correspond to making a choice of the
otherwise arbitrary coordinates on the 3-space (this is closely related to the
spatial diffeomorphisms associated with the momentum constraint), and two
correspond to the physical degrees of freedom of the gravitational field (the
two circular-polarization modes of a weak gravitational wave)—but the last
corresponds to the ‘internal time’ (‘time before quantization’), mentioned at
the start of Section p.2.2. This means, incidentally, that in seeking a time
within ¥ (in accordance with the ‘time after quantization’ strategy), one is
in fact thrown back to the same kind of technical and conceptual problems
that beset the strategy of seeking a time before quantizing. In short, we are
back in murky waters!

5.4 Semiclassical Approximations in Quantum Geometro-
dynamics

We shall now discuss the emergence of time in quantum geometrodynamics
in the approach that aspires to find time as an approximate, semi-classical
concept that arises ‘after quantization’. (Since, as remarked above, time does
not emerge in the other main form of quantum geometrodynamics (‘time
before quantization’), this restriction is not as limiting as it might seem.)

The main idea is that (i) time should only emerge in the context of some
special states that are approrimate semiclassical solutions to the Wheeler-
DeWitt equation; and (ii) the time-variable that emerges depends on the
state chosen.

More precisely, one begins by considering a state of the form W[h] =
A[h] exp(iS[h]), subject to the conditions that S and A are real, and A is
‘slowly varying’ in comparison with S. Or, allowing for matter, one begins
with a similar form that incorporates matter variables ¢. This ansatz is then
substituted into the Wheeler-DeWitt equation, and one seeks a solution as
a power-series in S[h| (the so-called WKB expansion). The leading-order
contribution has the following significant properties:

(i) The exponent S[h| obeys the same equation as does a classical quantity
(the ‘action’) in general relativity (viz. the Hamilton-Jacobi equation).
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Furthermore, this connection between the phase of the quantum state
and the classical action is parallel to similar connections established in
standard quantum theories.

(ii) If one can find a state-dependent (indeed, S-dependent) ‘internal time’,
T, obeying certain conditions, then the entire lowest-order contribution
to W[h| (or allowing for matter, W[h, ¢]), obeys a Schrodinger equation
that uses a time-derivative with respect to this time 7.

The general character of the problems faced by this approach can be sum-
marized as follows. First, since one starts with the Wheeler-DeWitt equation,
one encounters the problems mentioned earlier: in particular, the extreme
difficulty of giving the scheme even the semblance of a proper mathematical
meaning. In addition, it is extremely difficult to find internal time variables
except in the simplest models—where, for example, the internal time might
be the radius of the universe. And, since the basic interpretation of ¥ is
obscure, it remains unclear how the fact that S obeys the Hamilton-Jacobi
equation of general relativity is meant to yield classical spacetimes.

But there are also problems that are distinctive of the semiclassical ap-
proach itself. Some of these relate to technicalities: for example, what should
we make of the fact that when the next term in the WKB expansion is taken
into account, the form of the Schrodinger equation is lost? But there are also
purely conceptual problems. Among the most interesting, from the viewpoint
of the emergence of time, is the question of how the semiclassical approach
proposes to recover a description of the (apparently) unique classical space-
time around us, despite the facts that in this approach:

(i) a single WKB state—i.e., a single S—will correspond to a family of
classical spacetimes, albeit all using the same internal time 7; (though
much is obscure in the recovery of classical spacetimes, this one-many
correspondence follows from a variable-counting argument, and is not
particularly controversial);

(ii) there seems no reason to exclude superpositions of WKB states, each
term in which gives rise to its own time 7 and its own family of space-
times.

This last remark returns us to the topics of Everettian interpretations,
and decoherence, discussed in Section f.]. We shall not enter details about
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the first of these, which is much discussed. Let us just recall (from Section
1.3.9) that the Everettian denies that there is a sheer happenstance about
which ‘classical realm’ is real, i.e., about which ‘branch’ of the universal state
is realized. Rather, the Everettian proposes that all the realms (‘branches’)
are realized. In the present discussion, the Everettian can presumably take a
similar position. He or she can deny that there is sheer happenstance about
which classical spacetime, among the family or families given by (i) or (ii),
is realized. Rather, all the spacetimes are realized.

But we should briefly discuss how the ideas and techniques for modelling
decoherence in usual quantum theories have been adapted to semiclassical
quantum geometrodynamics. Recall (from Section 4.3.1) that decoherence is
the diffusion of coherence: it is the process whereby for a system interact-
ing with its environment, the interference terms characteristic of a coherent
superposition very rapidly become far too small to be detected, leaving the
system in an (improper) mixture of states that are definite for familiar quan-
tities like position.

Of course, to adapt this notion to quantum geometrodynamics (at least,
as applied in the context of quantum cosmology), one must allow for the fact
that—if defined as the totality of all that is—the universe has no environ-
ment! In practice, studies of decoherence within quantum geometrodynamics
use some of the variables in the model (either gravitational or matter vari-
ables) to act as an environment for the others: these others constitute the
‘system’ whose state one wants to show to be a mixture. Typically, in-
homogeneous variables—i.e., roughly, spatially varying variables—are used
as the environment of the homogeneous modes. Thus one argues that the
apparent classical spacetime, with a spatially homogeneous geometry and
matter-distribution (on a large scale), is recovered; at least in the sense that
one obtains a mixture of states (albeit an improper one) that are each ap-
proximately definite for the homogeneous variables. So in particular, a su-
perposition of two or more WKB states (as in (ii) above) that are defined
only on the homogeneous modes will rapidly evolve, to a very high degree
of approximation, to a corresponding mixture. And, as in Section f.3.2, the
Everettian who maintains that there is a classical spacetime for each such
state, can appeal to decoherence to explain why the real spacetimes other
than our own are ‘hidden’ from us: viz., decoherence makes the interference
terms that would reveal them far too small to be detected.

But we should also note two problems concerning decoherence in semi-
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classical quantum geometrodynamics; (we set aside general doubts about the
contribution of the idea of decoherence to solving the measurement problem
in quantum theory, for example based on the fact that the mixture one ob-
tains is improper). First, we should stress that the tracing out of the ‘envi-
ronment’ variables to obtain a mixture is ill-defined for reasons that, though
technical, are intimately tied to the conceptual problems about interpreting
the Wheeler-DeWitt equation[R€], 7.

The second problem is more general, and more basic. There is an obvious,
major conceptual difference between decoherence, as understood in usual
quantum theories, and as used here. In the former context, time is fixed in
the senses of Section .1, and decoherence is a process that takes place in time.
Here, on the other hand, there is meant to be no time at the fundamental
level; but somehow, decoherence is meant to operate at this level to make
time emerge. So whatever ‘decoherence’ may mean, it cannot be construed
as a temporal process.

So much by way of reviewing the emergence of time in quantum geometro-
dynamics. We will see in the next Section how the problems described in
this review—the various aspects of the problem of time, the murkiness of
the interpretation of a functional ¥ on superspace, and the problems of the
semiclassical approach—all apply to the Euclidean programme’s approach to
canonical quantum gravity. Indeed, its treatment of the emergence of time
relies on the treatment given by semiclassical quantum geometrodynamics.

5.5 The Euclidean Functional Integral Approach to
Canonical Quantum Gravity

5.5.1 The general idea

The general idea is to construct wave-functionals on 3-geometries with the
aid of a functional integral over manifolds endowed with a Euclidean metric.
To this general idea, the no-boundary proposal adds a specification of which
types of manifold one should consider.

The origin of the ‘Euclidean’ approach to quantum gravity lies in Hawk-
ing’s remarkable discovery in 1974 that a black hole will radiate particles
with a thermal spectrum via a quantum-mechanical process [P7]. Hawking’s
results were quickly rederived using thermal Green’s functions which—in nor-
mal quantum field theory—are closely connected with replacing time by an
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imaginary number whose value is inversely proportional to the temperature.
This led Hawking to propose his ‘Euclidean’ quantum gravity programme
in which the central role is played by Riemannian, rather than Lorentzian,
metrics (this being the appropriate curved-space analogue of replacing time
t with /—1t). In particular, Hawking proposed to study functional integrals
of the form

Z(M) = /Dg o~ | det g2 RA9) (5.3)

where the integral is over all Riemannian metrics g on a four-manifold M
(and R*(g) is the curvature of g, and det g its determinant). The expression
Eq. (B3) generalizes naturally to include a type of ‘quantum topology’ in
which each four-manifold M contributes with a weight y (M) in an expression
of the type

Z =Y x(M)Z(M). (5.4)
M

It is not easy to give a rigorous mathematical meaning to these objects
but, nevertheless, the idea has been extremely fertile. In particular, if ap-
plied to a manifold with a single 3-boundary 3, the expression Eq. (f-4)
corresponds to a functional W[h] if the functional integral is taken over all
4-metrics ¢ on M that induce the given 3-metric A on ¥X. Furthermore,
the functional of h thus defined satisfies (at least, in a heuristic way!) the
Wheeler-DeWitt equation Eq. (B.); thus we might write (allowing also for
matter variables)

Wih, 60, ] = 3 x(M) [ DeDg e HIl00 (5.5)
M

This expression is the basis of the famous Hartle-Hawking [ ‘wave-
function of the universe’ in quantum cosmology. It is known as the ‘no-
boundary’ proposal, since it is based on the idea that there is a sense in
which the universe has no ‘initial’ boundary. To be precise: the no-boundary
proposal requires that the sum in (f.§) should be over compact manifolds
M which have the (connected) three-manifold ¥ as their only boundary;
where X is to be, as in Section 5.2 onwards, the 3-manifold that carries the
3-geometries of quantum geometrodynamics.

We can now see the basis for the metaphor, much used in the popular
literature, that according to the no-boundary proposal, the universe is cre-
ated by ‘tunnelling from nothing’. The word ‘nothing’ just reflects (very
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obscurely!) the idea that M has only 3 as its boundary. The word ‘tun-
nelling’ refers to the facts that (i) moving from a Lorentzian to a Riemannian
manifold corresponds, roughly, to moving from a time variable that is a real
number to one that is purely imaginary (in the sense of complex numbers);
and (ii) in normal quantum theory, a good approximation to the probability
of tunnelling through a potential barrier, can be found by computing the ac-
tion I for a solution to the classical equations of motion with an imaginary
time; the probability amplitude in question is then proportional to exp —1 /h.
We shall return to this latter point shortly.

5.5.2 The emergence of time in the Euclidean programme

It is clear that, like quantum geometrodynamics, the functional integral ap-
proach makes fundamental use of a manifold. This means not just that it
uses mathematical continua, such as the real numbers (to represent the val-
ues of coordinates, or physical quantities); it also postulates a 4-dimensional
manifold M as an ‘arena for physical events’. However, its treatment of this
manifold is very different from the treatment of spacetime in general rela-
tivity in so far as it has a Euclidean, not Lorentzian metric (which, apart
from anything else, makes the use of the word ‘event’ distinctly problematic).
Also, we may wish to make a summation over different such manifolds, as
indicated in Eq. (p-J). Finally, as we shall discuss below, it is in general
necessary to consider complex metrics in the functional integral (so that the
‘distance squared’ between two spacetime points can be a complex number),
whereas classical general relativity uses only real metrics.

Thus one might think that the manifold (or manifolds!) does not (do not)
deserve the name ‘spacetime’. But what is in a name?! Let us in any case
now ask how spacetime as understood in present-day physics could emerge
from the above use of Riemannian manifolds M, perhaps taken together with
other theoretical structures.

The main answer is what one would guess on the basis of the remarks
at the end of Section 5.5.1 about semiclassical calculations of quantum am-
plitudes. That is: let us first set aside the deep problems about the inter-
pretation of W. Then the state-vector defined by Eq. (b.5) will predict a
classical spacetime (more precisely: the correlations between position and
momentum variables that are characteristic of classical spacetime), where it
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is well approximated[? by the semi-classical approximation to the functional
integral. Here, ‘the semi-classical approximation to the functional integral’
(also called ‘the saddle-point approximation’) means evaluating the integral
by summing the contributions given by the stationary points of the action.

In particular: if we choose to specify the boundary conditions using the
no-boundary proposal, this means that we take only those saddle-points of
the action as contributors (to the semi-classical approximation of the wave
function) that correspond to solutions of the Einstein field equations on a
compact manifold M with a single boundary ¥ and that induce the given
values h and ¢y on .

In this way, the question of whether the wave function defined by the
functional integral is well approximated by this semi-classical approximation
(and thus whether it predicts classical spacetime) turns out to be a question
of choosing a contour of integration C' in the space of complex spacetime
metrics. For the approximation to be valid, we must be able to distort the
contour C' into a steepest-descents contour that passes through one or more
of these stationary points and elsewhere follows a contour along which |e~]|
decreases as rapidly as possible away from these stationary points. The wave
function is then given by:

Ulh, ¢o, 5] = > e /M, (5.6)

where [, are the stationary points of the action through which the contour
passes, corresponding to classical solutions of the field equations satisfying
the given boundary conditions. Although in general the integral defining
the wave function will have many saddle-points, typically there is only a
small number of saddle-points making the dominant contribution to the path
integral: (more precisely, that is what happens in normal quantum theory
where the mathematical expressions are reasonably well defined).

For generic boundary conditions, no real Euclidean solutions to the classi-
cal Einstein field equations exist. Instead we have complex classical solutions,
with a complex action. This accords with the account in Section p.4 of the
emergence of time via the semiclassical limit in quantum geometrodynamics,

32Gtrictly speaking, this is what is true of normal quantum theory. However, the pos-
sibility of making any proper mathematical sense of Eq. (@)—and hence of having a
genuine approximation to something that genuinely exists mathematically—is extremely
remote.
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in two senses: the first rather negative (more precisely: ‘merely permissive’),
the second more positive.

1. If the saddle-points of the integral did correspond to real solutions
of the Einstein field equations, with real action I, the wave function
would be of the exponential form e™!/* (note that the sign of I is
not fixed). However, in order to predict classical spacetime, a solution
of the Wheeler-DeWitt equation has to be of the form ¢*/" with the
phase S satisfying the Lorentzian Hamilton-Jacobi equation for general
relativity. So, from that perspective, it is just as well that the saddle-
points give complex classical solutions, with complex action: it means
there is some hope for recovering a classical spacetime.

2. More positively, one can show—at least, heuristically—that a WKB
expansion of a state U arising from complex classical solutions (saddle
points) with complex action I does predict classical spacetimes (again:
modulo all the difficulties adumbrated earlier!)—given that a certain
technical inequality holds between the gradient of the imaginary part,
S, of the complex action I, and the gradient of the real part of I. We
note in passing that this exemplifies the idea mentioned at the end
of Section 2.4, of an approximation scheme that combines in a single
inequality the neglect of some quantities and a constraint on some
states.

To sum up: if the relevant inequality holds (and if our other approxi-
mating and interpretative assumptions hold good!), then S will be an ap-
prozimate solution to the Lorentzian Hamilton-Jacobi equation for general
relativity. The wave function will then be predominantly of the form e*5/"
and in that case it does define an ensemble of classical trajectories.

Of course, it must be emphasized once more that these arguments are
all very heuristic since the functional integrals concerned do not exist in any
proper mathematical sense. The most that can really be said is that the argu-
ments have some validity in the context of finite-dimensional minisuperspace
models.

5.5.3 The deceptive picture: Emergence is not a process in time

In this Subsection, we spell out the fact that the emergence of time, as treated
in the Euclidean programme, and in particular by the no-boundary proposal,
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is not a process in time. Admittedly, this corollary is probably evident in
the light of the discussion above. But it is worth emphasizing since a con-
siderable proportion of the popular, and philosophical, literature about the
Euclidean programme misses this point, instead taking the Euclidean mani-
fold to be somehow ‘earlier’ in a temporal sense than the classical spacetime
that emerges. This error results, of course, from ignoring all the interpreta-
tive difficulties, approximation assumptions etc. that we have been at pains
to spell out throughout Section .

In the hands of some authors, this error has misleading consequences.
Namely, they argue that a treatment of the emergence of time as a process
in time faces conundrums, even contradictions. (As one might guess, this is
not hard to argue: for example, if it is a process there are presumably times
before time emerged—surely a contradiction.) As a result, the Euclidean pro-
gramme is falsely accused of facing various contradictions. Our moral will of
course be that while the Euclidean programme is indeed very problematic—
witness the discussion above—it does not face knockdown objections from
such contradictions.[]

It will be worthwhile to introduce our topic by relating the ambiguity of
the word ‘emergence’, already noted in Section [[-—process in time, versus
a relation like reduction or approximation—to a distinction between two
scientific disciplines: quantum gravity, and quantum cosmology. For the
distinction is often ignored in the the popular, and philosophical, literature
about quantum gravity.

Though closely related in various ways, these disciplines are different. In
quantum gravity, one tries to reconcile general relativity and quantum theory.
As we mentioned in Section B, this reconciliation can be sought along many
different avenues. But this endeavour need not necessarily involve the idea
of a theory of the whole universe (let alone formulating it!). For example,
some research focusses on the physics of black holes—for in the interior of a

33For these conundrums, see [@, @] and references therein. Lack of space means that
we cannot answer them seriatim here. But note that this same wrong interpretation seems
to be behind Price’s accusation [ (pp.92-93) that Hawking’s explanation of the arrow of
time on the basis of the no-boundary proposal presupposes a temporal asymmetry; namely
by applying the no-boundary proposal only at one temporal end, not both, of a temporally
closed universe. Yet it is clear from Section that the no-boundary proposal is in no
sense ‘applied at a temporal end of a universe’; indeed, nor could it be. For a philosophical
review of the arrow of time in quantum cosmology, we recommend [@]
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black hole, the very strong gravitational field means that quantum gravity
effects are expected to be important. Other programmes, such as superstring
theory, concentrate on finding a role for gravity as part of a unified theory
of all the fundamental forces—and theories of that type are as likely to be
concerned with the interactions between particles in an accelerator as they
are with the cosmos as a whole. On the other hand, in quantum cosmology
one seeks a quantum-theoretical cosmology—Dby definition, a theory of the
whole universe.

The ambiguity in ‘emergence’ is related to this distinction. The rela-
tion arises from the fact that in quantum cosmology, almost all work centers
around theories of the very early universe: in particular, with the hope of
finding a theoretical framework that avoids the mathematical singularity that
is inevitably present in the account of Big Bang cosmologyf] given by classical
general relativity. And here, quantum cosmologists have made proposals that
postulate a ‘framework’ (as we have seen it may well not deserve the name
‘spacetime’!), which replaces the Big Bang singularity of classical general rel-
ativistic cosmology, and from which classical spacetime somehow ‘emerges’.
Probably the best-known example is the Hartle-Hawking no-boundary pro-
posal [

But this ‘emergence’ is not a process in time: Hartle and Hawking’s
proposed ‘framework’, and others such as Vilenkin’s, stands in no temporal
relation to classical spacetime, or any of its parts (regions or points), even
very early ones.

This point is worth stressing, since three separate factors tend to obscure
it. First, the word ‘emergence’ suggests a process in time; in which case the
framework (or perhaps better: its parts) would presumably be earlier than
classical spacetime (or its parts). Second, the fact that quantum cosmology
focusses on the early universe makes it very tempting to think of its proposals
as concerning what temporally precedes the epoch which our present theories
successfully describe. Third, many popular expositions of some of the specific
proposals, including the Hartle-Hawking proposal, suggest the same (wrong!)

34Here, there is indeed a link with quantum gravity: for, as in a black hole, very strong
gravitational fields will make quantum gravity effects crucial in describing the Big Bang.

35But there are many other proposals: one, contemporaneous with the Hartle-Hawking
proposal, and cast in the language of geometrodynamics, is Vilenkin’s so-called ‘tunnelling’
proposal. The original paper is [BY]; for a non-technical introduction see [BJ]; a non-
technical introduction to the competing Hartle-Hawking scheme is [@]
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idea.

Thus one often sees a picture in which a cone-like spacetime structure
(representing a cosmological solution of classical general relativity) is at-
tached to a spherical shape that represents a Euclidean 4-manifold. This
erroneously suggests that the bottom sphere is straightforwardly earlier than
the classical cosmology represented by the open cone in the top half of the
figure.

But the 4-manifold is not earlier: there is no temporal relation between
the two halves represented in the figure (or their parts)! Our discussion
throughout Section 5 has given several reasons why not. But let us rehearse
some of the more significant ones. In effect, they fall into two groups: the
first group specifically concerns the no-boundary proposal; the second group
returns us to the interpretative difficulties in common between the Euclidean
programme and the quantum geometrodynamics of Sections 5.2-5.4—in par-
ticular, the cluster of problems called ‘the problem of time’.

So first, recall that the no-boundary proposal involves a sum over different
manifolds M. So there is in any case no single bottom half-sphere, as the
figure suggests—ijust as there is no single trajectory followed in a functional-
integral approach to elementary wave mechanics.

Second, the fact that a quantum tunnelling amplitude can be given to a
good approximation by e~!/" where I is the value of the action of a solution
of the classical dynamical equations with an imaginary time, does not mean
that this solution has any ontological status in the quantum theory. The
analogue of this point in the Hartle-Hawking proposal is, of course, the facts
that the proposed 4-manifold has a Euclidean, not Lorentzian metric—and
that in general relativity, a Euclidean spacetime has no more physical mean-
ing than does an imaginary-time trajectory in normal physics. In fact, the
interpretative difficulties become, if anything, even more obscure if we use
(as we must) a complex metric.

To this, one might well object that one can make sense of the 4-manifold
being earlier, in terms of the topological-differential, rather than metric,
structure (for example, Section 3 of [P§]). For example, one could easily
define (regardless of metric structure) curves that start in the Lorentzian
region of the manifold and enter the Euclidean region. But here we meet the
second group of reasons, relating to such issues as the problem of time. How-
ever, rather than listing some of those issues again, we will venture a general
statement why Hartle and Hawking’s 4-manifold has no temporal relations

99



to classical spacetime.

Namely, their entire proposal—the Euclidean manifold, and other pos-
tulates described above—is intended as a way of selecting a single wave-
functional W[h| from the set of all solutions to the Wheeler-DeWitt equation:
(imagining for the sake of the argument, that this equation is well-defined).

This selection has various merits; (as well as various problems, both con-
ceptual and mathematical). But it does not (and is not intended to) solve
the problem of time; nor does it give an account of the emergence of time.
That is: even if it overcame all its own problems, it would give us noth-
ing more (nor less!) than a wave-functional of the universe obeying the
Wheeler-DeWitt equation. The problem of time outlined in Section p.2.3—
here, principally the problem of finding a time with which to make sense of
the Wheeler-DeWitt equation—would still have to be addressed. So would
the related issues of the emergence of time: here, principally the issue, dis-
cussed in Sections 5.3-5.5.2; of how to get a classical spacetime (a temporal
evolution of a single sequence of 3-geometries) from this ¥[h].

To put the point in terms of the figure of a cone emerging from a sphere:
it deceptively suggests that the only conceptual obstacle to joining a clas-
sical spacetime to the Hartle-Hawking 4-manifold is the transition between
the Euclidean and Lorentzian metrics. But really, there are several, subtly
related obstacles: both the problem of time, and the issue of the emergence
of time, lie between the two halves of the figure![q

5.5.4 Coda: Avoiding a boundary condition?

Finally, we turn to an aspect of the no-boundary proposal that does not fall
under our theme of the emergence of time, but which is of such interest (and
which has received such discussion) that we must address it, albeit briefly.
We have in mind how, if at all, the no-boundary proposal bears on the
contrast between on the one hand, the laws of a physical theory given by
differential equations, or equivalently their solution space; and on the other,
boundary conditions, which fix one solution in the equations’ solution space.[]

36Though the no-boundary proposal itself does not address these obstacles, we emphasise
that quantum cosmology as a discipline has of course tried to do so.

37This contrast is of course a special case of a broader contrast between the laws of a the-
ory, which even in physics are sometimes not given by differential equations: for example,
symmetry principles; and statements of particular fact, which even in physics are some-
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Interpretatively, one takes the former to provide the description and expla-
nation of the possible patterns of behaviour of the system in question; the
latter determine, and ‘explain’ the individual case.

Laws and explanation are central controversial issues in philosophy of
science, which of course we cannot enter here. But we only need two un-
controversial points. First, there is a strong temptation to think of the laws
(in our special case: differential equations) as being truly explanatory, while
the statements of particular fact (boundary conditions) are not explanatory,
because they are matters of ‘mere happenstance’. Second, this thought is
indeed questionable! After all, one can explain a particular fact; and one
can ask for an explanation of a law. Agreed, the explanation of a particular
fact will typically invoke another such fact (usually an earlier one, as in what
philosophers call ‘causal explanation’), and one can ask for an explanation
of that fact—so that a regress beckons, and one is tempted to think that one
must eventually accept a ‘mere happenstance’. But similarly, when one can
asks for an explanation of a law, the explanation will typically invoke another
such law (relating them deductively, or by the one being a limiting case of
the other), and one can ask for an explanation of that law—so again a regress
beckons, and apparently one must eventually accept a ‘mere happenstance’
of laws also.

These two points lead directly to how the no-boundary proposal bears
on the contrast between laws and boundary conditions. In essence: the no-
boundary proposal is advocated as promising a stop to the regress of bound-
ary conditions, without having to settle on one as ‘mere happenstance —
namely, by avoiding having a boundary condition at all!

This proposal for a quantum cosmological wave-function that avoids bound-
ary conditions (in the traditional sense) in a theoretically motivated way, is
certainly very remarkable. And we ourselves find it aesthetically pleasing.
But we needs must recall that it is not the only such proposal for a ‘wave-
function of the universe’: Vilenkin’s is the best-known, and indeed contem-
poraneous, proposal [BF]. Of course, we cannot ask the no-boundary proposal
to itself rule out other such proposals, and in that very strong sense ‘secure

times not given by numerical values of a function, as boundary conditions are. We should
also note that a linguistic formulation of this contrast can break down. For example, in the
familiar case of fixing the solution of a first-order ordinary differential equation by spec-
ifying an ‘initial’ boundary condition, the differential equation plus boundary condition
can be combined in a single integral equation.
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uniqueness’. But we should note that at present, both these proposals and
indeed others are not ruled out; and in that sense, the science of quantum
cosmology as a whole has not avoided the ‘regress of happenstance’. To do so
would of course be a very tall order: we do not mean this point as a criticism.
Indeed, in our opinion what matters is not the prospects for eventually doing
so, but rather the role of the no-boundary proposal, and similar proposals,
in understanding that alluring idea—the nature, and emergence, of time.

6 Conclusion

To sum up our discussion: we have discussed two programmes within quan-
tum gravity, quantum geometrodynamics and the Euclidean programme. We
have focussed on the merits and difficulties of their treatments of the emer-
gence of time (more precisely: the spacetime of general relativity).

Broadly speaking, our conclusion is twofold. First, we concede that there
are large conceptual difficulties in both programmes’ attempts to have classi-
cal spacetime ‘emerge’ (as well as ferocious technical difficulties). But second,
more positively, we see no knock-down conceptual errors, or philosophical
howlers, in these attempts, as they have been developed so far. In that
sense, there are good prospects for work for the future.
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