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Abstract

The symmetries of the wavefunction for identical particles, including
anyons, are given a rigorous non-relativistic derivation within pilot-wave
formulations of quantum mechanics. In particular, parastatistics are ex-
cluded. The result has a rigorous generalisation to n particles and to
spinorial wavefunctions. The relation to other non-relativistic approaches
is briefly discussed.

1 Quantum indistinguishability

It is well known that identical particles in standard (non-relativistic) quantum
mechanics are characterised by symmetry conditions on the wavefunction. For
spinless wavefunctions, these are given by

YK, Xiy o3 Xy oo, Xy ) :e”@b(xl,...,xj,...,xi,...,xn,t), (1)

where v = 0 (mod 27) for bosons (symmetry), and v = 7w (mod 27) for fermions
(antisymmetry). In two dimensions, it is possible for 7 to be arbitrary (anyons),
where the value depends on the homotopy class of the path along which the
particles are exchanged, and the wavefunction is multi-valued. For spinorial
wavefunctions (which we discuss only in three dimensions) one requires total
symmetry or antisymmetry under simultaneous exchange of both spatial and
spinorial indices (bosons or fermions).!
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I The possibility of anyons was first pointed out by Leinaas and Myrheim (1977). They were
described in detail by Goldin et al. (1981) and by Wilczek (1982), and appear to be relevant
to the explanation of the fractional quantum Hall effect (Arovas et al., 1982, Laughlin, 1983,
Tsui et al., 1982).
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The derivation of these symmetry conditions from first principles, however, is
not self-evident. As stressed in the classic discussion by Messiah and Greenberg
(1964), the empirical content of quantum indistinguishability is captured by the
requirement that all observables commute with the permutation operators,

[4,1L;;] =0, VA,i,j. (2)

But this merely leads to the conclusion that wavefunctions describing indistin-
guishable particles should lie in subspaces of Hilbert space that are invariant
under all elements of an irreducible representation of the permutation group.
Since for n > 2 particles the permutation group is non-commutative, one obtains
in addition to the usual one-dimensional representations also higher-dimensional
ones, connected with the so-called parastatistics, and which have never been ob-
served experimentally.

It is the purpose of this paper to give a natural proof that parastatistics are
excluded and a derivation of the three known symmetry types in the framework
of two pilot-wave theories, namely de Broglie-Bohm theory (de Broglie, 1928,
Bohm, 1952), and Nelson’s (1966) stochastic mechanics. In non-relativistic
quantum theory, this is one of the most rigorous proofs to date, in particular in
int extension to spinors. The two pilot-wave theories are sketched in Section 2.
The main result follows in Section 3 for two spinless particles, and is generalised
to n particles and to spinors in Sections 4 and 5, respectively. Finally, in Section
6, we briefly examine the relation of our approach to the topological approaches
of Laidlaw and C. DeWitt (1971) and Leinaas and Myrheim (1977), and to the
approach of Goldin et al. (1980, 1981).

An independent treatment of this question by Diirr et al. (in preparation) is
forthcoming, which explicitly includes spinorial wavefunctions, and gives a label-
free description of identical particles in the Bohm framework. For other partial
or related results in de Broglie-Bohm theory see Schneider (1995),2 Sjoqvist
and Carlsen (1995) and Brown et al. (1999), and in stochastic mechanics see
Nelson (1985) and Goldstein (1987).

2 Pilot-wave theories

The development of wave mechanics, with both de Broglie and Schrédinger, was
based on the optico-mechanical analogy. For de Broglie (1928), the Hamilton—
Jacobi action, which is related to the canonical momentum of particle ¢ via

2Schneider shows under that under quite general conditions, two wavefunctions satisfying
the same Schrdédinger equation and generating the same de Broglie velocity field are propor-
tional to each other. Applying this to identical particles, he obtains a result similar to ours
(for scalar wavefunctions).




should be interpreted as the geometric limiting case of the phase of a wave, for
which a wave equation (on configuration space) had meanwhile been derived
by Schrédinger. While in Schrédinger’s formulation of wave mechanics, as in
wave optics, one does away with light rays or particle trajectories, de Broglie’s
formulation is a dynamical theory of point masses, a pilot-wave theory, defined
by a guidance equation of the form (3) and the Schrédinger equation for ¢ =
Re®S/"_ In the case of non-vanishing vector potential, the guidance equation
reads

miX; — ¢ A(x;) = V;S, (4)

or

) 1
x; = —(ViS + ¢;A(x;)), (5)
m;
and is thus gauge invariant.

From the Schrédinger equation one standardly derives the two coupled equa-
tions for R? and S:

5 1
2 . (R2 .
OR" = Z Vi (B Vi), (6)
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and accordingly with vector potential. Equation (6) is a continuity equation
for R?, while equation (7) has the form of a Hamilton—Jacobi equation with an
additional term, sometimes called the quantum potential,

2 .
Q:_Z h A,R‘ (8)
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This explains intuitively results such as electron diffraction and interference,
as can be seen qualitatively from the shape of the quantum potential (see e.g.
Bohm and Hiley, 1993, p. 34). Notice that the quantum potential factorises if
and only if the wavefunction does.

After a lull of twenty-five years, the theory was rediscovered by Bohm (1952)
and revitalised through his discovery that it allows a consistent quantum de-
scription of measurement and of the phenomenology of collapse. We now sketch
the latter description, which we need for Section 5.

During a measurement interaction, eigenstates ¥;(z) of some self-adjoint
operator of a system (call it the particle) become coupled with essentially non-
overlapping states ®;(y) of some other system (call it the apparatus):

Z Aii(z)®i(y)- 9)

This means that during the measurement interaction, the configuration space
of the composite system is carved up into regions separated by high quantum



potential barriers, corresponding to the different components of (9). If the
components are not reinterfered, the future trajectory of the particle will be
guided, via (5), only by one of the states v;(x), the effective wavefunction of
the particle, as if the wave had physically collapsed. Given a fixed experimental
arrangement, it is the initial configuration of the system that determines which
component is the effective wavefunction. In this sense, one can talk of the theory
as a hidden variables theory. In general, however, the result depends also on
the experimental arrangement, so that the standard arguments against such
theories do not apply (Bell, 1987, esp. Chaps 1 and 18).

Application of this model to position and momentum measurements already
yields a qualitative understanding of uncertainty, and application to parallel
Stern—Gerlach measurements on particles in the singlet state yields strict an-
ticorrelations (see Section 5 for the relevant generalisation of the theory to
spinors). The quantitative aspects of quantum mechanics are obtained by as-
suming that particle positions in an ensemble are distributed according to the
quantum distribution R? = ||, which will then be true at all times (under
a unitary evolution the particle distribution satisfies the same continuity equa-
tion as R?, and in a measurement the preceding analysis shows why no other
subensembles can be selected other than those characterised by one of the dis-
tributions |¢;|?). This distribution plays a role analogous to that of equilibrium
distributions in classical statistical mechanics. Indeed, the analogy between
the two theories stretches from justifications of equilibrium down to cousins of
Maxwell’s demon.

Standard references to de Broglie-Bohm theory, in addition to the original
papers, are the textbooks by Bohm and Hiley (1993), Holland (1993), Diirr
(2001) and the forthcoming one by Valentini (in preparation). A concise non-
technical overview is given by Goldstein (2001). The model of spin to be used
in Section 5 is due to Bell (1987, Chap. 19), which contains several other papers
providing insights into, extending and generally promoting the approach.

Nelson’s (1966, 1985) stochastic mechanics can also be seen as a pilot-wave
theory, although this is not his own understanding. One modifies de Broglie-
Bohm theory by assuming that the particle undergoes not a deterministic evo-
lution but a diffusion process, in which the guidance equation is given by the
following It6 equation:

dXz' = bzdt + dw,-, (10)
with )
1 q; h ViR
b; = —V; —A , 11
and where dw; is a Wiener process with
dw; =0, (dw;)?= idt. (12)
K3 bl K3 mi

Here, b; is the drift velocity of particle i, and v; := % its diffusion coefficent.



By inserting the distribution R2, the corresponding Fokker—Planck equation
reduces to the continuity equation (6), so that one sees both that R? is the
equilibrium distribution also for Nelson’s theory, and that the average velocity
of the particles at equilibrium is their de Broglie-Bohm velocity (5). Thus, one
can consider Nelson’s theory as de Broglie-Bohm theory with added noise (see
also Bohm and Hiley, 1993, Sects 9.5 ff.).

3 Case of two spinless particles

Since pilot-wave theories include more structure than the standard formulation
of quantum mechanics, namely particle trajectories, it is now possible to formu-
late stronger conditions of indistinguishability than merely requiring (2), and
this will allow us to derive all the standard symmetry properties for wavefunc-
tions. We start with the case of two spinless particles. Since any Hamiltonian
will be symmetrical, it suffices to establish the result at a single instant in time;
it will then hold for all instants. We treat the phase S and amplitude R in
succession. We shall allow S in general to be multi-valued, while R is obviously
single-valued and positive. Notice, however, that although S may be multi-
valued, 8;S and all the V;S need to be uniquely defined, in order for Re?S/"
to solve the Schrédinger equation, in particular (6) and (7). (A unique V;S is
also needed for the corresponding guidance equation to be well-defined.) In the
following, we shall set m; =m =1 and ¢; = ¢ = 1 for all 4.

The treatment of S is identical in de Broglie-Bohm theory and in Nelson’s
mechanics. We impose a symmetry condition on the velocities of the particles
(respectively, on the average velocities), as given by (5):

V1S, &,t) + A&, t) =V2S5(61,6,t) + A(&e,t) - (13)
§1=x,82=y 1=y,§2=%
That is, the velocity (average velocity) of particle 1 in a given configuration is
equal to that of particle 2 in the configuration with the particles exchanged.
This is the natural requirement of indistinguishability at the level of particle
trajectories. By renaming the variables on the right-hand side, we see that the
vector potential drops out, and we obtain:

Vi(St &t - sean)| =0 (14)
Similarly we obtain:
Vo(S(@&1) - S@.0)| _ =0 (15)

In other words, we have (with 2D-dimensional notation for the V operator, D
the dimension of space):

V(S(x,y,t) - S(y,x, t)) =0. (16)



Were S everywhere defined, we would conclude that S(x,y,t) = S(y,x,t) +
v (mod 27), and in fact v = 0 for all ¢ (setting x = y). However, S is undefined
where R has a zero. For example, if the two particles are trapped in two disjoint
boxes with infinite potential walls, the region {R # 0} is disconnected, and
can be arbitrary. Indeed, if ¢ and ¢ are single-particle wavefunctions with
support in the two boxes, respectively, such that the symmetric combination
(&) (&) + (€1)Y(&2) solves the Schrédinger equation, the two terms have
disjoint support in the configuration space, and solve the Schrédinger equation
separately. Thus any wavefunction

P(61)p(&2) + ae” (&)Y (&) (17)

is also a solution. (Notice that not only the phase difference may be arbitrary,
but also the symmetry of the amplitude may be destroyed. Incidentally, (17)
furnishes an example in which there is more than one equilibrium measure for
the particle distribution.)

We must thus require, as is implicit also in the standard requirement (2), that
the particles be indistinguishable under all possible circumstances, in particular
if we open the boxes. (This and similar ways of speaking in the following do not
imply reference to actual laboratory procedures, but to the fact that (16) needs
to hold at all times even with arbitrary time-dependent symmetric potentials,
magnetic fields etc.)

We still may not assume, however, that the spreading of the wave function
makes R everywhere different from zero, because we know that the diagonal set
{x =y} may be exceptional, from the example of antisymmetric wavefunctions.
(It is also exceptional from the point of view of the pilot-wave dynamics, as
discussed below in Section 6.) We omit the case D = 1, for which the set
{x # y} is disconnected. For D > 2 instead this set is connected. Given the
freedom to vary V etc., we shall thus assume that there is an open time interval
in which R is different from zero on the set {x # y} (or at least a connected
subset). On this interval we can indeed conclude

S(x,y,t) = S(y,x,t) + (mod 27). (18)

For D > 3 the set {x # y} is simply connected (or we may assume that so is
the connected subset). Thus S is single-valued (mod 27). Interchanging x and
y in (18), we see that v equals 0 or 7 (bosons or fermions). When D = 2 the set
{x # y} is multiply connected. The (equal-time) paths A from (x,y) to (y,x)
fall into different homotopy classes, depending on whether the two particles pass
each other on the left or on the right (call these ‘simple exchange paths’), or
on whether and how often they wind around each other in either sense. Any
exchange path is homotopic to a concatenation of simple exchange paths. Thus
for D = 2 the phase difference along an exchange path is independent of x and
¥y, and is equal to a whole number n, depending on the homotopy class, times
an arbitrary constant «y (anyonic phase). This holds over a whole time interval,



and the question arises whether v may be time-dependent. Were this the case,
however, 8;S would be ill-defined. Thus ~ is independent of ¢, for all D > 2.

We now establish that R is symmetric. The second proof given below covers
both de Broglie and Bohm’s theory and Nelson’s, but we note that there is a
more direct proof in Nelson’s theory. (Both proofs hold for all D > 2.) Indeed,
we require not only that the average velocity (5), but also the drift velocity (11)
be symmetric. The two conditions combined yield:

VR*(x,y,t) _ VR*y,x,t)
R%(x,y,t)  R2(y,x,t)

(19)

We take any instant from the interval for which R # 0 on {x # y} (or the con-
nected subset), and thus again consider (19) on this set (R is already symmetric
on the complement). From (19) we have:

Vlog R%(x,y,t) = Vlog R*(y, x,t). (20)
Thus,
Vg R(x,y,t) = V1eg R(y, x, t), (21)
and since for D > 2 the region is connected,
log R(x,y,t) =log R(y,x,t) + 0, (22)
and
R(x,y,t) = e’R(y,x,1). (23)
It follows that
R(x,y,t) = €?R(x,y,1), (24)
and since R is single-valued by definition, e2° = 1, or
R(x,y,t) = £R(y, x,t); (25)
and since it is positive,
R(X7 y) t) = R(Y7x5 t)7 (26)

for any instant of the time interval under consideration (both on {x # y} and
on {x = y}). Thus, in both phase and amplitude the wavefunction has the
desired symmetries on a certain time interval, and since H is symmetric, it has
them at all times.

For the case of de Broglie and Bohm’s theory, we do not have the additional
condition (19), but we use the fact that on the given time interval S is symmetric
(up to a time-independent «), and R and S are coupled via (6) and (7), with
symmetric V. Since we can vary the Hamiltonian, we choose the case of zero
magnetic field, so in an appropriate gauge A = 0. (This is not only for ease of
calculation, but also because at one point in Section 5 we shall need precisely
this case.) We introduce the notation S(x,y,t) := S(y,x,t) and R(x,y,t) :=
R(y,x,1).



First of all, since Re?/" and ReiS/™ both solve the Schrodinger equation
and thus (7), and since all of 8;S, VS and V are symmetric on the given time
interval, it follows that the quantum potential (8) is symmetric:

n* AR _ B’ AR

TSR 2 R @)

or B B
RAR—- RAR=0 (28)

identically, and thus also
8, (RAR - RAR) —0. (29)
From the continuity equation (6), on the region R # 0, one has
R

OR=—-VRVS — EAS’ (30)

and similarly for R and S, since they also satisfy the continuity equation. Sub-
stituting into (29) one has:

8; (RAR - RAR) — (8,R)AR + RA(3R) — (B,;R)AR — RA(8,R)

= VRVSAR+ gASAR + RV(AR)VS+
2R(D  0m0nR0m0,5) + RVRV(AS)+

m,n

AR - - -
RTRAS + RVRV(AS)+R

R
2
VRVSAR — %ASAR — RV(AR)VS—
2R(D 010, R0,0,S) — RVRV(AS)—

R%As — RVRV(AS) — R%AAS

AAS— (31)

(where we continue to use 2D-dimensional notation for V and A, and m and
n also run from 1 to 2D). Simplifying using (28) and the symmetry of V.S and
AS yields

vs (VRAR + RV(AR) — VRAR — RV(AR)) +
2(VAS)(RVR - RVR) + 2 00, S(ROmOR — 70,0, R) =

m,n

(VS)V(RAR — RAR) + 2(VAS)(RVR — RVR)+
2 0m0nS(ROpOp R — 7010, R) = 0.

m,n



Thus, again because of (28),

(VAS)(RVR — RVR) + Y 010nS(R0p0p R — #0m0nR) = 0, (33)

m,n
and again taking the time derivative,

0,((VAS)(RVE - RVR)) =
(VA,S)(RVR — RVR) + V(AS)3;(RVR — RVR)+

> (Om0n0:S) (ROmOnR — 700y R)+ (34)
> (0m0nS) 0 (ROmOnR — 70,0, R) = 0.

In the limit of instantaneously varying V', we can affect (via (7)) the terms
containing 9;S without changing the others. Indeed, at any time ¢, we cann add
an arbitrary (symmetric) term U to the potential, thus adding to (34) a term
of the form

—(VAU)(RVR — RVR) = ) 0m0pU(ROmOn R — 70,0,R)  (35)

which has to be zero. If we further choose U of the form
U=u'(&) +...+uP () +u' (&) +... +uP(&)), (36)
all mixed derivatives 0,,0,U vanish, and the requirement reduces to

> 03U(RO.R — ROnR) + > 02U(ROLR — ROLR) =0, (37)

where all 92U and 83U can be varied independently. Thus, in particular,

RVR - RVR=0. (38)

From this, on {R # 0}, follows again equation (21), and the rest of the proof
proceeds as in the case of Nelson’s mechanics.

4 Case of n spinless particles

For n particles, one can take over the above arguments largely unmodified, and
conclude that for all 4, j,

S(X1ye vy Xiyen oy Xjyun oy Xnyt) = S(X1y ey Xy ooy Xy o, Xy ) + Y4353 (39)



As before, vy; ;3 is independent of ¢, and also of x (k # 1, j), because 0;S and
V S would otherwise be ill-defined. As before, for D > 3 the configuration space
without the set where two or more particles coincide is simply connected, and
thus the constant 7y; j; can take only the two values 0 or m, while for D = 2 it
is arbitrary. The only additional step that is required is to show that vy; ;3 is in
fact independent of the pair {7, j}, and, for D = 2, to discuss the dependence on
the homotopy structure of the exchange paths, which is rather more complicated
for n particles than it is for two.

For D = 3, the phase difference between S and S is path-independent, and
thus 7y; ;3 is uniquely associated with a permutation of the labels i,j. For
permutations II;; we have, however:

IL;; = 1L 1L 10, (40)
so that
Vidy = Viaok} T Wiky T V(ky (mod 2m). (41)
Since
Y.k} T Yk = 0(mod 27), (42)
we have
Viriy = Viky (mod 2m), (43)

and exchange of one particle with any other yields the same phase difference.
It follows that exchange of any two particles yields the same phase difference.

Take D = 2. For two particles we have said that all exchange paths are
homotopic to concatenations of the simple exchange paths along which the two
particles do not wind around each other. For n particles, two such paths, even
if like-handed, are not generally homotopic to each other. The homotopy class
further depends on whether and how many other particles may be enclosed
within the path, and on whether and how often any such particles are circled
by either of the particles being exchanged. We can, however, redefine simple
exchange paths as those along which the particles being exchanged neither wind
around each other nor enclose any other particles. One can then easily convince
oneself that any exchange path is homotopic to a concatenation of such simple
exchange paths. The phase difference along a simple exchange path is +vy; j3,
according to whether the path is left-handed or right-handed. What we wish
to establish is that this is independent of the pair {7,7}. And in fact, we can
mimick the above argument based on permutations.

We first exchange particles j and k along a simple exchange path, say a
left-handed one; then we exchange ¢ and k along another, say also a left-handed
one; finally we exchange j and k again, this time along a right-handed simple
exchange path. This concatenation is homotopic to a simple path exchanging i
and j (a left-handed one). In terms of the phase differences along the paths, we
obtain:

Vit = Vik} T Wik} — V(jk} (mod 2m). (44)

10



That is, even without (42), we obtain the result (43), now for the phase dif-
ferences along simple exchange paths (not enclosing any other particles) in two
dimensions.

5 Generalisation for spinorial wavefunctions

We shall now treat the case of spinorial wavefunctions (in three dimensions).
These obey the Pauli equation:

. 0® R . 2
ihG = - Z g (Vi —i0iA () ¥ + V' + N;SiB(Xi)‘I’a (45)

where S; is the spin matrix vector acting on particle ¢, and B is the (external)
magnetic field. Writing spinorial wavefunctions as

U= > o salsr >[50 >, (46)

S1,..,8n
the condition to be derived is

1;[)51...81‘...8_7'...8" (xla ey Xy ee axja L] ,Xn,t) =

@ . .
€ 7¢s1...55...si...sn (X17 sy Xy Xy '7Xn7t)7

(47)

with vy = 0 for all ¢, j or v = 7 for all 4, j (total symmetry or antisymmetry of the
spinorial wavefunction). Notice also that for B = 0, the single components of the
spinorial wavefunction decouple and all obey the same (symmetric) Schrédinger
equation (in which A can be gauged to zero).

We first generalise the two pilot-wave theories to the case of spinorial wave-
functions, following the most common treatment, due to Bell (1987, Chap. 19).
Notice first of all that de Broglie’s guidance equation (5) can be written

ho ¢V g

X; = Elm > + EA(xi), (48)
and similarly, Nelson’s can be written
h o ¢*Vip g h o Y*Viy
i = (—1 —A(x;) + — i 4
dx (mim Fo T e AG) + o ReS T )dt+dw (49)

The generalisations of (48) and (49) to spin are given, respectively, by

Z ¢:1...sn Vi¢51...sn

+ T A(xi), (50)

11



and

Z ¢:1...sn Vi¢s1...s"

dxi = (ilmsl"'-,sn +&A(Xz)+
i Z ¢;l...sn¢81...sn m;
81y::448n
Z w;...snvi'lpsl...sn
h

_Re51,...,sn )dt+dw“ (51)
i Z /L/}-:l...sn ¢S1...sn
813.4498n

which are manifestly independent of the spin basis chosen. (These are the
equations needed to analyse the Bell experiments.)

Our methods of Section 3 are not directly applicable to derive (47). There
is, however, an elegant way of generalising the results. We make use of the
treatment of measurement theory sketched in Section 2, according to which
after a measurement interaction one can identify a specific component of the
wavefunction (9) of the total system as uniquely responsible for the further
motion of the particles. A measurement interaction, however, just means an
appropriate choice of potentials and magnetic fields over a period of time, which
we are free to make.

Specifically, we first confine the particles via symmetric potentials to n boxes
with infinite walls, each box containing a single particle. We then perform (ideal)

measurements of spin on each of the particles, yielding results, say, s9,...,s2.
The effective wavefunction for the n particles is now
0 0
Z d}slo'l(l)"“’sg[(n) |SH(1) > |8H(") > (52)
I

where the sum ranges over all and only permutations that yield distinct se-
quences. Since with a fixed experimental arrangement, the different sequences
of results depend on different initial positions of the particles, the requirement
that the original wavefunction leave all possible trajectories invariant under ex-
change of any two particles translates into requiring the same separately of all
non-zero components of the form (52). (If one such component is zero, then it
is already totally symmetric or antisymmetric.)

For illustration, take the case of three spin-1/2 particles. The general case is
analogous. (We need at least three particles in order to cover the possibility of
parastatistics.) The easiest case is when all spin measurements yield the same
result, say up. Then the effective wavefunction is

Vg [+ > [+ > [+ > (53)

If we choose the magnetic field B = 0, the system is effectively described by one
scalar wavefunction obeying the Schrédinger equation. We can open the boxes
and treat it by the methods used for scalar wavefunctions in Section 3.

12



In general, however, we will have different spin values in different boxes, say
spin up in two boxes and spin down in the third. We first pull down the potential
barriers between boxes containing particles with the same spin, so that in this
case we have one box containing two spin-up particles and one containing one
spin-down particle. The effective wavefunction is now given by

Y|+ > [+ > [= >+ [+ > = > [+ >+ [=> [+ > [+ >, (54)

each term corresponding to a different particle being in the spin-down box, and
one still needs the guidance equations (50) or (51). Notice, however, that as
long as the particles are confined to the two boxes, for any possible configuration
only one of the terms in (54) will be non-zero, e.g. for any configuration in which
particle 1 is in the spin-down box, the only non-zero term is 44 |— > |+ >
|+ >. It follows that, as long as the particles are in the boxes,

VS++_(x,y,z VS++— (y7X7 Z), (55)
VS +(x%y,2) = VS_i4i(y,%x2), (56)

~—

etc. (where S;_ is the phase of ¢, _, etc.). Taking B = 0, not only do
Y- (%,y,2) and ¢4 4 (y,X,2z) obey the same (symmetric) Schrodinger equa-
tion, but also ¥4 _4(x,y,2) and ¢¥_, (¥, %, z), etc.

For each fixed z, when non-empty, the region {R,,_(x,y,z) # 0} is con-
nected (we exchange the two particles in the spin-up box), so that we can apply
our previous methods (for both phase and amplitude) to obtain

¢++7 (x,y,z) = i¢++f(y7x7z) (57)

(and similarly for 14 _4 under exchange of x and z, and for ¢_, under ex-
change of y and z). Instead, when non-empty, the region {R, . (x,y,z) # 0} U
{R_44(x,y,z) # 0} has two disconnected components, according to whether
particle 1 or particle 2 is in the spin-down box. We obtain only

¢+7+(X7yaz) = 6eiry¢*++(Y7X7Z)7 (58)

with « and ¢ arbitrary (and similarly in the other cases). One sees that the
spinorial wavefunction must have the form

lI’(X,y,Z) = ¢++—(X7Y7z)|+ > |+ > |_ >+
6617¢+*+(X7Z7y)|+ > |_ > |+ >+
6lei7,¢7++(z7yax)|_ > |+ > |+ >, (59)

with ¢4, symmetric or antisymmetric in the first two variables.

As a penultimate step, we flip the spin in the spin-down box, set the magnetic
field back to 0, and pull down the wall between this box and the spin-up box.
(If there are more than two boxes with different values of spin, we repeat this

13



operation several times.) The wavefunction in (59) becomes

(V1 (0 3,2) + 86701 4 (x,2,y) + 07V i (By, %)) [+ > [+ > |+ >,
(60)
i.e. has the form (53), and must therefore be symmetric in all pairs of variables
(if ¢4 is symmetric in the first two variables) or antisymmetric in all pairs of
variables (if ¢4 _ is antisymmetric in the first two variables). It follows easily
that, respectively,
Sl = §'et’ = £1. (61)
Thus, we have shown that also an effective wavefunction with different spin
terms such as (54) is totally symmetric or antisymmetric.

Finally, one convinces oneself that the effective wavefunctions need to be ei-
ther all symmetric or all antisymmetric (e.g. by considering non-maximal mea-
surements after which the effective wavefunction is a superposition of any two
thus far considered). Thus, the spinorial wavefunction is totally symmetric or
totally antisymmetric at the time of the spin measurements, and since the Pauli
equation is symmetric, for all times.

This completes our derivation of the symmetry conditions in the spinorial
case, and shows that parastatistics is excluded. Unfortunately, our proof yields
no complete connection between spin and statistics, since for arbitrary spin the
velocity field is invariant both when the wavefunction is symmetric and when
it is antisymmetric. Incidentally, there is another model of spin in pilot-wave
theories, due to Bohm and Hiley (1993, Chap. 10), where the guidance equa-
tion includes an additional velocity term. (This term is added so to have the
velocity field obtained from the Pauli equation be the non-relativistc limit of
the one obtained from the Dirac equation.) However, this term also transforms
invariantly under exchange irrespectively of whether the wavefunction is sym-
metric or antisymmetric, so that Bohm and Hiley’s model can also not be used
to derive the spin-statistics connection.

6 Alternative approaches

To conclude, we briefly mention the alternative approaches to identical parti-
cles in non-relativistic quantum mechanics, one of which also aims to exclude
parastatistics and bears an interesting relation to our approach above. This is
the topological approach developed by Laidlaw and C. DeWitt (1971) and by
Leinaas and Myrheim (1977), with an anticipation by Finkelstein and Rubin-
stein (1968). This approach is based on the use of a reduced configuration space
for identical particles, defined by excising the points in which two or more par-
ticles coincide, and identifying configurations related by a permutation of the
particles. Exclusion of the coincidence points makes the resulting space multiply
connected. In three dimensions or more, it is doubly connected, corresponding
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to the simply connected case above (without identifications). In two dimen-
sions (treated only by Leinaas and Myrheim), the reduced configuration space
is infinitely connected.

Laidlaw and DeWitt use the Feynman-path formalism to calculate transition
amplitudes. From the topology of the paths, they derive the usual amplitudes.
(Notice the different point of application of the topological considerations: Feyn-
man paths versus equal-time paths.) Leinaas and Myrheim define wavefunctions
(and a Schrodinger equation) directly on the reduced configuration space, and
obtain two-valued and multi-valued wavefunctions in three and two dimensions,
respectively (they also have a discussion of the one-dimensional case). Laid-
law and DeWitt treat only the spinless case, while Leinaas and Myrheim give
an extension to spinor-valued wavefunctions on the reduced configuration space
(explicitly only for two particles).

In both cases, the choice of the reduced configuration space is conceptually
the central step. As pointed out already in Brown et al. (1999), the pilot-wave
approach gives a particularly perspicuous justification for this step. Indeed, the
set of coincidences is dynamically inaccessible, whether or not the wavefunction
is zero on the set. This can be seen as follows. We set §; = & = x in (13)
above:

V1S, &,t) + A&, t) =V2S5(61,6,t) + A(&e,t) ,  (62)
§1=€2=x §1=€2=x

and see that if two particles coincide at one instant ¢, they coincide for all times.
Thus, if they do not coincide at one instant, they cannot come to coincide at any
later time. The configuration space for two identical particles decomposes into
an unphysical configuration space for one particle of double mass and charge,
and the configuration space with coincidence points removed. As regards the
identification of points related by permutations, it would seem that this is also
perfectly natural, since the motions are perfectly symmetrical, and indeed de
Broglie-Bohm theory can be consistently formulated in a label-free way, as
described in Diirr et al. (in preparation) (see also Sjoqvist and Carlsen, 1995).

Goldin et al. (1980, 1981) work within the framework of second-quantised
non-relativistic fields ¢(x), or more precisely, the Lie algebra formed by the
mass density and momentum density operators:

p(x) = mip*(x)y(x),
Ix) = FE*x)VH(x) - VY (x)y(x)

(suitably averaged with Schwartz space functions). The representations of this
current algebra yield fields satisfying the canonical commutation and anticom-
mutation relations, as well as anyonic commutation relations (see also Goldin
and Sharp, 1983, where the relation to Leinaas and Myrheim’s work is discussed
in more detail). Goldin (1987) points out that also this approach yields a natural
justification for excising the coincidence points. As opposed to the justification

(63)
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provided by de Broglie-Bohm theory, however, coincidence points are excised
also in the case of distinguishable particles.

The current algebra approach provides a rigorous framework for anyons, but
it explicitly allows for parastatistics, unless the wavefunction is scalar-valued
(Goldin, 1987). Goldin et al. (1985) therefore conjecture that the topological
approach may be able to rigorously exclude parastatistics only in the case of
scalar wavefunctions (e.g. suitable extensions of Feynman-path methods would
also allow for parastatistics). If this is correct, the approach based on pilot-wave
theories, as in the present paper and in Diirr et al. (in preparation) would pro-
vide the first rigorous proof that parastatistics are excluded also in the spinorial
case.
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