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There is a trend to consider counterfactuals as invariably time-asymmetric. Re-
cently, this trend manifested itself in the controversy about validity of counterfactual
application of a time-symmetric quantum probability rule. Kastner (2003) analyzed
this controversy and concluded that there are time-symmetric quantum counter-
factuals which are consistent, but they turn out to be trivial. I correct Kastner’s
misquotation of my defense of time-symmetric quantum counterfactuals and explain
their non-trivial aspects, thus contesting the claim that counterfactuals have to be
time-asymmetric.

1. Introduction.

The issue of time (a)symmetry of counterfactuals has been addressed many times in the
past, but it remains to be an open question, see for example Kutach (2002). Less than a
decade ago, Sharp and Shanks (1993) opened the discussion of time-symmetric counterfac-
tuals in the context of quantum theory (TSQC), claiming that time-symmetric approach
of Aharonov, Bergmann, and Lebowitz (ABL) (1964) to quantum measurements is not ap-
plicable to counterfactual situations. The controversy which aroused after this paper was
reviewed by Kastner (2003) who proposed that the ABL TSQC can be considered consistent,
but that they provide no new information. In her analysis she presented my defense of the
TSQC, but she misquoted and misinterpreted it. Here I want to correct this, to state what
is the difficulty of TSQC which I resolved, and contest the claim that the TSQC are trivial.
The plan of the paper is as follows. In the next two sections I describe the two mis-

quotations of my approach made by Kastner. In Section 4 I briefly discuss the controversy
about counterfactual application of the ABL rule and in sections 5 and 6 I analyze two ex-
amples. Section 7 concludes the paper by discussion of the relation to the general question
of time-symmetry of counterfactuals.

2. First Misquotation.

In her arguments, Kastner (2003) relies few times on the fact that I ‘acknowledge that
post-selection results can’t be actually “fixed”’ (p.8,23 of preprint). To support this claim
she brings in footnote 5 a quotation from Vaidman (1999a). Let me enlarge the quotation,
the part quoted by Kastner appears in the second paragraph and I put it in italics.

A different asymmetry (although it looks very similar) is in what we assume
to be “fixed”, i.e., which properties of the actual world we assume to be true
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in possible counterfactual worlds. The past and not the future of the system is
fixed.
It seems that while the first asymmetry can be easily removed, the second

asymmetry is unavoidable. According to standard quantum theory a system is
described by its quantum state. In the actual world, in which a certain measure-
ment has been performed at time t (or no measurement has been performed at t)
the system is described by a certain state before t, and by some state after time
t. In the counterfactual world in which a different measurement was performed
at time t, the state before t is, of course, the same, but the state after time t

is invariably different (if the observables measured in actual and counterfactual
worlds have different eigenstates). Therefore, we cannot hold fixed the quantum
state of the system in the future.[1]
The argument above shows that for constructing time-symmetric counterfac-

tuals we have to give up the description of a quantum system by its quantum
state. Fortunately we can do that without loosing anything except the change
due to the measurement at time t which caused the difficulty. A quantum state
at a given time is completely defined by the results of a complete set of mea-
surements performed prior to this time. Therefore, we can take the set of all
results performed on a quantum system as a description of the world of the sys-
tem instead of describing the system by its quantum state. (This proposal will
also help to avoid ambiguity and some controversies related to the description of
a single quantum system by its quantum state.) Thus, I propose the following
definition of counterfactuals in the framework of quantum theory:

(ii) If a measurement M were performed at time t, then it would
have property P, provided that the results of all measurements per-
formed on the system at all times except the time t are fixed.

For time-asymmetric situations in which only the results of measurements
performed before t are given (and thus only these results are fixed) this definition
of counterfactuals is equivalent to the counterfactuals as they have usually been
used. However, when the results of measurements performed on the system
both before and after the time t are given, definition (ii) yields novel time-
symmetrized counterfactuals. In particular, for the ABL case, in which complete
measurements are performed on the system at t1 and t2, t1 < t < t2, we obtain

(iii) If a measurement of an observable C were performed at time
t, then the probability for C = cj would equal pj, provided that the
results of measurements performed on the system at times t1 and t2
are fixed.

Just from the structure of my writing, it is clear that I do not claim as true what Kastner
took as the quotation: the paragraph starts with “It seems” and in the following paragraph
I show that we can overcome the difficulty. Moreover, as I will explain below, the difficulty
is not related to fixing the outcome of the measurement at t2, the issue which concerns
Kastner.
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3. Second Misquotation.

Second misquotation is Kastner’s claim that I “attribute values to observables that were
not measured”. Indeed, the name “elements of reality” (Vaidman 1993) and the title “How to
Ascertain the Values of σx, σy, and σz of a Spin-

1

2
Particle” (Vaidman, Aharonov, and Albert,

1987) might suggest this. However, if Kastner wants faithfully to present my approach, she
should not ignore my reply (Vaidman, 1999c) to her other paper (Kastner, 1999b). Let me
quote two paragraphs from my reply (p. 866).

I define that there is an element of reality at time t for an observable C,
“C = c” when it can be inferred with certainty that the result of a measurement
of C, if performed, is c. Frequently, in such a situation it is said that the
observable C has the value c. It is important to stress that both expressions
do not assume “ontological” meaning for c, the meaning according to which
the system has some (hidden) variable with the value c. I do not try to restore
realistic picture of classical theory: in quantum theory observables do not possess
values. The only meaning of the expressions: “the element of reality C = c” and
“C has the value c” is the operational meaning: it is known with certainty that
if C is measured at time t, then the result is c.
Clearly, my concept of elements of reality has its roots in “elements of reality”

from the Einstein, Podolsky, and Rosen paper (EPR) (1935). There are numer-
ous works analyzing the EPR elements of reality. My impression that EPR were
looking for an ontological concept and their “criteria for elements of reality” is
just a property of this concept. I had no intention to define such ontological
concept. I apologize for taking this name and using it in a very different sense,
thus, apparently, misleading many readers. I hope to clarify my intentions here
and I welcome suggestions for alternative name for my concept which will avoid
the confusion.

If there is an element of reality C = c, then, apart from the counterfactual statement
about the result of the measurement of C (which is the definition of “element of reality”), the
quantum system has some other features, as will be described in two examples in Sections
5 and 6. However, it does not mean that there is something in the system which possesses
value c.

4. The controversy about counterfactual application of the ABL rule.

The ABL rule is usually considered in situations in which the counterfactual has com-
pound antecedent with three parts: (1) result of a complete measurement at t1, (2) the fact
that some measurement was performed at time t, and (3) the result of a complete measure-
ment at t2, t1 < t < t2. I have argued before (1999a) that the controversy aroused from the
error of Sharp and Shank, who considered the probability of the result of a measurement at
time t without taking in account (2), i.e., the fact that the measurement has been performed.
Kastner admits that when we take all compounds of the antecedent, the inconsistency

proof of Sharp and Shanks fails, but claims that the counterfactuals in this case are triv-
ial, not surprising, and do not yield any new information. Her argument is based on the



4

analogy with a classical example of a counterfactual with compound antecedent which looks
surprising when only one compound is fixed and which trivially holds when all compounds
are taken into account. The surprising property of the classical counterfactual is explained
then by small probability of having all compounds of the antecedent true together.
It is hard to accept Kastner’s argument according to which if two statements have the

same form and one is trivial (Kastner’s raffle example), then the second (counterfactual
application of the ABL rule) must be trivial too. Let me spell out in the next two sections
what are, in my view, nontrivial surprising features of the ABL counterfactuals and what is
the new information which we can get from them analyzing examples mentioned in Kastner’s
paper.

5. Elements of Reality for a spin- 1
2

particle.

I will convert the first example into a raffle. In a raffle each participant brings his own
spin-1

2
particle on which the organizers perform a measurement of a spin component in one

of the there directions, x, y, or z. The participant gets his particle back and he has to
provide three statements: if the measurement was in x direction, the result was sx, if the
measurement was in y direction, the result was sy, and if the measurement was in z direction,
the result was sz. (This is a typical situation when counterfactuals considered in the context
of quantum mechanics. Several statements are made together about measurements which
cannot be performed together.) The participant is a winner, if his statement about the
measurement which was actually performed was correct.
Our surprising result is that a participant equipped with quantum devices can always

win. It is simple to prepare the spin in one of the three directions. The participant can also
measure the spin in another direction when he gets the particle back. In this way he can infer
the results of measurements in two directions, but to know the results for three directions is
a highly nontrivial task. Experimentalists found it interesting enough to actually perform
this experiment in a laboratory, Schulz (2003).
In this example there is no small probability of having all compounds of the antecedent

true together. To achieve the task, the participant have to perform certain measurements
which might have different outcomes, but in all cases he can make correct statements.
(It does not mean that I accept Kastner’s argument about “cotenability” of the pre- and
post-selection together with a particular intermediate measurement. The fact that in many
“surprising” situations the probability to succeed in the post-selection is small, does not
make corresponding counterfactuals vacuous as Kastner claims. The only requirement is
that the probability for the post-selection does not vanish.)
One might claim that the unusual features belong to the ABL rule itself, and not to the

counterfactual usage of it, because, after all, only one of the three statements was tested and
this statement was about actually performed experiment. I can argue against this claim,
but instead let me discuss another aspect of this situation.
Let us limit ourselves to the cases in which the participant claims that the outcome of

the spin component measurement, irrespectively of the direction of measurement is + h̄
2
. The

probability of such a case is 1

4
. In this situation, in my language, there are three “elements

of reality”: sx =
h̄
2
, sy =

h̄
2
, sz =

h̄
2
. These elements of reality yield new information about
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the system that the “weak values” (Aharonov and Vaidman, 1990) of the spin components
are (sx)w = (sy)w = (sz)w =

h̄
2
, the proof is given in Aharonov and Vaidman (1991). Weak

values are measured using standard measuring devices, but with weakened coupling. This
allows measuring several variables together, however, for the price of the accuracy of the
measurement. Since, for any variables, (A + B)w = Aw + Bw, the weak value of the spin

component sξ ≡
1
√

3
(sx + sy + sz) is (sξ)w =

√

3h̄
2
(while the eigenvalues of sξ are ±

h̄
2
). The

center of the distribution of the particle position in the Stern-Gerlach experiment measuring
sξ using weak coupling will be outside the range of the eigenvalues! This is the new and
nontrivial information which we learn about the system characterized by the three elements
reality (the ABL counterfactuals) stated above.

6. The three-boxes example.

Another example mentioned by Kastner, the particle in three boxes pre-selected in a
superposition of being in all three boxes 1

√

3
(|A〉 + |B〉 + |C〉) and post-selected in another

superposition in all three boxes 1
√

3
(|A〉+ |B〉 − |C〉). The surprising feature of this particle

is that we are certain to find it inside box A if it searched there and also inside box B if it
searched there instead.
It is not trivial as Kastner’s raffle example, since neither pre-selection nor post-selection

alone specify the truth of the counterfactual. Moreover, it is more subtle than a trivial
example of this kind with a particle pre-selected in A and B and post-selected in B and C
which is to be found with certainty inside box B if it is searched there.
In our example, the particle acts as if it is simultaneously in two boxes for any single

test of its location. As for the spin- 1
2
particle example, even more interesting features of the

quantum system which yield the elements of reality: “the particle is in A”, and “the particle
is in B” find their manifestation in the results of weak measurements (Vaidman, 1999c).
The particle acts as if it is simultaneously in two boxes for multiple weak measurements
of its location. Recently, Aharonov and I (2002) noticed yet another surprising feature of
the system with these counterfactuals. The particle acts as if it is simultaneously in two
boxes also for a “superposition” of strong tests of its location. An external single quantum
particle in a superposition of moving toward boxes A and B which interacts strongly with
the particle in the box will scatter from our particle in the way as if there were two particles,
one in each box. (Note that Kastner (2002) has not found this example surprising either.)

7. Time asymmetry of counterfactuals.

Beyond the controversy about the level of triviality (or non-triviality) of particular ex-
amples, the ABL counterfactuals can play an important role in a more general controversy
about time asymmetry of all counterfactuals. There is a trend to view counterfactuals in-
variably time asymmetric. For example, Kutach (2002) worries that his Entropy Theory of
Counterfactuals “fails as an explanation of counterfactual asymmetry”.
According to the orthodox view, determining the truth values of counterfactuals is finding

the most similar worlds where the antecedent holds, but usually there are no well defined
criteria for similarity of worlds. The situation is more clear when we consider counterfactuals
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related to behavior of a physical system under changed conditions at time t: In order to
evaluate the counterfactual we have to consider possible worlds which are similar to the
actual world except for the antecedent of the counterfactual. In asymmetric counterfactual,
in which the similarity of the worlds is considered only in the past, the worlds of the physical
system can be considered identical. The change at time t caused by an external intervention.
(In general-type counterfactuals in which there is no division into the system and an external
agent, we have to deal with the question of the origin of the change.) However, in time-
symmetric counterfactuals in which the system is considered both before and after the
intervention at time t, it seems that we cannot consider identical worlds. In particular, it
seems to be the case for a quantum measurement at time t, because measurements change
the state of quantum systems.[2]
My definition of counterfactuals (ii) resolves this difficulty (Vaidman 1999a, 1999b). The

counterfactual and actual worlds are identical except for what is happening at t, the time at
which the actual and the counterfactual worlds differ by definition. The solution came from
defining a world of a quantum system by the list of the results of measurements performed
on that system. It also fits well in the framework of the many worlds interpretation of
quantum mechanics where I defined the concept of a world in a similar manner (Vaidman,
2002).
As far as I know, this is the first example of a nontrivial time-symmetric counterfactual

and its existence might change the trend of considering counterfactuals as necessarily time-
asymmetric.
This research was supported in part by grant 62/01 of the Israel Science Foundation.

References

Aharonov, Y., Bergmann, P.G., and Lebowitz, J.L. (1964), “Time Symmetry in the Quan-
tum Process of Measurement”, Physical Review B 134: 1410-1416.

Aharonov, Y. and Vaidman, L. (1990), “Properties of a Quantum System During the Time
Interval Between Two Measurements”, Physical Review A 41: 11-20.

Aharonov, Y. and Vaidman, L. (1991), “Complete Description of a Quantum System at a
Given Time”, Journal of Physics A 24: 2315-2328.

Aharonov, Y. and Vaidman, L. (2002), “How One Shutter Can Close N Slits”,Physical
Review A, to be published, e-print, quant-ph/0206074.

Einstein, A., Podolsky, B., and Rosen, N. (1935), “Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete?”, Physical Review 47: 777-780.

Kastner, R. E. (1999a), “Time-Symmetrized Quantum Theory, Counterfactuals, and ‘Ad-
vanced Action’ ”, Studies in History and Philosophy of Modern Physics 30: 237-259.

Kastner, R. E. (1999b), “The Three-Box Paradox and Other Reasons to Reject the Coun-
terfactual Usage of the ABL Rule”, Foundations of Physics 29: 851-863.

Kastner, R. E. (2002), “Shutters, Boxes, But No Paradoxes”, e-print, quant-ph/0207070.

Kastner, R. E. (2003), “The Nature of the Controversy Over Time-Symmetric Quantum
Counterfactuals”, Philosophy of Science, March 2003, e-print, PITT-PHIL-SCI00000868.

http://lanl.arXiv.org/abs/quant-ph/0206074
http://lanl.arXiv.org/abs/quant-ph/0207070
http://philsci-archive.pitt.edu/documents/disk0/00/00/08/68/index.html


7

Kutach, D. N. (2002), “The Entropy Theory of Counterfactuals”, Philosophy of Science, 69:
82-104.

Sharp, W.D. and Shanks, N. (1993), “The Rise and Fall of Time-Symmetrized Quantum
Mechanics”, Philosophy of Science 60: 488-499.

Schulz, O., Steinhbl, R., Englert, B.G., Kurtsiefer, G., and Weinfurter, H. (2003), “Ascer-
taining the Values of σx, σy, and σz of a Polarization Qubit”, Physical Review Letters, to
be published, e-print quant-ph/0209127.

Vaidman L. (1993), “Lorentz-Invariant “Elements of Reality” and the Joint Measurability
of Commuting Observables”, Physical Review Letters 70, 3369-3372.

Vaidman, L. (1999a),”Defending Time-Symmetrized Quantum Counterfactuals”, Studies in
History and Philosophy of Modern Physics 30: 237-259, e-print version, quant-ph/9811092.

Vaidman, L. (1999b), “Time-Symmetrized Counterfactuals in Quantum Theory”, Founda-
tions of Physics 29: 755-765.

Vaidman, L. (1999c), “The Meaning of Elements of Reality and Quantum Counterfactuals
– Reply to Kastner”, Foundations of Physics 29: 865-876.

Vaidman, L. (2002), “The Many-Worlds Interpretation of Quantum Mechanics”, The Stan-
ford Encyclopedia of Philosophy (Summer 2002 Edition), Edward N. Zalta (ed.),URL =
http://plato.stanford.edu/entries/qm-manyworlds/

Vaidman, L., Aharonov, Y., and Albert, D. (1987), “How to Ascertain the Values of σx, σy,

and σz of a Spin-
1

2
Particle”, Physical Review Letters 58: 1385-1387.

[1] Note that none of these asymmetries exists in the classical case because when a complete

description of a classical system is given at one time, it fixes the complete description at all

times and (ideal) measurements at time t do not change the state of a classical system.

[2] This was the point of the paragraph quoted by Kastner. It is different from the difficulty of fixing

the outcomes of the measurements at two times, which Kastner discussed. Even when these

outcomes are fixed, the state of the quantum system depends on the type of the measurement

at time t.
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