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Introduction

Background of Eugene Paul Wigner
Jenö Pál Wigner was born in 1902 in the Jewish community of Budapest. For four years he
went to the same high school in Budapest as his life long associate Johann von Neumann.
Under his influence he developed a deep affinity to pure mathematics and mathematical physics.
But following his fathers advice, he decided to study chemistry. After a first year at the technical
University in Budapest, he switched to Berlin in 1922. At the same time, several other
Hungarians such as Michael Polanyi, Leo Szillard and Johann von Neumann were also in
Berlin, and they had close contact with each other. Under the supervision of Michael Polanyi,
Wigner got the Dr.Ing. degree in chemical engineering from the Technische Hochschule in
Berlin in 1925. In the same year, he studied the first paper by Born and Jordan on matrix
mechanics. By 1929 he had already made seminal contributions to the new quantum theory, and
two years later his classic textbook appeared on his powerful group-theoretical methods for the
discussion of the symmetry of atoms and molecules.7 In 1929 Princeton University offered John
von Neumann a professorship. Since von Neumann wished to retain his contact with Hilbert’s
mathematical community in Göttingen, he suggested to share this professorship with Wigner on
a half-time basis. Upon arrival in Princeton in 1930, Wigner was offered a continuation of this
arrangement for five years. In 1933, the Nazi regime cancelled his German appointment. This
event started Wigner’s lifelong career in the United States during which he made impressive con-
tributions to physical chemistry, solid state physics and nuclear physics. His contribution to the
foundations of quantum theory culminated in his seminal 1939 paper on relativistic invariance.8

He became a citizen of the United States in 1937. From 1938 to his retirement in 1971 he was
Thomas D.Jones Professor of Mathematical Physics at Princeton University. In 1939, the discov-
ery of nuclear fission initiated a collaboration with Leo Szillard and Enrico Fermi on nuclear
chain reactions. From 1942 to 1945 Wigner acted as director of the theoretical section at the
Chicago Metallurgical Laboratory. Here he was actually working on reactor engineering, leading
to the detailed engineering plans for the first nuclear reactors that where ultimately built at

4 Not published because of the extravagant length of our review. September 1997.
5 Laboratory of Physical Chemistry, ETH-Zentrum, CH-8092 Zürich (Switzerland),
6 Fachgruppe Philosophie, Fach D24, Universität Konstanz, D–78457 Konstanz (Germany),
7 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,

Braunschweig, Vieweg (1931).
8 E. P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40,

149–204 (1939). Reprinted in the Collected Works, volume 1, pp.334–389.
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Hanford. In 1960 he received the Atoms for Peace Award, and in 1963 he shared the Nobel Price
in Physics for the “discovery and application of fundamental symmetry principles” and his pio-
neering work in nuclear physics with Marie Goeppert-Mayer and Hans Daniel Jensen. He
died 1995 at the age of 92 in Princeton.

The Collected Works of Eugene Paul Wigner
All of Wigner’s mathematical, physical, engineering, historical, philosophical and political papers
as well as hitherto unpublished materials are reprinted in the Collected Works in eight volumes.
The material is divided into part A (edited by Arthur Wightman), covering the scientific papers,
and part B (edited by Jagdish Mehra), dealing with historical, philosophical, and socio-political
papers. The five volumes of part A are already published. Volume 1 covers the mathematical
papers; volume 2 is on nuclear physics; volume 3 deals with particles, fields, and the foundations
of quantum mechanics; volume 4 collects the papers on physical chemistry and solid state physics;
volume 5 contains the work on nuclear energy. From the three volumes of part B, only volume 6
with the title “Philosophical Reflections and Syntheses” is published so far. Volume 7 (“Historical
and Biographical Reflections and Syntheses”, and volume 8 (“Socio-Political Reflections and Civil
Defence”) are in preparation.

Wigner’s collected works are beautifully produced and competently commented. It is, however,
regrettable that no summarizing list of his publications is included. Unfortunately, some of the
papers are not reprinted from the original papers but from earlier reprint volumes. In the
reprinted lecture Interpretations of Quantum Mechanics9, the references are missing. Moreover, the
collaboration between the editors of parts A and B leaves much to be desired. The division of the
papers on the measuring process between volume 3 and volume 6 is capricious and very
inconvenient for the reader. Furthermore, it makes no sense to reprint six papers (some even from
different sources) both in volume 3 and in volume 6.10

The topics to be discussed
As a starting point for our review, we discuss Wigner’s philosophical reflections collected in vol-
ume 6. We use this volume as a springboard for a short review of some modern views on the con-
ceptual foundation of quantum theory which is indispensable to acknowledge Wigner’s contri-
butions properly. In order to appreciate Wigner’s fundamental contributions to quantum theory
and the problem of measurement, we also discuss important papers from part III (“The
Mathematical Papers”) of volume 1, and of part I (“Particles and Fields”) and part II
(“Foundations of Quantum Mechanics”) of volume 3. But we do not consider his important con-
tributions to physical chemistry, applied group theory, solid state physics, nuclear physics, nuclear
engineering and civil defence.

We shall review Wigner’s contributions on conceptual problems of quantum theory in the
light of the recent developments, but we neglect the historical point of view which alone could do
justice to the achievements of this distinguished engineer and scientist. We shall place our
emphasis on a critical evaluation of the differences between the orthodox view as represented by

9 Collected Works, volume 6, pp.78–132.
10 The paper in volume 3, pp.415–422 is also contained in vol.6, pp.147–154; the paper in volume 3,

pp.432–439 is also contained in vol.6, pp.155–162; the paper in volume 3, pp.440–441 is also contained in
vol.6, pp.31–32; the paper in volume 3, pp.442–451 (reprinted from the original paper) is also contained in
vol.6, pp.163–180 (reprinted from a reprint volume); the paper in volume 3, pp.475–482 (reprinted from
the original paper) is also contained in vol.6, pp.181–188 (reset by Springer-Verlag for this volume), the
paper in volume 3, pp.567–571 is also contained in vol.6, pp.139–143.
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von Neumann and Wigner and the recent developments in theoretical as well as in experimental
science. In particular, we shall consider the following topics:
• In chapter 1 we compare Wigner’s view of physical reality with some recent developments in

philosophy. In particular, we discuss Wigner’s statement that quantum mechanics on its own
makes it necessary to refer to consciousness in physics. Moreover, we contrast Wigner’s
instrumentalistic view with realistic approaches which are not committed to hidden variables.

• In chapter 2 we discuss the relations between quantum theory and experimental science.
Wigner’s adoption of von Neumann’s measurement model and the assertion that a measure-
ment of an observable gives as a result one of the eigenvalues of that observable is critically
evaluated and compared with the modern developments in theoretical and experimental
physics. We use Scheibe’s distinction of individual and statistical descriptions, and of ontic
and epistemic interpretations to clarify the questions connected therewith.

• In chapter 3 we deal with Wigner’s presumption that quantum mechanics applies only to
strictly closed systems. This limitation is not only unnecessary but also unrealistic. It has been
overcome by the modern theory of open quantum systems which is indispensable for an
understanding of many present-day experiments. The referent of modern quantum theory is
not an isolated system but always an open system which interacts with its environment and
which may be entangled with its environment.

• In chapter 4 we discuss Wigner’s speculation that in some contexts the appropriate
Schrödinger equation may be nonlinear. In order to appreciate this idea one has to distinguish
carefully between individual and statistical descriptions. Moreover, one has to differentiate
between the superposition principle and the linearity of the Schrödinger equation.

• In chapter 5 we elaborate on the modern formalism of quantum theory which owes much to
Wigner’s pioneering work. The more recent developments replace von Neumann’s irre-
ducibility postulate by a general representation theory of the Heisenberg–Weyl commutation
relations. The existence of inequivalent representations sheds a new light on many conceptual
problems which troubled Wigner.

• In chapter 6 we consider the existence of classical features of quantum systems. Wigner’s tacit
assumption that quantum systems cannot exhibit a classical behaviour is not valid. The exis-
tence of classical quantum states makes the following clear: Bohr’s requirement that measur-
ing instruments have to admit of a classical description is not in contradiction with von
Neumann’s postulate that even instruments must be described by quantum mechanics.

• In chapter 7 we discuss Wigner’s insolubility theorem (and its generalizations) for von
Neumann’s model of the measurements process. These theorems merely show that von
Neumann’s model for measurements of the first kind is inappropriate but not that quantum
mechanics cannot describe experimental facts. We outline the requirements for a valid theory
of experiments.

• In chapter 8 we argue that Wigner’s positivistic position is inappropriate for appreciating the
fact that a stochastic behaviour of physical systems is compatible with deterministic equations
of motion. The modern developments in the theory of deterministic chaos are essential to
understand laboratory measurements and quantum processes which lead to the emergence of
irreversibility and objective facts.
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1. Wigner’s view of the physical reality

1.1 Von Neumann’s model for the measuring process
All of Wigner’s contributions to the interpretation of quantum theory are based on von
Neumann’s problematic model of the measuring process. Since Wigner draws far-reaching philo-
sophical conclusions from the associated so-called measurement problem, we first sketch in this
section Neumann’s model in its simplest form. In the following chapters we shall more critically
review the problem of laboratory measurements. For the moment we just warn the reader that
von-Neumann measurements never describe measurements which can be actually performed in
the laboratory. This misuse of a well-established engineering terminology has led to many
confusions in the discussion of the interpretation of quantum theory.

As early as 1926, Paul Adrien Maurice Dirac proposed that in special cases one can
attribute numerical values to observables:

Dirac’s assignment of numerical values to observables (1)

“We may regard an eigenfunction   yn  as being associated with definite numerical val-
ues for some of the constants of integration of the system. Thus, if we find constants of
integration a b, ,L such that   a an n ny y= ,     b bn n ny y= ,L , where   a bn n, ,L are
numerical constants, we can say that   yn  represents a state of the system in which

  a b, ,L have the numerical values a bn n, ,L.” 11

In his early textbook of 1930, Dirac postulated that an measurement of an observable always yields
one of its eigenvalues:12

Dirac’s jump postulate (2)

“A measurement always causes the system to jump into an eigenstate of the dynamical
variable that is being measured, the eigenvalue this eigenstate belongs to being equal to
the result of the measurement.” 13

From a slightly different point of view, based on a repeatability axiom (requiring that two mea-
surements of the same observable made in rapid succession give equal results), Johann von
Neumann14 came to an equivalent mathematical formulation of an idealized measurement
operation. Unfortunately, in much of the literature such fictive operations are simply called
“measurements”. In order to avoid misunderstandings, we shall adopt a terminology proposed by
Wolfgang Pauli15, and refer to the (theoretically meaningful) von-Neumann operation as a
“measurement of the first kind”, never simply as a “measurement”

In the framework of the irreducible Hilbert-space representation of traditional quantum
mechanics, a pure state of an object system can be represented by a normalized vector in a separa-
ble complex Hilbert space 

  
H obj, called state vector. Von Neumann offered a schematic model for a

11 P. A. M. Dirac, On the theory of quantum mechanics, Proceedings of the Royal Society (London) A 112,
661–677 (1926). The quotation is on p.666.

12 Compare also the equivalent formulation in M. Born & P. Jordan, Elementare Quantenmechanik, Berlin,
Springer (1930), p.291.

13 P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, Clarendon Press (1930), p.36.
14 J. von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik, Nachrichten von der

Gesellschaft der Wissenschaften, Göttingen, Mathematisch Physikalische Klasse 1927, 245–272 (1927).
Compare p.271.

15 W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, in: H. Geiger & K. Scheel (Hgg.), Handbuch der
Physik, 2. Auflage, Band 24, 1. Teil. Berlin, Springer (1933), pp.83–272. Compare Ziff.9, p.152.
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description of a measurement of the first kind in which the apparatus is included.16 It is assumed
that the joint system consisting of the object system and the measuring apparatus is a strictly
closed quantum system which can be described by the rules of traditional quantum mechanics. In
this approach, the measuring apparatus is treated as a quantum mechanical system, so that the
Hilbert space H obj of the object system is enlarged to H H H= ⊗obj app , where H app  is the
Hilbert space of the apparatus. Von Neumann considers an observable A  of the object system
and assumes that A  has the simple discrete spectrum  a a1 2, ,L  and the orthonormalized eigen-
vectors     a a1 2, ,L , 

  
A ak k ka a= , 

    
ak ∈H obj .17 As a first step, he defines a unitary map

  
U : obj app obj appH H H H⊗ → ⊗  with the property

  U k k k� �a b a b⊗ = ⊗ (3)

for every initial state vector 
    
b∈H app  of the apparatus. Von Neumann requires a one-to-one cor-

respondence between the eigenvalue ak  and the data indicated by a pointer of the apparatus.
Therefore he chooses the unitary map U  in such a way that the vectors     b b1 2, ,L  form an
orthonormalized system. He showed that such a choice is always possible. The linearity of the
map U  implies that for an arbitrary initial state vector a a= ∈∑k k kc H obj of the object system
the von-Neumann map is given by

        U c ckk k k k k k k� �a b a b a a b b a a· Ò⊗ = ⊗ ∈ ∈ =∑ , , , , , .obj appH H � � � � �2 2 (4)

Since this operation gives the same result when immediately repeated,

    U U U c ck k k k k k k k� � � �( ) ,a b a b a b⊗ = ⊗ = ⊗∑ ∑ (5)

von Neumann associates this map with a repeatable instantaneous measurement of the first kind.
Consider now an apparatus observable   B bk k k k: b bÒ·∑ � � with   b bk ≠ l for   k ≠ l . If we know
that the apparatus observable has the value bj , then we know that the transformed vector a b⊗
equals a bj j⊗ , so that after this operation the observable A  has the value aj . In general, the
resulting joint state vector after a measurement of the first kind is not an eigenvector of the
observable A B⊗ , but a superposition ∑k k k kc a b⊗  of eigenvectors a bk k⊗ . In order to know
the value of the apparatus observable B , we have to iterate this procedure. That is, we introduce
an additional apparatus with an associated observable     C ck k k k: g Ò·g∑ � �. Of course, the
resulting joint state vectors is still a coherent superposition ∑k k k k kc a b g⊗ ⊗  of eigenvectors

  
a b gk k k⊗ ⊗  of the observable A B C⊗ ⊗ . Evidently this does not help since in this way we
simply get a chain of apparatuses which observe apparatuses. As underscored by Wigner many
times,18 this procedure does not lead to a measurement. Nonetheless, von Neumann obtained the
important mathematical result that any cut between the observed system and the observing tools
is consistent with the quantum-theoretical formalism. Von Neumann adds that the principle of
psycho-physical parallelism implies that this iteration can be pushed arbitrarily deeply into the
interior of a human observer. In order to avoid an infinite regress of this chain of measurements,

16 J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, Springer (1932), chapter VI.
17 The generalization for observables with degenerate eigenvalues is not essential for our discussion. It has been

discussed by G. Lüders, Über die Zustandsänderung durch den Messprozess, Annalen der Physik 8, 322–328
(1951).

18 Compare p.12 in E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963),
(in the Collected Works, volume 6, on p.173); and p.5 in E. P. Wigner, The non-relativistic nature of the
present quantum-mechanical measurement theory, Annals of the New York Academy of Science 480, 1–5
(1986), (in the Collected Works, volume 6, on p.143).
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von Neumann makes use of Dirac’s jump postulate and terminates the chain by an ad hoc
reduction postulate

      
c ck k k kk j j j k ka b g a b g a a· Ò⊗ ⊗ → ⊗ ⊗ =∑ with probability � � � � �2 2 , (6a)

or in abridged reduced formulations as

      
c ck k kk j j k ka b a b a a· Ò⊗ → ⊗ =∑ with probability � � � � �2 2 , (6b)

      
c ck kk j k ka a a a· Ò∑ → =with probability � � � � �2 2 . (6c)

The reduction postulate describes an acausal transition of a pure initial state to a pure final state.
In the literature it is also called the “collapse postulate”. The nonlinear state reduction map

  
∑k k k jc a a→  is also referred to as “collapse of the wave packet” or the “reduction of the wave
function”. It corresponds to the “quantum jumps” of Bohr’s old quantum theory.19

Von Neumann those arrives at two radically different types of evolution: the deterministic and
linear Schrödinger equation which describes the continuous change of the state vector when the
object is not subject to a measurement, and the discontinuous, stochastic and nonlinear state
change when a measurement of the first kind is carried out on the system.20 According to
Wigner, “the assumption of two types of change of the state vector is a strange dualism.” 21 It is
one of the main topics of the so-called measurement problem of quantum mechanics.

The fact that “the ‘reduction of the wave packet’ enters quantum mechanics as a deus ex
machina, without any relation to the other laws of this theory” 22, has led to a long controversy,
lasting for over half a century. The main questions are:
• Is quantum mechanics a complete theory or has it to be completed by introducing

hidden variables?
• Is quantum mechanics valid for macroscopic systems?
• Is a discontinuous state reduction ∑k k k jc a a→  necessary at all for the discussion

of laboratory measurements?
• If the state reduction 

  
∑k k k jc a a→  is necessary, is it an irreducible law of nature,

or is it just a convenient working rule?
• If the state reduction 

  
∑k k k jc a a→  is irreducible, is it a physical process, a mathe-

matical process23, or an act of consciousness?

In all his work, Wigner defends the necessity of state reductions. In his last paper on conceptual
questions, he says that the reduction postulate 

 
a b a bk k k⊗ → ⊗  “is both natural and neces-

sary”.24 Considering the many worlds interpretation, he takes the notion of a state function of the

19 In 1913, Niels Bohr suggested that light and matter interact in such a way that an atom jumps
instantaneously between stationary states and thereby absorbs or emits a light quantum. Compare N. Bohr,
On the constitution of atoms and molecules. Part I, Philosophical Magazine 26, 1–25 (1913),

20 Compare section VI.1, pp.222–225, in: J. von Neumann, Mathematische Grundlagen der Quantenmechanik,
Berlin, Springer (1932).

21 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963). The quotation is
on p.7; in the Collected Works, volume 6, on p.165.

22 E. P. Wigner, Two kinds of reality, The Monist 48, 248–264 (1964). The quotation is on p.188; in the
Collected Works, volume 6, on p.36.

23 Defended by Heisenberg in a letter of February 2, 1960, to Renninger. Quoted on p.496 in M. Jammer,
The Philosophy of Quantum Mechanics, New York, Wiley (1974).

24 E. P. Wigner, Some problems of our natural sciences, International Journal of Theoretical Physics 25, 467–
476 (1986). The quotation is on p.469; in the Collected Works, volume 6, on p.618.
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universe to be meaningless.25 Consequently, he refuses to dissolve the problem by assuming a
splitting of worlds instead of a state reduction. Furthermore, Wigner renounces all attempts to
change quantum mechanics by introducing hidden variables.26

In his early papers, Wigner rejects the idea that the measuring instrument does not admit of a
description in terms of quantum mechanics of isolated systems.27 In 1978 he mentions for the
first time doubts on the validity of this view.28 On the basis of the obvious fact that a macroscopic
system can never be considered as isolated from its environment, he later concludes “that
quantum mechanics’ validity has narrower limitations, that it is not applicable to the description
of the detailed behavior of macroscopic bodies”.29

1.2 Does consciousness modify the usual laws of physics?
Von Neumann follows the chain of measurements via physiological processes up to brain pro-
cesses; but he is not very explicit on the termination of the chain of observing systems. In review-
ing von Neumann’s theory, Fritz London and Edmond Bauer unmistakably attribute the
capacity to select a product state out of the superposition to the human consciousness.30 Wigner’s
initial proposal for a solution to the state reduction problem consists also in postponing the state
reduction to the very end of the von Neumann chain. In spite of his assertion that “we know far
too little of the properties and the working of the consciousness to propose a philosophy of
consciousness” 31, he adopted for many years the thesis that the reduction of the wave packet
takes place only in the consciousness of the observer.32 Typical for Wigner’s view in this period is
the following statement:

“[The reduction of the wave packet] takes place whenever the result of an observation
enters the consciousness of the observer – or, to be even more painfully precise, my
consciousness, since I am the only observer, all other people being only subjects of

25 Compare p.382 in E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.),
Contemporary Research in the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973),
pp.369–385 (in the Collected Works, volume 6, on p.68); on p.294 in E. P. Wigner, Interpretation of
quantum mechanics, in: J. A. Wheeler & W. H. Zureck (eds.), Quantum Theory and Measurement,
Princeton, Princeton University Press (1983), pp.260–314 (in the Collected Works, volume 6, on p.112).

26 Compare pp.377–378 in E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker
(ed.), Contemporary Research in the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel
(1973), pp.369–385 (in the Collected Works, volume 6, on pp.63–64); pp.289–297 in E. P. Wigner,
Interpretation of quantum mechanics, in: J. A. Wheeler & W. H. Zureck (eds.), Quantum Theory and
Measurement, Princeton, Princeton University Press (1983), pp.260–314 (in the Collected Works, volume 6,
on pp.107–115); on pp.73–75 in E. P. Wigner, Review of the quantum mechanical measurement process, in:
P. Meystre & M. O. Scully (eds.), Quantum Optics, Experimental Gravity, and Measurement Theory, New
York, Plenum Press (1983), pp.43–63 (in the Collected Works, volume 6, on pp.235–237).

27 Compare for example pp.433–434 in E. P. Wigner, Epistemology of quantum mechanics, In: Contemporary
Physics. Volume II, Vienna, Atomic Energy Agency (1969), pp.431–437 (in the Collected Works, volume 6,
on pp.50–51).

28 E. P. Wigner, New dimensions of consciousness, Mimeographed notes (1978). Reprinted in the Collected
Works, Volume 6, pp.268–273

29 E. P. Wigner, Review of the quantum mechanical measurement process, in: P. Meystre & M. O. Scully (eds.),
Quantum Optics, Experimental Gravity, and Measurement Theory, New York, Plenum Press (1983), pp.43–
63. The quotation is on p.78; in the Collected Works, volume 6, on p.240.

30 Compare §11 in F. London & E. Bauer, La théorie de l’observation en mécanique quantique, Paris, Hermann
(1939).

31 E. P. Wigner, Two kinds of reality, The Monist 48, 248–264 (1964). The quotation is on p.251; in the
Collected Works, volume 6, on p.36.

32 His first paper on this topic is of 1962 (E. P. Wigner, Remarks on the mind-body question, in: I. J. Good
(ed.), The Scientist Speculates, London, Heinemann (1962), pp.284–301. Reprinted in the Collected Works,
Volume 6, pp.247–260 ).



10
my observations. … The measurement is not completed until its result enters our
consciousness. This last step occurs when a correlation is established between the
state of the last measuring apparatus and something which directly affects our con-
sciousness. This last step is, at the present state of our knowledge, shrouded in mys-
tery and no explanation has been given for it so far in terms of quantum mechanics,
or in terms of any other theory.” 33

Although Wigner thus concedes that we do not have a description at our disposition of how a
state reduction is effected in consciousness, he suggests that the dynamics of quantum theory has
to be modified in such a way that state reductions by consciousness are taken into account. In
particular, Wigner describes his proposal as amounting to “the postulate that the equations of
motion of quantum mechanics cease to be linear, in fact that they are grossly non-linear if con-
scious beings enter the picture.” 34

Wigner’s main argument for his view is that it is “difficult to accept the possibility that a per-
son’s mind is in a superposition of two states … We ourselves never have felt we were in such
superpositions.” 35 In this context, Wigner discusses the famous “paradox of Wigner’s friend”: If
one observer describes another observer who observes something like a von Neumann chain and if
the first observer describes this whole process in the terminology of quantum mechanics, he will
end up with ascribing a superposition of different states of consciousness to the second observer.
Wigner avoids this paradox by maintaining that quantum theory does not apply to consciousness
so that there are no superpositions of different states of consciousness. A state reduction occurs at
the level of the friend’s consciousness.36

1.3 The content of consciousness as the primary reality
The initial stance which Wigner takes on the state-reduction problem can be explained as a con-
sequence of his view that the contents of consciousness are the primary reality. Wigner distin-
guishes two kinds of reality, the contents of the consciousness of each person on the one hand and
physical objects on the other hand.37 By the contents of consciousness, Wigner means sense
impressions in particular. Wigner claims that the content of consciousness of an observer is the
primary reality: it cannot be denied, it is absolute. He holds that the reality of physical objects is
relative to the contents of consciousness. According to Wigner, physical objects are constructed
on the basis of the contents of consciousness: to assume the existence of physical objects is useful
in order to account for the connections among the contents of consciousness.

The notion of the content of consciousness with which Wigner works is such that the content
of consciousness is immediately accessible only to the respective person. Wigner therefore main-
tains that the existence of other persons with contents of consciousness of their own is on the

33 E. P. Wigner, Two kinds of reality, The Monist 48, 248–264 (1964). The quotation is on pp.249–250; in
the Collected Works, volume 6, on pp.34–35.

34 E. P. Wigner, Remarks on the mind-body question, in: I. J. Good (ed.), The Scientist Speculates, London,
Heinemann (1962), pp.284–301. The quotation is on p.279; in the Collected Works, volume 6, on p.259.

35 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The quotation
is on p.381; in the Collected Works, volume 6, on p.67.

36 E. P. Wigner, Remarks on the mind-body question, in: I. J. Good (ed.), The Scientist Speculates, London,
Heinemann (1962), pp.284–301. Compare pp.293–294, in the Collected Works, volume 6, pp.255–257.

37 E. P. Wigner, Two kinds of reality, The Monist 48, 248–264 (1964). Reprinted in the Collected Works,
Volume 6, pp.33–47.
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same footing as the existence of physical objects.38 That Wigner regards the contents of
consciousness as the primary reality and considers physical objects to be constructs in order to
account for the connections among the contents of consciousness explains why he invokes the
consciousness of the observer in order to solve the measurement problem: Given this
philosophical presupposition, there is no reason to seek for an interpretation or a modification of
quantum theory which yields a description of a state reduction at some link within the von
Neumann chain. The only thing which counts for Wigner as an absolute reality is the content of
the consciousness of an observer. Wigner thus adopts an instrumentalistic attitude towards
physical theories. Consequently, on the question whether life and consciousness can be explained
in terms of the laws of physics, he holds that

“the regularities which modern physical theory – that is quantum mechanics – fur-
nishes are probability connections between subsequent observations, i.e. contents of
the consciousness of the observer. The primitive facts in terms of which the laws are
formulated are not positions of atoms but the result of observations. It seems incon-
sistent, therefore, to explain the state of mind of the observer, his apperception of the
result of an observation, in terms of concepts, such as positions of atoms, which have
to be explained, then, in terms of the content of consciousness.” 39

In his later papers, Wigner expressed his “desire for a less solipsistic theory”40 but only in last
papers he considers the consequence of solipsism as a sufficient reason to repudiate his earlier
views:

“This means, particularly if we want to avoid the solipsistic attitude, that we should not
consider an observation to be the basic concept but should try to describe it also, not
only ours but also those of others, even including those of animals, using the ideas of
quantum mechanics. This is a natural requirement – but runs into difficulties.” 41

At the end of a paper published in 1977, Wigner expresses the hope
“that quantum mechanics will also turn out to be a limiting case, limiting in more than
one regard, and that the philosophy which an even deeper theory of physics will support
will give a more concrete meaning to the word ‘reality’, will not embrace solipsism,
much truth as this may contain, and will let us admit that the world really exists.” 42

38 Compare E. P. Wigner, Remarks on the mind-body question, in: I. J. Good (ed.), The Scientist Speculates,
London, Heinemann (1962), pp.284–301, pp.285–291 (Collected Works, Volume 6, pp.248–254); E. P.
Wigner, Two kinds of reality, The Monist 48, 248–264 (1964), , pp.189–194 and p.199 (Collected Works,
Volume 6, pp.37–42 and p.47); E. P. Wigner, Epistemological perspective on quantum theory, in: C. A.
Hooker (ed.), Contemporary Research in the Foundations and Philosophy of Quantum Theory, Dordrecht,
Reidel (1973), pp.369–385, p.377 and p.382 (Collected Works, Volume 6, p.63 and p.68).

39 E. P. Wigner, Are we machines?, Proceedings of the American Philosophical Society 113, 95–101 (1969).
The quotation is on p.96; in the Collected Works, volume 3, on p.484.

40 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The quotation
is on p.382; in the Collected Works, volume 6, on p.68.

41 E. P. Wigner, Review of the quantum mechanical measurement process, in: P. Meystre & M. O. Scully (eds.),
Quantum Optics, Experimental Gravity, and Measurement Theory, New York, Plenum Press (1983), pp.43–
63. The quotation is on p.68; in the Collected Works, volume 6, on p.230.

42 E. P. Wigner, Physics and its relation to human knowledge, Hellenike Anthropistike Hetaireia, Athens, 283-
294 (1977). In the Collected Works, Volume 6, on p.593.
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1.4 Critical evaluation of Wigner’s view of physical reality
Wigner frequently claims that his view according to which the content of consciousness is the
primary reality and the reality of physical objects is relative to consciousness is just obvious.43

Nonetheless, this view shows a strong influence of a specific stream in philosophy on Wigner’s
thinking – namely the logical positivism of the twenties in particular44 and the Cartesian tradition
in modern Western philosophy as a whole. Logical positivism holds that science is to be built
upon a firm foundation of basic statements such as statements describing sense data. As a result,
scientific theories are considered as constructions upon such basic statements or upon sense data,
and their objects are posits to explain regularities among sense data. According to Wigner,
“positivistic philosophy means that we attribute reality only to what can be observed.” 45

Wigner claims that “on the part of most physical scientists” there is a “return to the spirit of
Descartes’s ‘Cogito ergo sum’, which recognizes the thought, that is, the mind, as primary.”46

Descartes seeks an indubitable foundation of knowledge which is reached by self-reflection. In
Descartes, claims about the existence of physical objects are deduced on the basis of clear and dis-
tinct ideas in consciousness. Wigner does not, like Descartes, think of body and mind as two dis-
tinct entities.47 Nonetheless, his position that the content of consciousness is the primary reality
shares at least two premises with the Cartesian tradition:
• The object of knowledge is primarily the content of consciousness.
• The content of consciousness is independent of the external world in the

sense that it could be the same if the physical world were totally different
from the way it actually is or even if there were no physical world at all.

Only on the basis of the second premise is it possible to maintain that physical objects are con-
structed upon the contents of consciousness and that the reality of physical objects is relative to
the contents of consciousness. Both these premises are strongly challenged in today’s philosophy
of mind:
• Instead of maintaining that the content of consciousness is the primary object of knowl-

edge, many contemporary philosophers favour a direct realism: things in the physical
world are the direct object of knowledge including perceptual knowledge. The main
argument is that if there are basic contents of consciousness (such as sense impressions,
for instance), they cannot be both something simply given prior to conceptualization and
a foundation which serves to justify knowledge.48 Consequently, when it comes to

43 Compare p.192 in E. P. Wigner, Two kinds of reality, The Monist 48, 248–264 (1964). In the Collected
Works, Volume 6, on p.40.

44 Compare Wigner’s bold statement “for a positivist (as most of us are) …”, in E. P. Wigner, The philosophical
problem, in: B. d’Espagnat (ed.), Foundations of Quantum Mechanics. International School of Physics “Enrico
Fermi”, 1970, New York, Academic Press (1971), pp.122–124. In the Collected Works, Volume 6, on
p.219.

45 E. P. Wigner, The limitations of determinism, in: Absolute Values and the Creation of the New World.
Proceedings of the 11th International Conference on the Unity of Science, 1982, New York, International
Cultural Foundation Press (1983), pp.1365–1370. The quotation is on p.1370; in the Collected Works,
volume 6, on p.138.

46 E. P. Wigner, Remarks on the mind-body question, in: I. J. Good (ed.), The Scientist Speculates, London,
Heinemann (1962), pp.284–301. The quotation is on p.98; in the Collected Works, volume 6, on p.248.

47 E. P. Wigner, The extension of the area of science, in: R. G. Jahn (ed.), The Role of Consciousness in the Physical
World, AAAS Symposium No.57, Boulder, Westview Press (1981), pp.7–16. In the Collected Works, volume
6, on p.609.

48 This argument goes back to W. Sellars, Empiricism and the philosophy of mind, in: W. Sellars (ed.), Science,
Perception and Reality, London, Routledge (1963), pp.127–196. For a contemporary elaboration see, for
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knowledge, it is maintained that it is physical things which are the primary and direct
objects of our beliefs.

• It is argued that we can have beliefs only if we are embedded in a physical world which
makes it that most of our beliefs about that world are true. This dependence is not
thought of as a causal one. The main argument is that the individuation of beliefs and
thus the conditions for the identity of beliefs depend on what qualitative character the
physical world has in which the subject of these beliefs lives49. One can thus not take the
contents of beliefs or the contents of consciousness to be absolute and regard the reality
of physical objects as being relative to beliefs.

The point of these two moves in contemporary philosophy of mind is to preempt the separation
of mind and world which haunts modern thought since Descartes. These developments in
contemporary philosophy of mind are usually not taken into consideration when claims about the
observer and his mind or consciousness are made in the interpretation of quantum theory.50

Considering these recent developments in the philosophy of mind, the premises which Wigner
takes to be obvious and which constitute the framework on which his early interpretation of
quantum mechanics is based turn out to be questionable, to say the least. The second of Wigner’s
above mentioned premises is intimately connected with the specifically modern philosophical
problem of scepticism with respect to the existence of an external world: If the content of
consciousness is the primary reality, it makes sense to doubt whether our knowledge is about an
external world and whether there is an external world at all. Wigner’s refusal to commit himself to
quantum mechanics being about a physical reality, i.e. his instrumentalistic attitude towards
quantum mechanics, is a manifestation of this scepticism consequent upon regarding contents of
consciousness as the primary reality.

1.5 Realism and quantum mechanics
In all his papers Wigner favours an instrumentalistic approach:

“We also recognize that the laws of quantum mechanics only furnish probability con-
nections between results of subsequent observations carried out on a system.” 51

According to this instrumentalistic view, quantum theory is an instrument to calculate connec-
tions among measurement results and to predict measurement results, given a description of the
experimental arrangement. By contrast, a realistic approach holds that quantum theory says some-
thing about nature independently of measurements. In the last decade, a realistic approach to
quantum mechanics has gathered momentum in philosophical circles. This realistic approach is
not committed to hidden variables. It amounts to a non-classical physical realism based upon
nonseparability.52

instance, J. McDowell, Mind and World, Cambridge (Massachusetts), Harvard University Press (1994), in
particular lecture 1.

49 For an introduction to this argument, see G. McCulloch, The Mind and its World, London, Routledge
(1995).

50 A notable exception is the book by M. Lockwood, Mind, Brain and the Quantum, Oxford, Blackwell
(1989), who examines and argues against central points of this contemporary, anti-Cartesian stream in the
philosophy of mind. See in particular chapters 9 and 16.

51 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963). The quotation is
on p.13; in the Collected Works, volume 6, on p.176.

52 Compare for example M. Redhead, Incompleteness, Nonlocality and Realism. A Prolegomenon to the Philosophy
of Quantum Mechanics., Oxford, Clarendon Press (1987); M. Redhead, From Physics to Metaphysics,
Cambridge, Cambridge University Press (1995); T. Y. Cao, Conceptual Developments of 20th Century Field
Theories, Cambridge, Cambridge University Press (1996).
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By and large, working scientists are unabashed realists, they stubbornly believe that there is a

real external world. For many theoreticians, this belief is the only raison d’être of physical theo-
ries. They would like to have a description of how, fundamentally, the world is. For many work-
ing scientists, the task of science is to explain what really happens in nature. This view is well
summarized by Albert Einstein:

“Es gibt so etwas wie den ‘realen Zustand’ eines physikalischen Systems, was unabhän-
gig von jeder Beobachtung oder Messung objektiv existiert und mit den Ausdrucks-
mitteln der Physik im Prinzip beschrieben werden kann. … Diese These der Realität
hat nicht den Sinn einer an sich klaren Aussage, wegen ihrer ‘metaphysischen’ Natur;
sie hat eigentlich nur programmatischen Charakter. Alle Menschen, inklusive die
Quanten-Theoretiker halten aber an dieser These der Realität fest, solange sie nicht
über die Grundlage der Quantentheorie diskutieren.” 53

Every working scientist considers carefully all details of his measuring instruments. Nevertheless,
he never worries about the so called measurement problem. In particular, the London–Bauer–
Wigner idea that consciousness reduces the state vector is in conflict with engineering practice.
For example, much of our knowledge about the absolute age of prehistoric events is drawn from
measurements of the relative content of an radioactive nucleus. According to the generally
accepted judgement of the scientific community, the disintegration of the radioactive substance is
due to the spontaneous decay of certain nuclei, an objective quantum process which happened
long ago. Moreover, there are good reasons to assume that in the cosmological and biological evo-
lution there are objective events, encodings and registrations which are independent of the exis-
tence of beings to which consciousness can be attributed. Over and above that, in most modern
experiments the data of measurement are not directly observed by a human observer but collected
automatically and stored in the memory of a computer. Often the subsequent data processing is
performed before anybody takes note of the measuring results. According to the well-established
engineering wisdom, the measurement is completed before the data are stored in the local com-
puter memory. It is difficult to see how Wigner’s earlier claim that a “measurement is not com-
pleted until its result enters our consciousness” 54 can be squared with the experimental facts.
However, in an earlier paper he adopts von Neumann’s view that a “measurement is not com-
pleted until its result is recorded by some macroscopic object.” 55

2. Quantum theory and experimental science

2.1 Wigner’s concept of a pure quantum state
The relation between theory and experiment is much more complicated than von Neumann’s
measurement model presupposes. No single measurement gives a numerical value which can be
attributed to an observable. Since even for the simplest case of a two-level quantum system, the
experimentally relevant sample space for a measurement is uncountable, no experimentalist can
realize a measurement of the first kind. A statement like “a measurement gave the result that the

53 A. Einstein, Einleitende Bemerkung über Grundbegriffe, Louis de Broglie und die Physiker, Hamburg, Claassen
Verlag (1955), pp.13–17. The quotation is on p.14.

54 E. P. Wigner, Two kinds of reality, The Monist 48, 248–264 (1964). The quotation is on p.187; in the
Collected Works, volume 6, on p.35.

55 H. Salecker & E. P. Wigner, Quantum limitations of the measurement of space–time distances, Physical Review
109, 571–577 (1959). The quotation is on p.571; in the Collected Works, volume 3, on p.148.
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observable A  has the value  a ∈®” is operationally untenable since no experiment can distinguish
between a rational and an irrational number.

Example: No single measurement gives a numerical value which can be attributed to an observable.

It may be well to illustrate this point by the simple example of a measurement of a two-level quantum sys-
tem whose algebra of observables is generated by the three Pauli matrices  s1 ,   s2  and   s3. A measurement
of the first kind of the observable  s3 should result in one of the eigenvectors   Y+ ,   Y−  of   s3,
s Y Y3 1± ±= ±( ) . A more realistic (but still crudely idealized) description of a laboratory measurement of
the observable   s3 has to consider the full set of state vectors in the Hilbert space   ©2 . It is convenient to
parametrize the possible state vectors by the Cayley angles  J  and   j ,   0 2 0≤ < ≤ ≤j p J p, ,

        � J j : J Y J YÒ j j, cos( ) sin ( ) .e ei i� �� �2 2 22 2+
−

−+ ∈ ©

These pure states form an overcomplete set and generate a normalized positive operator-valued measure

    � �a F( ) on the   s -field �  of Borel sets of the unit sphere in three dimensions

    
F d d( ) , , sin ( ) , .� �

�
: J j J j J J jÒ ·� �∫ ∈�

All experimental facts depend in one way or the other on statistical decision tests which imply a partitioning
of the sample space. If the measuring apparatus is axial symmetric, the relevant normalized positive opera-
tor-valued measure for a   s3-measurement is given by

F d d( )[ , ] , , sin ( ) , , .J J J j J j J J j J J pÒ·
J

Jp

1 2 0

2
1 2

1

2 0= ≤ ≤∫∫ � �

For example, we may consider the following three hypotheses:
(i) the observation comes from the population   0 ≤ ≤J e ,
(ii) the observation comes from the population   p e J p− ≤ ≤ ,
(iii) the observation comes from the population   e J p e< < − .

In order to be able to make statistical tests, the experimentalist must have sufficient information about the
error probability of his measuring instrument. For an appropriate choice of e  (for a well-constructed
instrument we expect that  0 1< e < ) he may, for example, adopt the following decision rule: if the
measured value in a single experiment is in the interval  [ , ]0 e , then he decides for “spin up”; if it is in the
interval [ , ]p e p− , then he decides for “spin down”; if it is in the interval ( , )e p e− , then he is forced to
assume that an error has occurred. Every experimenter will check whether his experimental arrangement
leads to statistically reproducible results. He will repeat the experiment very often, and use statistical tests
for the data by its experiments. So he may decide that his experiments are reproducible if the frequency of
events in the interval   ( , )e p e−  is inconsequential. He may also improve his experimental arrangement so
that he can lower the threshold value e , but he can never reach the value e = 0 . That is to say, even in this
simple example, measurements of the first kind are experimentally impossible.

In our age of digital devices, practically all modern measuring instruments create well-defined
numbers on the readout display with the aid of built-in threshold devices. But this exact number is
generated by the measuring instrument and cannot be attributed to a property of the object
system. The requirement that experiments have to be reproducible does not refer to individual ex-
periments but to equivalence classes of experimental data. Therefore, von Neumann’s repeatability
axiom refers to the Boolean classification of final statistical decision methods necessary to arrive at
“experimental facts”, and not to the Boolean structure of the projection-valued measures associated with
the observables of the object system. The knowledge one can get about an object can be expressed by
a nonpure quantum state (for example represented by a non-idempotent density operator), never
by a pure quantum state (for example represented by a idempotent density operator or a state vec-
tor). That is, it is impossible in principle to determine a pure state experimentally.

The main difficulty in Wigner’s presentation of quantum theory is that his conceptual charac-
terization of the state vector is contradictory. He says:
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“The state of the object, if one has the maximum possible knowledge about it, can be
described by a state vector. … [The] state vector [is] a description of the best possible
knowledge available to the observer.” 56

This statement is operationally untenable since there is no such thing as “the best possible knowl-
edge available to the observer”. For every experiment on a quantum system there exist a more in-
formative experiment, but the sequence of more and more informative experiments does not con-
verge to a realizable experiment giving maximal possible knowledge. Wigner’s attempts to formu-
late natural laws “directly in terms of observations independently of any specific theory” 57 leads
to severe difficulties. In order to put his instrumentalistic approach into a mathematically formu-
lated theory, Wigner needs a postulate “demanding the possibility of defining a state with final
accuracy on which no further improvement is possible.” He remarks that this postulate is not at
all obvious, but he does not see the operational impossibility of this requirement: “It is not yet
clear to what extent the reservations concerning the possibility of preparing pure states are valid,
and at any rate, the theory of invariance in quantum mechanics has not yet been worked out
without the concept of pure states. We shall therefore continue to use [this] postulate.” 58 The
most striking difference between pure and nonpure states concerns their operational accessibility
and their time evolution. The deterministic laws refer to pure states which are, however, opera-
tionally inaccessible. Every epistemic state is nonpure; its time evolution is in general not given by
the deterministic Schrödinger equation. Therefore it is in general not possible to embed a nonde-
terministic instrumentalistic description into a non-instrumentalistic deterministic structure.
Deterministic equations of motion can show an extremely sensitive behaviour on the pure-state
initial conditions. As we will discuss in more detail in chapter 8,  there exist deterministic dynam-
ical quantum systems which in every operationally accessible description show an irreducibly
chaotic behaviour. This phenomenon can play a crucial role for epistemically acausal nature of the
observations process. It is indeed considered as an “attractive possibility” by Wigner:

“It is possible, and in fact natural, … to assume that the initial state of the apparatus is
not known … . The probabilistic nature of the out come of the observation then
could be blamed on our ignorance of the initial state of the apparatus.” 59

Wigner rejects this explanation since it “is conflict with the linearity of the equations of motion.”
This is true for the von-Neumann model of measurements but not for more realistic models.60

The necessity to introduce experimentally inaccessible pure state corroborates Einstein’s dic-
tum: “We now realize, with special clarity, how much in error are those theorist who believe that
theory comes inductively from experience.” 61 In Wigner’s instrumentalistic approach, the epis-

56 H. Margenau & E. P. Wigner, Discussion: Comments on Professor Putnam’s Comments, Philosophy of Science
29, 292–293 (1962). The quotations are on p.292 and on p.293; in the Collected Works, volume 6, on p.31
and on p.32.

57 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance
priciples, Reviews of Modern Physics 37, 595–632 (1965). The quotation is on p.603; in the Collected
Works, volume 3, on p.214.

58 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance
priciples, Reviews of Modern Physics 37, 595–632 (1965). The quotations are on p.611; in the Collected
Works, volume 3, on p.222.

59 J. M. Jauch, E. P. Wigner & M. M. Yanase, Some comments concerning measurements in quantum mechanics,
Nuovo Cimento 48 B, 144–151 (1967). The quotation is on p.147; in the Collected Works, volume 6, on
p.184.

60 We shall come back to this important question in chapter 8.
61 A. Einstein, Physics and reality, Journal of the Franklin Institute 221, 349–382 (1936). The quotation is on

p.360.
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temically hidden pure states are fictive idealizations, used as a convenient tool for the construction
of precise probabilistic predictions. Nevertheless Wigner speaks of “the state of the object”62, and
says that if a first-kind measurement of an observable A  with the eigenvalues a1, a2 , … and the
eigenvectors 

  
a1, 

  
a2 , … gives the result aj , then the object system is after the measurement in a

pure state described by the state vector aj
63. Yet, he tends to reject the “point of view to elevate

the state vector into a description of ‘physical reality’ (whatever that may mean)” 64. A scientific
realist would take the opposite position: a pure state is supposed to describe the quantum object
independently of measurements. From a formal point of view it makes little difference whether we
interpret pure states of an individual isolated quantum system instrumentally as a fictive extension
of genuine epistemic states, or as states of a realistic interpretation. But the motivation is different.
While “both realism and instrumentalism agree that science has an overriding aim, … they
disagree as to what that aim is. For realism, science aims at truth (about the World ). For
instrumentalism, science aims at instrumental (including observational) reliability.” 65

2.2 Individual and statistical descriptions, ontic and epistemic interpretations
As emphasized by Erhard Scheibe, “the statements in the relevant original papers, including
those of von Neumann, relating to the concepts of probability, state, measurement, and reduction
of states are not sufficient to compile a single formulation of quantum mechanics that might be
regarded as the orthodox formulation.” 66 This characterization applies also for all papers by
Wigner. Scheibe distinguishes four interpretations of traditional quantum mechanics. First of all,
he discriminates

“between formulations which do not include the concept of the state of an individual
object and those which do. In the first category there is a further distinction between
the theories in which the propositions regarding probabilities are taken to express the
state of knowledge concerning an individual object (epistemic interpretation) and
those in which they are taken to express essentially, relative frequencies in statistical
ensembles of individual objects (statistical interpretation).” 67

States which refer to an epistemic interpretation are called epistemic states, while states which refer
to a statistical interpretation are called statistical states. An ontic interpretation “refers primarily to
individual states but not to states of knowledge or statistical states.” 68 States which refer to an
ontic interpretation are called ontic states. Ontic states are assumed to give a complete description
of a system. In an ontic interpretation, one has again to distinguish

62 E. P. Wigner & M. M. Yanase, Analysis of the quantum mechanical measurement process, Annals of the Japan
Association for the Philosophy of Science 4, 171–186 (1973). The quotation is on p.171; in the Collected
Works, volume 6, on p.549.

63 Compare p.101 in E. P. Wigner, Die Messung quantenmechanischer Operatoren, Zeitschrift für Physik 133,
101–108 (1952). In the Collected Works, volume 6, on p.147.

64 J. M. Jauch, E. P. Wigner & M. M. Yanase, Some comments concerning measurements in quantum mechanics,
Nuovo Cimento 48 B, 144–151 (1967). The quotation is on p.145; in the Collected Works, volume 6, on
p.182.

65 A. Fine, Unnatural attitudes: Realist and instrumentalist attachments to science, Mind 95, 149–179 (1986),
p.157.

66 E. Scheibe, The Logical Analysis of Quantum Mechanics, Oxford, Pergamon Press (1973), p.5.
67 E. Scheibe, The Logical Analysis of Quantum Mechanics, Oxford, Pergamon Press (1973), pp.50–51.
68 E. Scheibe, The Logical Analysis of Quantum Mechanics, Oxford, Pergamon Press (1973), p.82.
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“between theories which express the idea that the state of the object concerned is
incompletely known, and theories of statistical ensembles of individual objects in
definite states (epistemic or statistical extension of the ontic formulation).” 69

In his basic formulations, Wigner adopts an individual interpretation. He is forced to give up his
favoured operationalistic approach, and he has to introduce epistemically hidden pure states.
These pure states are not meaningless, but they play a crucial role in the formulation of first
principles. In spite of the fact that Wigner hesitates to interpret pure states realistically, they have
exactly the function of ontic states. In this sense we can consider the epistemic states in Wigner’s
formulation as extensions of ontic states in the sense of Scheibe.

In classical theories, there is a transparent relationship between statistical and individual
descriptions. In the classical case, the convex set of all statistical states is a simplex so that a unique
decomposition of every nonpure state into pure states is warranted. In quantum theories, how-
ever, a nonpure state can be decomposed in infinitely many different ways into pure states. The
idea that nonpure states represent ignorance of the system’s real individual state is referred to as
the ignorance interpretation. In classical theories a statistical state specifies a unique ensemble, so
that an ignorance interpretation of classical theories is always logically feasible. However, since
many decades it is well known that a simple ignorance interpretation is not defensible in quantum
mechanics. This fact leads to grave problems for a purely statistical interpretation of quantum
mechanics. We conclude that a coherent statistical interpretation in terms of an ensemble of individ-
ual systems requires an individual interpretation as a backing.

2.3 Statistical description of state reductions: The projection postulate
Let us again consider an observable A  with a simple discrete spectrum  a a1 2, ,L  and the spec-
tral decomposition A a Pk k k= ∑ . Then the individual description of a measurement of the first
kind of A  is given by the stochastic nonlinear map

Y Y Y : Y Y· Ò→ =∑P P p P pj j j j jj
��� �� �with probability , ,1  (7)

for every initial state vector Y ∈H obj where H obj is the Hilbert space of the object system. In a
statistical description, a statistical state is represented by a positive operator of trace one on a sepa-
rable complex Hilbert space   H obj, called density operator. If     Dobj : Y YÒ·� � is the density opera-
tor representing the initial state of the object system immediately prior to the measurement, then
the statistical average of the final density operators P P1 2, ,L  is given by the density operator
D p Pk k kobj

# = ∑ . That is, a statistical description of a measurement of the first kind is given by the
mapping

    
D D p P P D P Dk kk k kkobj obj obj obj

# ( ) .→ = = ∈∑ ∑ for every initial density operator B H (8)

This linear map is referred to as the projection postulate.70 In the eigenbasis of the observable A ,
the mapping D Dobj obj

#→  annihilates the off-diagonal elements of the density matrix

    ( )obj· Òa aj kD� ,     · Ò · Ò d · Òa a a a a aj k j k jk j jD D D� � �obj obj obj
#→ = . It should be emphasized that the

statistical transition map (8) is a consequence of the individual state-reduction postulate (7).
However, the linear map D P D Pk k kobj obj→ ∑  does not imply the individual stochastic and

69 E. Scheibe, The Logical Analysis of Quantum Mechanics, Oxford, Pergamon Press (1973), p.51.
70 For observables with simple eigenvalues this postulate has been introduced in chapt.V.1 in: J. von

Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, Springer (1932). The generalization for
observables with degenerate eigenvalues is due to G. Lüders, Über die Zustandsänderung durch den
Messprozess, Annalen der Physik 8, 322–328 (1951).
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nonlinear state reduction map       Y Y Y→ P Pk k��� ��. The reason is that the convex set of all statisti-
cal quantum states is not a simplex, so that every nonpure density operator allows infinitely many
different decompositions into pure density operators. Consequently, the same statistical map
D Dobj obj

#→  can be obtained from many different individual realizations (linear and nonlinear
ones). That is, the individual state-reduction postulate (the “collapse of the wave packet”) is not the
same as the statistical projection postulate. From an exhaustive individual description, the statistical
description can be derived, but not the other way round.

The density operator Dobj
#  does admit an ignorance interpretation since it represents by con-

struction a proper mixture, or in the terminology of Hermann Weyl a Gemenge.71 The con-
struction presupposes the existence of the nonlinear state-reduction map       Y Y Y→ P Pk k��� ��. A
formally identical density operator can be obtained by restricting the pure state of the combined
object and apparatus system before the state reduction to the object system. Let 

    
X ∈ ⊗H Hobj app

be the state vector of the combined system after the interaction but before the state reduction,

      
X : a b a b a a· Òc ckk k k k k k k∑ ⊗ ∈ ∈ =, , , .obj appH H � � � � �2 2 (9)

The restriction �obj  of pure-state density operator D : X XÒ·� � to the object system is called a
reduced density operator,

�obj tr .app: a aÒ·H � �D p p Pk k kk k kk
= =∑ ∑� � (10)

Reduced density operators were first introduced by Lev Davidovich Landau in 1927.72 The
reduced state of an entangled pure state is nonpure and cannot be interpreted as a proper mixture.
In particular, if the state vector 

    
X ∈ ⊗H Hobj app  refers to a single system, then the reduced den-

sity operator �obj  also refers to a single system, and not to an ensemble of single systems.
Therefore   �obj  cannot be interpreted in terms of an ensemble in which the object observable
have a definite value. The nonpurity of such a state described by Landau’s reduced density opera-
tor is exclusively due to Einstein–Podolsky–Rosen correlations between the object system and the
apparatus system.

The fact that the density operator Dobj
#  for the mixture generated by a state reduction and the

reduced density operator   �obj  of a single system before the state reduction are represented by the
same mathematical objects is just an example for the mentioned fact that nonpure quantum states
do not fully specify the system under discussion. For a proper understanding of the state reduc-
tion process, it is important not to confuse individual nonpure states described by Landau’s
reduced density operator with statistical density operators. Unfortunately, Wigner never distin-
guishes explicitly between Landau’s concept of reduced nonpure states of an individual object and
the nonpure states of proper statistical mixtures.73

71 See p.12 in H. Weyl, Quantenmechanik und Gruppentheorie, Zeitschrift für Physik 46, 1–46 (1927).
72 L. Landau, Das Dämpfungsproblem in der Quantenmechanik, Zeitschrift für Physik 45, 430–441 (1927).
73 Compare for example E. P. Wigner, Remarks on the mind-body question, in: I. J. Good (ed.), The Scientist

Speculates, London, Heinemann (1962), pp.284–301, footnote 13 on p.301 (in the Collected Works, volume
6, on p.259); E. P. Wigner, Theorie der quantenmechanischen Messung, Physikertagung Wien 1961, Mosbach,
Physik Verlag (1962), pp.1–8, p.2 (in the Collected Works, volume 3, on p.433); E. P. Wigner & M. M.
Yanase, Information contents of distributions, Proceedings of the National Academy of Sciences USA 49,
910–918 (1963), p.911 and reference 4 (in the Collected Works, volume 3, on p.453).
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2.4 Wigner on the relation between quantum theory and experimental science
In most discussions of conceptual problems of quantum theory (in particular in all papers by
Wigner), von Neumann’s model is uncritically adopted.74 In a joint paper, Jauch, Wigner and
Yanase say that they “continue to believe that von Neumann’s description of the measurement
process is basically correct.” 75 Therefore Wigner uses the reduction postulate to discuss the sta-
tistical correlations between the outcomes of successive measurements of the first kind on a
strictly isolated object system whose automorphic dynamics is governed by the Hamiltonian H .
Let A An1 , ,L  be observables with simple discrete spectra, and let A t a t P tk k k( ) ( ) ( )( ) ( )= ∑n

n n  be
the spectral decomposition of the operator       A t itH A itHk ( ) exp( ) exp( ): � �h h− . If the initial
state is given by the state vector  Y , the celebrated “Wigner formula” gives the joint probability

      · Òn n n nY YP t P t P t P tn n n n
n n( ) ( ) ( ) ( )( ) ( ) ( ) ( )L L1 1 1 1

1 1� (11)

that a sequence of first-kind measurements of A1, A2 , … , An , carried out at times   t t tn1 2≤ ≤ ≤L ,
yields the outcomes 

  
a t1 1

1( )( )n , 
  
a t2 2

2( )( )n , … , 
 
a tn n

n( )( )n , respectively.76 In spite of the unwar-
ranted idealization necessary to derive this relation, Wigner concludes “that the laws of quantum
mechanics only furnish probability connections between results of subsequent observations carried out
on a system.”77 Moreover, he claims that the expressions of the type of eq.(11) for the correlations
between results of measurements of the first kind “constitute the content of the laws of nature, or
of a theory.” 78 That is, Wigner assumes that it is possible to formulate the laws of nature entirely
in terms of the von-Neumann model of measurements.

Furthermore, Wigner shows that observables which do not commute with the additive con-
served quantities cannot be measured precisely, where tacitly a “measurement” is conceived as a
measurement of the first kind.79 Since most observables do not commute with the additive con-
served quantities, Wigner claims that a measurement of such observables requires “a very large
measuring apparatus”.80 If this statement were true, then quantum mechanics would already fail
on the molecular level. For example, enzymes act as microscopic measurement mechanisms, and
the biological molecular code realizes, at a molecular level, a highly reliable classical, irreversible

74 A hardly convincing defense of measurements of the first kind and its trivial generalizations can be found on
pp.18–19 of E. P. Wigner & M. M. Yanase, Analysis of the quantum mechanical measurement process, Annals
of the Japan Association for the Philosophy of Science 4, 171–186 (1973). In the Collected Works, volume 3,
on pp.552–553.

75 J. M. Jauch, E. P. Wigner & M. M. Yanase, Some comments concerning measurements in quantum mechanics,
Nuovo Cimento 48 B, 144–151 (1967). The quotation is on p.145; in the Collected Works, volume 6, on
p.182.

76 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance
priciples, Reviews of Modern Physics 37, 595–632 (1965), (in the Collected Works, volume 3, pp.206–243);
E. P. Wigner, The subject of our discussion, in: B. d’Espagnat (ed.), Foundations of Quantum Mechanics.
International School of Physics “Enrico Fermi”, 1970, New York, Academic Press (1971), pp.1–19, (in the
Collected Works, volume 6, pp.199–217).

77 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963), The quotation is
on p.13; in the Collected Works, volume 6, on p.176.

78 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance
priciples, Reviews of Modern Physics 37, 595–632 (1965). The quotation is on p.599; in the Collected
Works, volume 3, on p.210.

79 E. P. Wigner, Die Messung quantenmechanischer Operatoren, Zeitschrift für Physik 133, 101–108 (1952).
Reprinted in Collected Works, volume 3, pp.415–422, and in Collected Works, volume 6, pp.147–154. For a
generalized approach, compare E. P. Wigner & M. M. Yanase, Analysis of the quantum mechanical
measurement process, Annals of the Japan Association for the Philosophy of Science 4, 171–186 (1973), in
the Collected Works, volume 3, pp.549–564.

80 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963), The quotation is
on p.14; in the Collected Works, volume 6, on p.177.
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and nonanticipating memory which in fact acts as a measuring instrument of molecular size. In
modern nanotechnology other examples of extremely small measuring devices can be constructed.
We conclude that the macroscopic nature of most measuring instruments of experimental science
is irrelevant to the quantum mechanical measurement problem.

Wigner’s result is based on the well-known fact that a simultaneous first-kind measurement of
noncommuting observables with a simple spectrum is impossible. But this mathematical theorem
has little to do with laboratory measurements. In fact, it is well known for long in the engineering
community that incompatible observables can easily be measured together,81 and that such
measurements also have a proper quantum theoretical description.82

According to Wigner, we use quantum mechanics, “as a rule, either to determine material con-
stants or the possible values of essentially only one observable, the energy.”83 These statements are
not in accordance with modern experimental science. For example, relation (11) allows not even
the discussion of the simplest nuclear magnetic resonance experiment with a spin-2 system as
described by Bloch’s equation.84 In this experiment, the relevant observable is the magnetization
which is proportional to the spin angular momentum             2h ss . The measured quantity is not an
eigenvalue of an observable, but the induced voltage in a receiver coil. According to Faraday’s
induction law, this voltage is proportional to the corresponding component of the time derivative
of the expectation values (in contradistinction to the eigenvalues) of the observables  sx , sy  and

  sz . By using three mutually orthogonal receiver coils one can measure simultaneously the expec-
tation values of these three mutually incompatible observables as a continuous function of an
externally applied magnetic field. The resulting information about the local molecular magnetic
field gives very detailed information about the molecular structure and the way molecules move,
and it can even lead to precise determinations of the structure of complex proteins.85

Referring to spectroscopic experiments, Wigner states that “energy is the most important
microscopic quantity that we know how to measure” 86. However, no spectroscopic measurement is
a first-kind measurement of energy. The appropriate theory for spectroscopic (and other experi-
ments) is response theory which gives the expectation values of observables of an object system in
response to an external stimulus, say an electromagnetic field or a mechanical force.87 In spec-

81 E. Arthurs & J. L. Kelly, On the simultaneous measurement of a pair of conjugate observables, Bell System
Technical Journal 44, 725–729 (1965); J. P. Gordon & W. H. Louisell, Simultaneous measurement of
noncommuting observables, in: B. L. Kelley, B. Lax & P. E. Tannenwald (eds.), Physics of Quantum
Electronics, New York, McGraw-Hill (1966), pp.833–840; C. Y. She & H. Heffner, Simultaneous
measurement of noncommuting observables, Physical Review 152, 1103–1110 (1966).

82 Compare in particular the engineeringly sound and mathematically rigorous approach by A. S. Holevo,
Investigations in the general theory of statistical decisions, Proceedings of the Steklov Institute of Mathematics
Issue 3, 1–140 (Russian number 124, 1976, pp.1–135) (1978); A. S. Holevo, Probabilistic and Statistical
Aspects of Quantum Theory, Amsterdam, North-Holland (1982).

83 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The quotation
is on p.374; in the Collected Works, volume 6, on p.60.

84 F. Bloch, Nuclear induction, Physical Review 70, 460–474 (1946).
85 Compare for example R. R. Ernst, Nuclear magnetic resonance Fourier transform spectroscopy, in: B. G.

Malmström (ed.), Nobel Lectures in Chemistry, Singapore, World Scientific (1997), pp.12–57.
86 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in

the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The quotation
is on p.374; in the Collected Works, volume 6, on p.60.

87 Modern response theory started with the so-called Bloch equation (F. Bloch, Nuclear induction, Physical
Review 70, 460–474 (1946)) for the magnetization of a spin system under the influence of a external time-
dependent magnetic field. This approach has be generalized to arbitrary systems, for example by R. Kubo &
K. Tomita, A general theory of magnetic resonance, Journal of the Physical Society of Japan 9, 888–919
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troscopy the measured observable is a molecular electric or magnetic multipole moment, never
the energy. Only by using the intricate theory of line broadening and level shifts, information
about energy levels can be deduced. Wigner’s objection that quantum theory gives no rules how a
measurement of an observable can be performed88 is not in accordance with engineering quan-
tum mechanics. It is true that there is no simple relationship between observables and measuring
instruments but in simple case (like in magnetic resonance experiments), quantum mechanics
gives the full information for the construction of an appropriate measurement instrument. Over
and above that, all these experiments can be understood fully in terms of the expectation value postu-
late, without any recourse to the projection postulate.

2.5 The expectation-value postulate provides the link between theory
and experiment

Wigner admits that von Neumann’s model of measurement of the first kind is a “highly idealized
description of the measurement.” 89 He objects in particular to its instantaneous character: “The
instantaneous very strong interaction is an unrealistic idealization even in nonrelativistic the-
ory.”90 The concept of an instantaneous measurement of the first kind precludes a dynamical
explanation of the irreversibility connected with every measurement. Furthermore, it leads to
difficulties in a relativistic quantum theory since an instantaneous state change is not Lorentz
covariant. Nonetheless, Wigner believes that “the paradoxes which are often found alarming, such
as Schrödinger’s cat, have little to do with this problem. It is important to realize this point,
nevertheless, because it also detracts from the simplicity and hence beauty of the mathematical
formulation of the theory.” 91 We find it difficult to appreciate this attitude.

Wigner proposes to “scrutinize the orthodox view very carefully and to look for loopholes
which would make it possible to avoid the conclusions to which the orthodox view leads” 92. It is
astonishing that in spite of his critical attitude and his deep insight, Wigner never questioned the
basic assumption underlying von Neumann’s model of measurements of the first kind. A theory
which deals with the connection between theoretical descriptions and laboratory experiments
should at least fulfill the following desiderata:

(1954); R. Kubo, Statistical mechanical theory of irreversible processes. I, Journal of the Physical Society of
Japan 12, 570–586 (1957); J. M. Blatt & T. Matsubara, The electric and magnetic response of a
thermodynamic system, Progress of Theoretical Physics 21, 696–712 (1959). For a text-book version,
compare for example E. Fick & G. Sauermann, Quantenstatistik dynamischer Prozesse. Band IIa. Antwort-
und Relaxationstheorie, Leipzig, Akademische Verlagsgesellschaft (1985).

88 Compare p.102 in E. P. Wigner, Die Messung quantenmechanischer Operatoren, Zeitschrift für Physik 133,
101–108 (1952), (in the Collected Works, volume 6, on p.148).

89 E. P. Wigner, Interpretation of quantum mechanics, in: J. A. Wheeler & W. H. Zureck (eds.), Quantum
Theory and Measurement, Princeton, Princeton University Press (1983), pp.260–314. The quotation is on
p.284, in the Collected Works, volume 6, p.102.

90 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance
priciples, Reviews of Modern Physics 37, 595–632 (1965). The quotation is on p.625; in the Collected
Works, volume 3, on p.236.

91 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The two
quotations are on p.371; in the Collected Works, volume 6, on p.57. Compare also p.284 in: E. P. Wigner,
Interpretation of quantum mechanics, in: J. A. Wheeler & W. H. Zureck (eds.), Quantum Theory and
Measurement, Princeton, Princeton University Press (1983), pp.260–314, (in the Collected Works, volume
6,on p.102)..

92 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963), The quotation is
on p.7; in the Collected Works, volume 6, on p.164.
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• In the engineering domain, quantum theory should in principle be able to provide a

description of measuring instruments and of our general experimental laboratory
equipment. Therefore, a full-fledged codification of quantum mechanics must include
the successful engineering theories like classical point mechanics, chaotic nonlinear
dynamical systems, continuum mechanics, hydrodynamics, classical stochastic processes,
thermostatics including phase transitions, and Maxwell’s electrodynamics.

• Since not every physical system is a measuring instrument, the apparatus and its
interaction with the objects to be measured must be characterized by special properties.
This is not done in von Neumann’s model. From experimental science we know that
every measuring instrument can register facts in a macroscopically irreversible way and
that the relevant degrees of freedom of an observing system can be described classically.

• A realistic model for measurements has to take into account that every measurement
takes time. The instantaneous character of first-kind measurements is unphysical and
leads to deep difficulties.

• Experimenters have no difficulties to measure incompatible physical quantities
simultaneously. A realistic measuring theory should conform to this empirical fact.

• Recent experiments on single atoms and molecules require a careful distinction between
individual and statistical descriptions, and between ontic and epistemic interpretations.

The first step towards a realistic theory of measurements is to acknowledge that Dirac’s valuation
(1) of observables by point functions, which is taken over from classical point mechanics, is inap-
propriate for quantum mechanics. Dirac’s rule does not value all properties which can be mea-
sured. In particular, observables with a continuous spectrum and noncommutative observables are
not valuated at all. Furthermore, Dirac’s valuation is not continuous. For example, for every ele-
mentary observable represented by a projection operator F , there exists in quantum mechanics an
elementary observable Fe  which is incompatible with F , F F F Fe e≠ , and which for any arbi-
trarily small positive number   e  satisfies the relation     �� ��F F− =e e . If the state vector   y  is an
eigenvector of F  with the eigenvalue 1, then Dirac proposes to say that in this state the system
has the value 1. According to Dirac’s rule, the incompatible but physically indistinguishable
observable   Fe  cannot be valued. Moreover, no observable of an individual open quantum system
ever has a dispersion-free value. Fortunately, it is straightforward to extend Dirac’s valuation by
point functions to a continuous valuation of any observable of an arbitrary (isolated or open)
classical or quantum system by set functions:

Continuous valuations of observables by set functions (12)

Any physical system is characterized by an appropriate C*-algebra A . There is a one-
to-one correspondence between the properties of the physical system and the commu-
tative C*-subalgebras of   A . Every commutative C*-subalgebra AA can be generated
by a selfadjoint element A ∈A . For historical reasons, such a generating selfadjoint
element A  is called an observable. Every observable A  generates a unique commutative
C*-subalgebra   A AA ⊆ ; it is the smallest C*-algebra which contains all powers of A .
The state (pure or nonpure) of the system at time t  is represented by a normalized
linear functional, called the state functional rt . The valuation of every property of the
system is given (independently of any measurement) by the continuous set function
� �a rt AE{ ( )}, where EA A A: S → A  is the spectral measure of the observable A ,
and   � is an element of the  s-algebra of Borel sets of the spectrum of A .
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The valuation of observables by the state set functions is continuous and interpolates between
incompatible observables. If an elementary observable F  has a dispersion-free value, rt F( ) = 1,
then for any neighbouring elementary observable with     �� ��F F− =e e , the mean value is almost 1,

  
r eet F( ) ≥ −1 , and the value distribution is almost dispersionfree,   0

2< <( )D eeF . Note that
these valuations are intrinsic and in no way probabilistic. The valuation of an observable A  with
respect to a state functional rt  can also be characterized by the family � �rt

nA n( ) , , ,| = …0 1 2
of moments 

  
rt

nA{ }. Of particular importance is the first moment 
 
rt A( ) , usually called the

mean value, and the dispersion 
  
( ) ( ) ( )D : r rA A At t

2 2 2− . The dispersion is a characteristic of
the set function       � �a rt AE{ ( )} and should not be misinterpreted as the spread of a collection
of real numbers. If D A = 0, the valuation is determined by the single parameter 

 
rt A( ) , and we

say then with Dirac that the observable A  has the dispersionfree-value 
 
rt A( ) . Dispersion-free

valuations exist only if 
  
rt  is a pure state functional. In the special case of classical point mechan-

ics, every pure state functional is multiplicative93, so that in this case all observables have a dis-
persion-free value with respect to a pure state functional. It is characteristic for quantum systems
(that is, if   A  is noncommutative), that the valuations with respect to pure states are in general
not dispersion-free.

The fundamental and highly nontrivial expectation-value postulate relates the intrinsic value
distribution with the statistical value distribution obtained experimentally. Consider for example
a N -fold repeated experiment, described by a random variable a  which can attain the values
a a a N( ) ( ) ( ), ,1 2 … . Provided the limit N →∞  is well-defined, the empirically based value
distribution can be characterized by the family of moments E � �an ,94

Ea
n

N

k n

k

N
a

N
a n� � � �: lim , , , , .( )

→∞ =∑ = …
1

1 2 3
1

(13)

The fundamental link between quantum theory and experimental science is not given by Dirac’s
jump postulate (2) which is based on Dirac’s valuation (1) by point functions but by the expecta-
tion-value postulate which is based on the valuation (12) by set functions. The expectation-value
postulate requires the equality of the moments E � �an  of the empirical value distribution with
the moments rt

nA� �  of the intrinsic valuation of the observable A  with respect to the state
functional 

  
rt  of the quantum system immediately before the measurement,       E � � � �a An

t
n= r .

The expectation-value postulate95 (14)

Let A  be a selfadjoint observable with an arbitrary spectrum �, let   �  be the s-algebra of
Borel sets of   � and EA be the spectral measure of A . The probability that a predictive mea-
surement of the observable A  gives a value lying in the Borel set � ∈� is given by the
Kolmogorov probability measure � �: → +®  defined by � ( ) tr{ ( )}� �= D E , where D  is
the density operator describing the initial (pure or nonpure) state of the object system
immediately before the measurement.

93 Compare for example R. V. Kadison & J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. I.
Elementary Theory, New York, Academic Press (1983), proposition 4.4.1, p.269.

94 In the case that not all moments exist, a proper characterization can be given by the characteristic function

    s isaa E{exp( )},   s ∈® .
95 The expectation-value postulate has been formulated for the first time in a slightly weaker form in footnote

1 on p.83 in W. Pauli, Über Gasentartung und Paramagnetismus, Zeitschrift für Physik 41, 81–102 (1927).
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Conditioned by a measurement, the expectation-value postulate implies that the observable A  is a
random observable on the Kolmogorov probability space   ( , , )� � � . The expectation value

    E � �f A( )  of an arbitrary measurable function f  of this random variable is given by

    
E � �f A f d( ) ( ) ( ) .= ∫ l l

�
� (15)

The discussion of measurements of the first kind is based on the dogma that a valuation of physi-
cal quantities has to be made by point functions, and not – as both the mathematical formalism
and experimental practice strongly suggest – by set functions. Nevertheless, the projection postu-
late is compatible with the expectation-value postulate, but it is a much too strong requirement.
In distinction from the projection postulate, the expectation-value postulate says nothing about the
state after the measurement. Nevertheless, the expectation-value postulate is sufficient for a
comparison of quantum-mechanical predictions with experimental results. In contrast to the
projection postulate, the expectation-value postulate is empirically well-confirmed and supposed
to hold for any kind of measurements.

3. Quantum mechanics of open systems

3.1 Quantum theory has to deal with open systems
Even in his late papers Wigner claims that “quantum mechanics describes the behavior of isolated
systems”.96 In discussing the question of the validity of quantum mechanics for macroscopic
systems, he remarks: “The first point that should be considered in this connection is that physics
deals with isolated systems, that is systems so far removed from other bodies that these do not ex-
ert noticeable influences on the system considered.” 97 The fact that even in classical mechanics
macroscopic bodies cannot be considered as isolated systems, is well known since the beginning of
this century.98 Yet, for the first time in 1971, Wigner tells us that due to the enormous density of
the energy levels, a “state isolation is very difficult to maintain” for macroscopic bodies.99 In his
later papers he repeats this old-established point many times: “There are no isolated macroscopic
systems.” 100 Since Wigner presupposes that quantum mechanics is applicable to isolated systems
only, he concludes that “quantum mechanics’s validity has narrower limitations, that it is not
applicable to the description of the detailed behavior of macroscopic bodies.” 101 Since Wigner
never acknowledges the fact that since many decades we have a well-established and perfectly
functioning statistical theory of open quantum systems, his reason for believing that quantum
mechanics is not applicable to macroscopic systems is hardly convincing.

96 E. P. Wigner, Physics and its relation to human knowledge, Hellenike Anthropistike Hetaireia, Athens, 283-
294 (1977). In the Collected Works, volume 6, on p.591.

97 E. P. Wigner, The extension of the area of science, in: R. G. Jahn (ed.), The Role of Consciousness in the Physical
World, AAAS Symposium No.57, Boulder, Westview Press (1981), pp.7–16. In the Collected Works,
volume 6, on p.606.

98 Compare for example E. Borel, Introduction géométrique à quelques théories physiques, Paris, Gauthier–Villars
(1914), p.98.

99 E. P. Wigner, The subject of our discussion, in: B. d’Espagnat (ed.), Foundations of Quantum Mechanics.
International School of Physics “Enrico Fermi”, 1970, New York, Academic Press (1971), pp.1–19. The
quotation is on p.17; in the Collected Works, volume 6, p.215.

100 So for example on p.380 in E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker
(ed.), Contemporary Research in the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel
(1973), pp.369–385. In the Collected Works, volume 6, on p.66, in the Collected Works, Volume 6, p.259.

101 E. P. Wigner, Review of the quantum mechanical measurement process, in: P. Meystre & M. O. Scully (eds.),
Quantum Optics, Experimental Gravity, and Measurement Theory, New York, Plenum Press (1983), pp.43–
63. The quotations are on p.78; in the Collected Works, volume 6, on p.240.



26
Wigner never mentions the well-known fact that due to the omnipresent Einstein–Podolsky–

Rosen correlations, a quantum system can as a rule not be considered as isolated. If his conclusion that
“the lack of the possibility of isolating a truly macroscopic body from the environment … limits
the validity of our microscopic theory, of quantum mechanics” 102, would be true, it would also
apply to microsystems and thus refute quantum theory. All object systems of interest to experi-
mental science are open systems. Since the early years of quantum mechanics it is known that
even an atom cannot be isolated from its environment. For example, if one considers hypotheti-
cally an atom as an isolated system in an excited energy eigenstate, it would never decay into the
ground state, in gross contradiction with the experiment. The basic physical mechanism how
excited atoms lose energy is the radiative decay due to the interaction with the electromagnetic
radiation field. The proper tools to discuss spontaneously decaying atoms as open quantum system
are the reduced density operators as introduced by Landau in 1927.103 All this is, of course, well
known, in particular to Wigner as a co-author of the famous Weisskopf-Wigner theory of 1930
for radiative decay of unstable quantum systems104.

3.2 Dynamical semigroups for open quantum systems
In 1982105 Wigner proposed “to modify the standard quantum mechanical equation for the
time-dependence of [the density operator D]” by adding “to the expression for ∂ ∂D t�  other
terms which decrease the off-diagonal elements of D”. The equation

i D t t H D t D t H i D t
m m mh h ll l l∂ ∂ = − − − ′∑( ) ( ) ( ) ( ) ( ) ,

, , ,� e L L 2 (16)

which he proposes, is neither new nor does it imply a modification of traditional quantum
mechanics. It is surprising that Wigner apparently was not aware that this equation of motion is
nothing else than the simplest example of a completely positive dynamical semigroup. Dynamical
semigroups are not ad hoc, but can be derived under appropriate conditions by restricting the
Hamiltonian dynamics of the joint system consisting of object and environment to the object sys-
tem. The use of such dynamical semigroups for density operators is a standard tool in molecular
spectroscopy at least since 1948106, and it is well known to every student in physical chemistry.107

The whole industry of nuclear magnetic resonance spectroscopy depends in an essential way on
the use of dynamical semigroups, as introduced by Felix Bloch in 1946, and heuristically derived

102 E. P. Wigner, The extension of the area of science, in: R. G. Jahn (ed.), The Role of Consciousness in the Physical
World, AAAS Symposium No.57, Boulder, Westview Press (1981), pp.7–16. In the Collected Works,
volume 6, on p.606.

103 L. Landau, Das Dämpfungsproblem in der Quantenmechanik, Zeitschrift für Physik 45, 430–441 (1927).
104 V. Weisskopf & E. Wigner, Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie,

Zeitschrift für Physik 63, 54–73 (1930), V. Weisskopf & E. Wigner, Über die natürliche Linienbreite in der
Strahlung des harmonischen Oszillators, Zeitschrift für Physik 65, 18–29 (1930). Collected Works, volume 3,
pp.30–49 and pp.50–61. For a review of the improved and generalized improved Weisskopf-Wigner theory
of radiation damping compare the text by W. Heitler, The Quantum Theory of Radiation, third edition,
Oxford, Oxford University Press (1954).

105 First in his hitherto unpublished lecture in Lindau and in Tutzing in 1982, published in the Collected Works,
volume 6, pp.72–77.

106 R. Karplus & J. Schwinger, A note on saturation in microwave spectroscopy, Physical Review 73, 1020–1026
(1948).

107 Compare the basic paper by G. Lindblad, On the generators of quantum dynamical semigroups,
Communications of Mathematical Physics 48, 119–130 (1976), the review by V. Gorini, A. Kossakowski &
E. C. G. Sudarshan, Completely positive dynamical semigroups of N-level systems, Journal of Mathematical
Physics 17, 821–825 (1976), and the text by E. B. Davies, Quantum Theory of Open Systems, London,
Academic Press (1976).
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in 1953 from first principles of traditional quantum mechanics.108 Later, many elegant and
mathematically rigorous derivations of general dynamical semigroups have been given. In
quantum optics and laser theory such semigroups are also well established.109

After an astonishingly uniformed discussion of the validity of the semigroup approach, Wigner
remarks: “And its validity, even if only approximate, does answer the question of our quantum
mechanics’ validity for macroscopic objects …”,110 and: “such an equation can also account for
the fact that our mind is not in a superposition of different impressions”.111 These statements are
clearly inappropriate.

It is trivial to show that there exist completely positive linear dynamical semigroups imple-
menting the transition map D Dobj obj

#→  of the projection postulate (8) in the sense that for every
initial density operator D D tobj obj( )= = 0  the final density operator is given asymptotically by

  
D D ttobj obj( ) sup ( )∞ →∞:  where Dobj( )∞  is the same operator as Dobj

# . However, since the set of
nonpure quantum states does not form a simplex, an ignorance interpretation of the density oper-
ator Dobj( )∞  is inadmissible. That is, a statistical interpretation in terms of density operators says
nothing about the individual behaviour. Above all, no state reduction is implied. It is true that
dynamical semigroups which asymptotically realize the projection postulate eliminate (in the
eigenbasis of the observable considered) the off-diagonal elements of the density matrix. But this
fact does not imply that “the position of the pointer will assume a definite value”, as erroneously
claimed by Wigner.112

Wigner approves of the popular view that a coherent superposition “resulting from a measure-
ment with a very large apparatus, surely cannot be distinguished … from a mixture ”.113 In the last
few years, this old idea114 of dephasing has attracted much attention under the buzzword
decoherence115 The notion of decoherence refers to the “destruction of the off-diagonal terms in
the density matrix” 116 – a condition which is evidently not sufficient to the explanation of

108 F. Bloch, Nuclear induction, Physical Review 70, 460–474 (1946); R. K. Wangsness & F. Bloch, The
dynamical theory of nuclear induction, Physical Review 89, 728–739 (1953).

109 Compare for example chapter IV of the review by H. Haken, Laser theory, in: S. Flügge (ed.), Encyclopedia of
Physics, Volume XXV/2c, Light and Matter Ic, Berlin, Springer (1970), pp.1–320.

110 E. P. Wigner, Review of the quantum mechanical measurement process, in: P. Meystre & M. O. Scully (eds.),
Quantum Optics, Experimental Gravity, and Measurement Theory, New York, Plenum Press (1983), pp.43–
63. The quotation is on p.81; in the Collected Works, volume 6, on p.243.

111 E. P. Wigner, Some problems of our natural sciences, International Journal of Theoretical Physics 25, 467–
476 (1986). The quotation is on p.470; in the Collected Works, volume 6, on p.619.

112 E. P. Wigner, The limitations of determinism, in: Absolute Values and the Creation of the New World.
Proceedings of the 11th International Conference on the Unity of Science, 1982, New York, International
Cultural Foundation Press (1983), pp.1365–1370. The quotation is on p.1369; in the Collected Works,
volume 6, on p.137.

113 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963). The quotation is
on p.14; in the Collected Works, volume 6, p.177.

114 Compare for example P. Jordan, On the process of measurement in quantum mechanics, Philosophy of Science
16, 269–278 (1949).

115 In particular in quantum cosmology. Compare for example M. Gell-Mann & J. B. Hartle, Classical
equations for quantum systems, Physical Review D 47, 3345–3382 (1993), as well as the popular account in
sect.11 of M. Gell-Mann, The Quark and the Jaguar, New York, Freeman (1994).

116 As characterized on p.461 in: J. J. Halliwell, Information dissipation in quantum cosmology and the emergence
of classical spacetime, in: W. H. Zurek (ed.), Complexity, Entropy and the Physics of Information, Redwood
City, California, Addison–Wesley (1990), pp.459–469.
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superselection rules117, or of the emergence of definite trajectories118, or of the possibility to
interpret nonpure statistical states “in terms of a classical ‘mixture’, with the exact state of the
system unknown to the observer”.119 Again and again – even in the recent literature – a merely
statistical averaging (e.g. an epistemic phase averaging) is proposed as a solution for the measure-
ment problem. Therefore we wish to point out that decoherence in the sense of the dynamical
disappearance of the off-diagonal elements of the density matrix is just a rather weak necessary
but by no means sufficient condition for a proper explanation of the measuring process.120

Wigner admits the possibility “that the validity of quantum mechanic’s linear laws is lim-
ited.” 121 But Wigner never proposes explicitly a nonlinear stochastic equation of motion for
single systems. It is important to acknowledge that from a statistical Lindblad semigroup for the
density operator one cannot derive an equation of motion for individual systems since there are
infinitely many individual realizations of a statistical quantum dynamics in terms of nonlinear
stochastic Schrödinger equations, but only one ontologically relevant individual description.122

For a genuine individual description of an open quantum system it is necessary to start directly
from an individual description of the object system and its environment. It is not possible to
derive an individual description from a merely statistical one.

An explicit example for the relation between the statistical projection map and the individual state reduction

In order to show that statistical semigroups alone cannot provide a solution of the measurement problem,
consider the simplest dynamical semigroup for a two-level system with the Pauli matrix   s3,

(a)
  
çD t i D t D t( ) , ( ) , , ( ) ,= − −2 L s 4 k s s† ¡ † † ¡¡3 3 3 3

where     L3 ∈®  is an angular frequency describing the Hamiltonian dynamics, and k > 0  is a relaxation fre-
quency describing the dissipative interaction with the environment. The asymptotic density matrix D( )∞
fulfills the statistical projection postulate for a measurement of the first kind of the observable   s3 in a statis-
tical ensemble,    D D t Dt( ) lim ( ) tr ( )∞ = +→∞: 2 s 2 s s3 3 30� � . The transition map D D→ ∞( )  annihi-
lates the off-diagonal elements of the density matrix relative to the eigenbasis of   s3. The dynamical semi-
group (a) allows many essentially commutative dilations to larger reversible systems in which the open
object system is contained. The simplest linear commutative Markov dilation123 can be realized by a

117 As claimed by W. H. Zurek, Environment-induced superselection rules, Physical Review D 26, 1862–1880
(1982).

118 As claimed on p.462 in: J. J. Halliwell, Information dissipation in quantum cosmology and the emergence of
classical spacetime, in: W. H. Zurek (ed.), Complexity, Entropy and the Physics of Information, Redwood City,
California, Addison–Wesley (1990), pp.459–469.

119 As claimed on p.47 in: W. H. Zurek, Quantum measurements and the environment-induced transition from
quantum to classical, in: A. Ashtekar & J. Stachel (eds.), Conceptual Problems of Quantum Gravity, Boston,
Birkhäuser (1991), pp.43–62.

120 Compare also the critical letters in response to a paper by W. H. Zurek, Decoherence and the transition from
quantum to classical, Physics Today 44, No. 10, 36–44 (1991), published in Physics Today 46 (4), April
1993, pp.13–15 and pp.81–90.

121 E. P. Wigner, The subject of our discussion, in: B. d’Espagnat (ed.), Foundations of Quantum Mechanics.
International School of Physics “Enrico Fermi”, 1970, New York, Academic Press (1971), pp.1–19. The
quotation is on p.17; in the Collected Works, volume 6, on p.215.

122 Under the name quantum diffusion model, an ad hoc individual realization of a statistical Lindblad
semigroup for the density operator of open quantum systems by a state vector satisfying a stochastic
nonlinear Schrödinger equation has been proposed by N. Gisin & I. C. Percival, The quantum-state diffusion
model applied to open systems, Journal of Physics A: Mathematical and General 25, 5677–5691 (1992). Of
course, this and similar “unravelings” are highly nonunique. In spite of that, it has been claimed that the
quantum diffusion model gives a detailed picture of the behaviour of an open individual system.(L. Diósi,
N. Gisin, J. Halliwell & I. A. Percival, Decoherent histories and quantum state diffusion, Physical Review
Letters 74, 203–207 (1995)) Such claims has are not justified.

123 B. Kümmerer & H. Maassen, The essentially commutative dilations of dynamical semigroups on Mn,
Communications in Mathematical Physics 109, 1–22 (1987).
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reversible Hamiltonian dynamics on the tensor product   A C⊗  where  A  is the algebra of ( )2 2× -
matrices and the commutative algebra   C  generates a classical white noise force function 

    
t w ta ç ( ) e3

acting on the object system. In this realization, the reduced individual dynamics for the object system is the
given by a linear time-dependent stochastic Schrödinger equation in the sense of Stratonovich,

(b)       i d t t dt dw t t tY 2L s Y 2 k s Y( ) ( ) ( ) , , ( ) ,= − ≥ ∈3 3 3
22 0◦ ©

where   ◦ denotes the Stratonovich product, and  t w ta ( )  is a real-valued Wiener process with the covari-
ance     E{ ( ) ( )}w t w s t s= −� �. The mean density operator     D t t t( ) ( ) ( ): Y YÒ·E � �� �  realizes the dynamical
semigroup (a). Since s3 is a constant of motion, this example shows that a simple dephasing process cannot
explain a measuring process. The reason is that although a linear dilation of a dynamical semigroup incor-
porates the influence of the environment, it neglects the backreaction of the polarization of the environment
on the object system. While in a statistical description the equations of motion for statistical states are nec-
essarily linear, there are no reasons why the time evolution of individual states should be linear. For exam-
ple, the mean density operator         D t t t( ) ( ) ( ): Y YÒ·E � �� �  generated by the solution     t ta Y ( ) of the non-
linear stochastic Schrödinger equation

(c)
i d t t dt i t t t t t dt

i t t t dw t t t

Y 2L s Y k Y s Y s Y s Y Y

k s Y s Y Y Y Y

· Ò · Ò

· Ò

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) , ( ) , ( ) ,

= + −

+ − ∈ =

3 3 3 3 3

3 3
22 1

� �

� �� ��

� �

� �� ◦ ©

also satisfies the semigroup equation (a). As shown by Gisin, the individual solution describes asymptoti-
cally for t →∞  a first-kind measurement of the observable s3,124 The Schrödinger equation (c) is purely
formal, the corresponding effective Hamiltonian is not selfadjoint, and to the best of our knowledge it has
no physical interpretation. Nevertheless, this example is instructive since it shows that among the infinitely
many possible individual realizations of the statistical dynamical semigroup (a) there may be one which is
relevant for an understanding of some aspects of the measurement process. Of course it not satisfactory just
to postulate a nonlinear stochastic Schrödinger equation. Such effective equations of motion should be
derived from a encompassing system, comprising the essential parts of the measuring apparatus and the
dissipative environment. In fact, it can be shown that the asymptotic state reduction process (7) is a solution
of a special case of equations of motion which can be derived from a still another nonlinear stochastic
effective Schrödinger equation with a selfadjoint Hamiltonian. Such equations can be derived from first
principles of quantum mechanics.125 Neither a stochastic modification nor any kind of extension of
quantum mechanics is necessary to describe such stochastic quantum processes. The nonlinearities of the
effective equations of motion for the object system arise from the backreaction of the polarized environment
on the object.

3.3 Wigner’s elementary building blocks are bare systems
The fact that historically the first examples discussed in quantum mechanics were idealized as
strictly closed systems should not lead us to the conclusion that quantum theory is only applicable
to isolated systems. Wigner asserts just the opposite, namely that “one can, and does, assume that
… the object is separated from the rest of the world … during time intervals between measure-
ments.” 126 The fact that this claim is not correct is of great importance for an understanding of
mesoscopic and macroscopic phenomena in terms of quantum theory. Every object system is
interacting with the gravitational and the electromagnetic field. In particular, no material object
can be screened off against interactions with the low frequency part of the electromagnetic field.

Physics is strongly influenced by atomism, and tries to analyze the world in terms some elemen-
tary building blocks. It was Wigner who first introduced the modern point of view that elemen-
tary systems have to be characterized group theoretically. In 1939 Wigner published his epochal
paper on the representations of the Poincaré group (that is, the inhomogeneous Lorentz

124 N. Gisin, Quantum measurements and stochastic processes, Physical Review Letters 52, 1657–1660 (1984).
125 H. Primas, Individual description of dynamical state reductions in quantum mechanics, Unpublished Report

(1997).
126 H. Margenau & E. P. Wigner, Discussion: Comments on Professor Putnam’s Comments, Philosophy of Science

29, 292–293 (1962). The quotation is on p.292; in the Collected Works, volume 6, on p.31.
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group).127 He gave a (from a physical viewpoint complete) classification of all irreducible pro-
jective representations of the Poincaré group which led to a comprehensive insight of their physi-
cal significance. The physically relevant irreducible projective representations of the Poincaré
group are those in which the spectrum of the translation subgroup lies in the future cone. They
can be labelled by the eigenvalue m2  of a Casimir operator, where the parameter m  is called
mass. The further classification is given by the so-called little group of transformations leaving the
absolute square m2  of a vector fixed. When m2 0> , the little group is isomorphic to SO(3) or
SU(2), and is determined by a positive integer or half-odd integer, called the spin s . To each pair
( , )m s  there corresponds only one irreducible representation up to unitary equivalence. For
m= 0 , the little group is isomorphic to the Euclidean group of a two-dimensional plane or to its
two-sheeted covering, and is determined by a positive integer or half-odd integer, called the helic-
ity. By means of this analysis he provided a definition of what we mean by an elementary physical
system. According to Wigner, “the concept of an elementary system … is a description of a set of
states which forms, in mathematical language an irreducible representation space for the inhomo-
geneous Lorentz group.” 128 Unfortunately, it is still fashionable to call such elementary math-
ematical structures “elementary particles”. Wigner’s ideas have been extended to other kinematical
groups (in particular also for the Galilei group which appears as a limiting case of the Lorentz
group), and to a more general framework which includes classical theories.129

Wigner’s elementary building blocks allow the construction the Hilbert space of a composite
system as well-defined tensor product. However, there is a snag: Group-theoretically elementary sys-
tems have no direct operational meaning. According to Wigner, an elementary system is nothing
else but a conceptual carrier of an elementary representation of an appropriate symmetry group
(like the group SU(3), the Poincaré group, or the Galilei group). The state vectors defined by an
irreducible projective representation of a kinematical group refer to a hypothetical strictly isolated
system without any interactions with other systems. Such systems are called bare (“bare particles”,
“bare fields”). Wigner’s analysis made it clear that massive elementary systems are fundamentally
different from massless ones (like photons). A massive elementary system which is coupled to an
elementary zero-mass field has no longer a definite mass, hence does no longer transform accord-
ing to an irreducible representation of the Poincaré group. In particular, a bare elementary system
carrying an electrical charge (like a bare electron) inevitably interacts with the electromagnetic
field it itself generates. The physical states of such systems always contain clouds of low-energy
photons and cannot be described by eigenvectors of the mass operator (the so-called infrared
problem). The state representing an electron as actually observed in the laboratory is called a dressed
electron, it has a very complicated structure. Heuristically, it can be thought of as consisting of the

127 E. P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40,
149–204 (1939). For more than a decade this paper remained unappreciated in the physics community.
Wigner reports in the Citation Classic column of Current Contents of June 11, 1979, Number 24, p.20 (not
reprinted in the Collected Works): “It may be of some interest to recall that when the manuscript was
submitted to one of our mathematical journals, it was rejected as ‘uninteresting’. … Not all articles
originally rejected by a journal prove to be valueless.”

128 T. D. Newton & E. P. Wigner, Localized states for elementary systems, Reviews of Modern Physics 400–406
(1949). The quotation is in footnote 1 on p.400; in the Collected Works, volume 1, on p.402.

129 The representation-independent concept of elementarity is not irreducibility but ergodicity. Any closed
physical system can be realized as an W*-system     ( , , )M G a , consisting of a W*-algebra   M , a kinematical
group   G , and a mapping of  G  into the automorphism group of   M . W*-system is called elementary if the
action of   G  on   M  is ergodic (that is, if the only operators  M ∈M  with the property ag M M( ) =  for all

  g ∈G  are multiples of the identity). Compare for example A. Amann, Observables in W*-algebraic quantum
mechanics, Fortschritte der Physik 34, 167–215 (1986), pp.172–173.
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bare electron, interacting with its own radiation field by emitting and reabsorbing virtual pho-
tons. The presence of a virtual cloud not only modifies the properties of the bare elementary
system and its bare environment, but also their dynamics.

The relationship between group-theoretically defined elementary systems and directly observ-
able phenomena is notoriously difficult. All actual laboratory experiments refer to dressed objects,
never to bare systems. A dressed object is not only adapted to its environment, it is in an essential
way created by it. In order to go over to an operational description, one has to find a dressing
transformation which gives rise to a new tensor-product decomposition, such that the dressed
object and the dressed environment are only weakly entangled by Einstein–Podolsky–Rosen cor-
relations – a well-defined but mathematically difficult problem. While traditional Hilbert-space
quantum mechanics has a simple rule how to describe the union of two quantum systems, the in-
verse problem is much more delicate. Given the Hilbert space   H  of a joint quantum system con-
sisting of two elementary systems with the Hilbert spaces 

  
H A

bare and 
 
H B

bare , 
  
H H H= ⊗A B

bare bare ,
how do we find the two physically relevant Hilbert spaces H A

dressed  and H B
dressed  of the dressed

systems such that 
  
H H H= ⊗A B

dressed dressed ?

4. The superposition principle versus the linearity of the equations
of motion

4.1 Nonlinear equation of motion for open quantum systems
Already in 1939, in his basic paper on the unitary representations of the Lorentz group, Wigner
adds the cautionary note: “The possibility of a future non linear character of the quantum
mechanics must be admitted, of course.” 130 Two decades later, Wigner speculates that one way
out of the difficulties connected with the reduction of the state vector “amounts to the postulate
that the equations of motion of quantum mechanics cease to be linear, in fact that they become
grossly non-linear if conscious beings enter the picture.” 131 By “non-linear” Wigner means that
the equation of motion for the state vector is not linear. Wigner speaks of a “non-linearity of
equations as an indication of life”, but he never mentions the much simpler problems of
engineering science: how can the strong nonlinearities and bifurcations of classical physics
(celestial mechanics, hydrodynamics, turbulence) or the nonlinear phenomena of laser physics
arise from the linear Schrödinger equation? The usefulness of nonlinear Schrödinger equations for
the discussion of concrete quantum-mechanical problems is well documented in the literature.
Do these enormously successful models actually violate quantum mechanics?

Some examples empirically successful nonlinear Schrödinger equations132

a) Interactions with the radiation field
A plausible, though neither rigorous nor fundamental, evaluation of the radiation reaction in quantum the-
ory was proposed by Enrico Fermi already in 1927.133 He proposed the following nonlinear Schrödinger

130 E. P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40,
149–204 (1939), footnote 1 on p.149. In the Collected Works, volume 1, p.334.

131 E. P. Wigner, Remarks on the mind-body question, in: I. J. Good (ed.), The Scientist Speculates, London,
Heinemann (1962), pp.284–301. The quotation is on p.297; in the Collected Works, volume 6, on p.259.

132 In the literature there are numerous papers on ad hoc modifications of the Schrödinger equations with the
sole purpose of achieving reductions of wave packets, spontaneous localizations, or damping phenomena.
These approaches are heuristically interesting but we will not discuss them here, just as little as purely
mathematically inspired investigations.

133 E. Fermi, Sul meccanismo dell’ emissione nella meccanica ondulatoria, Rendiconti dell’ Accademia dei Lincei 5,
795–800 (1927)



32
equation which includes not only the mutual interaction of the electrically charged particles but also their
renormalized self-energy and radiation reaction,

      
i

d

dt
t H t e c

d

dt
t t dh Y Y Y Y" µ( , ) ( , ) ( ) ( , ) ( , ) .q q q r r r r= − ∗∫2 3

3

3
3�

The nonlinear term is modelled after the radiative reaction force   " ( ) ˙̇˙e c2 3� q  of the classical Lorentz elec-
tron theory and accounts for the spontaneous emission of radiation. The radiation reaction potential

  ∫
∗Y Y( , ) ( , )r r r rt t d3  is the expectation value of the dipole moment of the radiating charge. A related

modern approach – using the coupled Dirac–Maxwell equations – has been applied by Asim Barut to dis-
cuss the radiative processes in quantum electrodynamics, in particular to compute the Lamb shift, sponta-
neous emission, and the Casimir–Polder van der Waals forces without field quantization.134 The results are
remarkable: from our present viewpoint they show that nonlinear feedback effects from a classical environment
can account for phenomena usually considered as purely quantal.

b) Onsager reaction fields
The first conceptually sound discussion of feedback effects via the environment of molecular systems is due
to Lars Onsager.135 He observed that the severe disagreement of Debye’s dipole theory with the exper-
iment is due to the neglect of the reaction field in Debye’s theory. Rephrasing Onsager’s physical ideas in a
phenomenological quantum-mechanical language one may write the effective molecular Hamiltonian H  in
the form H H V= +0 , where H0  represents the molecular Hamiltonian in the vacuum, and V  denotes the
interaction energy between the molecular system and the embedding polarizable medium. This effective in-
teraction V  can be approximated by the interaction energy between the molecular dipole moment and the
reaction field due to the polarization of the surrounding medium,        V r= −mm µ E , where     mm  denotes the elec-
tric dipole moment operator of the molecular system, and Er  is the electric field strength of the reaction
field,     Er = l Y Y· Ò�mm . The parameter l  depends on the dielectric constant of the medium and represents
the degree of the polarizability of the environment. In this way one gets the following phenomenological
nonlinear Schrödinger equation136

                  i t H t t th çY l Y Y Yµ · Ò( ) ( ) ( ) ( ) .= −� �0 mm mm�

The nonlinearity is due to the electric dipole interaction of the molecule with the medium which then acts
back by the polarization term             · ÒY Y( ) ( )t t�mm  on the molecule.

c) The Hartree approximation
We consider an arbitrary quantum system in the traditional irreducible representation on a Hilbert space
H . The time-dependent variational principle of quantum mechanics stems from an action functional

∫ t
t L t dt
1

2 ( ) ,  where the Lagrangian L  is given by         L t t i t H( ) ( ): X X· Ò� �h∂ ∂ −�  and H  is the Hamilto-
nian of the system. The Lagrangian L  is a functional of a trial state vector X( )t ∈K  and its complex
conjugate     X

∗ ∈( )t K , where   K H⊆  has to be a symplectic manifold. The equations of motion are
determined by requiring the stationarity of the action, 

 
d ∫ =t

t L t dt
1

2 0( )  with respect to fixed end points
and variations of   Y( )t  and  Y

∗( )t .137 They are given by i t t t H t th ∂ ∂ = ∗X X X dXd· Ò( ) ( ) ( ) ( )� �� � ,

    X( )t ∈H . The choice   K H=  leads to the time-dependent Schrödinger equation       i t H th çX X( ) ( )= . In
general, the subset   K  does not have to be a subspace. But in order that the time-dependent variational
principle leads to a well-defined dynamics, the subset K  has to be a symplectic manifold. If the Hilbert
space is a tensor product,  H H H= ⊗A B , and if one restricts the trial state vectors to products states,

134 Compare the review by A. O. Barut, Foundations of self-field quantumelectrodynamics, in: A. O. Barut (ed.),
New Frontiers in Quantum Electrodynamics and Quantum Optics, New York, Plenum Press (1990), pp.345–
370.

135 L. Onsager, Electric moments of molecules in liquids, Journal of the American Chemical Society 58, 1486–
1493 (1936).

136 S. Yomosa, Nonlinear Schrödinger equation on the molecular complex in solution., Journal of the Physical
Society of Japan 35, 1738–1746 (1973).

137 Compare P. A. M Dirac, The Lagrangian in quantum mechanics, Physikalische Zeitschrift der Sowjetunion
3, 64–72 (1933); J. Frenkel, Wave Mechanics. Advanced General Theory, Oxford, Clarendon (1934),
pp.253–254; J. Schwinger, The theory of quantized fields. I, Physical Review 82, 914–927 (1951); J.
Schwinger, A note on the quantum dynamical principle, Philosophical Magazine 44, 1171–1179 (1953);
 J. R. Klauder, Restricted variations of the quantum mechanical action functional and their relation to classical
dynamics, Helvetica Physica Acta 35, 333-335 (1962).
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  X : Y F( ) ( ) ( )t t t⊗ ,     Y ( ) At ∈H ,     F ( ) Bt ∈H , one gets the so-called Hartree approximation to the
Schrödinger equation       i t H th çX X( ) ( )= . With the Hamiltonian 

 
H H H A Bk k k= ⊗ + ⊗ + ⊗A B1 1 ∑

one gets the following state-dependent Schrödinger equations

        
i t H t t B t A i t H t t A t Bkk k kk kh hç çY Y F F F F Y Y· Ò · Ò( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) .A

B
B

B= + = +∑ ∑� �

If the solution of the second Schrödinger equation is inserted in the first one, one gets a nonlinear effective
Schrödinger equation for the state vector   Y ( )t .

In the foregoing examples from practical quantum mechanics, the nonlinearities of the effective
Schrödinger equations are due to state-dependent backreaction terms. Since they can be obtained by
the time-dependent variation principle of quantum mechanics with a subsidiary factorization
condition, they do not lead to any dynamical inconsistencies. Of course, such nonlinear equations
of motion are not universal but depend on the environment of the object.138

The optimal factorization   X Y F( ) ( ) ( )t t t= ⊗  of an entangled state vector in the sense of the
time-dependent variation principle of quantum mechanics is referred to as the Hartree factoriza-
tion. Thereby, the Einstein–Podolsky–Rosen correlations are not simply neglected but taken into
account at least partially by the nonlinear reaction terms in the effective Hartree equation of
motion. The Hartree factorization can be considered as a replacement of the Hamiltonian
H H A Bk k k

A B⊗ + ⊗ + ⊗1 1 ∑  of a joint system by the two time-dependent Hamiltonians
H B Ak k t k

A + ∑ · Ò  and H A Bk k t k
B + ∑ · Ò , where · ÒBk t  and · ÒAk t  are the expectation values of

the interaction operators at time t . A large part of the success in laser theory and quantum optics
is based on such a Hartree factorization of the expectation value · ÒA F⊗  of products an atomic
operators A  and light-field operator F ,   · Ò · Ò · ÒA F A F⊗ ≈ . 139

The Hartree-factorization is usually regarded as an approximation. Experience, in particular in
radiation theory, shows that the success of the factorization approximation is often amazing.
However, it is not very easy to explain how the nonlinear Hartree-approximation can be a good
approximation to the linear Schrödinger equation. The main point is that the influence of the
environment is not an annoying complication but a conceptually essential feature for the consti-
tution of a quantum object. As the examples show, the Hartree factorization may lead to self-
energy and cloud effects which can also be obtained by appropriate dressing transformations.140 If
one performs a unitary dressing transform, the entanglement between the two bare systems can be
reduced (or even eliminated) by a new division in terms of a dressed object and a dressed
environment, mathematically characterized by a new tensor product decomposition of the Hilbert
space of the joint system. That is the environment of a bare object changes it to a dressed object.

138 Nonlinear effective Schrödinger equations should not be confused with the many unsuccessful proposals to
modify quantum mechanics by introducing a fundamental nonlinearity into the Schrödinger equation. Such
ad-hoc modifications have been proposed many times, most recently by S. Weinberg, Testing quantum
mechanics, Annals of Physics 194, 336–386 (1989). Weinberg’s proposal leads also to severe difficulties,
compare for example D. Sahoo, A deficiency of Weinberg’s quantum mechanics, Letters in Mathematical
Physics 31, 93–100 (1994).

139 Compare for example pp.50–58 in the review by H. Haken, Laser theory, in: S. Flügge (ed.), Encyclopedia of
Physics, Volume XXV/2c, Light and Matter Ic, Berlin, Springer (1970), pp.1–320. For a mathematically
rigorous justification of such models used in laser theory, compare K. Hepp & E. H. Lieb, On the
superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model, Annals of
Physics 76, 360–404 (1973); K. Hepp & E. H. Lieb, Equilibrium statistical mechanics of matter interacting
with the quantized radiation field, Physical Review A 8, 2517–2525 (1973); K. Hepp & E. H. Lieb, Phase
transitions in reservoir-driven open systems with applications to lasers and superconductors, Helvetica Physica
Acta 46, 573–603 (1973).

140 For illuminating simple examples, compare section 7–9 in L. Davidovich & H. M. Nussenzweig, Theory of
natural line shape, in: A. O. Barut (ed.), Foundations of Radiation Theory and Quantum Electrodynamics, New
York, Plenum Press (1980), pp.83–108.



34
The important point is that in experimental science one never observes naked objects, but always
dressed ones. The fact that the empirically relevant tensor-product decomposition of the world
becomes time-dependent leads to grave mathematical difficulties. In mathematically much
simpler Hartree approximation one retains the tensorization with respect to the bare systems, but
describes the dressing effects by nonlinear reaction terms.

Provided the dressed environment admits of a classical description141, hence a contextual
description in terms of a commutative algebra, then an pure-state Hartree factorization can easily
be shown to be exact.142 There is in fact a nontrivial correspondence between quantum mechanics
with nonlinear operators and partially classical theories.143

4.2 Nonlinear Schrödinger equations do not violate the superposition principle
In view of the conceptual difficulties of the orthodox view, Wigner examines the possibility that
“the superposition principle will have to be abandoned”.144 However, it is not quite clear what he
precisely means by this statement. According to Wigner’s discussion, the individual state
reduction is in conflict with the linearity of the Schrödinger equation but not with the superposi-
tion principle. Therefore, we have to emphasize that the concept of a coherent superposition is com-
pletely independent of the dynamics.

A coherent superposition of two different pure states gives a new pure state which is entirely dif-
ferent from the two generating pure states. Coherent superpositions do not exist in classical theo-
ries. The superposition principle of quantum mechanics is the postulate that for every two pure
states there exist coherent superpositions. If this superposition principle is valid, it easily follows
that we cannot only construct one new pure state, but uncountably infinitely many. In the
Hilbert-space formalism, a pure state can be represented by a ray, and the ray by a state vector. In
this formalism, the superposition principle takes a mathematically most simple (but conceptually
perhaps irritating) form, namely: If 

  
Y1 and 

  
Y2  are two state vectors representing two different

pure states, then any linear combination Y Y Y= +c c1 1 2 2  , with  � � � �c c1
2

2
2 1+ = , represents a

new pure state, called a coherent superposition of the two generating states. A representation-
independent formulation is more complicated but very general and conceptually more illuminat-
ing.145

The superposition principle must not be mixed up with the possible invariance of coherent
superpositions under time evolutions. Every automorphic dynamics (like that given by a linear
Schrödinger equation) implies the temporal invariance of coherent superpositions. Real-world
objects are not strictly isolated so that their dynamics is not automorphic, hence we have no reason
to expect that the dynamics of open systems leaves superpositions invariant. For example, a dynamical
semigroup or a nonlinear Schrödinger equation does in general not preserve superpositions. But it
would be mistaken to say that a nonlinear Schrödinger equation violates the quantum mechanical

141 For further explanations, compare section 6.
142 The relevant theorem can be found in M. Takesaki, Theory of Operator Algebras I, New York, Springer

(1979), theorem 4.14, p.211: Let  A  and  B  be two C*-algebras and   C A B= ⊗  their minimal tensor
product. Every pure state functional g  on   C  is of the form  g a b= ⊗  for some pure state functionals  a  of
  A  and b  of   B  if and only if either   A  or   B  is commutative.

143 Compare for example R. Haag & U. Bannier, Comments on Mielnik’s generalized (nonlinear) quantum
mechanics, Communications in Mathematical Physics 60, 1–6 (1978); S. Bugajski, Nonlinear quantum
mechanics is a classical theory, International Journal of Theoretical Physics 30, 961–971 (1991).

144 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963), The quotation is
on p.13; in the Collected Works, volume 6, on p.177.

145 Compare J. E. Roberts & G. Roepstorff, Some basic concepts of algebraic quantum theory, Communications in
Mathematical Physics 11, 321–338 (1969).
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superposition principle since at each instant, every coherent superposition of states with arbitrary
coefficients still is an admissible initial state. The quantum mechanical superposition principle does
not imply the invariance of coherent superpositions under the time evolution.

4.3 In every statistical description the equations of motion are inevitably linear
All statistical physical theories are based on the concept of convexity, where the basic notion is the
formation of mixtures of statistical states.146 The appropriate mathematical structure for statistical
theories is that of an abstract convex structure, which is quite independent of the theory of linear
spaces. However, a fundamental theorem by Stone says that every convex structure can be
represented by a convex set in a real vector space.147 If we accept Mackey’s axiom IX which
postulates the commutativity of the operation of mixing with the time evolution semigroup for a
statistical ensemble,148 then it can be shown that under weak technical conditions the dynamics
can be uniquely extended to a one-parameter semigroup of linear operators acting in the predual
of the algebra of global observables.149 That is, the equations of motion for statistical states are
necessarily linear. This result is independent from the quantum-mechanical superposition
principle, it is also true for classical statistical theories. Well-known examples are Koopman’s
Hilbert-space formalism (which rephrases the nonlinear Hamiltonian equations of motion of
classical point mechanics in terms of linear equations of motion for classical statistical mechan-
ics),150 the equivalence of nonlinear stochastic differential equations in the sense of Itô (which
provide a stochastic individual description) with the linear Fokker-Planck equations (which give a
statistical ensemble description),151 or the relation between the nonlinear individual state
reduction postulate and the linear statistical projection postulate. The rash argument “that linear
equations are usually an approximation to a more adequate theory” 152 certainly does not apply to
the linear Fokker-Planck equations, for the same reason it does not apply to the time-dependent
Schrödinger equation in the statistical ensemble interpretation.153

In the literature there is some confusion about the meaning of the concept of linearity of the
equations of motion. There is always a profound difference between the mathematical representa-
tion of the dynamics of a physical system in an individual and in a statistical description. In the
context of the nonlinear field equations of general relativity, Albert Einstein characterizes this
dissimilitude of individual and statistical descriptions as follows:

“At the present time the opinion prevails that a field theory must first, by
‘quantization’, be transformed into a statistical theory of field probabilities according

146 Compare for example S. P. Gudder, Convexity and mixtures, SIAM Review 19, 221–240 (1977). Erratum:
20, 837 (1978).

147 M. H. Stone, Postulates for the barycentric calculus, Annali di Matematica Pura ed Applicata 29, 25–30
(1949).

148 G. W. Mackey, The Mathematical Foundations of Quantum Mechanics, New York, Benjamin (1963). p.81.
149 Compare for example W. Guz, On quantum dynamical semigroups, Reports on Mathematical Physics 6,

455–464 (1974). The basic results are due to R. V. Kadison, Transformations of states in operator theory and
dynamics, Topology 3, Suppl. 2, 177–198 (1965).

150 B. O. Koopman, Hamiltonian systems and transformations in Hilbert space, Proceedings of the National
Academy of Sciences of the United States of America 17, 315–318 (1931).

151 L. Arnold, Stochastische Differentialgleichungen. Theorie und Anwendung, München, Oldenbourg (1973).
152 J. Waniewski, Mobility and measurements in nonlinear wave mechanics, Journal of Mathematical Physics 27,

1796–1799 (1986).
153 As pointed out first by T. Carleman, Application de la théorie des équations intégrales linéaires aux systèmes

d'équations différentielles non linéaires, Acta Mathematica 59, 63–87 (1932), any nonlinear differential
equation can be converted (in numerous ways) into a linear differential equation of infinite order.
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to more or less established rules. I see in this method only an attempt to describe
relationships of an essentially nonlinear character by linear methods.” 154

In contrast to classical mechanics, in the traditional irreducible Hilbert-space representation of
quantum mechanics, this situation can easily be overlooked since in this formulation individual
states and statistical states are elements of isomorphic Banach space .155

In an individual description the time evolution transforms individual states into individual
states. In the context of algebraic quantum mechanics (which includes classical mechanics), it can
be shown that individual states of an isolated system can be represented by extremal linear func-
tionals on the appropriate C*-algebra of observables (i.e. by not necessarily normalized pure
states). A priori, there are no reasons why the time evolution of such individual states should be
linear (as a rule, the equations of motion of individual states in classical mechanics are in fact
nonlinear). In the generic case, we have to expect that the dynamics is nonlinear. If the dynamics
of an individual isolated quantum system can be described in the Hilbert-space formalism, the
corresponding Schrödinger equation is in general nonlinear.

Since a state vector may represent the individual state of a single object as well as a statistical
state of a homogeneous ensemble, a failure to distinguish properly between individual and statis-
tical descriptions can lead to serious difficulties. The linearity of the Schrödinger equation for a
state vector representing a statistical state is a triviality which must not be confused with a possible
nonlinearity of an effective Schrödinger equation describing the time evolution of a state vector
representing a single system.

5. The modern development of quantum theory

5.1 Symmetries and their spontaneous breakdown
In the early years of the development of quantum mechanics Wigner laid the foundations both
for the application of group theory to the study of atomic and molecular spectra and for the role
of symmetry principles in quantum mechanics. In the preface to the English edition of his semi-
nal text book of 1931, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atom-
spektren,156 Wigner remarks that “there was a great reluctance among physicists towards accepting
group-theoretical arguments and the group-theoretical view”.157 In the last few decades, this
attitude has changed dramatically. One of the reasons is the influence of Wigner’s profound work
on group representations and on the role of invariances in physical theories. Today, we regard the
principles of symmetry as one of the most fundamental parts of our theory of matter. Therefore

154 A. Einstein, The Meaning of Relativity, fifth edition, Princeton, Princeton University Press (1967), p.157.
155 In the terminology of algebraic quantum mechanics, an individual quantum state can be represented by an

extremal positive element in the dual   A ∗  of the noncommutative C*-algebra  A B H= ∞ ( )  of all compact
operators on some Hilbert space   H . A statistical state can be represented by a normalized positive element
of the predual   M∗  of the W*-algebra  M B H= ( )  of all bounded operators on  H . Since the dual   A ∗  of
the C*-algebra   A  and the predual M∗ of the C*-algebra are both isomorphic to the Banach space B H1( )
of trace-class operators on  H , A B H M∗

∗≅ ≅1( ) , there is a one-to-one correspondence between individ-
ual states (referring to a single system) and pure statistical states (referring to a homogeneous ensemble).
This very exceptional coincidence (which arises only in traditional quantum mechanics) can lead to serious
conceptual confusions.

156 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,
Braunschweig, Vieweg (1931).

157 E. P. Wigner, Group Theory, New York, Academic Press (1959).
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the famous violation of the reflection symmetry158 came as a shock for most physicists. Wigner
writes: “The fact that the laws of nature have no pure space-reflection symmetry has one
consequence that is unpleasant to admit. It deprives us of the illusion that these laws are – in
perhaps a subtle but nonetheless a real sense – the simplest laws that can be conceived and that are
compatible with some obvious experience.”159

In the context of the irreducible Hilbert space representation of traditional quantum mechan-
ics, Wigner defines a symmetry transformation as a mapping of vector rays of one Hilbert space
onto the vector rays of another Hilbert space, which admits an inverse and leaves invariant the
transition probability (i.e. the absolute square of the inner product) associated with any pair of
vector rays. Wigner’s celebrated theorem on symmetry operations says that every symmetry is
induced by a unitary or antiunitary vector transformation which is uniquely determined up to a
phase.160 This theorem plays a fundamental role in the analysis of the structure of quantum
mechanics. For example, if we assume that the dynamics is given by a measurable one-parameter
group of Wigner symmetries, then it follows that the time evolution of a state vector is given by a
linear Schrödinger equation with a self-adjoint Hamiltonian.161

The subsequent developments in the theory of symmetries are related to gauge symmetries and
broken symmetries. They still are based on Wigner’s conviction that symmetries are the basis of
physics, but Wigner did not assimilate the new trends. Wigner’s sympathy was for global symme-
tries, he disapproved of local gauge symmetries as artificial:162

“I would prefer not to call the gauge invariance a symmetry, because it does not express
anything physical. It only tells us something about our mode of description.”163

However, gauge symmetries assume a central position in the contemporary fundamental theories
of matter. All interactions are due to gauge fields.164 They provide the basis for the standard
model which unifies the electromagnetic, the weak and the strong interactions.

Wigner also poses the question why all our direct observations refer to positions. He claims
that “quantum mechanics does not give preference in any obvious way to observations of position

158 Introduced by Wigner in his explanation of Laporte’s selection rule as a consequence of parity invariance
which allows electric dipole transitions only between even and odd states. Compare E. P. Wigner, Einige
Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen, Zeitschrift für Physik 43, 624–652
(1927) (Collected Works, volume 1, pp.53–819; E. P. Wigner, Über die Erhaltungssätze in der
Quantenmechanik, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Mathematisch
Physikalische Klasse 1927, 375–381 (1927) (Collected Works, volume 1, pp.84–90).

159 E. P. Wigner, Violation of symmetry in physics, Scientific American 213, Number 6, 28–36 (1965). The
quotation is on p.35; in the Collected Works, volume 6, on p.357.

160 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,
Braunschweig, Vieweg (1931), pp.251–254; E. P. Wigner, Group Theory, New York, Academic Press
(1959), pp.233–236 and pp.325–329.

161 Compare for example B. Simon, Quantum dynamics: From automorphism to Hamiltonian, in: E. H. Lieb, B.
Simon & A. S. Wightman (eds.), Studies in Mathematical Physics, Princeton, Princeton University Press
(1976), pp.327–349, theorem 2.4, p.331.

162 E. P. Wigner, Symmetry and conservation laws, Proceedings of the National Academy of Sciences 51, 956–
965 (1964). The quotation is on p.961; in the Collected Works, volume 6, on p.305.

163 E. P. Wigner, The meaning of symmetry, in: A. Zichichi (ed.), Gauge Interaction, Theory and Experiment,
New York, Plenum Press (1984), pp.729–733. The quotation is on p.732; in the Collected Works, volume
3, on p.364.

164 Compare the short historical review by C. N. Yang, Magnetic monopoles, fibre bundles, and gauge fields,
Annals of the New York Academy of Sciences 294, 86-97 (1977), pp.92–97. Gauge theory is based on
following principle fundamentally due to Einstein: “If anything is conserved, it must be conserved locally”.
Quoted from R. Feynman, The Character of Physical Law, London, British Broadcasting Corporation
(1965), p.63.
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co-ordinates”.165 Yet, the only interactions which can provide a coupling between an object
system and a laboratory apparatus are due to zero-mass boson gauge fields, namely the electro-
magnetic and the gravitational field. The forces which originate from these zero-mass boson gauge
fields are longe-range interactions which decrease with spatial distance. The corresponding
interaction operators pick out a function of the position operator as an effective observable of the
measuring instrument.

If the word were invariant under all transformations of a symmetry group, such a fact could
never have been discovered. The conceptual necessity to break symmetries was clearly recognized
already a century ago by Pierre Curie: “C’est la dissymétrie qui crée le phénomène.” 166 Wigner
approves of this view and states that observable consequences “are possible only because our
knowledge of the physical world has been divided into two categories: initial conditions and laws
of nature.” 167 In all his papers dealing with conceptual questions on symmetries and invariance,
Wigner emphasizes again and again the importance of the separation between the accidental
initial conditions and universal natural laws. But he did not relate the distinction between
contingent and necessary truths directly to symmetries. Today, most theoretical physicists believe
“that global symmetries, the types studied by Wigner, are unnatural. They smell of action at a
distance. We now suspect that all fundamental symmetries are local gauge symmetries. Global
symmetries are either all broken or approximate or they are the remnants of spontaneously broken
local symmetries.” 168

As an example, we may mention that a description of thermodynamic systems in terms of
quantum mechanics, where the interactions are translation and rotation invariant, and given by
gauge symmetries. The quantum-theoretical descriptions of the phenomenologically well-known
phase transitions of systems in thermal equilibrium involve spontaneous breakdowns of the men-
tioned symmetry groups. For example, ferromagnetism involves the spontaneous breakdown of
the rotation group, crystallization requires the spontaneous breakdown of the translation and
rotation group, superfluidity is related to the breakdown of the special Galilei group, while super-
conductivity is connected with the spontaneously broken gauge group.

Wigner never discussed spontaneously broken symmetries which are nowadays on all levels of
physics, from elementary particle physics to molecular and solid state physics, of utmost impor-
tance. His puzzling remark that “the physicist is not interested in the initial conditions, but leaves
their study to the astronomer, geologist, geographer, etc.” 169 can perhaps explains his dislike of
broken symmetries.170 On the other hand, Wigner mostly analyzed fictitious isolated systems
with a finite number of degrees of freedom whose infinite environment he assumed to have a
negligible effect. Yet, the interactions of an object system with its environment can have dramatic

165 E. P. Wigner, Epistemology of quantum mechanics, In: Contemporary Physics. Volume II, Vienna, Atomic
Energy Agency (1969), pp.431–437. The quotation is on p.436; in the Collected Works, volume 6, on p.53.

166 P. Curie, Sur la symétrie dans les phénomènes physiques, Journal de Physique 3, 393–416 (1894)Républié:
Oeuvres de Pierre Curie. Paris: Gauthier-Villars, 1908. Pp.118–141, p.402.

167 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance
priciples, Reviews of Modern Physics 37, 595–632 (1965). The quotation is on p.596; in the Collected
Works, volume 3, on p.207.

168 D. J. Gross, Symmetry in physics: Wigner’s legacy, Physics Today 48, No. 12, 46–50 (1995).
169 R. M. F. Houtappel, H. Van Dam & E. P. Wigner, The conceptual basis and use of the geometric invariance

priciples, Reviews of Modern Physics 37, 595–632 (1965). The quotation is on p.596; in the Collected
Works, volume 3, on p.207.

170 In his important work on radiation damping or on cross sections of nuclear reactions, Wigner selected of
course the proper initial conditions!
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qualitative effects such as dressing, symmetry breakdown, and the emergence of qualitatively new
properties. It is well known that the coupling of small molecular systems with the environment
can lead to symmetry breakings which are of great biological significance such as molecular
chirality.

Symmetry breakings arise only in theories of systems with an infinite number of degrees of
freedom in which global symmetries can be realized in different ways. The irreducible Hilbert-
space representation of traditional quantum mechanics, which Wigner preferred, is simply not
rich enough to deal in a rigorous way with these phenomena.

5.2 Superselection rules
Since every physical system interacts with the electromagnetic and the gravitational field, the
environment of every physical object is a system with infinitely many degrees of freedom. In order
to understand the influence of the environment on atomic, molecular, mesoscopic, and macroscopic sys-
tems, we have to discuss the behaviour of infinite systems. Yet, a proper discussion of infinite systems
(like the electromagnetic field) lies outside of the domain of competence of traditional Hilbert-
space quantum mechanics or Fock-space quantum field theory. The first indication in this direc-
tion came from the famous paper by Wick, Wightman and Wigner of 1952, in which they
showed that the superposition principle is not valid without restrictions.171 They introduced the
concept of a superselection rule by specifying subspaces of the Hilbert space of an irreducible
representation such that linear combinations of vectors from distinct subspaces (also called super-
selection sectors) do not represent a physical state. In spite of the fact that the concepts of superse-
lection sectors and the associated classical observables have become a most successful tool in
molecular physics172, in solid state physics, and in statistical physics173, Wigner holds that
superselection rules “limit the absolute generality of the rule of superposition … just enough to
impair the mathematical beauty of the general, single and uniform Hilbert space as a frame for
the description of all quantum mechanical states. They do not seem to alleviate significantly the
conceptual question raised.” 174 In an earlier paper, Wigner identifies the hypothesis that quan-
tum mechanics is valid for all systems with the hypothesis that the superposition principle is uni-
versally valid.175 From our present point of view, this appraisal is surprising since Wigner often
expressed the opinion that the traditional irreducible representation of the basic principles of
quantum mechanics does not provide a correct description of macroscopic phenomena.176

171 G. C. Wick, A. S. Wightman & E. P. Wigner, The intrinsic parity of elementary particles, Physical Review 88,
101–105 (1952). Reprinted in Wigner’s Collected Works, volume 3, p.102–106.

172 Compare for example the reviews: H. Araki, On superselection rules, in: M. Namiki (ed.), Proceedings of the
2nd International Symposium Foundations of Quantum Mechanics in the Light of New Technology, Tokyo,
Physical Society of Japan (1987), pp.348–354; A. S. Wightman & N. Glance, Superselection rules in
molecules, Nuclear Pysics B (Proc. Suppl.) 6, 202–206 (1989).

173 Compare for example the monographs: F. Strocchi, Elements of Quantum Mechanics of Infinite Systems,
Singapore, World Scientific (1985); G. L. Sewell, Quantum Theory of Collective Phenomena, Oxford, Oxford
University Press (1986).

174 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), Pp.369–385. The quotation
is on p.370; in the Collected Works, volume 6, on p.56.

175 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963). Compare p.15; in
the Collected Works, volume 6, p.180.

176 In an earlier paper (E. P. Wigner, Die Messung quantenmechanischer Operatoren, Zeitschrift für Physik 133,
101–108 (1952); in the Collected Works, volume 6, p.159), Wigner concedes that for more complicated
systems there may be more essential variables than just rest mass, spin, electrical charge and baryon number .
The concept of essential variables has been introduced by J. M. Jauch & B. Misra, Supersymmetries and
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5.3 The early period of algebraic quantum mechanics
While Wigner adopted von Neumann’s Hilbert-space codification almost dogmatically, von
Neumann himself did not regard the Hilbert space as indispensable for quantum mechanics. In
1935 he wrote to Garret Birkhoff: “I would like to make a confession which may seem immoral: I
do not believe absolutely in Hilbert space any more.” 177 Moreover, Wigner was a coauthor of a
fundamental paper (essentially written by von Neumann) which attempted to generalize quantum
mechanics in a purely algebraic way, by focusing on observables which are not necessarily
represented as operators acting on a Hilbert space.178 Later on, this pioneering work led to a
purely algebraic formulation of quantum mechanics in which superselection sectors and classical
observables have a natural place, and which contains traditional quantum mechanics and classical
mechanics as special cases.179 But these developments did not change Wigner’s stance.

From the modern point of view, which goes back to the fundamental group theoretical contri-
bution by Weyl and Wigner, the basic tool for establishing a fundamental physical theory is the
representation of the kinematical group as an automorphism group on an appropriate mathemati-
cal structure.180 Accordingly, the essential relationship between classical and quantum mechanics
is not quantization, but rather the common kinematical symmetry. In the Galilei-relativistic case,
the rotation subgroup and the Weyl subgroup, describing the space translation and the velocity
boosts, are of particular importance. They generate the canonical commutation relations for
position and momentum, for the orbital angular momentum, and for the spin angular
momentum. The historical codification of traditional quantum mechanics, due to John von
Neumann, uses an irreducible representation of the canonical commutation relations on a Hilbert
space.181 The idea that the irreducibility has a physical meaning, is a still popular misconception.
Irreducibility is a representation-dependent concept, hence physically irrelevant. This can be seen
most clearly in a representation-independent algebraic formulation.182 This formulation of
physical theories is called “abstract”, since it is defined without any reference to operators acting
on some Hilbert space. In the algebraic formulation of physical theories, the basic mathematical
object is an abstract C*-algebra. For finitely many degrees of freedom, the uniqueness theorem by
Stone and von Neumann implies that the abstract C*-algebraic formulation of quantum theory is
physically fully equivalent to von Neumann’s irreducible formulation.183 Consequently, for

essential observables, Helvetica Physica Acta 34, 699–709 (1961). Nowadays, essential observables are called
classical observables.

177 Quoted on p.158 in G. Birkhoff, Lattices in applied mathematics, Proceedings of Symposia in Pure
Mathematics 2, 155–184 (1961).

178 P. Jordan, J. von Neumann & E. Wigner, On an algebraic generalization of the quantum mechanical
formalism, Annals of Mathematics 35, 29–64 (1934).

179 For a review, compare sect. 1.2 The emergence of the algebraic approach, in: G. G. Emch, Algebraic Methods in
Statistical Mechanics and Quantum Field Theory, New York, Wiley (1972). See also chapter 9 in: G. G.
Emch, Mathematical and Conceptual Foundations of 20th-Century Physics, Amsterdam, North-Holland
(1984).

180 This view has been introduced by H. Weyl, Quantenmechanik und Gruppentheorie, Zeitschrift für Physik 46,
1–46 (1927).

181 J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, Springer (1932).
182 Compare for example I. E. Segal, Mathematical Problems of Relativistic Physics, Providence, Rhode Island,

American Mathematical Society (1963); in particular pp.16–17.
183 M. H. Stone, Linear transformations in Hilbert space. III. Operational methods and group theory, Proceedings

of the National Academy of Sciences of the United States of America 16, 172–175 (1930); J. von
Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Mathematische Annalen 104, 570–578
(1931).
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finitely many degrees of freedom, the choice of a particular representation is just a matter of
convenience.

5.4 Inequivalent representations and robust models
If the phase space of the canonical commutation relations is not locally compact (like for example
in the case of the electromagnetic field), the uniqueness theorem by Stone and von Neumann is
not applicable. In this case, continuously many physically inequivalent and qualitatively different
Hilbert-space representations exist. The description of a physical system then depends on the choice
of the representation space which is characterized by a new contextual topology, distinguishing
between relevant and irrelevant features.

Not everybody is happy with the introduction of infinite systems, so we may ask: what is the
relation between systems with a very large number   N > 1 of degrees of freedom and infinite sys-
tems with N = ∞ ? If we start with a finite system and make N  larger and larger, some expecta-
tion values become extremely sensitive with respect to small changes of the model (for example,
sensitive to very small external perturbations). This lack of smoothness leads to instabilities: the
model with a very large number of degrees of freedom is not robust. Nonrobust models can be
investigated with Bogoliubov’s method of quasi-averages.184 One considers an expectation value

  
· Ò eA N V,  of an observable A  of a system with N  degrees of freedom and the Hamiltonian
H V+ e . Here H  is the Hamiltonian of the object under study and eV  (  e > 0 ) is an arbitrary
external perturbation. The physically correct limit for a very large number of degrees of freedom
is then taken to be 

  
lim lim ,e e· Ò→ →∞0 N N VA . In general this limit depends in a critical way on

the choice of the perturbation V , and it is of course different from the unphysical limit
lim lim ,N N VA→∞ →e e· Ò0 . All the different limits are equally significant – none of them is a pri-
ori distinguished. Depending on the choice of the arbitrarily small perturbation, one gets in gen-
eral infinitely many physically different results which correspond to the infinitely many physically
inequivalent representations of the canonical commutation relations with the associated qualita-
tively new features like symmetry breakings (as in ferromagnets, superfluids, supraconductors)
and classical observables (as in chiral molecules).

Therefore, Wigner’s restriction to the idealization of strictly isolated systems with finitely many
degrees of freedom is justifiable if and only if these systems shows a robust behaviour with respect
to the relevant observables. Very often this is not the case. Not only macroscopic, but already
small molecular systems can be nonrobust against small perturbations arising from the environ-
ment. A physically correct discussion of such nonrobust systems requires not only the knowledge
of the natural laws of motion and the contingent initial state of the object system, but also the
contingent situation of the environment.

5.5 Algebraic quantum mechanics
Algebraic quantum mechanics is nothing else than a mathematically correct codification of the
original ideas of quantum theory. It is a general representation theory of the basic canonical
commutation relations (or the appropriate kinematical group), valid for all classical and quantal
physical systems with finitely or infinitely many degrees of freedom. The fundamental laws are
expressed in terms of an abstract C*-algebra A , and the fundamental symmetries are expressed
by groups of automorphism of A . For historical reasons, we call the selfadjoint elements of A

intrinsic observables. They represent intrinsic properties, but have a priori nothing to do with

184 N. N. Bogoliubov, Lectures on Quantum Statistics, Volume 2, New York, Gordon and Breach (1970).
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observations. The contingent properties are represented by a family of admissible initial states.
Given such a family, there exist a general procedure for generating a contextual description
adapted to the relevant contingent continuity condition: the so-called GNS-construction
(according to Gelfand, Naimark and Segal). The intrinsic topology is given by the norm topology
of the abstract C*-algebra   A  of intrinsic observables. A new coarser contextual topology can be
introduced by selecting family of initial states. The GNS-construction enables us to set up a so-
called GNS-Hilbert space     Hp  and a faithful representation   p  of the C*-algebra A  as an isomor-
phic concrete C*-algebra p ( )A  of operators acting on the Hilbert space Hp . The closure of this
C*-algebra     p ( )A  in the weak topology of the algebra of all bounded operators acting on   Hp  is a
W*-algebra, called the algebra 

  
Mp  of contextual observables.

The weak operator topology of 
  
Mp  is coarser than the intrinsic norm topology of   p ( )A . It

reflects the continuity requirement necessary for a continuous representation of the contingent
initial conditions. The context-dependent W*-algebra 

  
Mp  is always much larger than the gener-

ating C*-algebra p ( )A , 
    
M Ap p⊃ ( ) . The observables of the W*-algebra 

    
Mp  which are not

elements of the C*-algebra   p ( )A  are called emergent observables. They are generated by the alge-
bra of intrinsic observables, but they are not functions of the intrinsic observables.

Even if the center of the basic C*-algebra A  is trivial (that is, if A  does not contain any non-
trivial element which commutes with all elements of A ), a contextually generated W*-algebra
Mp  possesses in general a nontrivial center Zp ,

Z M Mp p p: � �Z Z Z M M Z M| ∈ = ∈, .for every (17)

The nontrivial selfadjoint operators of the center Zp  are called classical observables. In general,
most classical observables are emergent, that is, they are elements 

  
Zp  but not elements of     p ( )A .

Example: Temperature as an emergent classical observable

The emergence of temperature as a contextual classical quantity of a quantum system without intrinsic clas-
sical observables is the result of a contingent auxiliary condition: the KMS-condition which warrants the
stability with respect to small local perturbations, characterizing the thermal equilibrium.185 A GNS-con-
struction with a family of KMS-states as distinguished reference states generates a W*-algebra with a center
which contains a classical temperature observable.186

If one restricts the dynamics of the W*-system to its center, one gets a classical dynamical system
whose equations of motion are in general given by nonlinear differential equations.187

Different inequivalent representations lead to different emergent observables, to different sym-
metries, and to qualitatively new phenomena like symmetry breakings, phase transitions, the
emergence of irreversibility and classical observables with their nonlinear dynamics. Note that in
the algebraic approach superselection sectors and classical observables are not postulated, but
derived from contingent conditions which are necessary in addition to the natural laws to describe
physical systems. The existence of many inequivalent representations of the canonical commuta-

185 See R. Haag, D. Kastler & E. B. Trych-Pohlmeyer, Stability and equilibrium states, Communications in
Mathematical Physics 38, 173–193 (1974).

186 This result follows from a theorem by M. Takesaki, Disjointness of the KMS states of different temperatures,
Communications in Mathematical Physics 17, 33–41 (1970).

187 For an instructive example, compare T. Gerisch, R. Honegger & A. Rieckers, Limiting dynamics of
generalized Bardeen–Cooper–Schrieffer models beyond the pair algebra, Journal of Mathematical Physics 34,
943–968 (1993).
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tion relations is of utmost physical importance for the explanation of for the variety and richness
of the concrete and particular.188

5.6 Disjoint states and the measurement problem
A crucial concept for any discussion of the measuring process is the notion of disjointness. Two
pure states are called disjoint if there exists a classical observable such that the expectation values
with respect to these states are different. That is, mutually disjoint states can be distinguished and
classified in a classical manner. Classically indecomposable states are called factor states. More
precisely, a factor state is characterized by the fact that it is dispersion-free with respect to every
classical observable. Every quantum state can be decomposed uniquely into a sum or integral of
mutually disjoint factor states.189 This so-called central decomposition represents the finest unique
decomposition of a nonpure state into a classical mixture.190

A classical mixture allows an ignorance interpretation with respect to the central decomposition
of a nonpure quantum state into factor states. A factor state is in general nonpure and allows
infinitely many physically different pure states. Therefore, an ignorance interpretation of a factor
state is not possible. Since in traditional quantum mechanics all states are factor states, an igno-
rance interpretation is not defensible in traditional quantum mechanics. The only permissible igno-
rance interpretation of nonpure quantum states refers to the central decomposition into a classical mix-
ture of mutually disjoint factors states.

In a statistical description, the measurement problem is not – as often asserted – the problem
how a pure state can be transformed into a nonpure state, or how a density operator can become
diagonal in a preferred basis. This is a trivial task which can be described by an appropriate
dynamical linear semigroup and its Hamiltonian dilation. A proper statistical description of the
measurement process has to show that a physically realistic dynamics can transform an initial factor
state into a classical mixture of disjoint factor states.

6. Contingent classical properties of quantum systems

6.1 On the classical character of the measuring tools
Wigner discusses two different opinions on the way the process of measurement could be consid-
ered:191

• according to Bohr and Fock, measuring instruments must be described classically,
• according to von Neumann, quantum mechanics is necessary for the description

of the measuring process.

188 Compare for example the reviews: S. Saunders, The algebraic approach to quantum field theory, in: H. R.
Brown & R. Harré (eds.), Philosophical Foundations of Quantum Field Theory, Oxford, Clarendon Press
(1988), pp.149–186, F. Strocchi, Long range dynamics and spontaneous symmetry breaking in many body
systems, in: A. Amann, L. Cederbaum & W. Gans (eds.), Fractals, Quasicrystals, Chaos, Knots and Algebraic
Quantum Mechanics, Dordrecht, Kluwer (1988), pp.265–285, W. Gans, A. Blumen & A. Amann, Large-
Scale Molecular System. Quantum and Stochastic Aspects – Beyond the Simple Molecular Picture, New York,
Plenum Press (1991), N. P. Landsman, Algebraic theory of superselection sectors and the measurement problem
in quantum mechanics, International Journal of Modern Physics A 6, 5349–5371 (1991).

189 For details, compare for example chapter IV.6 in M. Takesaki, Theory of Operator Algebras I, New York,
Springer (1979).

190 In the terminology of d’Espagnat, a classical mixture is called a proper mixture. Compare B. Espagnat, An
elementary note about »mixtures«, in: A. De-Shalit, H. Feshbach & L. van Hove (eds.), Preludes in Theoretical
Physics. In Honor of V. F. Weisskopf, Amsterdam, North Holland (1966), pp.185–191.

191 E. P. Wigner, Epistemology of quantum mechanics, In: Contemporary Physics. Volume II, Vienna, Atomic
Energy Agency (1969), pp.431–437. The quotation is on p.432; in the Collected Works, volume 6, on p.49.
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In a nutshell, the apparent contradiction between these two sensible views is the reason for the
fruitlessness of so many discussions about the alleged measuring problem of quantum mechanics.
Bohr justified his view by the remark that the prerequisite of any communication is the possibility
of a description of facts in a classical language:

“However far the phenomena transcend the scope of classical physical explanation, the
account of all evidence must be expressed in classical terms. The argument is simply that
by the word ‘experiment’ we refer to a situation where we can tell others what we have
done and what we have learned and that, therefore, the account of the experimental
arrangement and the results of the observations must be expressed in unambiguous
language with suitable application of the terminology of classical physics.” 192

This requirement reflects the actual scientific practice: every experiment ever performed in physics,
chemistry and biology has a classical operational description.

Wigner attributes Bohr’s view193 that the description of the measuring instrument cannot be
included in the realm of quantum mechanics also to Fock: “In fact, the Russian physicist V.Fock
declared that the measuring apparata must be described classically, that is not quantum-
mechanically, the systems on which the measurement is undertaken are quantum objects.” 194

This statement is not correct. Fock emphasizes the necessity of dialectic thinking in quantum
physics195, but he does not exclude a quantum-theoretical description of the measuring
instrument. He writes:

“We call an ‘instrument’ such an arrangement which on the one hand can be influ-
enced by, and interact with, an atomic object and on the other hand permits a classical
description with an accuracy sufficient for the purpose of registering the said influence
(consequently, the handling of the instrument so defined does not need further
‘means of observation’). It should be noted at once that in this definition of the
instrument it is quite immaterial whether the ‘instrument’ is made by human hands or
represents a natural combination of external conditions suitable for the observation of
the micro-object. The only essential point is that these conditions, as also the mean of
observation in the narrow sense, must be described classically.” 196

192 N. Bohr, Discussion with Einstein on epistemological problems in atomic physics, in: P. A. Schilpp (ed.), Albert
Einstein: Philosopher–Scientist, Evanston, Illinois, Library of Living Philosophers (1949), pp.199–241,
p.209.

193 Most clearly state in a letter of October 26, 1935, by Bohr to Schrödinger: “Das Argument ist ja dabei vor
allem, dass die Messinstrumente, wenn sie als solche diesen sollen, nicht in den eigentlichen den eigentlichen
Anwendungsberich der Quantenmechanik einbezogen werden können.” Quoted on p.510 in: J. Kalckar,
Niels Bohr Collected Works. Volume 7. Foundations of Quantum Physics II (1933–1958), Amsterdam, Elsevier
(1996).

194 E. P. Wigner, Events, laws of nature, and invariance principles, Mimeographed notes (1980). Reprinted in the
Collected Works, volume 6, pp.334–342. The quotation is on p.338.

195 “Ich habe den Eindruck, daß Sie zu viel Wert auf eine vollständige Formalisierung der Theorie legen. Ich
glaube, man muß mehr dialektisch denken, und wenn man das tut kann man auch in der gleichzeitigen
Benutzung der klasssischen Beschreibung des Meßapparats und der quantenmechanischen Beschreibung des
beobachteten Systems keinen Widerspruch erblicken.” Letter of October 12, 1971, by V. Fock to H.P.

196 V. A. Fock, On the interpretation of quantum mechanics, Czechoslovak Journal of Physics 7, 643–656
(1957), p.648.
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6.2 The existence of classical features does not contradict the first principles

of quantum mechanics
Fock’s requirement that the relevant degrees of freedom of the means of observation have to
admit of a classical description is not in contradiction with the requirement by von Neumann and
Wigner that the apparatus has to be described by quantum mechanics. Neither Bohr nor Wigner
did realize that quantum systems are capable of developing a contingent classical structure.
Wigner’s erroneous claim that the requirement to describe measuring instruments classically “is in
conflict with the linearity of the quantum theoretical equations of motion” 197 is probably based
on his idea that the initial conditions have an inherently random character:

“There is a distinguishing property of correctly chosen, that is minimal set, of
initial conditions which is worth mentioning. The minimal set of initial con-
ditions not only does not permit any exact relation between its elements, on
the contrary, there is reason to contend that these are, as a rule, as random as
the externally imposed, gross constraints allow.” 198

“In other words, the atoms in me and the molecules in me are as irregular
motion as possible.” 199

Wigner gives no arguments for his belief which contradicts all the facts we know from biochem-
istry and molecular biology. It is true that the classical aspects of the material world cannot be
grasped by using the first principles of quantum mechanics together with randomly chosen initial
conditions. But this situation is entirely in accordance with Wigner’s general views:

“Just as legal laws regulate actions and behavior under certain conditions but do
not try to regulate all actions and behavior, the laws of physics also determine
the behavior of its objects of interest only under certain well-defined conditions
but leave much freedom otherwise. The elements of the behavior which are not
specified by the laws of nature are called initial conditions.” 200

For special initial conditions, a quantum system can have classical modes which can be described
both by classical and by quantum mechanics. Well-known examples are the collective motions of
quantum-mechanical many-body systems (like the collective modes describing the classical shape
of molecules). The paradigmatic examples for quantum systems allowing a classical description
are the so-called quasifree systems, such as the harmonic oscillator or the free electromagnetic
field with an arbitrary coherent state as initial state.201 Such special quantum states are governed
by classical equations of motion and are therefore referred to as classical quantum states.202

197 E. P. Wigner, Epistemology of quantum mechanics, In: Contemporary Physics. Volume II, Vienna, Atomic
Energy Agency (1969), pp.431–437. In the Collected Works, volume 6, on p.50.

198 E. P. Wigner, Events, laws of nature, and invariance principles, Science 145, 995–998 (1964). Compare
p.997, in the Collected Works, volume 3, p.187.

199 E. P. Wigner, The role and value of symmetry principles and Einstein’s contributions to their recognition, in: B.
Gruber & R. S. Millman (eds.), Proceedings of the Einstein Centennial Celebration: Science Symposium on
Symmetries in Science, New York, Plenum Press (1980), pp.13–21. The quotation is on p.14; in the
Collected Works, volume 3, on p.354.

200 E. P. Wigner, Events, laws of nature, and invariance principles, Science 145, 995–998 (1964). The quotation
is on p.996; in the Collected Works, volume 6, on p.322.

201 For example, H. Beck & A. Thellung, Representation of external fields by means of coherent states, Helvetica
Physica Acta 42, 678–684 (1969), proved that the description of a quantum system in an external classical
electromagnetic field is equivalent to a fully quantum-mechanical description in terms of a quantum field in
a coherent state.

202 Compare for example E. B. Davies, Quantum Theory of Open Systems, London, Academic Press (1976),
pp.120–124.
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A family of quantum states is called classical if this family does not contain any coherent

superposition of its elements. For example, the set of all pure coherent states is a family of classical
quantum states. A dynamical quantum system with an initial state from an invariant family of
classical quantum states is called a classical quantum system. Note that “classical” refers first of all
to the family. To call a particular state classical makes sense only if the time evolution transforms
this quantum state again into a state of the same family of classical quantum states. The existence
of quantum systems showing a classical behaviour can be explained by the first principles of quan-
tum mechanics. Classical quantum systems depend on Planck’s constant  h , no fictitious limit

  h → 0  is involved. Whether or not a quantum object has degrees of freedom which behave classi-
cally depends on the initial conditions of the combined system consisting of the object of investi-
gation and its environment. These initial conditions cannot be chosen arbitrarily, since the exper-
imenter cannot manipulate the whole environment of a selected object.

Because the convex hull of a family of pure classical quantum states is a simplex, it generates
the state space of a commutative unital C*-algebra which provides a algebraic description of a cor-
responding classical quantum system.203 Such an equivalent description of a classical quantum
system by a contextual commutative C*-algebra is extremely useful because it allows to apply the
statistical decision methods of engineering science to classical quantum states.

A classical quantum state is a possible state for a strictly classical description. By construction, a
classical quantum state never contradicts the Heisenberg inequality for noncommuting observ-
ables. From this it follows that a pure classical quantum state corresponds to a nonpure state in a
strictly classical description in terms of a commutative C*-algebra. Nevertheless, it is a legitimate
state which fulfills exactly the classical equations of motion.

6.3 The existence of classical properties in molecular quantum
systems is an empirical fact

Throughout his life, Wigner adheres to the dated idea that a classical description refers necessarily
to a macroscopic physical system.204 In order to pose the measurement problem properly, it is
important not to confuse microscopic and quantal, macroscopic and classical. Moreover, the
historical distinction between “microscopic” and “macroscopic” has become obsolete since long.
On the way from the atomic to the macroscopic level there is no point which marks a qualitative
distinction. There is an essentially continuous transition from atoms to small molecules, to
macromolecules, to grains, crystals and macroscopic bodies.

There are macroscopic systems showing quantal properties205. On the other hand, already
rather small molecules can have classical properties, so that the emergence of a classical behaviour is
not a characteristic property of large systems. Moreover, there are systems which have at the same
time quantum and classical properties. For example, there are circular DNA-molecules, which
possess at the same time purely quantal properties, like their photochemical characteristics, and
strictly classical properties, like their knot-type and knot-number.

203 Recall that the state space of a unital C*-algebra is a simplex if and only if the algebra is commutative.
Compare for example M. Takesaki, Theory of Operator Algebras I, New York, Springer (1979), p.251.

204 Compare for example E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.),
Contemporary Research in the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973),
pp.369–385. The quotation is on p.379; in the Collected Works, volume 6, on p.65.

205 Compare for example the reviews by W. F. Vinen, Macroscopic quantum effects in superfluids, Reports on
Progress in Physics 31, 61–121 (1968); and by J. Bardeen, Superconductivity and other macroscopic quantum
phenomena, Physics Today 43, No. 12, 25–31 (1990).
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Curiously for a scientist with an excellent background in chemistry, Wigner denies the objec-

tive reality of molecular chirality:
“It should be admitted, first that the concept of the positions of atoms continues to be a
useful concept but it has turned out to be an approximate one. It is useful under cer-
tain condition but it is not difficult to produce situations in which it is meaningless. A
particular striking example is an optically active organic molecule in its normal state.
This is neither right handed, nor left handed – in fact, the atoms have no clearly
defined positions with respect to each other, not even approximately.” 206

This statement is in manifest contradiction to empirical facts. The reality of molecular chirality
was dramatically demonstrated by the terrible Contergan tragedy which caused many severe birth
defects. Contergan was the trade name of the drug thalidomide (3-phtalimido–2,6–diox-
opiperidin, C H N O13 10 2 4 ) which exists in two enantiomeric forms. At least from a phenomeno-
logical point of view, there exists a superselection rule between the right- and left-handed isomers.
That is, the chirality of molecule is a classical observable representing an objective property. The
left-handed stereoisomer of thalidomide is a powerful and maybe safe tranquilizer, but the right-
handed isomer is a disastrous teratogenic agent, i.e. causing physical deformities in the developing
embryo and fetus.207 Irresponsible ignorance of stereochemical effects led to the approval of the
racemic mixture of the two enantiomers for marketing as drug preparation in the 1960s.

7. Present-day versions of the statistical von-Neumann model

7.1 Insolubility theorems for the original statistical von-Neumann model
In the framework of von Neumann’s model of a measurement of the first kind, Wigner has
shown

“that measurements which leave the system object-plus-apparatus in one of the
states with a definite position of the pointer cannot be described by the linear
laws of quantum mechanics.”208

This result, as well as the various generalizations which remove some idealizations of Wigner’s
setup,209 is undoubtedly correct, but the reference to the linearity of the equations of motion is
irrelevant and misleading. The crucial point is that if something qualifies as a “pointer” of a
measuring apparatus, it has necessarily to admit of a classical description (which does not exclude
the possibility that it also has a quantum-theoretical description). Moreover, different pointer
positions have to be described by asymptotically disjoint quantum states.

The algebraic version of Wigner’s and related insolubility theorems is much more general and
conceptually illuminating. It says that the dual of an automorphic time evolution on any C*-algebra

206 E. P. Wigner, Are we machines?, Proceedings of the American Philosophical Society 113, 95–101 (1969).
The quotation is on p.97; in the Collected Works, volume 3, on p.485.

207 W. H. DeCamp, The FDA perspective on the development of stereoisomers, Chirality 1, 2–6 (1989).
208 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963), The quotation is

on p.12; in the Collected Works, volume 6, on p.174.
209 Compare for example B. Espagnat, Two remarks on the theory of measurement, Supplemento al Nuovo

Cimento 4, 828–838 (1966),,M. H. Fehrs & A. Shimony, Approximate measurement in quantum mechanics.
I, Physical Review D 9, 2317–2320 (1974), A. Shimony, Approximate measurement in quantum mechanics.
II, Physical Review D 9, 2321–2323 (1974), P. Busch & A. Shimony, Insolubility of the quantum
measurement problem for unsharp observables, Studies in History and Philosophy of Modern Physics 27, 397–
404 (1996).
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cannot generate disjoint states.210 Accordingly, even in the very general framework of modern
algebraic quantum theory, an automorphic dynamics cannot describe a measurement process
which reaches in finite time classically different final states. In this modern formulation, Wigner’s
no-go theorem looses much of its force. It is known that there exist linear but nonautomorphic
time evolutions which in a statistical description map an initial factor state into a classical mixture
of disjoint factors states. Moreover, there exist automorphic time evolutions which produce
asymptotically disjoint final states.

7.2 Realistic time evolutions are nonautomorphic
In the papers where Wigner considers quantum mechanics to be valid also for measuring instru-
ments, he always assumed a unitary dynamics. He never gave a reason for this choice. In the for-
malism adopted by Wigner, a unitary transformation induces an automorphism of the underlying
mathematical structure.

There are severe objections against the view that the most fundamental dynamics is given by a
one-parameter group of automorphisms. First of all, we have to recall that every description in
terms of a well-defined mathematical structure has to use irrelevant elements. Two descriptions
which changes only these irrelevant elements but leave the relevant structure invariant, are called
isomorphic. An isomorphism of the mathematical structure to itself is called an automorphism. If
the time evolution is an automorphism, then from an internal point of view nothing happens. That
is, automorphic time evolutions just change the point of view but do not lead to events.
Therefore it seems to be inappropriate to postulate an automorphic dynamics – which is nothing
but a logical symmetry – for a system which includes the observing tools.

Secondly, a time evolution cannot be simply postulated, but it has to be derived from the inter-
actions between the systems considered. Group-theoretical arguments indeed suggest that the
dynamics of the fictitious elementary systems (bare “particles”, bare fields) is automorphic. But
the known interactions between the bare elementary systems (described by zero-mass boson gauge
fields) most probably destroy the automorphic character of the time evolution of the interacting
(and self-interacting) joint system. Due to self-interaction and renormalization problems this
question is mathematically very difficult and not yet solved in a fully satisfactory way. From
models rigorously discussed in the framework of algebraic quantum mechanics we know that for
systems with long-range interactions the dynamics is not an automorphism of the basic
C*-algebra.211

7.3 Automorphic dynamics with asymptotically disjoint final states
The possibility that a time evolution which for all finite times is automorphic can lead to asymp-
totically disjoint states has been proved by Klaus Hepp.212 Moreover, there is a dilation theorem
saying that for every observable with a simple discrete spectrum there exists an apparatus quantum
system and an automorphic dynamics for the joint system which transforms an arbitrary initial
factor state asymptotically into the appropriate classical mixture of disjoint factor states.213 In this

210 K. Hepp, Quantum theory of measurement and macroscopic observables, Helvetica Physica Acta 45, 237–248
(1972), lemma 2, p.246.

211 Compare the short review by F. Strocchi, Long range dynamics and spontaneous symmetry breaking in many
body systems, in: A. Amann, L. Cederbaum & W. Gans (eds.), Fractals, Quasicrystals, Chaos, Knots and
Algebraic Quantum Mechanics, Dordrecht, Kluwer (1988), pp.265–285.

212 K. Hepp, Quantum theory of measurement and macroscopic observables, Helvetica Physica Acta 45, 237–248
(1972).

213 K. C. Hannabuss, Dilations of a quantum measurement, Helvetica Physica Acta 57, 610–620 (1984).
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construction, the constants in the dynamics can be chosen in such a way that the asymptotic
states can be approached arbitrarily closely in an arbitrarily short time interval.

While Hepp’s contribution was crucial, it did not solve the statistical measurement problem
since it is still possible to undue the measurement at any finite time.214 The key to fix this
problem lies in recognizing the measuring apparatus as an irreversible dynamical system which
breaks the time-inversion symmetry in such a way that it acts as a causal system. A model which
combines asymptotic disjointness with genuine irreversibility has been worked out by C.M.
Lockhart and Baidyanath Misra.215

It has been objected that a measurement process with asymptotically disjoint final states implies
an infinite measurement time.216 This is a gross misunderstanding: every measurement in
engineering physics is of this type. In order to explain this assertion, we consider a customary
statistical decision procedure. In experimental science, all observations have to be considered to be
subject to random variations. The result of a statistical experiment is characterized by a probabil-
ity measure on some measurable space ( , )� � . Consider a statistical test for deciding whether the
state of the apparatus is given either by the probability measure   ′�  or by the probability measure

  ′′� . Independently how we perform this test, the minimal error probability is given by217

e( , ) inf ( ) ( ) ,′ ′′ ′ − ′′ − = − ′− ′′∈� � � � � � ��: � � �� � 1 �� �� (18)

where     �� ��′ − ′′� �  is Kolmogorov’s variation distance between   ′�  and   ′′� ,     0 1≤ ′− ′′ ≤�� ��� � . If
the minimal error probability vanishes, a perfect decision can be made with probability one. Such
statistical tests are called singular. In engineering science, models which lead to singular decisions
problems are considered as ill-posed and unacceptable.218 If the essential degrees of freedom of the
measuring instrument are realized by a commutative C*-algebra, a classical quantum state induces
a GNS-representation as a Lebesgue space L∞( , , )� � �  where the probability measure �

represents the classical quantum state. If   ′�  and   ′′�  represent disjoint classical quantum states,
then the two probability measures are singular with respect to each other,     �� ��′ − ′′ =� � 1.219 That
is, disjoint quantum states lead to singular decision problems which engineers reject as unrealistic
idealizations.

The fact that the quantum states of the apparatus allow a classical description in terms of
probability measures, opens the possibility to use the well-established distance measure between
probability distributions to introduce a physically meaningful measure of the approximate
disjointness of two classical quantum states. It is given by the minimal error probability of the
associated statistical decision problem. In the models describing the measurement process

214 J. S. Bell, On wave packet reduction in the Coleman–Hepp model, Helvetica Physica Acta 48, 93–98 (1975).
215 C. M. Lockhart & B Misra, Irreversibility and measurement in quantum mechanics, Physica 136A, 47–76

(1986). Compare also Mathematical Reviews 87k, November 1987, Review #87k:81006.
216 For example by N. P. Landsman, Observation and superselection in quantum mechanics, Studies in History

and Philosophy of Modern Physics 26, 45–73 (1995), p.55.
217 A. Rényi, On the amount of missing information and the Neyman-Pearson lemma, in: F. N. David (ed.),

Research Papers in Statistics. Festschrift for J. Neyman, London, Wiley (1966), pp.281–288, A. Rényi,
Statistics and information theory, Studia Scientiarum Mathematicarum Hungarica 2, 249–256 (1967).

218 W. L. Root, Singular Gaussian measures in detection theory, in: M. Rosenblatt (ed.), Proceedings of the
Symposium on Time Series Analysis, New York, Wiley (1963), pp.292–315; W. L. Root, Stability in signal
detection problems, in: R. Bellman (ed.), Stochastic Processes in Mathematical Physics and Engineering,
Providence, Rhode Island, American Mathematical Society (1964), pp.247–263; W. L. Root, The detection
of signals in Gaussian noise, in: A. V. Balakrishnan (ed.), Communication Theory, New York, McGraw-Hill
(1968), pp.160–191.

219 Compare for example theorem 2 on p.82 and theorem 4 on p.86 in E. Nelson, Topics in Dynamics. I: Flows,
Princeton, Princeton University Press (1969).
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statistically with asymptotically disjoint final states, the effective measuring time can be arbitrarily
short. For example, if   ′� ( )t  and  ′′� ( )t  describe two classical quantum states which become
asymptotically disjoint,     lim ( ) ( )t t t→∞ ′ − ′′ =�� ��� � 1, then the error probability for a decision at
time t  which of the two possible final states  ′ ∞� ( ) and  ′′ ∞� ( )  will asymptotically realized, is
given by     1 − ′ − ′′�� ��� �( ) ( )t t . Given a threshold level   e < 1 for the error probability, the effective
measuring time   te  is given by    e t te e= − ′ − ′′1 �� ��� �( ) ( ) . In the mathematical model for this
process, the parameters in the Hamiltonian can be chosen in such a way that for any fixed
threshold level e > 0  the effective measuring time te  can be made arbitrarily small.

8. Individual description of state reduction processes

8.1 Stochasticity within determinism
In this chapter, we examine the following important question Wigner poses:

“The equations of motion of both quantum mechanics and of classical theory are
deterministic; why, then, are the predictions not uniquely given by the inputs?” 220

For classical systems, Wigner’s question has a well-known answer. An individual ontic state in
classical point mechanics can be represented by a point   �  of a phase space  �. The knowledge
available to an observer is never given by a point of the phase space, but by a Borel set of nonvan-
ishing Lebesgue measure.221 To every Borel set representing some knowledge, there exist a smaller
Borel set representing a more detailed knowledge. But there is no smallest Borel set of
nonvanishing Lebesgue measure representing maximal knowledge. Since a point (representing an
ontic state) is a Borel set of Lebessgue measure zero, it can never represent an epistemic state.
That is, in classical mechanics the ontic states are epistemically hidden. In the best case, an epis-
temic state specifies a measure  �  which gives the probability     � ( )�  that the actual ontic state lies
in the Borel set �.

Classical point mechanics is deterministic in the sense that given an initial point   �  of the
phase space   �, the individual ontic state � �t ∈  at all other times  t ∈® is uniquely determined
by the Hamiltonian equations of motion. One of the most important results of contemporary
classical dynamics is the proof that the deterministic differential equations of some smooth classi-
cal Hamiltonian systems have solutions exhibiting a genuine stochastic behaviour.222 That is, the
distance between any two trajectories having an arbitrarily small nonzero difference in initial
conditions increases exponentially as a function of time.

The paradigmatic example for a deterministic mechanical system which behaves stochastically
is Boltzmann’s model of a hard sphere gas (consisting of hard spheres in a strictly isolated finite
rectangular box and colliding elastically which each other and the walls). In a famous paper,
Ya.G.Sinai gave a rigorous proof that the deterministic Boltzmann model is a K-system, hence

220 E. P. Wigner, The philosophical problem, in: B. d’Espagnat (ed.), Foundations of Quantum Mechanics.
International School of Physics “Enrico Fermi”, 1970, New York, Academic Press (1971), pp.122–124. The
quotation is on p.122; in the Collected Works, volume 6, on p.218.

221 The only reasonable choice for the finest Boolean algebra of events is the  s -algebra   � �� , where  �  is the
  s -algebra of Borel sets of  � , and   �  is the   s -ideal of Borel sets of Lebesgue measure zero. Compare J. von
Neumann, Zur Operatorenmethode in der klassischen Mechanik, Annals of Mathematics 33, 587–642, 789-
791 (1932), in particular pp.595–598.

222 Compare for example A. J. Lichtenberg & M. A. Lieberman, Regular and Stochastic Motion, New York,
Springer (1983).
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showing complete instability and perfect epistemic stochasticity.223 For such chaotic systems the
time evolution of every point in phase space is strictly deterministic but neighboring initial points
exhibit a qualitatively different evolution. In order to describe this nonrobust behaviour, the
individual trajectories of the deterministic topological dynamical system have to be replaced by
bundles of trajectories, corresponding to arbitrarily small open subsets of the phase space as initial
states. Mathematically this means that we replace the topological dynamical system (correspond-
ing to a C*-system) by a measure-theoretical dynamical system (corresponding to a W*-system).
If the deterministic topological system is not robust with respect to slight variations of the initial
state, then every bundle of trajectories spreads in course of time exponentially so that long-term
predictions are impossible. In this sense, the measure-theoretical epistemic description is no
longer deterministic.

In order to understand the chaotic behaviour of some deterministic systems it is of crucial
importance to distinguish between individual and statistical descriptions, and between ontic and
epistemic states. Determinism is a concept which refers exclusively to ontic states while pre-
dictability refers to epistemic states. Ontologically deterministic systems which do not allow long-
term predictions have been called cryptodeterministic by Edmund Taylor Whittaker.224 The
deterministically evolving ontic state of a cryptodeterministic individual system is fundamentally
not accessible by any kind of experiment. The probability concept associated with an epistemic
description of a cryptodeterministic system is determined by the underlying deterministic dynam-
ics of the ontic states, hence objective. Long ago, Marian von Smoluchowsky pointed out that
the concept of probability can be defined and the laws of probability can be derived from the
theory of strictly deterministic but nonrobust classical dynamical systems.225 The modern theory
of mixing and K-systems elucidate clearly the origin of the laws of probability: the probability
distributions arising in these systems can be traced to a causal origin.

Wigner asserts:
“But surely, we must realize that the quantum mechanical measurement process, the
outcome of which is probabilistic, is not describable by the present quantum
mechanical equations which are deterministic. It is natural to try to attribute the
probabilistic outcome of the measurement to the uncertainty of the initial state of the
measuring apparatus but it is easy to prove that this is impossible …” 226

Wigner refers here to his insolubility theorem which in its most general form says that an auto-
morphic dynamics cannot transform an initial factor state into a classical mixture of disjoint fac-
tor states. But this theorem does not imply that a deterministic dynamics (relative to an ontic
description) cannot lead to outcomes which are (from an epistemic point of view) irreducibly
probabilistic.

A major difficulty in any attempt to grasp Wigner’s view is that he never distinguishes between
the epistemically hidden pure states (which we refer to as ontic states) and genuine epistemic
states. When he says

223 Ya. Sinai, On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Soviet
Mathematics Doklady 4, 1818–1822 (1963).

224 E. T. Whittaker, Chance, freewill and necessity in the scientific conception of the universe, Proceedings of the
Physical Society (London) 55, 459–471 (1943).

225 M. von Smoluchowsky, Über den Begriff des Zufalls und den Ursprung der Wahrscheinlichkeitsgesetze in der
Physik, Naturwissenschaften 6, 253–263 (1918).

226 E. P. Wigner, Events, laws of nature, and invariance principles, Mimeographed notes (1980). Reprinted in the
Collected Works, volume 6, pp.334–342. The quotation is on p.338.
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“that the permanency of the validity of our deterministic law of nature became
questionable as a result of the realization … that the states of macroscopic bodies are
always under the influence of their environment; in our world they can not be kept
separated from it,” 227

he seems to confuse ontic determinism with epistemic predictability. Clearly, the deterministic
behaviour of the system refers to the Hamiltonian dynamics which governs the time evolution of
ontic states, not the states representing our knowledge.

8.2 Von Neumann’s model does not describe individual first-kind measurements
In the individual description, the von-Neumann model assumes that the interaction between the
object system and the apparatus transforms an initial product state vector   Y b⊗  (

  
Y ∈H obj,

    
b ∈H app) into an entangled state vector

    
Y b a b a Y· Ò⊗ → ⊗ =∑ c ck k kk k k, ,� � � � �2 2 (19)

where 
    
ak ∈H obj is an eigenvector of the object observable to be measured. In this setting, the

alleged state reduction problem is the question how the entangled state vector ∑k k k kc a b⊗  can
be disentangled to some product vector 

  
a bj j⊗ .

Wigner never asks whether von Neumann’s model is appropriate for the description of first-
kind measurements. Neither von Neumann nor Wigner attempt to discuss measurements in
physical terms. In particular, von Neumann’s model does not make any allowance of the fact that
every experiment whatsoever can be described also in terms of classical engineering physics. Von
Neumann and Wigner never make any special assumption about the nature of a measuring sys-
tem. Of course, a measuring system has to fulfill very stringent additional conditions. If we fulfill
Fock’s requirement that the essential degrees of freedom of the measuring instrument must also
admit of a classical description, then von Neumann’s model does not apply. The reason is that a
classical system cannot be entangled with an object system by Einstein–Podolsky–Rosen correla-
tions.228 In this case the time evolution (be it automorphic or not) maps a pure product state into
pure product states. Accordingly, the interaction between the object system and the apparatus
system should not to produce the map (19), but the map

Y b Y b Y Y b b⊗ → ⊗ ≥ ∈ ∈t t t tt, , , , , .obj app0 H H (20)

Due to the interaction, the time evolutions t t→ Y  and t t→ b  are not autonomous: the vector

  Yt  of the object system depends both on the initial state vector Y  of the object system and on
the initial state vector   b  of the apparatus. Similarly, the vector   bt  depends both on the initial
vector b  and on the initial vector Y . For all times, the factorization

· Ò · Ò · ÒY b Y b Y Y b bt t t t t t t tA B A B⊗ ⊗ ⊗ =� � �( ) ,obj app (21)

is valid, so that the dynamics is given by a Hartree-type evolution equation which leads in general
to a nonlinear equation of motion for the state vector   Yt  of the object system.

227 E. P. Wigner, Events, laws of nature, and invariance principles, Mimeographed notes (1980). Reprinted in the
Collected Works, volume 6, pp.334–342. The quotation is on p.334.

228 Compare for example M. Takesaki, Theory of Operator Algebras I, New York, Springer (1979), theorem
4.14, p.211.
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8.3 Chaotic quantum processes
The map (20) refers to an individual description in terms of ontic states. As Wigner points out
many times229, a description is operationally meaningful only if the initial conditions can be
reproduced experimentally. Since it is impossible in principle to prepare an initial pure state, we
have to consider a family         � �Y b( ) ( )� � � �⊗ ∈|  of initial state vectors     Y b( ) ( )� �⊗ , togeth-
er with a probability measure   �  which describes the distribution of the pure initial states. The
individual time evolution maps pure states into pure states

    Y b Y b( ) ( ) ( ) ( ) , .� � � �⊗ → ⊗ ≥t t t 0 (22)

The statistics of the collection         � �Y bt t( ) ( )� � � �⊗ ∈|  of state vectors refers to an individual
system in a stochastic description over a classical probability space   ( , , )� � � . This statistical
description deals with a probability measure on the space of individual pure states. It should not
be confused with the entirely different Gibbsian ensemble description in terms of density opera-
tors.230 The s-algebra   �  of Borel sets of � corresponds to the experimentally accessible epis-
temic states, and     � ( )�  denotes the probability that the parameter   � �∈  characterizing the
ontic state vector     Y b( ) ( )� �⊗  lies in the Borel set     � ∈�.

In a situation corresponding to a laboratory experiment, the family     � �bt t( ) ,� � �| ∈ ≥ 0  is a
family of classical quantum states. If we turn to a purely classical description, the sample space   �
plays the role of a classical phase space. Moreover, the phase space can be chosen in such a way
that the points �  of � are in a one-to-one correspondence with the state vector

    Y bt t( ) ( )� �⊗ , so that     Y b Y bt t t t( ) ( ) ( ) ( )� � � �⊗ = ⊗ ,  � �t ∈ . In this case, the individ-
ual time evolution       t t ta Y b( ) ( )� �⊗  is completely determined by the deterministic classical
motion t ta � . Since ontic states are experimentally inaccessible, one has to investigate the
dependence of the motion     t ta �  on small changes of the initial condition.

If the classical motion     t ta �  shows a sensitive dependence on the initial conditions, then the
motion t t ta Y b( ) ( )� �⊗  is cryptodeterministic so that it is not true

“that the state vector is only a shorthand expression of that part of our information
concerning the past of the system which is relevant for predicting (as far as possible)
the future behavior thereof.” 231

Since the electromagnetic field – which always belongs to the environment – acts like a
K-system232, we have to expect that every realistic model for the measuring process shows a
sensitive dependence on the initial conditions. If in addition the corresponding statistical dynam-
ics maps every initial factor state into a classical mixture of disjoint factors states, then the process

    t t ta Y b⊗  can create new facts. As a closer discussion shows, the reduced individual descrip-
tion of the object system is in this case given by a stochastic and nonlinear equation for the state
vector     Yt ( )� . Thereby the dissipative environmental effects are represented by classical fluctuat-
ing forces and damping terms, while the polarizations and reaction fields lead to feedback effects

229 See for example E. P. Wigner, The extension of the area of science, in: R. G. Jahn (ed.), The Role of
Consciousness in the Physical World, AAAS Symposium No.57, Boulder, Westview Press (1981), pp.7–16. I
the Collected Works, volume 6, p.608.

230 Compare also A. Amann, Modeling the quantum mechanical measurement process, International Journal of
Theoretical Physics 34, 1187–1196 (1995); A. Amann, Structure, dynamics and spectroscopy of single
molecules: A challenge to quantum mechanics, Journal of Mathematical Chemistry 18, 247–308 (1995).

231 E. P. Wigner, The problem of measurement, American Journal of Physics 31, 6–15 (1963). The quotation is
on p.13; in the Collected Works, volume 6, p.176.

232 See L. C. Thomas, A note on quantising Kolmogorov systems, Annales de l’Institut Henri Poincaré, Physique
théorique A 21, 77–79 (1974).
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which give rise to the nonlinearity of the equations of motion. Wigner would like such a possibil-
ity as “the most natural explanation of the indeterminate outcome of the measurement”, but he
rejects it “though only reluctantly” since it contradicts his favored von-Neumann model.233 But
his additional remark that “this explanation … cannot give the probabilities for the various
outcomes of the measurement” hits the mark. There exist reasonable Hamiltonian quantum-
theoretical models which generate purely nondeterminisitic (K-flow type) stochastic quantum
processes with asymptotically final states producing facts. There also exist processes which in
addition realize the expectation-value postulate but this is the exception. Therefore the problem is
not the state reduction but the validity of the expectation-value postulate, a question never
addressed by Wigner. How can an experimentalist decide whether his apparatus gives results in
agreement with the expectation-value postulate?

9. Conclusions

Many of Wigner’s papers on mathematical physics are great classics. Most famous is his work on
group representations which is of lasting value for a proper mathematical foundation of quantum
theory. The modern development of quantum theory (which is not reflected in Wigner’s work) is
in an essential way a representation theory (e.g. representations of kinematical groups, or represen-
tations of C*-algebras). This view owes very much to Wigner’s seminal papers on the unitary rep-
resentations of compact and noncompact groups (assembled and reviewed in volume 1 of the
Collected Works).

Wigner showed much courage in relating the then unresolved questions of the measurement
problem to the much deeper problem of consciousness. In view of this very unorthodox proposal
it is astonishing that Wigner was very reactionary with respect of the dogmas of orthodox quan-
tum mechanics. In contrast to von Neumann himself, he took the old von-Neumann codification
of quantum mechanics as authoritative and not to be questioned. Much of the efforts to interpret
the meaning of this codification and to prove no-go theorems, such as the insolubility of the mea-
surement problem or the impossibility of a quantum theory of individual objects, are physically
irrelevant since they are based on a codification of quantum mechanics that is valid only for
strictly closed systems with finitely many degrees of freedom. However, in nature there are no
such systems. Every material system is coupled to the gravitational and to the electromagnetic
field – systems which require in a Hamiltonian description infinitely many degrees of freedom. A
deeper insight into the conceptual problems of quantum theory is possible only if the modern
development of a quantum theory of infinite systems is taken into account.

The last three decades have witnessed striking progress in understanding the interface between
quantum-theoretical and classical descriptions. This is based on our deeper understanding of the
consequences of Einstein–Podolsky–Rosen correlations for a proper concept of a subsystem, the
role of inequivalent representations, superselection sectors, the phenomenon of the spontaneous
breakdown of symmetries, and the emergence of classical properties. In spite of their outstanding
significance for a satisfactory solution to the interpretative problems raised by the founders of
quantum theory, these advances in mathematical physics are hardly reflected in the contemporary
philosophical literature. They owe much to Wigner’s work in mathematical physics, but they did
not decisively influence his own thinking about conceptual questions.

233 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The quotations
are on p.375; in the Collected Works, volume 6, on p.61.
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It is difficult to understand why Wigner never used his deep knowledge of the underlying

mathematical structure of quantum theory to overcome the serious limitation of the Hilbert-space
formalism of the traditional codification of quantum mechanics. It is hard to believe that Wigner
did not recognize the importance of the many possible physically inequivalent representations of
the canonical commutation relations and the associated symmetry breakings for our
understanding of molecular, mesoscopic, and macroscopic phenomena. His main hesitation
seems to be related to “the blemishes on the beauty of the conceptual structure of quantum
mechanics.” 234 Wigner refers to the irreducible Hilbert-space representation with the unre-
stricted validity of the superposition principle. He does not seem to appreciate the beauty of the
more abstract modern mathematical codifications of the fundamental ideas of quantum theory
which permit more flexibility by the possibility of introducing contextually adopted topologies.

Volume 1, 3 and 6 of Wigner’s Collected Works will be indispensable both to philosophers
working in the foundation of quantum mechanics and to scientists interested in epistemological
questions. Wigner makes it plain that the traditional proposals for the interpretation of quantum
theory within the traditional framework of von Neumann’s codifications are not, and cannot be
satisfactory. But the reader should acknowledge that Wigner’s discussions on conceptual ques-
tions are all based on an outdated mathematical codification of quantum theory and do therefore
not reflect the present state of the art.

From our present point of view, most of the so-called paradoxes which Wigner discusses are
not deep conceptual problems, but simply technical challenges for the mathematical physicists.
The “measurement problem” as formulated by Wigner is ill-posed. Von Neumann and Wigner
did not discuss measurements in physical terms. All experiments can be explained by the expecta-
tion-value postulate without ever using the state reduction or the projection postulate. The pro-
cesses which lead to actual measurements have no special place in quantum theory, they are
nothing but a subclass of naturally occurring objective physical processes. From our present point
of view, we can conclude that much of the philosophical discussions on the so-called measure-
ment process was premature, it was simply caused by a slightly inadequate mathematical codifica-
tion of the historical first principles of quantum mechanics. However, the excellent experimental
confirmation of quantum mechanics is not matched by sufficient understanding. From a funda-
mental point of view, the open question is not the state reduction but the derivation of the statis-
tical expectation-value postulate from an individually formulated fundamental quantum mechan-
ics in an ontic interpretation – a problem never mentioned by Wigner.

Wigner’s confusion of conceptual and mathematical problems is due to misplaced physical
idealizations (like the idealization of instantaneous observations, the neglect of the effects of the
environment, a narrow positivistic view) and to inadequate mathematical codifications (like the
inadmissible use of the uniqueness theorem by Stone and von Neumann). Nevertheless, Wigner’s
discussions of the measurement problem was historically important. He could not give a generally
acceptable solution. Yet to see a problem is much more difficult and important than to give a
solution. Wigner was the leading scientist who always insisted that there is a problem, and that it
is important to see the problem.

234 E. P. Wigner, Epistemological perspective on quantum theory, in: C. A. Hooker (ed.), Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Dordrecht, Reidel (1973), pp.369–385. The quotation
is on p.373; in the Collected Works, volume 6, on p.59.


