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Abstract

This paper discusses some of the modal involvements of analytical mechan-

ics. I �rst review the elementary aspects of the Lagrangian, Hamiltonian and

Hamilton-Jacobi approaches. I then discuss two modal involvements; both are

related to David Lewis' work on modality, especially on counterfactuals.

The �rst is the way Hamilton-Jacobi theory uses ensembles, i.e. sets of pos-

sible initial conditions. The structure of this set of ensembles remains to be

explored by philosophers.

The second is the way the Lagrangian and Hamiltonian approaches' varia-

tional principles state the law of motion by mentioning contralegal dynamical

evolutions. This threatens to contravene the principle that any actual truth, in

particular an actual law, is made true by actual facts. Though this threat can

be avoided, at least for simple mechanical systems, it repays scrutiny; not least

because it leads to some open questions.
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1 Introduction

Ever since its beginnings, analytical mechanics has been a rich �eld for philosophical

exploration. In particular, the principle of least action|with its various forms, and

its strong suggestion of teleology|has been a focus of discussion from the time of

Maupertuis to now: as witness some of the essays in this volume, and other excellent

recent work such as St�oltzner (2003). However, so far as I can tell, philosophers have

not explored the modal involvements of analytical mechanics. So I propose in this

paper to make a �rst foray into this territory.

More speci�cally, I will discuss two modal involvements. Both are related to David

Lewis' work on modality, especially his theory of counterfactuals (1973). (The �rst

concerns Hamilton-Jacobi theory; the second Lagrangian and Hamiltonian mechanics.)

So I dedicate the paper to his memory. Although analytical mechanics was not a topic

central to his interests, the discussion will illustrate a view central to his metaphysical

system, and to his in
uence on analytical philosophy: that science, indeed all our

knowledge and belief, is steeped in modality. Besides, any philosopher who knew Lewis

the man as well as the work, knows not only that he was a great philosopher|with

transcendent creativity and craftsmanship, and enormous intellectual generosity|but

also that he had wide intellectual interests in the sciences. So I like to think my

illustrations of Lewisian themes in mechanics would have pleased him.

The modal involvements of analytical mechanics turn out to be rich and subtle.

There is much to explore here: as so often in the philosophy of physics, one can mine

from a little physics, a lot of philosophy|at least, a lot more than one paper! To be

brief enough, I shall have to be selective in various ways. The two main ones are:{

1) I shall consider only a limited class of classical mechanical systems, and give a

technically elementary presentation of how the Lagrangian, Hamiltonian and Hamilton-

Jacobi approaches treat them (Section 2). To be a bit more speci�c: I shall consider

only systems with �nitely many degrees of freedom, for which any constraints can be

solved; and my presentation will eschew modern geometry. This limitation is largely a

matter of brevity and expository convenience: most of the philosophical discussion in

Sections 3 et seq. applies more widely.

2) These modal involvements are entangled, technically and philosophically, with

the fact that these three approaches provide general schemes for solving problems,

or for representing their solutions. I believe these general schemes hold philosophical

morals. But here I will set them aside. (My (2003) takes them up.)

The plan of the paper is as follows. In Section 2, I review elements of analyti-

cal mechanics. Since philosophers are often familiar with elementary Lagrangian and

Hamiltonian mechanics, but rarely with Hamilton-Jacobi theory, I will give more de-

tail about the latter. In Section 3, I begin my discussion of modality. I distinguish

three grades of modal involvement, according to which kind of actual matters of fact

they allow to vary counterfactually. The �rst grade considers counterfactual initial

and/or �nal conditions, but keeps �xed the forces on the system and the laws of mo-
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tion. It is most strikingly illustrated by Hamilton-Jacobi theory's S-function, which

represents a structured ensemble of such conditions. The theory considers many dif-

ferent S-functions, and so ensembles: so I discuss the structure of this set in Section

4. In particular, there is an analogy with Lewis' spheres of worlds. The third grade of

modal involvement, which considers counterfactual laws of motion, is illustrated by the

way variational principles, such as Hamilton's Principle, invoke evolutions that violate

the actual law. This prompts a discussion (Section 5) whether variational principles

violate the philosophical principle that any actual truth is made true by actual facts.

I argue that they do not, at least for simple mechanical systems. But the topic brings

out various points, including another analogy with Lewis' account of counterfactuals.

It also raises some open questions.

2 Technical preliminaries

I will �rst review the mathematics and physics I need; (without proofs, but with a

few references). Much of what follows is pure mathematics, though I will use a nota-

tion and jargon suggestive of mechanics. Each of the three approaches|Lagrangian,

Hamiltonian and Hamilton-Jacobi|has a Subsection.

2.1 Simple systems and Lagrangian mechanics

I begin with the simplest problem of the calculus of variations. This is the variational

problem (in a notation suggestive of mechanics)

ÆI := ÆI[qi] = Æ
Z t1

t0

L(q1; : : : ; qn; _q1; : : : ; _qn; t)dt = 0 ; (2.1)

where [ ] indicates that I is a functional, the dot denotes di�erentiation with respect

to t, and L is to be a C2 (twice continuously di�erentiable) function in all 2n + 1

arguments. L is the Lagrangian or fundamental function; and
R
L dt is the action

or fundamental integral. I will discuss this only locally; i.e. I will consider a �xed

simply connected region G of (n+ 1)-dimensional real space IRn+1, on which there are

coordinates (q1; : : : ; qn; t) =: (qi; t). I will often suppress the subscripts i; j etc. running

from 1 to n, and write (q; t) etc.

The singling out of a coordinate t (called the parameter of the problem), to give

a parametric representation of curves q(t) := qi(t), is partly a matter of notational

clarity. But it is of course suggestive of the application to mechanics, where t is

time, q represents the system's con�guration and (qi; t)-space is often called `extended

con�guration space' or `event space'. Besides, the singling out of t re
ects the fact

that we do not require the fundamental integral to be independent of the choice of

t; indeed we shall note in Section 2.2 that allowing this dependence is necessary for
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making Legendre transformations.2

A necessary condition for I to be stationary at the C2 curve q(t) := qi(t)|i.e.

for ÆI = 0 in comparison with other C2 curves that (i) share with q(t) the end-

points q(t0); q(t1) and (ii) are close to q(t) in both value and derivative throughout

t0 < t < t1|is that: q(t) satis�es for t0 < t < t1 the n second-order Euler-Lagrange

(also known as: Lagrange) equations

d

dt
L _qi � Lqi = 0 i = 1; : : : ; n; (2.2)

where as usual subscripts indicate partial di�erentiation; i.e. L _qi :=
@L
@ _qi

etc. The proof

is elementary. Under certain conditions, the converse also holds: that is, eq. 2.2 is

suÆcient for eq. 2.1, i.e. for I to be stationary . A curve satisfying eq. 2.2 is called an

extremal.

We apply these ideas to mechanics, getting Lagrangian mechanics. We consider a

mechanical system with n con�gurational degrees of freedom. Note that if the system

consists of N point-particles (or bodies small enough to be treated as point-particles),

so that a con�guration is �xed by 3N cartesian coordinates, we may yet have n < 3N ;

for the system may be subject to constraints and the qi are to be independently variable

in the region G.

I shall assume that the system is simple, in the sense that it has the following �ve

features, (i) to (v). Note: (1): My discussion of the Hamiltonian and Hamilton-Jacobi

approaches will retain this restriction to simple systems; and each will also assume

other restrictions. (2): Some of these features, e.g. (iii), evidently involve modal no-

tions; but I will postpone discussion of these aspects till Section 3 et seq..

(i): Any constraints on the system are holonomic; i.e. each is expressible as an equa-

tion f(r1; : : : ; rm) = 0 among the coordinates rk of the system's component parts; (here

the rk could be the 3N cartesian coordinates of N point-particles, so that m := 3N).

A set of c such constraints can in principle be solved, de�ning a (m � c)-dimensional

hypersurface Q in the m-dimensional space of the rs; so that on the con�guration space

Q we can de�ne n := m� c independent coordinates qi; i = 1; : : : ; n.

(ii): Any constraints on the system are scleronomic, i.e. independent of time. So

the con�guration space Q is identi�ed once and for all; and we can take the region

G � IRn+1 as a cartesian product of Q with a time-interval [t
�
; t+] � IR (where we

allow t
�
= �1; t+ = +1).

(iii): Any constraints on the system are ideal; i.e. the forces that maintain the

constraints would do no work in any possible displacement consistent with the con-

straints and applied forces (called a virtual displacement). This allows us to deduce

the principle of virtual work, and thereby d'Alembert's principle.

2Of course, the calculus of variations can be developed on the assumption that the fundamental

integral is to be parameter-independent|if it could not be, so much the worse for relativistic theories!

But the details, in particular of how to set up a canonical formalism, are di�erent from what follows

in this Section, and I set them aside; (cf. e.g. Rund (1966, Chapter 3)). SuÆce it to say that the

philosophical morals of Sections 3 et seq. hold good for parameter-independent problems.
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D'Alembert's principle implies that for a holonomic system (i.e. obeying (i)), the

kinetic energy T (de�ned in cartesian coordinates, with k now labelling particles, by:

T := �k
1
2
mkv

2
k) and generalized forces Qi (which are de�ned for i = 1; : : : ; n, in terms

of the vector applied force Fk on particle k, and position vector rk of particle k, by:

Qi := �kFk �

�
@rk
@qi

�
) obey, for all i

d

dt

 
@T

@ _qi

!
�

@T

@qi
�

d

dt
(T _qi)� Tqi = Qi ; (2.3)

which are also sometimes called Lagrange's equations.

(iv): The applied forces are monogenic; i.e. the total work Æw done in an in�nites-

imal virtual displacement is integrable; its integral is the work function U . (The term

`monogenic' is due to Lanczos (1986, p.30), but followed by others e.g. Goldstein et al.

(2002, p. 34).)

(v): Furthermore, the system is conservative; i.e. the work function U is inde-

pendent of both the time and the generalized velocities _qi, and depends only on the

qi: U = U(q1; : : : ; qn). We interpret V := �U as potential energy. Then (ii) and (v)

together imply the conservation of energy, i.e. the constancy in time of T + V .

Besides, (v) and the de�nition of Qi in (iii) implies that Qi = �Vqi; so that, de�ning

the Lagrangian L := T � V , eq. 2.3 take on the form of the Euler-Lagrange equations,

i.e. eq. 2.2. With this L � T � V , eq. 2.2 are called Lagrange's equations.

For a simple system, Lagrange's equations are (not just necessary but also) suÆcient

for the action integral I =
R
L dt to be stationary (Whittaker (1959, Section 99)). So we

infer Hamilton's Principle: that the motion in con�guration space of a simple system,

between prescribed con�gurations at times t0 and t1, makes stationary
R
L dt, with the

Lagrangian L(qi; _qi; t) � L(qi; _qi) := T � V now having no explicit time-dependence:

ÆI = Æ
Z t1

t0

L(qi; _qi)dt = 0 : (2.4)

As I mentioned in Section 1, my restriction to simple systems is largely a matter

of brevity and expository convenience, not of substance. Most of both the formalism

below, and the philosophical morals of later Sections, apply much more widely. For

example, in the last paragraph's deduction of eq. 2.2, the assumption of conservativity,

(v), could be weakened so as to allow V to have explicit time-dependence and even

some forms of velocity-dependence; (cf. e.g. Goldstein et al. (2002, p. 22); hence eq.

2.1's allowance of t as an argument of L.).

But beware: some points in what follows are restricted. The most important ex-

ample concerns the deduction of Hamilton's Principle from Lagrange's equations eq.

2.2; (cf. the last paragraph but one). This deduction depends on the system being

simple; (more speci�cally, on the constraints being holonomic, cf. Papastavridis (2002,

pp. 960-973)). We shall see in Section 5 that this leaves us open questions about the

modal involvements of Lagrangian and Hamiltonian mechanics for non-simple systems.
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Finally, I note that the power of Lagrangian mechanics as a scheme for solving

problems arises in large part from its equations being invariant under arbitrary trans-

formations, with non-vanishing Jacobian, of the qi (called point transformations). Thus

we are free to use coordinates qi to suit the problem at hand: the equations of motion

will retain the form eq. 2.2.

2.2 Canonical equations and Hamiltonian mechanics

Under certain conditions, the variational problem eq. 2.1 has an equivalent form, the

canonical form, for which the Euler-Lagrange equations are 2n �rst order equations,

rather than n second order equations; as follows. Starting from eq. 2.1, we de�ne new

variables

pi := L _qi ; (2.5)

called (canonical) momenta, since in mechanics examples they often coincide with

momenta. Recalling that L is C2 in all its arguments, we now assume that the Hessian

with respect to the _qs does not vanish in the domain G considered, i.e. the determinant

j L _qi _qj j 6= 0 ; (2.6)

so that eq. 2.5 can be solved for the _qi as functions of qi; pi; t : _qi = _qi(qj; pj; t). Then

the equations

pi = L _qi _qi = Hpi L(qi; _qi; t) +H(qi; pi; t) = �i _qipi (2.7)

represent a Legendre transformation and its inverse; where in the third equation _qi are

understood as functions of (qj; pj; t) according to the inversion of eq. 2.5. The function

H(qi; pi; t) is called the Legendre (or: Hamiltonian) function of the variational problem,

and the qs and ps are called canonically conjugate. It follows that H is C2 in all its

arguments, Ht = �Lt, and j L _qi _qj j = j Hpipj j
�1. Besides, any function H(qi; pi; t)

that is C2 in all its arguments, and has a non-vanishing Hessian with respect to the

ps, j Hpipj j6= 0, is the Legendre function of a C2 Lagrangian L that is given in terms

of H by eq. 2.7.

Applying this Legendre transformation, the Euler-Lagrange equations eq. 2.2 go

over to the canonical system of equations (also known as: Hamilton's equations)

_qi = Hpi _pi = �Hqi (= Lqi) : (2.8)

(A curve satisfying these equations is also called an extremal.)

Furthermore, these are the Euler-Lagrange equations of a variational problem equiv-

alent to the original one, in which both qs and ps are varied independently, namely the

problem

Æ
Z
(�i _qipi �H(qi; pi; t)) dt = 0 : (2.9)
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The reason for the equivalence, in brief, is:{ The variation of L = �i _qipi�H with respect

to pi gives ÆL = �i( _qi �
@H
@pi

)Æpi. Since the term in brackets vanishes by Hamilton's

equations, an arbitrary variation of the pi has no in
uence on the variation of L; so

the Euler-Lagrange equations got by varying the qs and ps independently are eq. 2.8,

i.e. the Legendre transform of the originals, eq. 2.2.3

Applying these ideas to the Lagrangian mechanics of a simple system, understood

as in Section 2.1, we get Hamiltonian mechanics. Thus we now assume not only that

the mechanical system is simple, but also that eq. 2.6 holds. And we think of the

system's state-space as, not Q, but the 2n-dimensional phase space � coordinatized

by the ps and qs; (technically it is the cotangent bundle of Q|but as announced in

Section 1, I eschew modern geometry!). The system's motion is given by the new

variational principle, sometimes called the modi�ed Hamilton's Principle, eq. 2.9; or

more explicitly, by Hamilton's equations, eq. 2.8.

The Hamiltonian mechanics of a simple system is equivalent to Section 2.1's La-

grangian mechanics, together with eq. 2.6. But it has several advantages over La-

grangian mechanics, as regards both problem-solving and general theory; though I

only mention two.4

(i): Its use of �rst-order ordinary di�erential equations. In particular, the initial

value problem is straightforward, in that through a given point (q0; p0) := (q01 ; : : : ; q0n ; p01; : : : ; p0n) 2

�, there passes a unique solution of eq. 2.8, i.e. a unique extremal with qi(0) =

q0i ; pi(0) = p0i .

(ii): Its replacement of the group of point transformations on Q by what is in e�ect

a larger group of transformations on �, the canonical transformations. There is a rich

and multi-faceted theory of canonical transformations; (to which there are three main

approaches|generating functions, symplectic geometry and integral invariants). But

I will not need any details about this.

2.3 Hamilton-Jacobi theory

I shall discuss Hamilton-Jacobi theory in more detail than Lagrangian and Hamiltonian

mechanics; both because it is less familiar to philosophers and because we need the

detail in order to explore its modal involvements. In Section 2.3.1, I follow in Hamil-

ton's (1833, 1834) footsteps, introducing the Hamilton-Jacobi equation via Hamilton's

3For more discussion of the Legendre transformation, cf. e.g.: Arnold (1989, Chap.s 3.14, 9.45.C),

Courant and Hilbert (1953, Chap. IV.9.3; 1962, Chap. I.6), Lanczos (1986, Chap VI.1-4).) I stress

that in the theory of the Legendre transformation, the assumption of a non-vanishing Hessian, eq. 2.6

(equivalently: j Hpipj
j6= 0), is crucial; if it fails, we need a di�erent theory (called constrained dynam-

ics). Incidentally, it also implies that the fundamental integral cannot be parameter-independent; cf.

e.g. Rund (1966, pp. 16, 141-144).
4Other advantages of the Hamiltonian approach, from a physical perspective, include: (a) it can

be applied to systems to which the Lagrangian approach does not apply, i.e. in modern terms, whose

phase space is not a cotangent bundle; (b) it connects analytical mechanics with other �elds of physics,

especially statistical mechanics and optics.
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characteristic function (as do many mechanics textbooks); and then in Section 2.3.2 I

discuss hypersurfaces, congruences and �elds. Even so, these details will give only a

limited view of a rich theory. In particular:

(1) I will ignore aspects to do with problem-solving (especially the use of separation

of variables, leading on to action-angle variables and Liouville's theorem) since|though

obviously crucial for physics, and so rightly emphasised in textbooks|they are not il-

luminating about modality.

(2) I will ignore the integration theory of the Hamilton-Jacobi equation, which

involves the theory of generating functions and complete integrals. This deep (and

beautifully geometric) theory does illuminate Hamilton-Jacobi theory's modal involve-

ments; but space prevents me discussing it here.

(3) Both Sections 2.3.1 and 2.3.2 will emphasise the description of motion in the ex-

tended con�guration space of Section 2.1, i.e. the region G � IRn+1; while it is equally

illuminating to consider Hamilton-Jacobi theory in phase space. But this emphasis on

G � IRn+1 will suÆce for our purposes|to reveal some distinctive modal involvements.

2.3.1 The characteristic function and the Hamilton-Jacobi equation

We now assume that our region G � IRn+1 is suÆciently small that between any

two \event" points E1 = (q1i; t1); E2 = (q2i; t2) there is a unique extremal curve C.

To avoid double subscripts, I will in this Section sometimes suppress the i, writing

E1 = (q1; t1); E2 = (q2; t2) etc. Then the value of the fundamental integral along C is a

function of the coordinates of the end-points; which we call the characteristic function

and write as

S(q1; t1; q2; t2) =
Z t2

t1

L dt =
Z t2

t1

(�ipi _qi �H) dt =
Z
�ipidqi �Hdt (2.10)

where the integral is taken along the unique extremal C between the end-points, and

we have used the Legendre transformation eq. 2.7.

Making arbitrary small displacements (Æq1; Æt1); (Æq2; Æt2) at E1; E2 respectively, and

using the fact that the integral is taken along an extremal, we get for the variation ÆS

of S

ÆS := S(q1 + Æq1; t1 + Æt1; q2 + Æq2; t2 + Æt2)� S(q1; t1; q2; t2) =

@S

@t1
Æt1 +

@S

@t2
Æt2 + �i

@S

@q1i
Æq1i + �i

@S

@q2i
Æq2i = [�i piÆqi �H(qj; pj; t)Æt]

t2
t1

: (2.11)

Since the displacements are independent, we can identify each of the coeÆcients on the

two sides of the last equation in eq. 2.11, getting

@S

@t2
= �[H(qi; pi; t)]t=t2 ;

@S

@q2i
= [pi]t=t2 (2.12)

@S

@t1
= [H(qi; pi; t)]t=t1 ;

@S

@q1i
= �[pi]t=t1 (2.13)
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in which the pi refer to the extremal C at E1 and E2.

These equations are remarkable, since they enable us, if we know the function

S(q1; t1; q2; t2) to determine all the motions of the system that are possible with the

given S|without solving any di�erential equations! For suppose we are given the

initial conditions (q1; p1; t1), i.e. the con�guration and canonical momenta at time t1,

and also the function S. The n equations @S
@q1

= �p1 in eq. 2.13 relate the n + 1

quantities (q2; t2) to the given constants q1; p1; t1. So in principle, we can solve these

equations by a purely algebraic process, to get q2 as a function of t2 and the constants

q1; p1; t1; i.e. to get the system's motion. Finally, we can get the momentum p2 from the

n equations p2 =
@S

@q2
in eq. 2.12. So indeed the problem is solved without performing

integrations, i.e. just by di�erentiation and elimination: a very remarkable technique.5

In fact we can from now on ignore the initial time equations eq. 2.13 and study

only the n + 1 �nal time equations eq. 2.12. Roughly speaking, the reason is that eq.

2.12 contains enough information for us to analyse fully the system's motion.6 So we

will often write t rather than t2 and q rather than q2.

Substituting the second set of equations of eq. 2.12 in the �rst, and rewriting t2; q2
as t; q, yields

@S

@t
+H(q;

@S

@q
; t) = 0 : (2.14)

This �rst order partial di�erential equation is the Hamilton-Jacobi equation; it is non-

linear since the contribution of the kinetic energy T to the Hamiltonian will contain p2

terms. Throughout this Subsection and the next, we will focus on this equation.

By �xing E1 = (q1; t1) and considering di�erent values for S, we also see that S

de�nes a family of hypersurfaces, which we can call `spheres' with centre E1 = (q1; t1).

Thus the sphere with radius R is given by the equation

S(q1; t1; q2; t2) = R (2.15)

with (q1; t1) considered �xed. Every point E2 = (q2; t2) on this sphere is connected to

the centre E1 = (q1; t1) by a unique extremal along which the fundamental integral

has value R. This is amusingly reminiscent of Lewis' spheres of worlds (1973, Chapter

1.3; 1986, Chapter 1.3): and more than amusingly|we will see in Section 4 that the

analogy is deeper.

5As Hamilton realized. He writes, in the impersonal style of the day, that `Mr Hamilton's function

S ... must not be confounded with that so beautifully conceived by Lagrange for the more simple

and elegant expression of the known di�erential equations [i.e. L]. Lagrange's function states, Mr

Hamilton's function would solve the problem. The one serves to form the di�erential equations of

motion, the other would give their integrals' (1834, p. 514).
6This insight is essentially due to Jacobi. For discussion, cf. Dugas (1988, p. 401), Lanczos (1986,

pp. 225, 231-34, 254-57).
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2.3.2 Hypersurfaces, congruences and �elds

Of course, partial di�erential equations have many solutions: (the main contrast with

ordinary di�erential equations being that typically, the solution contains an arbitrary

function (or functions) rather than an arbitrary constant (or constants)). So Hamilton-

Jacobi theory studies the whole space of solutions of the Hamilton-Jacobi equation. I

need to report the main classical result of this study. (For details, a good reference is

Rund (1966, Chap. 2), who cites various masters of the last two centuries, especially

Carath�eodory. I also give more details in (2003a).)

The result connects three diverse notions:|

(a): Families of hypersurfaces in our region G of IRn+1

S(qi; t) = � (2.16)

with � 2 IR the parameter labelling the family; where we assume that S is a C2

function in all n+1 arguments, and that the family foliates the region G simply in the

sense that through each point of G there passes a unique hypersurface in the family.

(b): Congruences of curves that: (i) cross the hypersurfaces and �ll G simply in

the corresponding sense that through each point of G there passes a unique curve in

the congruence; and (ii) may be parametrically represented by n equations giving qi as

C2 functions of n parameters u� and t

qi = qi(u�; t) ; i = 1; : : : ; n ; (2.17)

where each set of n u� = (u1; : : : ; un) labels a unique curve in the congruence. Thus

there is a one-to-one correspondence (qi; t) $ (u�; t) in appropriate domains of the

variables, with non-vanishing Jacobian

j

@qi

@u�
j 6= 0 : (2.18)

Such a congruence determines tangent vectors ( _qi; 1) at each (qi; t); and thereby also

values of the Lagrangian L(qi(u�; t); _qi(u�; t); t) and of the momentum

pi = pi(u�; t) =
@L

@ _qi
: (2.19)

(c): Fields, de�ned to be a set of 2n C2 functions qi; pi of (u�; t) as in eqs 2.17 and

2.19, i.e. with the qs and ps related by pi =
@L
@ _qi

. So a congruence determines a �eld,

and a �eld determines (by a Legendre transformation, using eq. 2.6) a set of tangent

vectors, and so a congruence.

Some jargon: (i) If all the curves of the congruence determined by a �eld are

extremals, the �eld is called a �eld of extremals. (ii) We say a �eld (or its congruence)

belongs to a family of hypersurfaces given by eq. 2.16 i� throughout the region G the
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pi =
@L

@ _qi
of the �eld obey the last n equations of eq. 2.12, i.e. i� we have

pi =
@

@qi
S(qi; t) =

@

@qi
S(qi(u�; t); t) :7 (2.21)

(iii) Finally, we say that a �eld qi = qi(u�; t); pi = pi(u�; t) is canonical if the qi; pi
satisfy Hamilton's equations eq. 2.8: equivalently, if the curves of the congruence

determined by the �eld are extremals.

So much for de�nitions; now the result. The following three conditions on a C2

function S : G! IR are equivalent:

(1): S is a C2 solution (throughout G) of the Hamilton-Jacobi equation

@S

@t
+H(q;

@S

@q
; t) = 0 : (2.22)

(2): The �eld belonging to the C2 function S : G ! IR, i.e. the �eld de�ned at

each point in G by pi =
@S
@qi

, is canonical. Equivalently: the curves of the congruence

belonging to S (the congruence de�ned from the �eld by the Legendre transformation)

are extremals.

(3): The value of the fundamental integral
R
L dt along the curve C of the congru-

ence belonging to S, from any point P1 on the surface S(qi; t) = �1 to that point P2 on

the surface S(qi; t) = �2 that lies on C, is the same for whatever point P1 we choose;

and the value is just �2 � �1. That is:

Z P2

P1

L dt = �2 � �1 :
8 (2.23)

In the light of eq. 2.23, we call a family of hypersurfaces S = � satisfying any, and

so all, of these three conditions geodesically (or: geodetically) equidistant (with respect

to the Lagrangian L). So the concentric spheres centred on E1 = (q1; t1) introduced

above (eq. 2.15) are an example of a geodesically equidistant family. (In fact they

are a \fundamental" example, in that other families can be \built" from them in ways

studied under the names of `Green's functions', and `Huygens' principle'.)

To sum up: Any solution S of the Hamilton-Jacobi equation that is smooth and

local (speci�cally: C2 and de�ned in a simply connected region G) has level surfaces

7One can show that a �eld belongs to a family of hypersurfaces i� for all indices �; � = 1; : : : ; n,

the Lagrange brackets of the parameters of the �eld, i.e.

[u�; u�] := �i

�
@qi

@u�

@pi

@u�
�

@qi

@u�

@pi

@u�

�
(2.21)

vanish identically. Warning: the role of Lagrange brackets in this theory is sometimes omitted even

in excellent accounts, e.g. Courant and Hilbert (1962, Chap. II.9.4).
8More precisely: (1) and (3) are exactly equivalent, (1) implies (2); and (2) implies that @S

@t
+

H(q; @S
@q
; t) is a function of t only, and this function can be absorbed into H . For proofs, cf. e.g. Rund

(1966, Chap. 2.2-3), Courant and Hilbert (1962, Chapter II.9.2-4).
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S = constant which are traversed by a congruence of extremals so as to make the level

surfaces a geodesically equidistant family.

But so far it is an open question which n-dimensional surfaces M in G are level

surfaces of some smooth, say C2, solution S (in G). In fact it can be shown, subject

to some mild conditions about non-vanishing determinants etc., that:

(1): any n-dimensional surface M is a level surface of a solution, and this solution

is uniquely de�ned throughout G by its value on M (say S = 0 on M); and

(2): for any such surface M and any suitably smooth function S : M ! IR, there

is a uniquely de�ned solution on all of G which restricts on M to the given S. (So (2)

generalizes (1) by M not having to be a level surface.)

In the jargon: the initial value problem for the Hamilton-Jacobi equation has locally

a solution, that is unique given suitably smooth prescribed values of S. But I shall not

go into details about this. It suÆces to state the intuitive idea for the case where M is

a level surface: the solution is \grown" from the given surface by erecting a congruence

of curves, transverse to the surface, and passing along them to mark o� a given value

of the fundamental integral
R
L dt; by varying the value, one de�nes a geodesically

equidistant family and so a solution S. (For details, cf. Rund (1966, Chap. 2.7-8),

Benton (1977, Chap. 1) or my (2003a, Sections 5,6); or more heuristically, Courant

and Hilbert (1962, Chap. II.9.2-5) and Born and Wolf (1999, Appendix I.2-4).)

Returning �nally to mechanics: it is clear that each solution S of the Hamilton-

Jacobi equation represents a kind of ensemble, i.e. a �ctitious population of systems

(maybe including the actual system). Thus each solution S represents an ensemble

with the feature that at all times t, there is a strict con�guration|momentum, i.e.

q� p, correlation given by the gradient of S. That is, S prescribes for any given (q; t),

a unique (p; t) := (@S
@q
; t).

So much by way of expounding Hamilton-Jacobi theory. We will return, after

Section 3's introduction of modality, to discuss the structure of this set of ensembles (set

of S-functions)|and so the modal involvements of Hamilton-Jacobi theory. Finally, I

emphasise a point mentioned in Section 1: that this Section's restrictive assumptions

about the systems to be considered (that the systems be simple, that eq. 2.6 hold, that

any two points in G be connected by a unique extremal etc.) are largely a matter of

brevity and expository convenience, not of substance. Much of the formalism above,

and the philosophical morals below, apply more widely.

3 Grades of modal involvement

I turn to discussing the modal involvements of our three approaches to analytical

mechanics: Lagrangian, Hamiltonian and Hamilton-Jacobi. In this Section, I begin

with the obvious fact that postulating a space of possible states (a state-space: Q or �

or G in Section 2's notation) brings in modality. This leads to a suggested distinction

between three grades of modal involvement, which are all illustrated by analytical
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mechanics. In this Section, I just brie
y mention some illustrations: the next two

Sections discuss some more striking illustrations of the �rst and third grades.

At �rst sight, the philosophical import of postulating a state-space would seem to

be at most some uncontroversial version of the idea that laws support counterfactuals.

That is: whether or not one believes in a �rm distinction between laws of nature and

accidental generalizations, and whatever one's preferred account of counterfactuals, a

theory that states `All As are Bs' surely in some sense warrants counterfactuals like `If

any object were an A, it would be a B'. And so when analytical mechanics postulates

state-space and then speci�es e.g. laws of motion on it, it seems at �rst that this just

corresponds to the passage from `All actual systems of this kind (having such-and-such

initial states|usually a \small" proper subset of state-space) evolve thus-and-so' to

`If any system of this kind were in any of its possible initial states, it would evolve

thus-and-so'.9

But this �rst impression is deceptive. The structures with which state-space is

equipped by analytical mechanics, and the constructions in which it is involved, make

for more varied and nuanced involvements with modality than is suggested by just the

idea that laws support counterfactuals. In the light of Section 2, I think it is natural to

distinguish (in Quinean fashion!) three grades of modal involvement; so I shall write

(Modality;1st) etc. Like Quine's three grades, the �rst is intuitively the mildest grade,

and the third the strongest. But this order will not correspond to Section 2's (and the

historical) order of the three approaches to analytical mechanics. In particular, the

�rst and arguably most intuitive approach, Lagrangian mechanics, exhibits the third

grade of modal involvement.10

The grades are de�ned in terms of the kind of actual matters of fact they allow

to vary counterfactually. The �rst kind is, roughly, the state of the system. The

second kind is the physical problem: which we can take as speci�ed by the number

of degrees of freedom, and the Lagrangian or Hamiltonian which encodes the forces

on the system. The third kind is the laws of motion, as speci�ed by e.g. Hamilton's

Principle or Lagrange's or Hamilton's equations. Thus we have the following grades.11

(Modality;1st): The �rst and mildest grade keeps �xed the actual physical problem

9Here, and in all that follows, I of course set aside the (apparent!) fact that the actual world is

quantum, not classical; so that I can talk about e.g. an actual system obeying Hamilton's Principle.

Since my business throughout is the philosophy of classical mechanics, it is unnecessary to encumber

my argument with antecedents like `If the world were not quantum': I leave you to take them in your

stride.
10Also, my three grades (like Quine's) are often combined: for example, a mechanical theory (or

even a small part of one, such as a theorem) might involve the �rst and third grades. But I will not

need to discuss such combinations.
11I don't claim that these three grades are the best way to classify the modal involvements of an-

alytical mechanics. For example, it might be at least as fruitful to consider how the various kinds of

constraint (holonomic, scleronomic etc. and their contraries) classify the notion of virtual displace-

ment: this classi�cation would cut right across the trichotomy that follows. But at least what follows

has the merits of being: obvious, suggested by Section 2's review, and showing at least some of the

variety of modal involvement that occurs.
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and laws of motion. But it considers di�erent initial or �nal conditions than the actual

given ones. And so it also considers counterfactual histories of the system; (since under

determinism, a di�erent initial or �nal state implies a di�erent history, i.e. trajectory

in state-space).

So this grade includes the familiar idea above, that laws support counterfactuals.

But analytical mechanics also provides more distinctive illustrations. Some arise from

the postulation of a state-space, be it Q or � or G. Thus recall from Section 2.1's

de�nition of a simple system: (a) the con�guration space Q is to have independently

variable coordinates qi; and (b) to de�ne ideal constraints, one needs to de�ne a virtual

displacement (as one that the system could undergo compatibly with the constraints

and applied forces). But the most striking illustration of (Modality;1st) is Hamilton-

Jacobi theory. As we saw in Section 2.3, Hamilton-Jacobi theory enables you to solve

a problem, as it might be an actual one, by introducing an ensemble of systems; i.e. a

set of possible systems, of which the actual system is just one member. Besides, the

ensemble can be chosen in such a way that given S the problem is solved without per-

forming integrations, i.e. just by di�erentiation and elimination. For more discussion,

cf. Section 4.

(Modality;2nd): The second grade keeps �xed the laws of motion, but considers

di�erent problems than the actual one (and thereby di�erent initial states). For ex-

ample, it considers a counterfactual number of degrees of freedom, or a counterfactual

potential function. Maybe no actual system is a simple system with 5,217 coordinates

(nor even is well modelled as one); or with a potential given (in certain units) by

the polynomial 13x7 + 5x3 + 42. But analytical mechanics continually considers such

counterfactual cases: in Section 2, we generalized from the outset about the number

n of degrees of freedom, and about what the Lagrangian or Hamiltonian was (subject

of course to conditions like eq. 2.6). Such generality of course pays o� in countless

general theorems.

(Modality;3rd): The third grade considers di�erent laws of motion, even for a given

problem. Again, this can happen even in Lagrangian mechanics; namely in its use

of Hamilton's Principle eq. 2.1, and eq. 2.4 for simple systems. It also happens in

Hamiltonian mechanics with its modi�ed Hamilton's Principle, eq. 2.9. (And Section

2.3 showed that these variational principles are also involved in the Hamilton-Jacobi

approach.) In all three approaches, the use of variational principles means|not that

one explicitly states non-actual laws, much less calculates with them|but that one

states the actual law as a condition that compares the actual history of the system

with counterfactual histories of it that do not obey the law (in philosophers' jargon: are

contralegal). That is, the counterfactual histories share the initial and �nal conditions,

but do not obey the given deterministic laws of motion, with the given forces.12 This

12Besides, one does not require that there could be forces which in conjunction with the actual laws

and initial and �nal conditions, would yield the counterfactual history. But I agree that in general for

each suitably smooth counterfactual history, there will be some recipe of (in general time-dependent)

internal and external forces that would yield the history: (thanks to Michael Dickson for pointing

this out). So I also agree that my distinction between (Modality;3rd) and (Modality;2nd), between

13



is at �rst sight surprising, even mysterious. How can it be possible to state the actual

law by a comparison of the actual history with possible histories that do not obey it?

I take up this question in Section 5.

To sum up, analytical mechanics gives many illustrations of all three grades: indeed,

the subject is upto its ears in modality. But rather than multiplying examples, the

remainder of this paper undertakes two projects suggested by my trichotomy. The

�rst (Section 4) concerns Hamilton-Jacobi theory's use of (Modality;1st). There is no

special philosophical diÆculty here; rather the situation represents an invitation to

philosophers to study a new sort of modal structure. The second project (Section 5)

concerns variational principles, especially in Lagrangian and Hamiltonian mechanics.

Here there is a philosophical diÆculty: the variational principles threaten a plausible

philosophical principle, and the threat needs to be answered. It can be answered, at

least for simple systems; but doing so pays dividends.

4 On the set of ensembles

Since the S-function, representing an ensemble of systems whose q and p are correlated

by p = @S
@q
, stands at the centre of Hamilton-Jacobi theory, it is clear that the theory

illustrates (Modality;1st) in spades. As discussed at the end of Section 2.3, the structure

of the set of ensembles is essentially given by the structure of the set of suitably smooth

(say C2) real functions on a n-dimensional manifold M ; (M needs to \lie across" the

region G so as to be transverse to a congruence of extremals). For since there is a

locally unique solution to the Hamilton-Jacobi initial value problem, each such function

determines|as well as is determined by|a solution throughout G of the Hamilton-

Jacobi equation. So one infers that the set of solutions (ensembles) is some kind of

in�nite-dimensional set.

This set has various kinds of structure, and a full discussion would have to take

account of the aspects listed at the start of Section 2.3, that I am setting aside. In

particular, Hamilton-Jacobi integration theory (especially the notions of complete inte-

gral, and Jacobi's theorem) picks out subsets of the solution space which are signi�cant,

both theoretically and for problem-solving. But even with just the results of Section

2.3, we can discern two kinds of structure|which bear on Lewis' account of modality,

especially counterfactuals. These two kinds of structure arise from two di�erent choices

about what to take as the analogue, in Hamilton-Jacobi theory, of a Lewisian possible

world.

varying the laws and varying the forces, is not as hard-and-fast as it �rst seems: one can in this sense

avoid (Modality;3rd) by accepting (Modality;2nd). But this point will not a�ect my discussion.

14



4.1 Con�gurations as worlds

Let us think of an event (i.e. instantaneous con�guration) (qi; t) 2 G as like a possible

world. Then Hamilton's characteristic function eq. 2.10, and the geodesic spheres it

de�nes eq. 2.15, yield a neat analogy with Lewis' theory of counterfactuals.

For recall Lewis' proposed truth-conditions for a counterfactual `If A were the case,

then C would be the case', which I will write as A ! C (1973, Chap. 1.3). Roughly

speaking, he proposes that A! C is true at the actual world @ i�: the possible world

(or worlds) most similar (for short: \closest") to @ that makes A true, also makes

C true. But he wants to avoid the assumption that there is a set of A-worlds tied

for �rst equal as regards similarity to @ (the Limit Assumption). He also allows the

counterfactual to be vacuously true: namely i� no world in the union of nested spheres

around @, [ $@, makes A true. That is, Lewis proposes that the counterfactual A! C

is true at @ i�:{

1) no A-world belongs to any sphere S in the system $@ of spheres around @;

or

2) some sphere S in the system $@ contains at least one A-world, and A � C is

true at every world in S; (i.e. C is true at every A-world in S).

We can easily transplant this kind of truth-condition to geodesic spheres; i.e. taking

points (qi; t) 2 G as worlds and
R
L dt as the measure of distance (dissimilarity)

between such worlds. However, the resulting conditionals arguably do not deserve

the name `counterfactual', since both the \base-world" (q1; t1) and the \closest A-

world", say (q; t), that the evaluation of the conditional carries us to, could be actual

con�gurations of the system.

For simplicity I will ignore the vacuous case, 1) above. This yields the following

truth-condition, relative to a given con�guration (q1; t1):

a) A is true at a possible con�guration (q; t), to which the given con�gura-

tion (q1; t1) could evolve (i.e. would evolve for some p1 at t1) with t > t1;

and

b) for every possible con�guration (q0; t0) to which (q1; t1) could evolve with

t > t1, and such that
R q0;t0

q1;t1
L dt �

R q;t
q1;t1

L dt:

A � C is true at (q0; t0); (i.e. if A is true at (q0; t0), so is C).

In the abstract, this truth-condition seems a mouthful. But in fact mechanics

provides countless examples of such conditional propositions, though of course in a

much less formal guise! A very simple example is given by a bead sliding on a wire

that lies in a vertical plane; (to be a simple system in Section 2's sense, the bead must

slide frictionlessly). We can take A to say that the bead is at the lowest point of the

wire, and C to say that its potential energy is at a minumum. Then A ! C can be

expressed informally as `Whenever the bead is next at the lowest point of the wire, its

potential energy will then be at a minimum'. Similarly, with C saying instead that the

kinetic energy is at a maximum; and so on.
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Finally, the results in Section 2.3.2 (especially condition (3)) implies that this dis-

cussion of counterfactuals can be generalized so as to de�ne similarity of worlds in terms

of level surfaces of any solution S of the Hamilton-Jacobi equation. For example, we

could take a n-dimensional surface M that is topologically a sphere surrounding some

given point (q1; t1) 2 G, de�neM to be a surface of constant S, say S = 0, and consider

the (locally unique) solution of the Hamilton-Jacobi equation thereby de�ned outside

M . That is, we could de�ne the dissimilarity of our worlds (q; t) from the base-world

(q1; t1), and so the truth-conditions of counterfactuals, in terms of the value of S(q; t).

4.2 States as worlds

On the other hand, let us take as the analogue of a Lewisian world an instantaneous

state in the sense of a 2n + 1-tuple (qi; pi; t). This is perhaps a more natural choice

than Section 4.1's instantaneous con�gurations (events), since it determines a history,

i.e. a phase space trajectory, of the system, our \toy-universe". (Indeed, an even closer

analogue to a Lewisian world would be such a trajectory, which is equivalent to a one-

parameter family of tuples (qi; pi; t) parameterized by time; but I will not separately

discuss this.)

As in Section 4.1, there are various constructions one could make with this concept

of world. In particular, one could de�ne conditionals A! C by using any solution S

of the Hamilton-Jacobi equation to de�ne dissimilarity. These conditionals would in

general be counterfactual, since the \base-world" (q1; p1; t1) will be on a di�erent phase

space trajectory than the (q2; p2; t2) that evaluation of the conditional carries us to.

But I shall not pursue this; (partly for the sake of variety|for I will anyway return to

counterfactuals in Section 5.1). I shall instead describe how an S-function enables us

to de�ne various sets of possible worlds which are \preferred" relative to our choice of

S; in fact, the last of these de�nitions is important for physics.

Here again, the S-function can be any solution of the Hamilton-Jacobi equation.

Given such an S, every point (q; t) 2 G has an associated canonical momentum, viz.

p := @

@q
S(q; t), and so an associated world in our sense, viz. (q; p � @S

@q
; t). If we

wish, we can also pick out subsets so that not every event (q; t) is included in a world

\preferred" by our S. For example, we could do this by picking out a sub-manifold M

of G, and de�ning the associated worlds (q; p � @S

@q
; t) only for (q; t) 2M .

There are two obvious ways to specify such an M ; both make M n-dimensional.

First, we can de�ne M as the level surface of S that passes through some given

(q; t) 2 G. This de�nition will connect M with Section 2.3.2's discussion of geodesi-

cally equidistant hypersurfaces. And thinking of (q; t) as the system's actual present

con�guration, M de�nes a preferred set of counterfactual events, i.e. instantaneous

con�gurations (which are in general not simultaneous with (q; t)).

Secondly, we can �x t. (This will mean that our worlds are given in e�ect by

just (q; p) not (q; p; t).) Each value of t de�nes M as Q � ftg, i.e. the copy of the

con�guration space Q at time t; (cf. Section 2.1's assumption (ii), of scleronomic
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constraints). Now writing this copy simply as Q, we consider the gradient @

@q
S(q; t)

as a function on Q. The preferred worlds are then given by all (q; p(q) � @

@q
S(q; t))

for q 2 Q. So the worlds are given as before, except that the �xed value of t is now

implicit in the de�nition of p.

In fact this second de�nition is crucially important for the mathematics and physics

of Hamilton-Jacobi theory in phase space. For consider the graph of the function

q 7! p(q) := @
@q
S(q; t) in the usual logician's sense of the set of ordered pairs of ar-

guments and values; that is, consider the set of pairs (q; p(q)). It is a n-dimensional

surface in the 2n-dimensional phase space �. It turns out that it is an example of a

special kind of surface, called Lagrangian submanifolds. I shall not de�ne this notion:

here it suÆces to remark that it is crucial for understanding:

(i) the general (symplectic) structure of Hamiltonian mechanics and Hamilton-

Jacobi theory;

(ii) physical phenomena like focussing and caustics; these arise when the assump-

tion we made at the start of Section 2.3.1, that any two events (q1; t1); (q2; t2) 2 G are

connected by a unique extremal, breaks down;

(iii) the relation of classical and quantum mechanics, since a Lagrangian submani-

fold is in e�ect the classical analogue of a pure quantum state (taken as an assignment

of values to a complete set of observables).13

For us, the main point is, as before, about the structure of the modal involvement.

Namely: the graph of q 7! p(q) gives us a preferred set of worlds, i.e. alternative states

in phase space. Besides, we can analyse the structure of the set of possible preferred

sets by studying the set of all Lagrangian manifolds; (or instead, its quotient by the

time-evolution under the Hamiltonian H).

So much by way of surveying the structure of Hamilton-Jacobi theory's set of

ensembles|surveying the riches of (Modality;1st). I close this Section with a philo-

sophical remark, which looks ahead to Section 5. There I will deny that merely possible

facts (or states of a�airs or other \truthmakers") could be what make true an actually

true proposition; (for, I will claim, only actual facts could do that). But for all I have

so far said about Hamilton-Jacobi theory, one might think that it involves precisely

this idea|which Lewis once jokingly called \possibilia power" (1986a, p. 158). After

all, what else might the use of an S-function i.e. an ensemble of possible systems (for

example, to solve a problem) come to?

But in fact, there is no con
ict. Agreed, Hamilton and Jacobi teach us to use an

S-function to solve problems; and for a single problem there are many S-functions

we can consider (which do not all di�er just by the time-parameter). But there is no

strange in
uence (whether causal or constitutive) of the S-function, or the ensemble it

represents, on the actual system (or propositions about it). In particular, the evolution

of a system (its trajectory in con�guration space or phase space) is �xed by, for exam-

ple, the initial conditions|q; _q; t in Lagrangian mechanics and q; p; t in Hamiltonian

13For more details about Lagrangian submanifolds, cf. e.g. Arnold (1989, Chap.s 7,8), Littlejohn

(1992, Sections 1-3).
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mechanics|irrespective of which if any S-function we care to use.14

5 Truths without truthmakers?

As I said at the end of Section 3, it seems odd, even mysterious, to state an actual

dynamical law by a comparison of the actual history with possible histories that do

not obey it|yet variational principles do just this. I shall argue that in fact there is

no problem here. But the topic repays scrutiny: it yields insights, both philosophical

(Section 5.1) and technical (Section 5.2); and it raises some open questions.15

I shall concentrate on Lagrangian mechanics, and speci�cally on Hamilton's Prin-

ciple. Recall that for the simple systems we are concerned with, this states that the

motion between prescribed con�gurations at time t0 and time t1 makes stationary the

action integral:

ÆI = Æ
Z t1

t0

L(q1; : : : ; qn; _q1; : : : ; _qn) dt = 0 : (5.1)

This involves (Modality;3rd): not because it formulates non-actual laws, but because

of the kind of variation it uses to state the actual law.

I say `shall concentrate' for two reasons, the �rst \positive" and the second \neg-

ative". (1): I shall also mention the modi�ed Hamilton's Principle of Hamiltonian

mechanics. Of course, for our simple systems with non-vanishing Hessian, eq. 2.6,

these are equivalent; and so the discussion applies equally to Lagrangian and Hamil-

tonian mechanics. But there will also be a distinction between the Lagrangian and

Hamiltonian approaches which is worth noting.

(2): There are, even within Lagrangian mechanics, several other variational princi-

ples (e.g. principles of least action, least constraint and least curvature) which I will

not discuss. My reason for ignoring them is not just lack of space. Also, (i): Broadly

speaking, Hamilton's Principle is more important than them, since in almost all devel-

opments of Lagrangian mechanics it acts as the main postulate, the other variational

principles being deduced from it under various conditions. (ii): Broadly speaking, the

philosophical discussion in Section 5.1 carries over to these other principles. Or so I

contend, without having the space to prove it!16

14Incidentally, the situation is di�erent in quantum theory. There, S has a close mathematical

cousin (also written S) whose values do in
uence the motion of the system. But again, this does not

represent any weird \possibilia power". For this in
uence is regarded as a strong, indeed the strongest,

reason to take the quantum S-function as part of the actual physical state of the individual system;

i.e. not as in classical mechanics, as \just" a description of an ensemble.
15The topic seems wholly ignored in the philosophical literature about variational principles. But

thanks to the rise of modal metaphysics in analytical philosophy|over which Lewis presided so

magni�cently|the topic is nowadays plainly visible. Incidentally: the literature has instead focussed

almost entirely on the way (i) specifying �nal conditions and (ii) referring to least action, suggests tele-

ology. Indeed, this focus has been dominant ever since Maupertuis (cf. e.g. Yourgrau and Mandelstam

(1979, Chap. 14), Dugas (1988)). But I set it aside entirely.
16I admit that there are many philosophically important di�erences between the various principles,
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5.1 The threat and the answer

In Section 5.1.1, I shall state the threat that a variational principle like Hamilton's

Principle poses; this Section will be wholly philosophical, involving no technicalities

of physics. Then in Section 5.1.2, I shall argue that fortunately, the threat can be

answered: the answer will involve technicalities.

5.1.1 The threat

The threat is that a formulation of an actual law (in this case, the law of motion of

a classical mechanical system)17 that mentions other possible evolutions of the system

apparently violates the principle that any actually true proposition (not only: any law

of nature) should be made true by actual facts, i.e. goings-on in the actual world. (So

the threat does not depend on the evolutions mentioned by the law being contralegal:

what matters is that they are not actual.)

I admit that this principle, often called the truthmaker principle, is both vague and

disputable. Indeed, this is so, even apart from disputes about the nature of modality

(in particular, the status of possible worlds). For the terms `true', `proposition' and

`fact' are vague and disputable. In particular, philosophers disagree about whether

(contra Frege) we need a notion of fact distinct from (especially: more substantial or

\thicker" than) the notion of a true proposition; and even those who accept such facts

disagree about the truthmaker principle thus understood, i.e. about whether every

true proposition is made true by such a fact.

But I think the principle sounds right when one �rst hears it: (witness the fact that

it has been articulated by philosophers working in di�erent philosophical traditions|

cf. Mulligan et al. (1984)). I also �nd that non-philosophers endorse the principle.

In particular, it surely underlies the point often stressed in physics that a system's

history, for given initial conditions, cannot depend on what ensemble it is considered

to be a member of: (cf. the discussion at the end of Section 4.2 of the quantum-

classical contrast concerning whether S is physically real, as shown by its in
uence on

the system's trajectory).

So I endorse various philosophers' e�orts to articulate a precise and true form of

the principle; where precision and truth will presumably require the notion of fact to

be not too \thick". Of course, controversy continues about how to do this. Here are

two examples. (1): Assuming that each of a certain collection of propositions A;B; : : :

is made true by such a fact, should we say that the same goes for their Boolean

compounds such as :A;A^B and A_B; which would amount to admitting negative,

including about their modal involvements. Consider for example the di�erent de�nitions of variation

used in Hamilton's Principle, Gauss' principle of least constraint and Euler-Lagrange-Jacobi's principle

of least action (cf. e.g. Lanczos 1986, Chap.s IV.8 and V.4-8). But these di�erences do not a�ect the

philosophical discussion of (Modality;3rd) that follows.
17Recall from footnote 9 that my saying `actual' here and elsewhere is not meant to deny the

quantum!
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conjunctive and disjunctive facts? (2): Are true propositions made true not by, or

not just by, a fact|but by an object (i.e. individual, particular) or objects? Most

authors would say that this is at most true of some true propositions, not all. For

there is a mis-match between the Boolean algebra of propositions, and objects|which

do not carry a corresponding Boolean algebra. Thus suppose we say that A and B are

made true by a and b respectively. If we also believe that any such objects a; b have a

mereological fusion a+ b, we might say A ^ B is made true by a + b; but there seems

to be no object to make true a disjunction such as A _ :B.

Of course, I do not have the space to enter into disputes like those mentioned:

(for recent discussions cf. e.g. Armstrong (1997, Chap. 8), Mellor (2003)). But

fortunately, I do not need to. I can leave the truthmaker principle vague, mainly

because I will need only the fact that various authors advocate some suitably weak

form of it. In fact Lewis himself is one such author: (so that what follows has a further

ad hominem interest). The reason I will need only this fact is that the threat posed

to the truthmaker principle by variational principles is di�erent from the threats and

putative counterexamples mentioned above; and so far as I know, di�erent from those

discussed in the literature|with one exception.

In fact, the literature discusses two broad kinds of threat:|

(A): Threats that, like the problems about Boolean compounds I mentioned, fall

squarely in the tradition of modern analytic metaphysics. These threats are often

broadly logical, and largely independent of the subject-matter of the propositions con-

cerned; e.g. the problem of what, if anything, are the truthmakers of universal gener-

alizations.

(B): Threats based on rejecting the initial idea of a substantive (\thick") notion of

a truthmaking fact. These may arise either from holding a general \minimalism" about

truth, or from holding that some speci�c subject-matter, such as ethics or mathematics,

has true propositions without any corresponding \thick" facts. (Of course, a position

that went further, and denied that the subject-matter has true propositions, would be

more radical as an \anti-realism" or scepticism; but it would not pose a threat to the

truthmaker principle.)

As we shall see, variational principles will di�er from both (A) and (B). And this

di�erence will mean that I can make do without a precise truthmaker principle|at

least in a paper that is a �rst foray into analytical mechanics' modal involvements!

I said there was one discussion in the literature of a threat to the truthmaker

principle similar to that posed by variational principles. In fact it is by Lewis himself!

He brie
y discusses how counterfactuals, analysed in terms of possible worlds as he

proposes, pose such a threat|to which he then replies. In fact, we will see in Section

5.1.2 that a variational principle such as Hamilton's Principle can be regarded as a long

conjunction of Lewisian counterfactuals|and this makes the threats to the truthmaker

principle posed by variational principles and by counterfactuals closely analogous.

So in the rest of this Section, I propose to report Lewis' discussion of the threat by

counterfactuals, and his reply. But it will help set the stage for that discussion, to �rst
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state two precise forms of the truthmaker principle, as formulated by Lewis. The �rst

illustrates how the principle can be formulated so weakly as not be threatened (by vari-

ational principles, counterfactuals or indeed any proposition). The second formulation

is stronger, and is threatened by variational principles and counterfactuals: (it will also

clarify how the threat posed by these is di�erent from those in the literature).18

(1): Truth supervenes on being: Bigelow (1988, 132-3, 158-9) makes the idea of

truthmakers more precise along the following lines: that how things are determines

which propositions are true|which he expresses with the slogan `truth supervenes on

being'. Lewis incorporates this in his framework of possible worlds, in such a way that

it becomes a priori. Accordingly, Lewisian counterfactuals and variational principles|

as well as the other cases considered in the literature|pose no threat to it. (As I said,

some forms of the truthmaker principle are weak!) Thus Lewis uses his ideas (1988)

that:

(a): a proposition is a set of worlds, viz. the worlds where the proposition is true;

(b): a subject-matter is a partition of the set of all worlds, with any two worlds in

a cell of the partition matching as regards the subject-matter; and

(c): a proposition is wholly about a subject-matter if it (i.e. its set of worlds) is a

union of the cells of the subject-matter's partition.

Lewis then construes Bigelow's `being' as the largest subject-matter, i.e. the max-

imal partition. So truth's supervening on being becomes an a priori truth. Every

proposition is a union of the cells of the maximal partition; and which of those cells

contains the actual world trivially determines which propositions are actually true

(1992, Section 6; 1994, Section 1; 2003, sections 1-2).19

(2): Counterparts as truthmakers: Lewis has recently proposed that some proposi-

tions have truthmakers that are objects|in his jargon: individuals; (2003, Section 3 et

seq., overcoming previous scepticism in e.g. his (1992, Section 5)). More precisely, he

de�nes a possible individual a to be a truthmaker for a proposition A i� every world

where a exists is a world where A is true.20 Here `every world where a exists' must

be understood, in the light of Lewis' denial of strict identity across possible worlds,

in terms of his counterpart theory. Lewis goes on to show that counterpart theory

yields a truthmaker in his precise sense for many propositions, in particular for pred-

ications. Besides, a postscript (co-authored with G. Rosen) argues that the proposal

18Both formulations also illustrate how in some of his work, Lewis incorporates current positions

and insights into his own philosophical system|and in doing so, often makes them more vivid and

precise. Indeed, this ability to incorporate ideas that are \in the air" into his system, and to make

them vivid and precise, is one of his great strengths as a philosopher. His writings provide many

examples: e.g. his treatment of indexicality as attitudes de se (1979), and his treatment of chance

(1980, 1994).
19Cf. Lewis (2003) for discussion of further aspects. In particular: (a) this notion of aboutness does

not suit necessary or impossible propositions|it is intensional but not hyperintensional; (b) cells of

the maximal partition might not be singleton sets of worlds, since there might be indiscernible worlds

and we might ban non-qualitative propositions.
20Others give verbally the same de�nition, though in their own metaphysical frameworks: e.g.

Armstrong (1997, p.115), Bigelow (1988, p.122,126).
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can be extended to other propositions, even negative existentials like `There are no

unicorns'. (Lewis also compares his proposal with proposals for facts as truthmakers

made by Armstrong and Mellor.) Again, I cannot go into details. For this paper's

purposes, it suÆces to note the contrast with (1). That is to say: for objects as truth-

makers, the threat that concerns us arises again: variational principles and Lewisian

counterfactuals, with their transworld comparisons, apparently do not have this sort

of truthmaker.

These items (1) and (2) set the stage for Lewis' discussion of how counterfactuals

threaten the idea of truthmakers. For that discussion falls between (1) and (2), in the

sense that there is a threat (like (2) and unlike (1)), but one that (he maintains) can

be answered (unlike (2)). I turn to reporting that discussion.

Lewis of course recognizes that his proposed truth-conditions for counterfactuals

in terms of similarity between possible worlds threaten the the idea of truthmakers;

(although his discussion does not use the term `truthmaker', the connection will be

clear). After all, Lewis proposes for an actually true counterfactual, truth-conditions

in terms of other worlds! Thus recall that, roughly speaking, A ! C is actually

true if some (A&C)-world is closer (i.e. more similar) to the actual world than any

(A&:C)-world is. So he writes:

Here is our world, which has a certain qualitative character. (In as broad

a sense of `qualitative' as may be required|include irreducible causal re-

lations, laws, chances, and whatnot if you believe in them.)21 There are

all the various A-worlds, with their various characters. Some of them are

closer to our world than others. If some (A&C)-world is closer to our world

than any (A&:C)-world is, that's what makes the counterfactual true at

our world. Now ... it's the character of our world that makes some A-worlds

be closer to it than others. So, after all, it's the character of our world that

makes the counterfactual true|in which case why bring the other worlds

into the story at all?

To which I reply that it is indeed the character of our world that makes the

counterfactual true. But it is only by bringing the other worlds into the

story that we can say in any concise way what character it takes to make

what counterfactuals true. The other worlds provide a frame of reference

whereby we can characterize our world. By placing our world within this

frame, we can say just as much about its character as is relevant to the

truth of a counterfactual (1986, p. 22).

This passage makes two main claims, one in each paragraph:

(Actual): although Lewis' truth-conditions mention other worlds, it is the character

of the actual world that makes the counterfactual actually true;

(Concise): mentioning other worlds is the only concise way to state what in the

21[By JNB]: Thus this threat is independent of Lewis' neo-Humean analyses of causation, law and

chance; as also of his more speculative additional doctrine, Humean supervenience.
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actual world's character is relevant to the counterfactual's truth.

Of these two claims, (Actual) is the more important for us|it summarizes both the

threat to truthmakers and Lewis' reply. But I shall also brie
y discuss (Concise).

We can better understand (Actual) by recalling Lewis' (1986, p. 62) distinction

between (a) relations that supervene on the intrinsic properties of their relata, which

Lewis calls `internal', and (b) relations that do not thus supervene, which I will call

`external'. (I will not need Lewis' doctrines about which properties are intrinsic, and

can make do with some intuitive if disputable examples of intrinsic properties. Nor will

I need Lewis' allowance that a relation might supervene on the composite of the relata

taken together: his main example of this category being spatiotemporal relations.)

Thus relations of similarity or di�erence in intrinsic respects are internal; so that if

an object's mass is an intrinsic property of it, the relation `is more massive than' is

internal. An example of an external relation would be `has the same owner as': a and

a0 could match in all their intrinsic properties and yet a person might own a and some

other object b, but not a0; so that `has the same owner as' holds of ha; bi but not ha0; bi.

Lewis applies this distinction not just to relations between objects in a single world,

but to objects in di�erent worlds. Thus a sentence such as `He is slimmer than he

would have been without the diet' reports an internal relation between objects in dif-

ferent worlds (a man and one of his counterparts). A sentence reporting a transworld

external relation seems harder to construct; I suppose because our thought and lan-

guage has little use for them. But Lewis' own counterpart theory gives examples. For

counterparthood, though it sometimes emphasises intrinsic similarity, often emphasises

extrinsic similarity, especially as regards the object's origins (Lewis 1986, p.88). Thus

two objects a and a0 (in the same world, or in two di�erent worlds) might be duplicates,

while only a is a counterpart of some object b in another world|say an actual object

b.22

Furthermore, Lewis also takes worlds to be objects (in short: the mereological fusion

of their parts) and so allows them as relata; and therefore applies this distinction to

relations between worlds. And he says explicitly (1986, p. 62,177) that since the

relation of closeness between possible worlds used in his analysis of counterfactuals is

a relation of similarity, it is internal. Hence his claim in (Actual) that the truth-values

of counterfactuals are determined by the character of our world. For the character

of our world determines which worlds are similar to it. (Though it is a vague and

controversial matter which respects of similarity are relevant to the truth-conditions

of counterfactuals (Lewis 1979a), any resolution of those issues will render the overall

22Here is an example with a; b both actual, and indeed identical: `an atom-for-atom replica of

Humphrey (as he actually was at, say, noon 4 July 1968), who had been born of di�erent parents than

the actual Humphrey (in say Latvia, never setting foot in the USA etc.), would not have been [folk-

language, according to Lewis, for: would not have been a counterpart of] Humphrey'. Here, a = b =

the actual Humphrey, and a0 = the replica. Another example, with a and b in di�erent worlds: `Each

of two people might be atom-for-atom replicas of Humphrey as he actually was at noon, 4 July 1968;

but only the person whose origin matched (at least: suÆciently closely) that of the actual Humphrey,

would be Humphrey'. Here, a; a0 are the replicas, b is the actual Humphrey.
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similarity relation internal.)

The connection of Lewis' (Actual) with the idea of truthmakers is clear. Though

`truthmaker' is a philosophical term-of-art awaiting strict de�nition, the way that

Lewis' truth-conditions mention other worlds makes one think that|whether one takes

truthmakers to be facts or objects|a counterfactual has truthmakers \scattered across

the worlds": apparently violating the principle that actual truths have actual truth-

makers. To which threat, Lewis replies: `No worries: which facts, objects etc. in other

worlds get mentioned in the truth-conditions is wholly determined by the character

of the actual world|and that is suÆcient for satisfying the idea that actual truths

have actual truthmakers.' And Lewis might well go on: `If you want, you can call

the facts, objects etc. in the other worlds that get mentioned in the truth-conditions

`truth-makers'. But the point remains that their being scattered across the worlds

is innocuous. The fact that the character of the actual world determines them (and

thereby the truth-value of the counterfactual) is suÆcient to satisfy the spirit, if not

the letter, of the truthmaker principle that `actual truths have actual truthmakers'.'

So much by way or explicating Lewis' claim (Actual), i.e. his reply to the threat

posed by counterfactuals. I think that within the framework of Lewis' metaphysics, it

faces no objections. But of course, my main purpose is not to report or defend Lewis.

Rather, the point of my endorsement of (Actual) is that, as we shall see in Section

5.1.2, variational principles can be similarly reconciled with the spirit, if not the letter,

of the principle `actual truths have actual truthmakers'|just because we can read such

principles as long conjunctions of Lewisian counterfactuals.

I turn to brie
y discuss Lewis' claim (Concise): that mentioning other worlds is the

only concise way to state what in the actual world's character is relevant to a coun-

terfactual's truth. I would have liked Lewis to say more about this, especially in view

of (a) the importance in his philosophical system of the threatening counterfactuals,

and (b) the importance in his late work of the threatened idea of truthmakers. One

naturally asks: why is mention of other worlds the only concise way to describe the

relevant part of the the actual world's character? But so far as I know, this passage is

all Lewis says on the topic.23

In any case, we will see in Sections 5.1.2 and 5.2 a contrast between Lewis' philo-

sophical system and our concern: mechanics and the calculus of variations. In our

simpler and more technical framework, one can say more about why mentioning possi-

23Here is an analogy that I use in explaining Lewis' reply. To describe Buenos Aires concisely to

a friend who is unfamiliar with it, you might forego listing its intrinsic properties, and instead use a

comparison with something familiar to your friend; thinking of the harbour and summer in January,

you might say, for example, `It's like a Spanish-speaking Sydney'. I confess I believed Lewis invented

this (Australophile!) analogy; but I cannot �nd it in his published work|maybe he just told me it.

Alan Hajek tells me that he, Hajek, invented this same analogy for the same purpose, except that

Hajek's example was that Perth is the Australian city most similar to San Diego. Hajek also reports

that Lewis endorsed the analogy; (so maybe Lewis got the analogy from Hajek, and passed it to me).

But more important than who invented it: according to Hajek, Lewis insisted that it was a fact about

San Diego that the Australian city most similar to it is Perth|cf. Lewis' claim (Actual) above.
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ble histories is useful. Indeed, one can also say more about the analogue of Lewis' claim

(Actual): about the character of the actual world (i.e. the this-worldly truthmakers)

that makes a variational principle true.

Finally, before turning to this|i.e. answering the threat that variational principles

pose to the idea of truthmakers|I should set aside two ways in which a philosopher

might dismiss this threat, so that there would be no \case to answer".

(1): The �rst dismissal echoes (B) above: i.e. the rejection of the idea of substan-

tive, truthmaking, facts, either generally or for a particular subject matter. Thus a

philosopher might think variational principles are not \in the market" for truthmakers,

for a variety of reasons: ranging from

(i): \minimalism" about truth (either generally or for variational principles); through

(ii): some kind of instrumentalism (i.e. denial that variational principles are true,

and even that they purport to be true, yet acceptance of their usefulness); to

(iii) some kind of eliminativist \anti-realism" (i.e. denial of usefulness as well as

truth).

Needless to say, I will not try to reply at length to all these positions! SuÆce it to

make one reply to each of (i)-(iii).

(i'): I am unconvinced of minimalism in general, and see no special motivation for

holding it for variational principles.

(ii'): I have two replies to instrumentalism: the �rst general and �rm, the sec-

ond special and yielding. (a): First, I see no motivation for instrumentalism about

all variational principles, except as an instance of a general instrumentalism about all

theoretical claims: a general instrumentalism which I have no truck with, and which

is anyway nowadays unpopular, displaced in large part by van Fraassen's constructive

empiricism.24 (b): However, I will concede at the end of Section 5.1.2 that instrumen-

talism about variational principles is tenable for non-simple mechanical systems.

(iii'): I wholly reject the idea that variational principles are not useful: I shall

develop this theme in Section 5.2.

(2): Finally, a philosopher might say that the variations mentioned in variational

principles have nothing to do with possibilities of the sort discussed in the literature

about truthmakers (or in modal metaphysics generally). Again, I have no truck with

this. As I said in Section 3, mechanics is up to its ears in modality, of some kind

or kinds. And no sign is ever given that modal locutions like `could', with which the

notions and mathematics of virtual displacements, variations etc. are introduced, are

to be understood di�erently from elsewhere in science or everyday life. So why should

they be?

24But there is a rich subject here. St�oltzner (2003) is a fascinating study of the logical empiricists'

treatment|and mistreatment!|of variational principles in mechanics.
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5.1.2 The answer

To answer the threat, I shall adapt a two-stage strategy which is straightforward,

and traditional in philosophy. According to this strategy, when one is confronted

with apparently problematic entities, one has to consider two tasks. The �rst takes

one of two forms; but it is compulsory, in the sense that one must undertake either

the �rst form or the second. On the other hand, one faces the second task only if

one undertakes the second form of the �rst task; and even then, the second task is

optional, not compulsory|though succeeding in it would be a signi�cant merit of

one's philosophical position.

Thus the �rst task is as follows. One must either show that the problem is an

illusion|the entities are not really problematic, after all: they can be vindicated. I

shall call this task (Vindicate). Or, accepting that the entities really are problematic,

one must show how to do without them: one must eliminate them. I call this (Elim-

inate). If one undertakes (Eliminate), one should, if possible, undertake the second

task: to show how it is useful or convenient to speak as if the entities exist (so as to

explain, perhaps even justify, \how the folk speak"). I shall call this task (Useful).

For variational principles in mechanics, the entities at issue|the possible histories

of the system|are not themselves problematic; (I of course set aside the debate about

the nature of possibilities, i.e. Lewis' modal realism vs. various ersatzisms and �ction-

alisms). Rather, what seems problematic is the role these entities are assigned: viz.

being, when taken together with the actual history, truthmakers of actual truths (in-

deed the actual laws). But clearly, we can adapt the two-stage strategy to apparently

problematic roles rather than entities. Thus we envisage arguing that:

(Vindicate): This role of possible (indeed, contralegal) histories can be vindicated|

it is not problematic, after all; or instead that

(Eliminate): This role of possible histories can be eliminated|the laws can be for-

mulated without invoking it; in which case we should also try to argue that

(Useful): The variational formulation of the laws is nevertheless useful, or even

advantageous compared with formulations that do not mention possible histories. (Cf.

(iii') at the end of Section 5.1.1.)

In this Section, I will discuss (Vindicate) and (Eliminate), in order. But I postpone

(Useful) to Section 5.2.

5.1.2.A Vindicating possible histories One can argue for (Vindicate) on strict

analogy with Lewis' own answer to the threat that counterfactuals apparently pose

to the truthmaker principle: i.e. Lewis' claim (Actual), reported in Section 5.1.1.

For there is a striking analogy between what a variational principle says and Lewis'

proposed truth-conditions for counterfactuals A ! C. Roughly speaking, a history

of the mechanical system corresponds to a Lewisian possible world (cf. Section 4.2's

suggestion); and similarity of histories is a matter of �rst �xing the con�gurations at the

end-points, and secondly closeness of the values of q and _q. Given this correspondence, a

variational principle turns out to be an in�nite conjunction of Lewisian counterfactuals.
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To spell this out, let us �rst recall Lewis' proposal (cf. Section 4.1). To avoid the

Limit Assumption (that there is a set of A-worlds all tied for �rst equal as regards

similarity to the actual world @), and setting aside the case of vacuous truth, Lewis

proposes that a counterfactual A! C is true at @ i�: some sphere S in the system $@
contains at least one A-world, and A � C is true at every world in S; (i.e. C is true

at every A-world in S).

Turning to variational principles, I shall take Hamilton's Principle; though essen-

tially the same analogy could be drawn with any number of principles. The principle

says that the actual history is a stationary point of the action. Here, `stationary point'

rather than `minimum' allows that:

(i): the actual history could be a maximum of the action
R
L dt, not a minimum;

(ii): the minimum or maximum need only be local;

(iii): the actual history could be a point of in
exion (associated with the van-

ishing of second derivative of the action, not just the �rst).

But I now need to spell this out in more detail than I did in Section 2.1 (paragraph

3). Roughly speaking, Hamilton's Principle says that:

For any one-parameter family, parametrized by � say, of kinematically pos-

sible histories of the mechanical system, that may deviate from the actual

history between t0 and t1, but must match the actual history as regards the

con�gurations q0; q1 at times t0; t1:

the action as a function of �, I(�) =
R t1
t0
L dt with the integral taken along

the history labelled by parameter-value �, has zero gradient at the value of

� corresponding to the actual history.

To be precise, we consider any one-parameter family, parametrized by �, of curves from

q0; t0 to q1; t1; so we write qi = qi(t; �). We also suppose that the curve (let us call it

@!) that makes stationary the integral I(�) =
R t1
t0
L dt (taken along the curve labelled

by �) has parameter-value � = 0; which we write as qi(t) := qi(t; 0). So the family of

curves is given by qi(t; �) = qi(t)+��i(t). Then for the action integral to be stationary

at � = 0 means that in the Taylor expansion about � = 0, i.e.

I(�) �
Z t1

t0

L(qi(t) + ��i(t); _qi(t) + � _�i(t); t) dt = I(0) + �

 
@I

@�

!
�=0

+O(�2) ; (5.2)

we have:  
@I

@�

!
�=0

= 0 : (5.3)

That is, by the elementary de�nition of the derivative as a limit of a quotient:

8" > 0 9Æ > 0 8 0 < � � Æ ;
I(�)� I(0)

�
< " : (5.4)

Now I can state the analogy between Lewis' truth-condition and Hamilton's Princi-

ple (for our given one-parameter family of curves). We take the parameter � to de�ne
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a system of nested spheres (sets of curves) $@, centred on the curve @ which itself has

parameter � = 0: the spheres are de�ned by inequalities � � r 2 IR, so that a smaller

value of � represents greater similarity to @.

With this understanding, we can read Hamilton's Principle, in the form eq. 5.4, as

a battery of Lewisian counterfactuals; indeed as a in�nitely long conjunction of them

(there are at least continuously many conjuncts). This plethora of counterfactuals

arises from two sources:

(i): the continuously large range of values of "; and

(ii): for given ", the at-least-continuously large range of antecedents A that are

false at the actual curve @ but true at some curve in the family with a parameter-value

0 < � � Æ. (Here we think of Æ as determined using eq. 5.4 from the given ".)

But on the other hand, the counterfactuals are similar as regards their consequents C:

they are all given by the inequality in eq. 5.4.25

That is to say: we can read eq. 5.4 as saying that for each value of ", and any A that

is false at the actual curve @ but true at some curve in the family with a parameter-

value 0 < � � Æ � Æ("): that curve labelled by � makes the quotient I(�)�I(0)

�
less than

", as do all curves with an � in the same range.

In other words, now using the Lewisian spheres de�ned by inequalities � � r 2 IR,

so as to talk about counterfactuals:|

for all ", and all such A (so that " �xes a range of �, viz. 0 < � � Æ � Æ("),

and A is true at such an �, but false at � = 0): the Lewisian counterfactual

A! [the quotient
I(�)�I(0)

�
is less than "]

is true at @.

(Incidentally: we need A to be false at @, i.e. the counterfactual A ! C to be

contrary to fact, so as to force 0 < �, so that the quotient is well-de�ned.) To sum up:

Hamilton's Principle is an in�nitely long conjunction of Lewisian counterfactuals.

Returning (at last!) to philosophy: this discussion makes clear the analogy with

Lewis' claim (Actual), reported in Section 5.1.1, and thereby our argument for (Vindi-

cate). For all the ingredients in the above transworld comparisons involve only internal

relations, either between objects in possible worlds (i.e. components of the system in

possible histories, possible curves) or between worlds (histories, curves) themselves.

Thus similarity between worlds is a matter of: �rst, shared initial and �nal con�gura-

tions; and second, closeness of values of q and so _q, where closeness is encoded by the

parameter �. So the character of the actual world @ (i.e. the course of values of the

functions q; _q along the actual history) determines, for any antecedent proposition A,

at which if any of the histories in the system of nested spheres (sets of histories) $@, A

25Besides, there is another source of yet more counterfactuals, viz. the various choices for our

one-parameter family of curves: which I have for the sake of clarity suppressed, by �xing on a single

family.
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is true. The case is even clearer as regards the consequent C, which as noted is similar

for all the counterfactuals involved. The inequality
I(�)�I(0)

�
< " compares the values

of I on di�erent histories. This is an internal relation between worlds, i.e. histories,

since whether or not this relation holds is determined by the values I(�) and I(0):

which are part of the intrinsic natures of the worlds. To sum up, by echoing Lewis'

claim (Actual): you can say if you like that the truthmakers of Hamilton's Principle

are \scattered across the worlds"; but the spirit, if not the letter, of the truthmaker

principle is satis�ed.26

So much for arguing for (Vindicate). But notwithstanding this success, some will

still worry! Some philosophers are very wary about modality. And even if one relishes

modality, it may seem risky to rely on satisfying just the spirit, and not the letter,

of the truthmaker principle: especially while a precise and correct formulation of the

principle remains controversial|for the formulation eventually agreed on might have

a more demanding spirit than one now guesses! So I ought also to consider how one

might argue for the other option|(Eliminate).

5.1.2.B Eliminating possible histories Focussing again on Hamilton's Principle,

I shall �rst consider whether there is a statement (or statements) equivalent to Hamil-

ton's Principle, that does not mention possible histories of the system. Here `equiva-

lence' means logical equivalence; or perhaps mathematical equivalence, understood in

the usual way as logical equivalence, once given the assumption of appropriate pure

mathematical propositions. However, the idea of (Eliminate) does not require that

there be such an equivalence: it would surely be enough that there are alternatives

to Hamilton's Principle|i.e. statement(s) that do not mention possible histories, and

yet function as laws of motion. So after considering equivalence, I shall discuss this

alternative.

For the simple mechanical systems we have focussed on since Section 2.1, there are

equivalent statements. For as noted in Section 2.1, the Lagrange equations eq. 2.2 are,

for simple systems, not only necessary but also suÆcient for Hamilton's Principle eq.

2.4. And these equations do not mention possible histories. Agreed, they are modally

involved; at least if we take them as putative laws of analytical mechanics|as we no

doubt should! For then we will take them as applying to possible as well as actual initial

conditions (given by the qs and _qs), and to possible as well as actual problems. That is,

they will illustrate (Modality;1st) and (Modality;2nd), in Section 3's classi�cation; but

not (Modality;3rd). In short: Hamilton's Principle can be regarded for simple systems

26To make the argument clearer, I have suppressed a wrinkle about spatiotemporal relations. Ac-

cording to Lewis, these relations are not internal: they supervene on the intrinsic properties of the

composite of the relata, not on the properties of the relata individually. This might seem an obstacle

to my argument, since spatiotemporal relations are surely involved in assessing similarity of worlds

in our sense, viz. courses of values of q and _q. But no worries. It is as relations between objects

in a single world that spatiotemporal relations are not internal; but for variational principles, the

assessment of similarity makes a comparison of the spatiotemporal structures of entire worlds|and

the ensuing similarity is obviously an internal relation between the worlds.
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as a corollary of the \kosher" this-worldly laws, Lagrange's equations eq. 2.2.

The same point applies to Hamiltonian mechanics for simple systems with non-zero

Hessian, eq. 2.6. In this context, Hamilton's equations eq. 2.8 are equivalent, by the

Legendre transformation eq. 2.7, to Lagrange's equations eq. 2.2. So again, taking

Hamilton's equations as laws of analytical mechanics|as we no doubt should|they

illustrate (Modality;1st) and (Modality;2nd) but not (Modality;3rd).

Incidentally, Hamiltonian mechanics raises another point, concerning the free vari-

ation of the ps in the modi�ed Hamilton's Principle eq. 2.9. This gives another

illustration of (Modality;3rd). But it is a more \extreme" illustration than that given

by the original Hamilton's Principle eq. 2.4. For the latter, we contralegally vary q

and so _q. But for the modi�ed Hamilton's Principle, once we are given such a variation

of q (and so _q), we independently vary the ps (violating p = @L=@ _q). So our variations

are \doubly contralegal".

But what about arguing for (Eliminate) for mechanical systems that are not simple:

where the above equivalence breaks down? That is (cf. discussion after eq. 2.4): for

systems for which the this-worldly Lagrange equations are only necessary but not

suÆcient for Hamilton's Principle?

In fact, I believe (Eliminate) can be defended for such systems; (and more generally,

for systems for which the this-worldly dynamical equations are only necessary but not

suÆcient for a variational principle). I must postpone this topic to another occasion;

not least because it has technical aspects (cf. Papastavridis 2002, pp. 960-973), as well

as philosophical ones. But I should admit here that this defence opens the door to

instrumentalism about variational principles. Thus suppose one says that the laws of

motion are given by the (true and this-worldly!) Lagrange equations, not by Hamilton's

principle. Then it seems one can turn instrumentalist about the latter: since these

principles are suÆcient but not necessary for the laws, one need not accept them as

true, in order to agree that they have various uses. And they certainly do have uses

numerous and important enough to earn them their central place in expositions of

mechanics, even if they are \merely" instruments. I will return to this in Section

5.2's defence of (Useful). For the moment, I just mention one main use: a variational

principle is often used as a way of guessing or deriving the laws of motion, since it is

often easier to guess a Lagrangian that obeys a required symmetry than a set of laws

of motion that obeys it.

Finally, a philosophical point that bring us back to Lewis. There is a temptation

to say that a mystery remains, even after the argument for (Eliminate) for simple sys-

tems. It is tempting to ask: how can one of two equivalent formulations of a law (or

theory)|Hamilton's Principle, on the one hand, and Lagrange's equations or Hamil-

ton's equations, on the other|have a modal involvement that the other lacks? Indeed,

more generally: How can there be a logical equivalence between a proposition with

\this-worldly truth-conditions" and one making \transworld comparisons"?27

27Most philosophers agree that there may well be a notion of theoretical, not merely empirical,
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I think Section 5.1.1's discussion, especially Lewis' claim (Actual), gives most of the

reply to this question; and I will not rehearse it again. But another point, independent

of (Actual) and indeed of the general idea of truthmakers, is worth stressing. Namely,

there is no logical or semantical problem about evaluating as true at a single world a

proposition making a transworld comparison. After all, this is exactly what is proposed

by analyses of counterfactuals like those of Lewis and Stalnaker; and proposed by these

analyses as semantical doctrines, independently of Lewis' metaphysical thesis (Actual).

So suppose someone thought some propositions make transworld comparisons, in the

strong sense that their truth-conditions (or if you like: truthmakers) are scattered

across the worlds in ways not determined by internal relations of those worlds to the

actual world. Such a person could nevertheless accept, as a matter of logic or semantics,

that such a proposition be assigned a truth-value relative to the actual world.28

To sum up this Section:| I �rst argued for (Vindicate). Variational principles'

mention of possible histories can be vindicated by an argument parallel to Lewis'

argument that counterfactuals are made true by the character of the actual world|

since their mention of other worlds re
ects only internal relations between worlds. This

parallel was based on showing that a variational principle is itself an in�nite conjunction

of Lewisian counterfactuals. Then I argued for (Eliminate), at least for simple systems.

That is: we can identify the this-worldly truthmakers of Hamilton's Principle, namely

via Lagrange's (or equivalently: Hamilton's) equations.

5.2 The uses of variational principles

I turn to the claim that at the start of Section 5.1.2, I dubbed (Useful): that formu-

lating classical dynamical laws as variational principles is useful, or even advantageous

compared with other formulations.

I admit that I shall duck out of giving a general argument for (Useful). Rather

like Lewis with his claim (Concise) about counterfactuals (cf. Section 5.1.1), I o�er no

single general advantage of variational formulations. My reason is that the advantages

are many, diverse and sometimes very technical. The calculus of variations remains

an active research area, with deep connections to various branches of mathematics in

addition to mechanics. (For a taster, cf. e.g. Courant and Hilbert (1953, Chap IV); for

a banquet, cf. Giaquinta and Hildebrandt (1996).) So it would be well-nigh impossible

equivalence such that laws or even whole theories that are theoretically equivalent could yet have

heuristic, and even ontological, di�erences. Still, there can seem to be a mystery about our argument

for (Eliminate); since both the equivalence of the formulations, and their having di�erent modal

involvements, seem matters of logic.
28Incidentally, the use of truth-assignments relative to two or more worlds in many-dimensional

modal logic (and similarly: relative to two or more times in temporal logic) is, so far as I can tell, no

evidence against the truthmaker principle. For these logics invoke multiple worlds or times to keep

track of rigidi�ed uses of `actually' or temporal indexicals: not to keep track of truthmakers scattered

among the worlds|indeed, not even `scattered among the worlds' in the innocuous sense allowed by

Lewis' (Actual), i.e. in the innocuous sense of determined by internal relations among the worlds.
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even to list, let alone discuss, the advantages gained by adopting the notions, and

general perspective, of the calculus of variations; not just for mechanics, but for any

�eld that uses variational principles. So I shall just mention two examples of advantages

of variational principles in analytical mechanics that would appear on any such list.

(i): The role of variational principles in understanding symmetry; especially the

way that symmetries of the Lagrangian give Noether's theorems.

(ii): I choose my second example to illustrate how a piece of formalism within a

theory can be advantageous not only as regards that theory, but also in illuminating

another theory; (and maybe even heuristically useful in constructing that other theory).

I have in mind how Hamilton's Principle illuminates the path integral formulation of

quantum theory; both by providing a classical limit of it, and by heuristically suggesting

it.

Finally, I should note an important topic related to (Useful): the topic, not of the

advantages of a variational formulation of laws, but of the conditions under which such

a formulation can be given. This is a large topic, which has been investigated since

the nineteeth century, mostly in the more precise form: what are the necessary and

suÆcient conditions for a set of dynamical (di�erential) equations governing variables

qi to be the Euler-Lagrange equations of a variational principle? For example, the �rst

major result was by Helmholtz in 1887. This topic also has philosophical aspects|not

least the question I raised in Section 5.1.2.B, about how to argue for (Eliminate) for

non-simple systems.

Though I cannot here develop this topic (cf. e.g. Santilli (1979), Lopuszanski

(1999)), I should end by considering a small aspect of it: viz. a general correspondence

between sets of canonical equations and variational principles|variational principles

that even allow higher-order derivatives in the Lagrangian. I say `I should consider

this', because in e�ect, the question which has been the focus of this whole Section|

`How can it be that the actual laws of motion admit a variational formulation?'|gets

from this correspondence a technical interpretation|and an answer.

The key idea is that the modi�ed Hamilton's Principle provides a correspondence

between a general class of variational problems and systems of ordinary di�erential

equations arranged in conjugate pairs.29 The class of variational problems is given by

the extremization of an integral

Z
L(qi; _qi; �qi; : : : ; q

(m)
i ; t) dt ; (5.5)

where (m) indicates the mth derivative with respect to t; and where L is of course an

arbitrary function (it need not have mechanical signi�cance); with the extremization

subject to not only the qi, but also their derivatives upto the (m�1)th, being prescribed

at the end-points.

29What follows is \well-known": it was discovered by Ostrogradskii writing in 1850! My summary is

based on Lanczos (1986, pp. 170-72). For details and references about Ostrogradskii, cf. Kolmogorov

and Yushkevich (1998, p. 201-207).
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I shall describe the correspondence for the simplest case beyond the already familiar

one, i.e. m = 1, Æ
R
L(qi; _qi; t) dt = 0. That is, I shall allow at most a second time

derivative as an argument of L. I shall also assume just one degree of freedom. It will

be clear enough how the correspondence generalizes to more than one q, and to yet

higher derivatives.

Consider then the extremization ofZ
L(q; _q; �q; t) dt (5.6)

subject to q and _q being prescribed at the initial and �nal times. One easily adapts

the usual calculus of variations argument to this case. The boundary conditions now

require the arbitrary function representing the variation of q, say �, not only to vanish

at the end-points, but also to have vanishing �rst derivative there. The deduction

proceeds much as usual, but now includes an integration by parts of @L
@�q
��, as well as

integrations by parts of @L
@ _q

_�. We get:

Æ
Z
L(q; _q; �q; t) dt = 0 i�

@L

@q
�

d

dt

 
@L

@ _q

!
+

d2

dt2

 
@L

@�q

!
= 0: (5.7)

We proceed to �nd corresponding canonical equations. First we de�ne a \momen-

tum" u := @L
@�q
, and then perform a Legendre transformation, de�ningH � H(q; _q; u; t) :=

u�q � L; so that L = u�q �H(q; _q; u; t). So our variational problem Æ
R
L dt = 0 is mod-

i�ed to Æ
R
[u�q �H(q; _q; u; t)] dt = 0. An integration by parts of the �rst term reduces

this to a variational problem of the familiar kind, in q; u and their �rst derivatives: i.e.

Æ
R
[�H(q; _q; u; t) � _u _q] dt = 0. Now given this problem, we can in the familiar way

de�ne conjugate momenta, p1; p2 say, of q; u, and get two pairs of canonical equations.

These are equivalent to the di�erential equation eq. 5.7.

This method easily generalizes to any number of degrees of freedom, qi; and it

generalizes to higher derivatives than the second. In the general case ofmth derivatives,

we �rst reduce them to (m�1)th derivatives by an integration by parts, and then repeat

the process until eventually only �rst derivatives appear in the integrand, and we can

pass to the corresponding canonical equations.

This result also gives a characterization of the di�erential equations corresponding

to a variational principle (of the above class). Though an arbitrary system of di�erential

equations can be given the form

_qi = fi(q1; : : : ; qn; t) (5.8)

by introducing suitable independent variables q1; : : : ; qn, in general the functions fi will

of course be di�erent for di�erent i. On the other hand: di�erential equations obtained

from a variational principle are derivable from a single functionH by di�erentiation. In

short: Hamilton's canonical equations are a normal form for the di�erential equations

arising from a variational principle.
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To sum up: we have shown how to pass from an arbitrary variational principle

(of our class) to a system of canonical equations, all �rst-order in time and with all

variables' time-derivatives given by di�erentiating a single function H. In e�ect, this

result takes this Section's over-arching question|`how can it be that the actual laws

of motion admit a variational formulation?'|as a technical question (instead of as a

philosophical question, as in Section 5.1). And the result, i.e. the correspondence

between a large class of variational problems and sets of canonical equations, answers

as follows:|

`This is possible because the actual laws of motion, i.e. Hamilton's equations, have

the very special feature that their right-hand sides, that specify the time derivatives

of all the variables, are all derivatives of one and the same function H. If that were

not so, one could not pass by a Legendre transformation to a variational formulation

Æ
R
Ldt = 0.'
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