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Abstract

The fundamental problem on which Ilya Prigogine and the Brussels-
Austin Group have focused can be stated briefly as follows. Our observa-
tions indicate that there is an arrow of time in our experience of the world
(e.g., decay of unstable radioactive atoms like Uranium, or the mixing of
cream in coffee). Most of the fundamental equations of physics are time
reversible, however, presenting an apparent conflict between our theoret-
ical descriptions and experimental observations. Many have thought that
the observed arrow of time was either an artifact of our observations or
due to very special initial conditions. An alternative approach, followed
by the Brussels-Austin Group, is to consider the observed direction of
time to be a basics physical phenomenon and to develop a mathematical
formalism that can describe this direction as being due to the dynamics
of physical systems. In part I of this essay, I review and assess an attempt
to carry out an approach that received much of their attention from the
early 1970s to the mid 1980s. In part II, I will discuss their more recent
approach using rigged Hilbert spaces.
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How and to what extent the irreversible phenomena observed
in the macroscopic domain can be reconciled with the reversible dy-
namical laws of classical (or quantum) mechanics is the fundamental
question of statistical mechanics (Misra 1978, p. 1627).

1 Introduction

The work of Ilya Prigogine and his group is difficult to understand and assess,
being highly mathematical in nature. Moreover although their fundamental in-
tuitions have remained essentially unchanged over the course of several decades,
the approach has changed with time making their views difficult to pin down
with precision. The ideas Prigogine and his colleagues have been pursuing in
various forms were sketched in his (1962). He along with George, Henin and
Rosenfeld gave the earliest mathematically detailed description in their (1973;
see also George 1973a, 1973b).

The core idea is the following. The conventional approach to describing
physical systems within classical mechanics (CM) relies on a representation of
states ω (e.g. of particles) as points in an appropriate state space Ω. This means
that the dynamics of a system are derivable from the time-parameterized tra-
jectories of these points. The equations governing the dynamics of conservative
systems are reversible with respect to time. When there are too many states
involved to make solving these equations feasible (as in gases or liquids), coarse-
grained averages–i.e. macrolevel averages ignoring microlevel details (so-called
fine-grained level)–are used to develop a statistical picture of how the system
behaves rather than focusing on the behavior of individual states. In contrast
the Brussels-Austin Group argues these systems should be approached in terms
of models based on distributions ρ over an appropriate state space. These
distribution functions may be understood in terms of the probability density
ρ(~q1, ~q2, ~q3, ..., ~p1, ~p2, ~p3..., t) of finding a set of molecules (say) with coordinates
~q1, ~q2, ~q3, ... and momenta ~p1, ~p2, ~p3... at time t on the relevant energy surface
and are analogous to the microcanonical distribution. In the Brussels-Austin
approach, the dynamics of a system is calculated from distribution functions

directly. The equations governing the dynamics of these distributions are gen-
erally time-irreversible. In addition interpreting the distribution functions as
probability densities suggests that macroscopic classical statistical mechanics
models are irreducibly probabilistic. This would mean that probabilities are as
much an ontologically fundamental element of the macroscopic world, as suc-
cessfully described by physics, as they are usually taken to be for the microscopic
world of quantum mechanics (QM).

The extent to which the Brussels-Austin program, as just sketched, is distin-
guishable from a coarse-grained approach to statistical mechanics is a delicate
question. As this two-part essay develops, I will point out how their work dif-
fers from typical coarse-grained approaches. My task in part I will be to review
Prigogine and co-workers’ motivations (§2) and then discuss their various ap-
proaches to nonequilibrium systems, focusing on the period from the 1960s to
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the mid 1980s, covering their subdynamics and similarity transformation ap-
proaches (§§3-4). Part II will focus on the more recent rigged Hilbert space
approach.

2 Motivations

A crucial motivation is the question of how classical dynamical systems, de-
scribed in conventional CM by deterministic, time-reversible equations of mo-
tion, are related to time-irreversible processes. The central questions are: What
connections, if any, exist between these two types of systems; and Why is it we
never observe such processes going “in reverse?”

A key concern is the status of the second law of thermodynamics: When
a constraint internal to a closed system is removed, the total entropy must in-
crease or at best stay constant. As one of the fundamental laws of conventional
equilibrium thermodynamics, it is valid only at or near thermodynamic equilib-

rium. Prigogine and his colleagues believe that some appropriate generalization
of the second law should be applicable to nonequilibrium systems as well.

Typically coarse-grained descriptions of systems involve calculating macro-
level averages of quantities over finite volumes and are considered to provide
less specific information than descriptions involving points in state space. Prob-
abilistic processes in such models are irreversible, but are usually interpreted
as reducible; that is to say, the probabilities are considered to be consequences
of our calculation techniques and measurement limitations. Irreversibility could
then be understood as a consequence of a coarse-grained description rather than
as a fundamental feature of systems.

The second law is considered time-irreversible in so far as the process of en-
tropy increase cannot be reversed (a cube of ice melting and diffusing in a glass
of tea does not reconstitute itself into a cube of ice again). If the second law
is taken to be a fundamental law (not a consequence of coarse-grained descrip-
tions), then there is a puzzling conflict with our fundamental time-symmetric
equations, a particularly sharp conflict in the case of conservative systems. Thus,

[T]he elucidation of the relation between conservative and dissi-
pative dynamical systems necessarily involves a clarification of the
relation between deterministic dynamics and probabilities. Because
of the close relation that exists between entropy and probability,
once this is clarified the relation that exists between dynamics and
the second law will also be made clear (Nicolis and Prigogine 1989,
p. 199).

In all fundamental theories (be it classical dynamics, quantum
mechanics or relativity theory) entropy is conserved as a result of
the unitary (or measure-preserving) character of the evolution, in
flagrant contradiction with the formulation of the second law of ther-
modynamics. As a result, the second law has usually been regarded
as an approximation or even as being subjective in character. By
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contrast, in the approach to the problem of irreversibility developed
by us, the law of entropy increase and, therefore, the existence of
an “arrow of time” is taken to be a fundamental fact. The task of
a satisfactory theory of irreversibility is thus conceived as the study
of the fundamental change in the conceptual structure of dynamics,
which the law of entropy increase implies (Misra and Prigogine 1983,
p. 421).

We can distinguish two types of irreversibility: extrinsic and intrinsic (e.g.
Atmanspacher, Bishop and Amann 2002). Extrinsic irreversibility is irreversible
behavior of a physical system due to its interaction with an environment, where
in the absence of an environment, the system itself would be reversible. Exam-
ples of extrinsic irreversibility are given by any open-system evolution described
by a master equation. By contrast, intrinsic irreversibility refers to irreversible
behavior originating in the dynamics of a physical system without explicit ref-
erence to an environment. An example of intrinsic irreversibility would be kaon
decay. In contrast to most views on statistical mechanics (SM), the Brussels-
Austin Group believes that intrinsic irreversibility is fundamental and has been
searching for an intrinsically irreversible formulation of SM.1

3 Subdynamics and Similarity Transformations

3.1 Koopman Formulation of Classical Mechanics and its

Extension

Most of the Brussels-Austin Group’s results are developed in a Hilbert space
(HS) in part due to matters of elegance as well as out of a desire to unify CM
and QM within one formalism. They relied heavily upon Koopman’s extension
of HS and linear transformations to the study of steady n-dimensional fluid
flow with positive density (Koopman 1931). Originally, Koopman studied the
dynamics of state space volumes, where the elements φ of L∞(Ω) are defined
on the state space Ω (the natural dual space being L1(Ω)). In CM, physical
observables (e.g. energy) are usually associated with real-valued functions de-
fined on Ω. Koopman’s formulation generalizes this feature in analogy with QM
by associating linear operators on L∞(Ω) with physical observables. Thus the
expectation value of an observable corresponding to the operator F is defined
as (φ, Fφ), where F (φ)(ω) = f(ω)φ(ω) is unitary and f : Ω → R is defined on
state space points ω ∈ Ω referring to states.

An important relevant example is Liouville’s equation describing the evo-
lution of a distribution function ρ in state space. Liouville’s equation can be
converted to an operator equation with the unitary2 form Ut = e−iLt and, in

1Their original focus was on open systems. More recently they have focused on closed
systems (Part II).

2Koopman uses the Hilbert space generator representation for Ut which is formulated for
elements of L2. This has led to some confusion as to what mathematical spaces to which
Koopman’s formulation is applicable.
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Hamiltonian form,

L =
∑

k

[

∂H

∂pk

∂

∂qk
−
∂H

∂qk

∂

∂pk

]

, (1)

where (1) is the Poisson bracket, p and q representing generalized momenta
and positions respectively, and t representing time. The operator Ut is self-
adjoint and is generally unbounded on L∞(Ω). The physical interpretation of
the Koopman formulation of Liouville’s equation is the same as in CM. In the so-
called Lagrangian picture, the motion of state space points can be treated like a
flowing fluid. In both conventional SM and the modified Koopman formulation,
Liouville’s equation describes the evolution of the distribution ρ as it moves
through state space from the perspective of an observer at rest.

Koopman’s formalism is defined on the state space L∞(Ω). The Brussels-
Austin Group wanted to use this formalism to study the evolution of state space
points themselves and, so, extended Koopman’s formalism to the space L2

µ(Ω)
(square integrable functions using measure µ; e.g. Misra 1978), although no
formal justification for these extensions was ever worked out rigorously.

3.2 Subdynamics

The first approach developed in this early phase was called subdynamics, the idea
being to split the state space L2

µ(Ω) of the system dynamics into distinct thermo-
dynamic and non-thermodynamic subspaces via an appropriate projection oper-
ator, and then to enumerate the conditions under which the non-thermodynamic
subspace made no contribution to the evolution of the thermodynamic features
of the system (Prigogine, George and Henin 1969; Prigogine et al. 1973; Obce-
mea and Brändas 1983; Dougherty 1993; Karakostas 1996). Karakostas (1996,
pp. 383-4) argues that the 1973 version of subdynamics represents a general-
ization of coarse-graining, in that it merely amounts to a reduced description
of the system.3 Ultimately, however, subdynamics turned out to be dependent
on the Brussels-Austin conception of the relationship between deterministic dy-
namics and probabilistic dynamics–e.g. similarity transformations–so I will not
say anything more about subdynamics here.

3.3 Similarity Transformations

The second approach developed during this period was based on a similar-
ity transformation Λ mapping a trajectory description of “unstable” classical
systems–systems exhibiting exponential trajectory divergence–into a description
in terms of probabilistic Markov processes. The existence of such a Λ would
then provide a means of translating between the trajectory and the Markov
descriptions. In a problematic sense to be discussed below, this would establish
an “equivalence” between trajectory and probabilistic descriptions and, hence,
an equivalence between time-reversible and time-irreversible dynamics for such

3Versions of subdynamics derived from a Lyapunov variable are not so easily classified as
coarse-grainings (see below).
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systems. Furthermore, although the amount of information in the trajectory
description is supposedly preserved in moving to the probabilistic description,
Prigogine and coworkers also claimed that there was new physics contained in
the latter description that was not contained in the former. It is this addi-
tional physics in the probabilistic description that they believed resulted in new
physical features, rendered elements of the trajectory description (e.g. “exact
trajectories”) unphysical idealizations.

The technical details may be summarized as follows: When mathematically
defined on L2

µ(Ω), the evolution of particular types of Markov processes can be
shown to correspond to nonunitary semigroup operators W ∗

t = ΛUtΛ
−1 via a

similarity transformation Λ : L2
µ(Ω) → L2

µ(Ω), where Λ is closed, densely defined
on L2

µ(Ω) and invertible.4 The crucial result is that W ∗
t be positivity preserving

on the positive t-axis only, guaranteeing that W ∗
t leads to a monotonic, time-

irreversible approach to a unique final state (conjectured in (Misra, Prigogine
and Courbage 1979, p. 12) and proven in (Goodrich, Gustafson and Misra
1980)).5 Any system characterized by Λ would then be asymptotically stable:
Any initial state will evolve irreversibly to a unique equilibrium distribution as
t→ ∞. By contrast in Koopman’s original formulation, dynamical systems are
characterized by a unitary group Ut defined for both the positive and negative
t-axes, preserving the time reversibility of the governing dynamical equations.6

By constructing a nonunitary similarity transformation Λ acting on the dis-
tribution function ρ in the trajectory description defined on L2

µ(Ω) at time t, a
distribution function in the Markov description is then given by ρ′ = Λρ. The
time-reversible Liouville equation in Koopman’s original formulation,

i
∂ρ

∂t
= Utρ, −∞ ≤ t ≤ ∞ , (2)

where ρ and Ut are defined on L2
µ(Ω), is then transformed into a time-irreversible

equation

i
∂ρ′

∂t
= W ∗

t ρ
′, t ≥ 0 (3)

where W ∗
t and ρ′ are also defined on L2

µ(Ω). The interpretation of (3) is similar
to that of the Liouville equation in the Koopman description: It describes the
evolution of the density function ρ′ in state space, but only for the positive time
direction. The dynamics under Ut is time-reversible. However in (3), the evolu-
tion governed by W ∗

t is time-irreversible. This is the key for time-irreversibility
in the similarity transformation approach and leads to the definition of intrinsic

4Karakostas (1996) gives a detailed discussion of these and related operators defined in the
subdynamics approach developed in (Prigogine et al. 1973). The transformation discussed in
Karakostas (1996) is related to, but different from the similarity transformation I discuss here
as Prigogine and coworkers have made several modifications to their program since publication
of (Prigogine et al. 1973). For example Λ in this latter publication is star-unitary, but the Λ
developed later in the approach I am reviewing is nonunitary.

5The proof is not constructive, however, so Λ must still be constructed for every system.
6Originally the Brussels-Austin Group treated the operators Λ and W ∗

t
, along with the

distribution ρ, as being defined on SHS. This turns out to be inadequate, however, as I will
explain below.
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randomness: A model is intrinsically random if there exists a nonunitary Λ such
that the unitary group Ut is transformed to the Markov semigroup W ∗

t (Gold-
stein, Misra and Courbage 1981, pp. 114-8; Courbage and Prigogine 1983, p.
2412).

The strategy was to use a nonunitary similarity transformation Λ to move
from the trajectory description characterized by Ut to the Markov description
characterized by W ∗

t . Since similarity transformations preserve all structural
features, the hope was that the two descriptions would be shown to be ”equiv-
alent” via Λ.

3.4 Microentropy Operator

Following a suggestion by Misra (1978), Λ was derived from the so-called mi-

croentropy operator M , a positive linear operator defined on L2
µ(Ω) that, ac-

cording to Misra, fulfils the conditions for a Lyapunov variable, i.e., a variable
that increases monotonically to an asymptotically stable value (Misra 1978; e.g.
Hale and Koçak 1991, pp. 277-92).7 A system must have at least the property of
strong mixing in order for Lyapunov variables to exist. Lyapunov variables can
be formally constructed for Kolmogorov or K-flows (1978, pp. 1629-30). Strong
mixing is a necessary condition, while being a K-flow is a sufficient condition for
the existence of such variables. For unstable systems Misra’s proposed that M
be identified with an appropriate Lyapunov variable. Later Gustafson showed
that the Λ transformation so defined exists only for K-flows (1997, pp. 61-4).

The operator M obeys the following properties (Misra 1978; Braunss 1984):

(i) If ρ ∈ L2
µ(Ω), then Mρ ∈ L2

µ(Ω).

(ii) M is nonnegative; that is, (ρt,Mρt) > 0 for all t ≥ 0 and decreases
monotonically to a minimum value for the equilibrium distribution ρeq,
where ρt = Utρ.

(iii) d/dt(ρt,Mρt) ≤ 0 for all t ≥ 0.

Property (i) expresses closure: M never leads outside L2
µ(Ω). Properties (ii)

and (iii) characterize a Lyapunov variable, implying that M is monotonically

increasing. SinceM is positive, it can be factorized (i.e. M = Λ∗Λ), so Λ =M
1

2 .
Furthermore as Braunss pointed out, the microentropy operator illuminates the
Brussels-Austin definition of intrinsic randomness. Suppose the dynamics for a
K-flow in the trajectory description is given by Ut and that M is a Lyapunov
variable for this dynamics. Then (ρt,Mρt)

1/2 defines a contractive semigroup
W ∗

t (namely W ∗
t = ΛUtΛ

−1), that can act to convert smooth, Hamiltonian
trajectories into Brownian trajectories (1985, p. 9-11).

The factorization ofM is not unique, however, because in general operators Λ
differ by phase factors, whereW ∗

t ϕΛ|Λ| = |Λ|Ut and ϕΛ is the phase factor for Λ.
So the class of Λ transformations must be restricted to admissible factorizations,

7That M be a Lyapunov variable is important for a generalization of the concept of entropy
discussed below.
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i.e. where W ∗
t Λ = ΛUt holds (Braunss 1985, 19). Furthermore, there is a

practical difficulty in identifying an appropriate positive definite variable serving
as a basis for M , there being no constructive guidance for choosing appropriate
variables.

Misra’s proposal of relating Λ to M also allows Λ to be related to a time
operator T for K-flows (Misra 1978; Misra, Prigogine and Courbage 1979; Gold-
stein, Misra and Courbage 1981). Let H0 denote the one-dimensional subspace
spanned by constant-valued functions on a given energy surface, P0 the pro-
jections from L2

µ(Ω) onto this subspace, H⊥
0 the orthogonal complement of H0

and P⊥
0 the projections from L2

µ(Ω) onto H⊥
0 . For dynamical systems that are

K-flows, there exists a family of projection operators Fη, −∞ < η < ∞, with
the following properties (Misra 1978, p. 1629):

(i) Fη ≤ Fκ if η < κ.

(ii) limη−→∞ Fη = P⊥
0 .

(iii) limη−→−∞ Fη = 0.

(iv) Fη is strongly continuous in η.

(v) UtFηU
†
t = Fη+t.

Conditions (ii) and (iii) are to be understood in the strong operator limit. It is
then possible to construct a self-adjoint operator

T =

∫ ∞

−∞

ηdFη, (4)

which has Fη as its spectral family of projections. T is self-adjoint and canon-
ically conjugate to L via the commutation relation [L, T ] = −iI, where I is
the identity operator and the eigenvalues of T are determined by the parameter
time t when applied to eigenfunctions of T . Then M can be constructed as a
function of T as

M = h(T ) + αP0, (5)

where α ≥ 0 and h(T ) is an operator defined through the relation

(ψ, h(T )φ) =

∫ ∞

−∞

h(η)d(ψ, Fηφ), (6)

where ψ, φ are vectors in H⊥
0 and h(η) is any monotone decreasing, positive,

bounded, continuous and differentiable function, whose derivative is always neg-
ative and bounded (Misra 1978, p. 1629). The inner product in (6) is to be
understood in the following way. To each vector ψ in H⊥

0 , there is a correspond-
ing family of functions {ψn(η)}, where n = 1, 2, 3, ... and where ψn(η) ∈ L2

µ,
such that

(ψ, φ) =
∞
∑

n=1

(
∫ ∞

−∞

ψ∗
n(η)φ(η)dη

)

. (7)
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The operator M as defined in (5) satisfies all the properties listed above.
The time operator T associates an “age” or “internal time” with a well

defined distribution function ρ̄ ≡ ρ − ρeq. If ρ̄ is an eigenfunction of T , the
corresponding eigenvalue gives the “age” associated with ρ and is determined
by an external (i.e. observer’s) time that serves to label the dynamics. If ρ̄ is
not an eigenfunction of T , but a combination of eigenfunctions corresponding to
two or more distinct eigenvalues, then only an “average age” can be associated
with ρ (Misra, Prigogine and Courbage 1979, pp. 17-8).

The discovery of a time operator was one of the Brussels-Austin Group’s
significant contributions to SM and systems theory (c.f. Atmanspacher and
Scheingraber 1987, where an alternative derivation of a time operator is given
and compared with the Brussels-Austin version). This “internal time” opera-
tor, according to Misra, Prigogine and Courbage, expresses the ‘inherent (but
hidden) stochastic and nondeterministic character of the evolution’ of such un-
stable systems (1979, p.5). It is this hidden ‘stochastic and nondeterministic’
character of the evolution that the change of representation via Λ is supposed
to reveal.

Furthermore, the existence of Λ leads to the claim that for unstable CM
systems, one can find a representation in which the dynamics are irreducibly
probabilistic in that Λ transforms a trajectory representation into a probabilis-
tic one, so that unstable classical systems do not possess exact smooth (i.e.,
everywhere differentiable) trajectories in the probabilistic description (see §3.5
below).

In addition to finding a time-irreversible dynamics, Prigogine and co-workers
were also interested in far from equilibrium SM. In conventional equilibrium SM,
the concept of entropy is defined at equilibrium. For example starting with the
canonical probability distribution, the fine-grained Gibbsian entropy may be
expressed as

−

∫

Ω

ρ lnρdΩ . (8)

As a first step toward a conception of entropy valid for nonequilibrium as well as
equilibrium cases, Misra proposed a generalization of the conventional definition
(8),

− ln(ρ,Mρ) , (9)

where ψ represents normalized functions on L2
µ(Ω) and

ρ(ω) = |ψ(ω)|2, (10)

where (10) can be interpreted as the Gibbsian ensemble. Since near equilibrium
the thermodynamic entropy of a system increases monotonically until equilib-
rium is reached, the idea is that any function used to model thermodynamic
entropy far from equilibrium should also have the property of increasing mono-
tonically in the neighborhood of a nonequilibrium stable state.8 Misra’s sugges-

8For example, (8) is not monotonically increasing for Hamiltonian models (in fact it is an
invariant of Hamiltonian evolution). A coarse-grained average version of (8) combined with
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tion is that functionals like (9) may be interpreted as a nonequilibrium entropy
since they monotonically increase with time (1978, p. 1627).9

The quantity

(ψ, Fψ) =

∫

Ω

f(ω)ρ(ω)dµ(Ω) (11)

can be interpreted as an expectation value of the observable F in the state ψ,
where F is the operator of multiplication by the state space function f(ω). For
observables corresponding to state space functions f(ω), the expression (11) rep-
resents an ensemble average of f(ω) in the ensemble (10). The correspondence
between functions F and the ensembles ρ(ω) is one-to-one because (ψ, Fψ) is
single-valued when F is an operator of multiplication on state space (Misra 1978,
p. 1628). By contrast the functional (ψ,Mψ) is not a single-valued functional
of ρ(ω), though it may be possible to ensure that the rate of change of such a
functional remains a single-valued functional of ρ(ω) (Misra 1978, p. 1628). A
further consequence is that Lyapunov variables such as M must fail to commute
with at least some of the operators that are multiplications by functions defined
on state space (Misra 1978, p. 1628). This implies that unstable systems possess
noncommuting observables (see below).

To summarize, according to the Brussels-Austin Group, provided such a
Λ can be found, the deterministic dynamics of unstable systems are equiva-
lent to time-irreversible, (irreducibly) probabilistic Markov processes. The first
concrete example they gave was for a simplified Baker’s transformation.10 Al-
though it is conservative and time reversible, the question naturally arises: Are
there any realistic physical systems for which Λ could be constructed? Generic
prescriptions for constructing time operators for Bernoulli systems and Kol-
mogorov flows were given in (Courbage and Misra 1980; Goldstein, Misra and
Courbage 1981). These constructions, however, are purely formal and, hence,
Λ also remains formal.11

More recently, concrete examples of time operators have been constructed
for unilateral shift representations of dynamics for Renyi maps, where T for
such maps is densely defined on a HS (Antoniou, Sadovnichii and Shkarin
1999; Antoniou and Suchanecki 2000; Mercik and Weron 2000). Furthermore,
a generic prescription for constructing T for exact systems, where the dynam-
ics is noninvertible, was given in (Antoniou and Suchanecki 2000). Time op-
erators for the semigroups associated with the nonrelativistic and relativistic
one-dimensional diffusion equations have also been constructed (Antoniou, Pri-
gogine, Sadovnichii and Shkarin 2000). Nevertheless, in all these cases Λ appears
only as a formal object assumed to be densely defined on a HS.

some probabilistic assumptions yields a monotonically increasing function for Hamiltonian
models (Misra 1978, p. 1630). The proposal in (9) is monotonically increasing in these
models without resorting to such assumptions.

9Atmanspacher and Scheingraber (1987) proposes characterizing nonequilibrium systems
without utilizing the concept of entropy.

10The Baker’s transformation is discussed in more detail in §3.5.
11An alternative derivation of Λ and its relationship to time operators and the evolution of

states is given in (Suchanecki 1992).
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3.5 Trajectories

Another of the Brussels-Austin Group’s claims is that the exact deterministic
trajectories of unstable dynamical systems are idealizations. There has been
a great deal of confusion in understanding precisely what Prigogine and col-
laborators have meant when they write that exact deterministic trajectories
do not exist or are unrealizable in unstable systems. Many have interpreted
their statements and arguments to mean the total absence of trajectories for
such systems (e.g. Bricmont 1995). But the Brussels-Austin Group only meant
to be arguing against a particular type of trajectory, namely those which have
unchanging width and are everywhere differentiable (“exact and smooth” in
the Brussels-Austin nomenclature). However, this distinction did not receive
sufficient emphasis in the similarity transformation approach and was easily
misunderstood.

Misra, Prigogine and Courbage (1979) argued for the “unreality” of these ex-
act deterministic trajectories in the following way. In unstable systems, viewed
from a Lagrangian point of view, where the state space points are in motion,
small regions of state space contain points moving along ‘rapidly diverging or
qualitatively distinct types of trajectories.’ The conclusion they draw is that

[o]bviously, in this situation, the concept of deterministic evolu-
tion along state space trajectories cannot be defined operationally
and hence, constitutes a physically unrealizable idealization. There-
fore, in dealing with dynamically unstable systems, classical mechan-
ics seems to have reached the limit of the applicability of some of its
own concepts. This limitation on the applicability of the classical
concept of state space trajectories is–it seems to us–of a fundamen-
tal character. It forces upon us the necessity of a new approach to
the theory of dynamical evolution of such systems which involves the
use of distribution functions in an essential manner (Misra, Prigogine
and Courbage 1979, pp. 4-5).

Leaving aside the questionable association of physical processes with opera-
tional definitions, there are two things to note about this passage. First, at the
time of the above quotation, the Brussels-Austin Group had not given detailed
arguments that the concept of exact, smooth trajectories was physically unreal-
izable. Rather they viewed the failure of the concept as “obvious” for unstable
systems, the classical concept of exact, smooth trajectory having “reached the
limit of applicability” in such systems. Second, they took this failure to mean
that such dynamical systems must be described by distribution functions im-
plying probabilistic descriptions are fundamental for such systems– i.e., intrinsic
randomness.

Their argument against the reality of exact, smooth trajectories later took
the following form:

(A) Deterministic dynamics and Markov processes are “equivalent” descrip-
tions for unstable systems via the existence of the transformation Λ.

11



(B) However, the concepts of point-like states and exact, smooth trajectories
are physically unrealizable idealizations for unstable systems.

(C) On the other hand, Markov processes are operationally well defined for
unstable systems.

(D) Therefore, evolution of probabilistic distributions, not state space point
trajectories, represent the fundamental descriptions of such systems.

In (D) Prigogine and his colleagues are urging upon us a fundamentally different
way of conceiving classical unstable systems, not merely a new formalism for
calculating results on such systems. Premises (A) and (B) are both required
for (D). Premise (A) comes from the “equivalence” thesis between deterministic
dynamics and probabilistic processes mentioned above. The requirement of (B)
is more subtle. Recall that the classical conception of state space is a space
of points each of which represents a possible state of the system in terms of
particular values of the positions and momenta of the system constituents. The
failure of the concept of smooth deterministic trajectories implies that exact
states for such systems are also unphysical idealizations, meaning probabilities
can arise in some fashion other than coarse-graining. The unreality of exact
states means that the state space points in CM are also unphysical idealiza-
tions: ‘The concept of state space point and state space trajectories, which are
regarded in the classical theory as simple and basic notions, must be viewed
now as a mathematical reconstruction, and this reconstruction requires infinite
precision’ (Misra and Prigogine 1983, p. 427; see also Goldstein, Misra and
Courbage 1981, pp. 112-3). Prigogine and coworkers considered infinite preci-
sion to be physically impossible, hence their appeal to premise (B) as well for
the conclusion that probability is irreducible in unstable systems.

Given such far-reaching claims, the similarity transformation approach war-
rants closer examination. I will first assess premises (A) and (B) independently
and then spell out what conclusions I believe the approach licenses. Along the
way, I will indicate revisions the Brussels-Austin Group made to their approach.

Although some in the Brussels-Austin Group have taken it as “obvious” that
the concepts of exact states and smooth trajectories fail for unstable systems,
the failure of these concepts is not so obvious. Simply invoking operationalism
is no longer a convincing argument. This attempt to justify (B) is particularly
weak since it can at best mean that in practice our operational definition suffers
an empirical breakdown for unstable systems. Our usual procedures in classical
mechanics will not allow us to predict with accuracy the trajectories of the
system arbitrarily far into the future because of our inability to either measure
or represent the initial conditions to infinite accuracy (Bishop, forthcoming).
One cannot conclude from this, however, that exact trajectories and state space
points do not exist.

A revised argument involves extending Λ and W ∗
t to generalized distribution

functions from the theory of distributions (i.e. using the theory of distributions;
c.f. Schwartz 1950, 1951). Originally Λ and W ∗

t were supposedly defined as act-
ing on distribution functions ρ defined on L2

µ(Ω). Misra and Prigogine (1983)
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claimed that since ‘we are interested in studying the evolution (under [W ∗
t ]) of

phase points, we need to extend the action of Λ and [W ∗
t ] to singular (Dirac

δ-functions type) distributions concentrated on a given state space point’ (Misra
and Prigogine 1983, pp. 423-5).12 They explicitly constructed Ut, Λ and W ∗

t

and a complete set of orthonormal eigenvectors for W ∗
t for the Baker transfor-

mation. It turns out that both regular and singular distribution functions can
be expanded as linear combinations of these eigenvectors. This allows the ac-
tion of Λ and W ∗

t to be applied to singular distributions like δ(p− p
0
)δ(q− q

0
),

representing a distribution concentrated at the point (p
0
, q

0
) in state space. Ap-

plying Λ to δ(p − p
0
)δ(q − q

0
) transforms it from a function taking a nonzero

value only at the point (p
0
, q

0
) to a function taking nonzero values over a subset

of state space points (Goldstein, Misra and Courbage 1981, 121). Something
similar happens under the action of W ∗

t . Misra and Prigogine pointed out ‘that
even if one could start with an initial condition corresponding to a point on the
state space, it will cease to be a state space point under the physical evolution
[W ∗

t ] and the transformation Λ’ (1983, 424). From these results they concluded
that

The basic object of the theory must now be not the state space
points and their dynamical evolution along state space trajectories,
but the transformation of points under the transformation Λ and
their evolution under [W ∗

t ]. One might still argue that at least in the
case when Λ is invertible, one could reconstruct the motion of state
space points along trajectories from a knowledge of the evolution
under [W ∗

t ] of the transformed object [δ(p−p
0
)δ(q− q

0
)] (Misra and

Prigogine 1983, 425).

They go on to argue that such a reconstruction is not possible for arbitrar-
ily large time ‘except if one assumes infinite accuracy in the observation of the
physically evolving states’ (p. 425). This is consistent with the fact that the
dynamics of state space points and trajectories are not the “fundamental ob-
jects” of their physical theory. Rather, under the action of Λ, the distributions
are now fundamental.

However, Batterman pointed out that this confused the evolution of Dirac-
type functions with that of points in state space (1991, pp. 259-260). state
space points ω ∈ Ω are not the same type of mathematical objects as distribu-
tions. So nothing was actually demonstrated about the dynamics of state space
points. Indeed no such line of demonstration can work, because the operator
Λ in these cases maps singular distributions defined on Ω into distributions
with finite support on Ω, so the probabilistic description describes the evolu-
tion of distributions on state space points and not the evolution of the points
themselves. Furthermore, technically M , Λ and W ∗

t are defined not for points,
because the vectors of L2

µ are not points, but equivalence classes of functions

12Mathematically this extension requires that the Hilbert space be extended as well. Initially
they were unaware of this point, but extended spaces becomes important in their more recent
work discussed in Part II.
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that are equal almost everywhere. This is a crucial point for the Brussels-Austin
Group because state space points represent the exact states of the system. The
latter simply drop out of the description, implying nothing about the nature of
their trajectories.

Note as well that this arguments confuses an epistemological claim (i.e. the
inability to attain infinite measurement accuracy) with an ontological one (i.e.
the ultimate nature of trajectories), a conflation of epistemology with ontology
plaguing nearly every one of the group’s arguments regarding trajectories in
their older approach.

Misra (1978, pp. 1628-9) hints at another possible argument in support
of (B). In the Koopman formalism, classical observables are often associated
with linear operators that are multiplications by state space functions at least
some of which, according to Misra (1978), fail to commute with the microen-
tropy operator M . Sufficiently unstable classical models, so the argument goes,
would possess complementary observables in analogy with the position and mo-
mentum operators in QM. Therefore the simultaneous determination of some
classical observables and a nonequilibrium entropy of the form (9) would be
subject to a Heisenberg-like relation. Misra states that for conditions where
the dynamics are described in terms of smooth state space trajectories with
all classical observables completely determined, the concept of nonequilibrium
entropy would be inapplicable. Alternatively, conditions permitting the precise
determination of the nonequilibrium entropy would preclude the possibility of
accurately determining the state space trajectories (Misra 1978, p. 1629). The
deterministic description in terms of trajectories would then be complementary
to the probabilistic description in terms of nonequilibrium entropy.

The argument needs to be spelled out in more detail. First it needs to be
demonstrated that in the extended Koopman formalism all the physically rele-
vant classical observables can be representable as multiplications by state space
functions. As Misra points out, there are many more operators in L2

µ that are
not multiplications, but these other operators are considered to have no physi-
cally meaningful interpretation in terms of classical observable quantities (1978,
p. 1628). The physically meaningful operator M , however, cannot be repre-
sented as a multiplication operator on state space due to the requirement that
it be monotonically increasing (Misra 1978, pp. 1627-8), so additional argu-
mentation is needed to show that all other relevant classical observables must
be represented by multiplications on state space. An additional complication
is that although in the “momentum representation” in the extended Koopman
formalism, the momentum is represented by a multiplication operator, in the
“position representation”, momentum is represented by a differential operator.
So the form of some physically meaningful operators are representation depen-
dent. Furthermore viable candidates for the mathematical descriptions of the
supposed nonequilibrium entropy need to be constructed for any realistic phys-
ical systems. That question is related to the truth of (A) insofar as Λ is a
function of M .

It is possible to give a less radical reinterpretation of (D) based on an oper-
ationalist view of unobservable entities implicit in (Nicolis and Prigogine 1989):
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(D’) Probabilistic descriptions represent the proper descriptions consistent with
observability and computability.

It then remains to be seen what can be made of the claim that the probabilistic
description represents no “loss of information” with respect to the trajectory
description. In this context I need to examine a more recent version of the ar-
gument for indiscernibility of trajectories put forward by Nicolis and Prigogine
(1989, pp. 204-8). This argument begins by noting that the Baker’s transfor-
mation,

x′ = 2x, y′ =
y

2
0 ≤ x ≤

1

2
(12a)

x′ = 2x− 1, y′ =
y + 1

2

1

2
≤ x ≤ 1, (12b)

is measure-preserving in the sense that the unit square remains invariant under
repeated iterations. The action of (12) stretches the square in the x-direction
as much as it compresses it in the y-direction. This contraction plays a crucial
role in Nicolis and Prigogine’s indiscernibility argument regarding the supposed
“irrelevance” of Liouville’s theorem for a given sub-area of the unit square.

Suppose ρ is confined initially to a sub-area ∆ of state space (e.g. the shaded
region in Figure 1). The sub-area ∆ remains invariant through the first few iter-
ations. According to Nicolis and Prigogine, the contracting dimension decreases
exponentially to some ε and remains constant thereafter, because this represents

the limit of our ability to measure or localize this dimension accurately. They
refer to the decreasing dimension as a fiber which eventually gets distributed
evenly throughout state space and cannot be localized. Hence the support of ∆
would increase until it reaches the support of a larger subset of the state space
and, from an empirical standpoint, render Liouville’s theorem on preservation
of the area of sub-regions of state space “irrelevant”. Nicolis and Prigogine in-
terpret this as due to the fact that measurements (or, more generally, effects
of physical interactions) refer to regions of finite support in state space, not to
mathematical points. Supposedly the conclusion regarding the indiscernibility
of contracting fibers (analogous to state space trajectories) follows from the fact
that measurements are only finitely accurate. Hence the support of the sub-
region ∆ is not area preserving below the observational threshold ε, so they
conclude that Liouville’s theorem is inapplicable below this threshold.

Clearly the argument confuses ontology with epistemology. Obviously, given
(12), the contracting dimension will never reach a constant ε; rather, the fiber
will asymptotically approach zero thickness. Hence the density of ∆ will re-
main invariant as its support varies. The “irrelevance” of Liouville’s theorem,
according to Nicolis and Prigogine, is due to our inability to localize/measure
the fiber below ε thickness. But this is an epistemological point as the fibers
of the Baker’s transformation remain ontologically precise according to (12).
Therefore, while there may be some epistemic bound on our ability to precisely
measure fibers of decreasing thickness, such a bound would not support the
ontological claim (B).

15



Figure 1: Figure 1.The first steps in the stretching and folding action of the
Baker’s transformation.

The existence of this epistemic bound does imply a loss of information about
the trajectories, so how can Prigogine and coworkers claim that their approach
suffers no loss of information when it is unable to demonstrate the unreality of
exact state space points and smooth trajectories and, hence, support (A)? This
argument can only be seen as supporting (A) if one adopts an operational atti-
tude: Unobservable trajectories will have the same observational consequences
as if there were no exact smooth trajectories at all. Since the observational out-
comes are the same, the concepts of smooth trajectories and exact states can
be dropped from the theoretical description as so much excess baggage. This
operational attitude is the only consideration that can be offered in support of
(D) and, of course, is compatible with (D′).

In my judgment, the ontological conclusion (D) is not licensed in the simi-
larity transformation approach. The Brussels-Austin Group formalism does not
show the nonexistence of exact states or smooth trajectories in unstable sys-
tems.13 Rather, like the coarse-grained approaches from which the Prigogine
school seeks to distinguish itself, their new formalism substitutes a probabilis-
tic description in place of point-like states and trajectories in state space. In
contrast their formalism emphasizes physics ignored in typical coarse-graining
techniques. Furthermore standard coarse-graining replaces individual states ω
with distributions defined uniformly over a finite cell of Ω without distinguish-
ing points belonging to different stable manifolds in unstable systems. The
Brussels-Austin probability distributions are constructed to distinguish points
belonging to stable manifolds from unstable ones. Furthermore the Markovian
semigroups derived from Λ are not related to local point transformations in state
space in contrast to those semigroups derived from coarse-graining projections
(Suchanecki, Antoniou and Tasaki 1994). So the similarity transformation ap-
proach can be viewed as an alternative calculational approach to coarse-graining
provided Λ can be constructed for real-world systems.

3.6 Directions in Time

One acclaimed virtue of this version of the Brussels-Austin approach is the abil-
ity of Λ to provide time-asymmetry. The transformation Λ is chosen so that

13As the Brussels-Austin Group shifted away from the similarity transformation approach,
they dropped terms like “nonexistent” in favor of terms like “irrelevant” when discussing
trajectories (Part II).

16



time-asymmetry is guaranteed under its action. There exist, nevertheless, two
distinct transformations, Λ+ and Λ−, corresponding to two distinct semigroups,
W+∗

t and W−∗
t , respectively. Λ+ corresponds to future-directed evolution to-

ward equilibrium along the positive t-axis and Λ− corresponds to past-directed
evolution toward equilibrium along the negative t-axis (Misra and Prigogine
1983, p.422). This implies that there are two possible probabilistic descriptions.

Why then do we not observe evolutions of the W−∗
t -type? To answer this

question the Brussels-Austin Group uses singular initial probability distribu-
tions since nonsingular distributions can approach equilibrium in either direc-
tion in time under Λ+ and Λ−. By translating their conception of entropy
into information-theoretic language, Courbage and Prigogine (1983, p. 2414-5)
showed that their formulation of the second law requires infinite information for
specifying the initial states of a singular distribution evolving in the negative t-
direction, but only finite information for specifying the initial states for evolution
in the positive t-direction. This would render the initial conditions for systems
to approach equilibrium along the negative t-axis physically unrealizable: ‘Of
course, even a regular function close to a contracting fiber [Λ−-type description]
will require such a high information content that it will be practically impossible
to realize it for a given state of technology’ (Courbage and Prigogine 1983, p.
2416). Since singular probability distributions are supposedly operationally un-
realizable, they argue it is physically impossible for unstable systems to evolve
to equilibrium in the negative t-direction. Hence their version of the second law
acts as a selection rule for initial states.

This argument is supposed to show why anti-thermodynamic behavior in
the real world is impossible (for a slightly different version, see Misra and Pri-
gogine 1983). Nevertheless, the argument is problematic. The most fundamen-
tal difficulty is that it conflates epistemic concepts (e.g. information, empirical
accessibility of states) with ontic concepts (e.g. actual states and behaviors of
systems).

Second, Courbage and Prigogine claimed that, ‘this selection rule expresses
the unrealizability of experiences in which a set of particles that undergo several
collisions will asymptotically emerge with parallel velocities’ (1983, p. 2413).
As Sklar points out, however, spin-spin echo experiments represent systems
apparently exhibiting just the anti-thermodynamic behavior the Brussels-Austin
selection principle rules out (Sklar 1993, pp. 219-22). In these experiments a
number of molecules with a magnetic moment are initially in a state where all
the moments are aligned in the same direction. A nonuniform magnetic field is
then applied. In response to the field, the magnetic moments begin to spin, but
since the field is nonuniform, some moments spin faster than others due to their
spatial location with respect to the field. After a time period ta, the orientations
of the magnetic moments are completely random. At this point the nonuniform
magnetic field is reversed. The moments begin to spin in the opposite direction
such that after time 2ta, all the spins are aligned in the same initial direction.
It looks as if the system has been thermodynamically reversed.

The Brussels-Austin Group has a response to this objection. If the system
is left to itself, the orientations of the magnetic moments will continue to be
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random and entropy continues to increase monotonically. If the magnetic field
is reversed at time ta, the entropy of the system is decreased to a value below

its initial value (it actually makes a discontinuous jump) due to the external
intervention of reversing the field (i.e. the system was opened to an outside
influence). As the moments reverse themselves, however, the entropy continues
its monotonic increase from its newly lowered value and returns to its initial
value at the point in time when the moments return to their initial alignments.14

A more fundamental problem with the selection principle argument is that
it turns on the definition of entropy. The conditions for the existence of the
microscopic entropy operator M and, hence, for Λ, admit alternative notions of
entropy that have the opposite temporal behavior to the Brussels-Austin Group

definition (Λ+ = M
1

2

+ ). Recall that the microentropy operator M is related
to the existence of a time operator T for K-flows. There is a relationship be-
tween such time operators and the Kolmogorov-Sinai entropy (Atmanspacher
and Scheingraber 1987), and since K-flows are reversible, one could select an
alternative “entropy” (e.g. characterized by negative rather than positive Lya-
punov exponents) with the opposite temporal direction endowing T with the
opposite temporal direction and, then, construct an M−. On this basis an ar-
gument similar to that of Courbage and Prigogine could be formulated whose
conclusion is that the approach to equilibrium along the positive t-axis is “im-
possible” (e.g. Misra and Prigogine 1983, p. 427; Karakostas 1996, pp. 393-4).
On what basis is one definition privileged over another? Why do we not see
about half of the systems approaching equilibrium in one time direction, while
the other half approach equilibrium in the opposite time direction?

The Brussels-Austin Group often responds to this type of objection by ap-
pealing to experimental observations of time asymmetry. This amounts to tak-
ing phenomenological laws as fundamental and thereby excludes all definitions
of entropy that licensed anti-thermodynamic behavior. Obviously such a move
comes at an explanatory cost. It is precisely these observations that need ex-
planation, but by taking them as fundamental the Brussels-Austin Group gives
up the ability to offer an explanation for the thermodynamic arrow of time.
In other words the acclaimed link between classical deterministic systems and
Markov processes, which was supposed to illuminate the mystery of irreversibil-
ity, affords us no gain in understanding the puzzle of the second law and is in
danger of becoming circular.

3.7 Problems with the “Equivalence” Thesis

The “equivalence” between trajectory and probabilistic descriptions of unsta-
ble system via Λ stands in need of further clarification. If Λ is a similarity
transformation, it must preserve the spacetime features of the physical system.
In this approach, however, the ontological elements of the two descriptions are
supposed to be so different (point states and trajectories vs. probability dis-

14A discussion of a generic time reversal experiment in the context of a two state system (a
ground state and an excited state) is given in (Petrosky, Prigogine and Tasaki 1991, 200-202).
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tributions) that the implication should be that we have two different physical
descriptions or models of the system. Assume for the sake of argument that in
unstable systems smooth state space trajectories are physically irrelevant ideal-
izations. This view calls into question the validity of the classical deterministic
description which assumes such trajectories are physically meaningful.

Some insight into the “equivalence” thesis and the physical significance of the
similarity transformation can be found in the work by Gustafson and colleagues
(Gustafson and Goodrich 1980; Antoniou and Gustafson 1993; Gustafson 1997;
Antoniou, Gustafson and Suchanecki 1998). They have shown that any Marko-
vian semigroup dynamics arising from a coarse-grained projection of a K-flow
can be embedded into a larger Kolmogorov dynamical system. Moreover many
other kinds of Markovian semigroup dynamics can also be embedded into a
larger Kolmogorov system regardless of their origin (Gustafson 1997, pp.66-8
and references therein; Antoniou, Gustafson and Suchanecki 1998, pp. 114-8).
No specific results for embedding a Markovian dynamics induced by similarity
transformations exist at present as no concrete realizations of Λ for physical
systems have been developed nor are many physical properties of such trans-
formations known (e.g. Antoniou, Gustafson and Suchanecki 1998, p. 119).
From this perspective, then, the equivalence of deterministic and probabilistic
descriptions via Λ needs further specification. The physical significance of Λ
for unstable systems can be understood minimally as a change of representa-
tion from the deterministic description to a dynamics distinguishing stable and
unstable manifolds of such systems.

In my judgment, the Brussels-Austin Group ought to have been arguing
that the probability description is the primary physical picture of the behavior
of unstable systems. After all, according to them the ontological elements of the
deterministic description are unrealizable and the probability description–being
irreducibly probabilistic–captures the dynamical behavior of the probability dis-
tribution and the collective and long-range effects within such systems that are
missing from a trajectory description. In addition it is precisely this irreducible
probability that gives rise to the claim that unstable classical systems can be
intrinsically random or indeterministic (Misra, Prigogine and Courbage 1979;
Goldstein, Misra and Courbage 1981). Finally Gustafson has demonstrated that
the inverse transformation Λ−1 cannot be positivity preserving for K-flows, so
any reverse transformation (“embedding”) from the probabilistic description in-
duced by Λ to a deterministic Kolmogorov dynamics must violate positivity of
probability (Gustafson 1997, pp. 61-2). So it appears that a case can be made
that under Λ, probabilistic models are more physically accurate or appropriate
for these systems. The similarity transformation, then, should not be viewed as
yielding an equivalence between the two descriptions.15

15In more recent work, Prigogine and colleagues explicitly argue that the trajectory descrip-
tion and the distribution description are not equivalent for a class of models known as large
Poincaré systems (Petrosky and Prigogine 1996 and 1997; Part II).
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4 Discussion

Part of the explanation for the difficulties in the similarity transformation ap-
proach lies in the fact that the Brussels-Austin Group started to work in an
inappropriate mathematical framework. They treated the operators Λ and W ∗

t

as if they were defined on HS in the modified Koopman approach, when what
was actually needed was an extended space such as a rigged Hilbert space (Bohm
1981, 2814; Obcemea and Brändas 1983; Petrosky and Prigogine 1996, pp. 481-
2; Part II). Indeed Ordóñez has recently shown that the similarity transforma-
tion approach amounts to rigging a HS (1998). Furthermore the fact that they
were tacitly working in an extended space all along is indicated by their interests
in the evolution of distribution functions and densities, the use of delta func-
tions in the arguments on trajectories I rehearsed above, as well as the presence
of the semigroup operators W ∗

t and the unbounded nature of the operators Ut

and W ∗
t . None of these elements are well defined on the whole of HS.

Although serious questions remain regarding how to demonstrate conclu-
sively that the past-directed semigroups are somehow unphysical and regard-
ing the mathematical difficulty of the similarity transformation approach, this
earlier attempt by the Brussels-Austin Group to develop a new approach to
thermodynamics and SM does achieve some milestones. It provides a gener-
alized formalism allowing a unified mathematical treatment of deterministic
and probabilistic systems and has potential application to QM systems as well,
holding out the possibility of a unified treatment for statistical physics at both
the microphysical and macrophysical levels. In addition the framework appears
equally suitable to QM and CM suggesting that the two levels of description
may themselves become unified. Provided the transformation Λ can be found for
the unstable SM systems in question, the Brussels-Austin Group demonstrated
a mathematical relation between the time-reversible dynamics of the trajectory
description and the time-irreversible dynamics of the Markov description. This
suggests that if they could produce an alternative justification for taking the
Markov description as primary, they may still be able to reconcile the irreversible
behavior with the standard time-reversible SM. Along the way there were new
mathematical developments, particularly in the area of time operators.

The realization that this formalism was tacitly assuming an extension be-
yond HS was one of the reasons that motivated the Brussels-Austin Group to
move to rigged Hilbert spaces. Another motivation for switching formalisms
was that realistic physical models become almost mathematically intractable
in the similarity transformation approach. Results were only obtained for dis-
crete mathematical systems like the Baker’s transformation, never for continu-
ous mathematical systems much less realistic physical models. The more recent
work in rigged Hilbert spaces holds forth the promise of overcoming many of
these difficulties, so I will discuss it in Part II.
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