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Abstract

After a brief review of ontic and epistemic descriptions, and of subjective, logical and statistical inter-
pretations of probability, we summarize the traditional axiomatization of calculus of probability in
terms of Boolean algebras and its set-theoretical realization in terms of Kolmogorov probability
spaces. Since the axioms of mathematical probability theory say nothing about the conceptual meaning
of “randomness” one considers probability as property of the generating conditions of a process so that
one can relate randomness with predictability (or retrodictability). In the measure-theoretical codifi-
cation of stochastic processes genuine chance processes can be defined rigorously as so-called regular
processes which do not allow a long-term prediction. We stress that stochastic processes are equiva-
lence classes of individual point functions so that they do not refer to individual processes but only to an
ensemble of statistically equivalent individual processes.

Less popular but conceptually more important than statistical descriptions are individual descrip-
tions which refer to individual chaotic processes. First, we review the individual description based on
the generalized harmonic analysis by Norbert Wiener. It allows the definition of individual purely
chaotic processes which can be interpreted as trajectories of regular statistical stochastic processes.
Another individual description refers to algorithmic procedures which connect the intrinsic random-
ness of a finite sequence with the complexity of the shortest program necessary to produce the sequence.

Finally, we ask why there can be laws of chance. We argue that random events fulfill the laws of
chance if and only if they can be reduced to (possibly hidden) deterministic events. This mathematical
result may elucidate the fact that not all nonpredictable events can be grasped by the methods of mathe-
matical probability theory.

1. Overview

1.1 Ontic and epistemic descriptions

One of the most important results of contemporary classical dynamics is the proof that the de-
terministic differential equations of some smooth classical Hamiltonian systems have solutions
exhibiting irregular behavior. The classical view of physical determinism has been eloquently
formulated by Pierre Simon Laplace . While Newton believed that the stability of the solar
system could only be achieved with the help of God, Laplace “had no need of that hypothesis” 2

since he could explain  the solar system by the deterministic Newtonian mechanics alone. Laplace
discussed his doctrine of determinism in the introduction to his Philosophical Essay on
Probability , in which he imaged a superhuman intelligence capable of grasping the initial con-
ditions at any fixed time of all bodies and atoms of the universe, and all the forces acting upon it.
For such a superhuman intelligence “nothing would be uncertain and the future, as the past,
would be present to its eyes.” 3 Laplace’s reference to the future and  the past implies that he refers
to a fundamental theory with an unbroken time-reversal symmetry. His reference to a

1 Laboratory of Physical Chemistry, ETH-Zentrum, CH-8092 Zürich (Switzerland),
Primas@phys.chem.ethz.ch.

2 Laplace’s famous replay to Napoleon’s remark that he did not mention God in his Exposition du Système du
Monde.

3 Laplace (1814). Translation taken from the Dover edition, p.4.
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“superhuman intelligence” suggests that he is not referring to our possible knowledge of the
world, but to things “as they really are”. The manifest impossibility to ascertain experimentally
exact initial conditions necessary for a description of things “as they really are” is what led Laplace
to the introduction of a statistical description of the initial conditions in terms of probability
theory. Later Josiah Willard Gibbs  introduced the idea of an ensemble of a very large number
of imaginary copies of mutually uncorrelated individual systems, all dynamically precisely defined
but not necessarily starting from precisely the same individual states.4 The fact that a statistical
description in the sense of Gibbs presupposes  the existence of a well-defined individual description
demonstrates that a coherent statistical interpretation in terms of an ensemble of individual systems
requires an individual interpretation as a backing.

The empirical inaccessibility of the precise initial states of most physical systems requires a
distinction between epistemic and ontic interpretations.5 Epistemic  interpretations refer to our
knowledge of the properties or modes of reactions of observed systems. On the other hand, ontic
interpretations refer to intrinsic properties of hypothetical individual entities, regardless of
whether we know them or not, and independently of observational arrangements. Albeit ontic
interpretations do not refer to our knowledge, there is a meaningful sense in which it is natural to
speak of theoretical entities “as they really are”, since in good theories they supply the indispensable
explanatory power.

States which refer to an epistemic interpretation are called epistemic states , they refer to our
knowledge. If this knowledge of the properties or modes of reactions of systems is expressed by
probabilities in the sense of relative frequencies in a statistical ensemble of independently repeated
experiments, we speak of a statistical interpretation and of statistical states. States which refer to
an ontic interpretation are called ontic states . Ontic states are assumed to give a description of a
system “as it really is”, that is, independently of any influences due to observations or
measurements. They refer to individual systems and are assumed to give an exhaustive description
of a system. Since an ontic description does not encompass any concept of observation, ontic states
do not refer to predictions of what happens in experiments. At this stage it is left open to what
extent ontic states are knowable. An adopted ontology of the intrinsic description induces an
operationally meaningful epistemic interpretation for every epistemic description: an epistemic
state refers to our knowledge of an ontic state.

1.2 Cryptodeterministic systems

In modern mathematical physics Laplacian determinism is rephrased as Hadamard’s principle of
scientific determinism  according to which every initial ontic state of a physical system determines
all future ontic states.6 An ontically deterministic dynamical system which even in principle does
not allow a precise forecast of its observable behavior in the remote future will be called
cryptodeterministic.7 Already, Antoine Augustine Cournot (1801–1877) and John Venn
(1834–1923) recognized clearly that the dynamics of complex dynamical classical systems may
depend in an extremely sensitive way on the initial and boundary conditions. Even if we can
determine these conditions with arbitrary but finite accuracy, the individual outcome cannot be
predicted; the resulting chaotic dynamics allows only an epistemic description in terms of

4 Gibbs (1902). A lucid review of Gibbs’ statistical conception of physics can be found in Haas (1936),
volume II, chapter R.

5 This distinction is due to Scheibe (1964), Scheibe (1973), pp.50–51.
6 Compare Hille & Phillips (1957), p.618.
7 In a slightly weaker form, this concept has been introduced by Edmund Whittaker (1943).
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statistical frequencies.8 The instability of such deterministic processes represents an objective
feature of the corresponding probabilistic description. A typical experiment which demonstrates
the objective probabilistic character of a cryptodeterministic mechanical system is Galton’s desk.9

Modern theory of deterministic chaos has shown how unpredictability can arise from the
iteration of perfectly well-defined functions because of a sensitive dependence on initial
conditions.10 More precisely, the catchword “deterministic chaos” refers to ontically deterministic
systems with a sensitive dependence on the ontic initial state such that no measurement  on the
systems allows a long-term prediction of the ontic state of the system.

Predictions refer to inferences of the observable future behavior of a system from empirically
estimated initial states. While in some simple systems the ontic laws of motion may allow to
forecast its observable behavior in the near future with great accuracy, ontic determinism implies
neither epistemic predictability nor epistemic retrodictability. Laplace knew quite well that a per -
fect measurement of initial condition is impossible, and he never asserted that deterministic
systems are empirically predictable. Nevertheless, many positivists tried to define determinism by
predictability. For example Herbert Feigl:

“The clarified (purified) concept of causation is defined in terms of predictability
according to a law (or, more adequately, according to a set of laws).” 11

Such attempts are based on a notorious category mistake. Determinism does not deal with pre-
dictions. Determinism refers to an ontic description. On the other hand, predictability is an
epistemic  concept. Yet, epistemic statements are often confused with ontic assertions. For example,
Max Born  has claimed that classical point mechanics is not deterministic since there are instable
mechanical systems which are epistemically not predictable. 12 Similarly, it has been claimed that
human behavior is not deterministic since it is not predictable. 13 A related mistaken claim is that
“… an underlying deterministic mechanism would refute a probabilistic theory by contradicting
the randomness which … is demanded by such a theory.” 14 As emphasized by John Earman :

“The history of philosophy is littered with examples where ontology and episte-
mology have been stirred together into a confused and confusing brew. …
Producing an ‘epistemological sense’ of determinism is an abuse of language since
we already have a perfectly adequate and more accurate term – prediction – and it
also invites potentially misleading argumentation – e.g., in such-an-such a case
prediction is not possible and, therefore, determinism fails.” 15

8 Compare Cournot (1843), §40; Venn (1866).
9 Galton’s desk (after Francis Galton, 1822–1911) is a inclined plane provided with regularly arranged

nails in n  horizontal lines. A ball launched on the top will be diverted at every line either to left or to right.
Under the last line of nails there are n + 1 boxes (numbered from the left from k = 0  to k n= ) in which the
balls are accumulated. In order to fall into the k -th box a ball has to be diverted k  times to the right and
n k−  times to the left. If at each nail the probability for the ball to go to left or to right is   2, then the
distribution of the balls is given by the binomial distribution 

    
� �n
k

n( )2 , which for large n  approach a
Gaussian distribution. Our ignorance of the precise initial and boundary does not allow us to predict
individual events. Nevertheless, the experimental Gaussian distribution does in no way depend on our
knowledge. In this sense, we may speak of objective chance events.

10 For an introduction into the theory of deterministic chaos, compare for example Schuster (1984).
11 Feigl (1953), p.408.
12 Born (1955a), Born (1955b). For a critique of Born’s view compare Von Laue (1955).
13 Scriven (1965). For a critique of Scriven’s view compare Boyd (1972).
14 Gillies (1973), p.135.
15 Earman (1986), pp.6–7.
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1.3 Kinds of probability

Often, probability theory is considered as the natural tool for an epistemic description of cryp -
todeterministic systems. However, this view is not as evident as is often thought. The virtue and the
vice of modern probability theory are the split-up into a probability calculus and its conceptual
foundation. Nowadays, mathematical probability theory is just a branch of pure mathematics,
based on some axioms devoid of any interpretation. In this framework, the concepts “probability”,
“independence”, etc. are conceptually unexplained notions, they have a purely mathematical
meaning. While there is a widespread agreement concerning the essential features of the calculus
of probability, there are widely diverging opinions what the referent  of mathematical probability
theory is. 16 While some author claim that probability refers exclusively to ensembles, there are
important problems which require a discussion of single random events or of individual chaotic
functions. Furthermore, it is noway evident that the calculus of axiomatic probability theory is
appropriate for empirical science. In fact, “probability is one of the outstanding examples of the
‘epistemological paradox’ that we can successfully use our basic concepts without actually
understanding them.” 17

Surprisingly often it is assumed that in a scientific context everybody means intuitively the same
when speaking of “probability”, and that the task of an interpretation only consists in exactly
capturing this single intuitive idea. Even prominent thinkers could not free themselves from
predilections which only can be understood from the historical development. For example,
Friedrich Waismann18 categorically maintains that there is no other motive for the
introduction of probabilities than the incompleteness of our knowledge. Just as dogmatically,
Richard von Mises19 holds that, without exceptions, probabilities are empirical and that there
is no possibility to reveal the values of probabilities with the aid of another science, e.g. mechanics.
On the other hand, Harold Jeffreys  maintains that “no ‘objective’ definition of probability in
terms of actual or possible observations, or possible properties of the world, is admissible.”20

Leonard J. Savage  claims that “personal, or subjective, probability is the only kind that makes
reasonably rigorous sense.” 21 However, despite many such statements to the contrary, we may state
with some confidence that there is not just one single “correct” interpretation. There are various
valid possibilities to interpret mathematical probability theory.  Moreover, the various
interpretations do not fall neatly into disjoint categories. As Bertrand Russell underlines,

“in such circumstances, the simplest course is to enumerate the axioms from which the theory
can be deduced, and to decide that any concept which satisfies these axioms has an equal
right, from the mathematician’s point of view, to be called ‘probability’. … It must be
understood that there is here no question of truth or falsehood. Any concept which satisfies
the axioms may be taken to be  mathemati cal probability. In fact, it might be desirable to
adopt one interpretation in one context, and another in another.” 22

16 The definition and interpretation of probability has a long history. There exists an enormous literature on
the conceptual problems of the classical probability calculus which cannot be summarized here. For a first
orientation, compare the monographs by Fine (1973), Maistrov (1974), Von Plato (1994).

17 Von Weizsäcker (1973), p.321.
18 Waismann (1930).
19 Von Mises (1928).
20 Jeffreys (1939).
21 Savage (1962), p.102.
22 Russell (1948), pp.356–357.
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1.4 Subjective probability

A probability interpretation is called objective if the probabilities are assumed to be independent
or dissected from any human considerations. Subjective  interpretations consider probability as a
rational measure of the personal belief that the event in question occurs. A more operationalistic
view defines subjective probability as the betting rate  on an event which is fair according to the
opinion of a given subject. It is required that the assessments a rational person makes are logically
coherent such that no logical contradictions exist among them. The postulate of coherence should
make it impossible to set up a series of bets against a person obeying these requirements in such a
manner that the person is sure to lose, regardless of the outcome of the events being wagered upon.
Subjective probabilities depend on the degree of personal knowledge and ignorance concerning
the events, objects or conditions under discussion. If the personal knowledge changes, the
subjective probabilities change too. Often, it is claimed to be evident that subjective probabilities
have no place in a physical theory. However, subjective probability cannot be disposed of quite
that simply. It is astonishing, how many scientists uncompromisingly defend an objective
interpretation without knowing any of the important contributions on subjective probability
published in the last decades. Nowadays, there is a very considerable rational basis behind the
concept of subjective probability.23

It is debatable how the pioneers would have interpreted probability, but their practice suggests
that they dealt with some kind of “justified degree of belief”. For example, in one of the first
attempts to formulate mathematical “laws of chance”, Jakob Bernoulli  characterized 1713 his
Ars Conjectandi probability as a strength of expectation .24 For Pierre Simon Laplace
probabilities represents a state of knowledge, he introduced a priori  or geometric prob abilities as
the ratio of favorable to “equally possible” cases25 – a definition of historical interest which,
however, is both conceptually and mathematically inadequate.

The early subjective interpretations are since long out of date, but practicing statisticians have
always recognized that subjective judgments are inevitable. In 1937, Bruno de Finetti  made a
fresh start in the theory of subjective probability by introducing the essential new notion of
exchangeability .26 De Finetti’s subjective probability is a betting rate and refers to single events. A
set of n  distinct events   E E En1 2, , ,L  are said to be exchangeable if any event depending on these
events has the same subjective probability (de Finetti’s betting rate) no matter how the Ej  are
chosen or labelled. Exchangeability is sufficient for the validity of the law of large numbers. The
modern concept of subjective probability is not necessarily incompatible with that of objective
probability. De Finetti’s representation theorem gives convincing explanation how there can be
wide intersubjective agreement about the values of subjective probabilities. According to Savage, a
rational man behaves as if he used subjective probabilities.27

23 Compare for example Savage (1954), Savage (1962), Good (1965), Jeffrey (1965). For a convenient
collection of the most important papers on the modern subjective interpretation, compare Kyburg &
Smokler (1964).

24 Bernoulli (1713).
25 Compare Laplace (1814).
26 DeFinetti (1937). Compare also the collection of papers DeFinetti (1972) and the monographs

DeFinetti (1974), DeFinetti (1975).
27 Savage (1954), Savage (1962).
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1.5 Inductive probability

Inductive probability belongs to the field of scientific inductive inference. Induction is the
problem of how to make inferences from observed to unobserved (especially future) cases. It is an
empirical fact that we can learn from experience, but the problem is that nothing concerning the
future can be logically  inferred from past experience. It is the merit of the modern approaches to
have recognized that induction has to be some sort of probabilistic inference, and that the
induction problem belongs to a generalized logic. Logical probability is related to, but not
identical with subjective probability. Subjective probability is taken to represent the extent to
which a person believes a statement is true. The logical interpretation of probability theory is a
generalization of the classical implication, it is not based on empirical facts but on the logical
analysis of these. The inductive probability is the degree of confirmation of a hypothesis with
reference to the available evidence in favor of this hypothesis.

The logic of probable inference and the logical probability concept goes back to the work of
John Maynard Keynes  who in 1921 defined probability as a “logical degree of belief ”.28 This
approach has been extended by Bernard Osgood Koopman29 and especially by Rudolf
Carnap  to a comprehensive system of inductive logic.30 Inductive probabilities occur in science
mainly in connection with judgements of empirical results; they are always related to a single case ,
they are never to be interpreted as frequencies. The inductive probability is also called
“nondemonstrative inference”, “intuitive probability” (Koopman), “logical prob ability” or
“probability1” (Carnap). A hard nut to crack in probabilistic logic is the proper choice of a
probability measure – it cannot be estimated empirically. Given a certain measure inductive logic
works with a fixed set of rules so that all inferences can be effected automatically by a general
computer. In this sense inductive probabilities are objective quantities.31

1.6 Statistical probability

Historically statistical probabilities have been interpreted as limits of frequencies, that is, as
empirical properties  of the system (or process) considered. But, statistical probabilities cannot be
assigned to a single event. This is an old problem of the frequency interpretation of which already
John Venn  was aware. In 1866 Venn tried to define a probability explicitly in terms of relative
frequencies of occurrence of events “in the long run”. He added that “the run must be supposed to
be very long, in fact never to stop.”32 Against this simpleminded frequency interpretation there is a
grave objection: any empirical evidence concerning relative frequencies is necessarily restricted to
a finite set of events. Yet, without additional assumptions  nothing can be inferred about the value of
the limiting frequency  of a finite segment, no matter how long it may be. Therefore, the statistical
interpretation of the calculus of probability has to be supplemented by a decision technique that
allows to decide which probability statements we should accept. Satisfactory acceptance rules are
notoriously difficult to formulate.

The simplest technique is the old maxim of Antoine Augustine Cournot: if the probability
of an event is sufficiently small, one should act in a way as if this event will not occur at a solitary

28 Keynes (1921).
29 Koopman (1940a), Koopman (1940b), Koopman (1941).
30 Carnap (1950), Carnap (1952), Carnap & Jeffrey (1971). Carnap’s concept of logical probabilities has

been critized sharply by Watanabe (1969a).
31 For a critical evaluation of the view that statements of probability can be logically true, compare Ayer

(1957), and the ensuing discussion, pp.18–30.
32 Venn (1866), chapter VI, §35 , §36.
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realization.33 However, the theory gives no criterion for deciding what is “sufficiently small”. A
more elegant (but essentially equivalent) way out is the proposal by Carl Friedrich von
Weizsäcker to consider probability as a prediction of a relative frequency, so that “the probability
is only the expectation value of the relative frequency”.34 That is, we need in addition a judgment
about a statement. This idea is in accordance with Carnap’s view that two meanings of probability
must be recognized: the inductive probability  (his “probabilit y1”), and statistical probability  (his
“probability2”).35 The logical probability is supposed to express a logical relation between a given
evidence and a hypothesis. They “speak about statements of science; therefore, they do not belong
to science proper but to the logic or methodology of science, formulated in the metalanguage.”
On the other hand, “the statements on statistical probability, both singular and general statements,
e.g., probability laws in physics or in economics, are synthetic and serve for the description of
general features of facts. Therefore these statements occur within  science, for example, in the
language of physics (taken as object lan guage).” 36 That is, according to this view, inductive logic
with its logical probabilities is a necessary completion of statistical probabilities: without
inductive logic we cannot infer statistical probabilities from observed frequencies. The
supplementation of the frequency interpreta tion by a subjective factor cannot be avoided by
introduction of a new topology. For example, if one introduces the topology associated with the
field of p-adic numbers37, one has to select subjectively a finite prime number p . As emphasized
by Wolfgang Pauli, no frequency interpretation can avoid a subjective factor:

„An irgend einer Stelle [muss] eine Regel für die praktische Verhaltungsweise des
Menschen oder spezieller des Naturforschers hinzugenommen werden, die auch dem
subjektiven Faktor Rechnung trägt, nämlich: auch die einmalige Realisierung eines
sehr unwahrscheinlichen Ereignisses wird von einem gewissen Punkt an als praktisch
unmöglich angesehen. … An dieser Stelle stösst man schliesslich auf die prinzipielle
Grenze der Durchführbarkeit des ursprünglichen Programmes der rationalen
Objektivierung der einmaligen subjektiven Erwartung.” 38

Later Richard von Mises39 tried to overcome this difficulty by introducing the notion of
“irregular collectives”, consisting of one infinite sequence in which the limit of the relative fre-
quency of each possible outcome exists and is indifferent to a place selection. In this approach the
value of this limit is called the probability of this outcome. The essential underlying idea was the
“impossibility of a successful gambling system”. While at first sight Mises’ arguments seemed to
be reasonable, he could not achieve a convincing success.40 However, Mises’ approach provided
the crucial idea for the fruitful computational-complexity approach to random sequences,
discussed in more detail below.

33 Cournot (1843). This working rule was still adopted by Kolmogoroff (1933), p.4.
34 Von Weizsäcker (1973), p.326. Compare also Von Weizsäcker (1985), pp.100–118.
35 Carnap (1945), Carnap (1950).
36 Carnap (1963), p.73.
37 Compare for example Khrennikov (1994), chapters VI and VII.
38 Pauli (1954), p.114.
39 Von Mises (1919), Von Mises (1928), Von Mises (1931). The English edition Von Mises (1964) was

edited and complemented by Hilda Geiringer; it is strongly influenced by the views of Erhard Tornier
and does not necessarily reflect the views of Richard Mises.

40 The same is true for the important modifications of Mises’ approach by Tornier (1933) and by
Reichenbach (1994). Compare also the review by Martin-Löf (1969a).
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2. Mathematical probability

2.1 Mathematical probability as a measure on a Boolean algebra

In the mathematical codification of probability theory a chance event is defined only implicitly by
axiomatically characterized relations between events. These relations have a logical character so
that one can assign to every event a proposition stating its occurrence. All codifications of classical
mathematical probability theory are based on Boolean classifications  or Boolean logic . That is, the
algebraic structure of events is assumed to be a Boolean algebra , called the algebra of events.  In
1854, George Boole introduced these algebras in order

“to investigate the fundamental laws of those operations of the mind by which
reasoning is performed; to give expression to them in the symbolic language of a
Calculus, and upon this foundation to establish the science of Logic and to
construct its method; to make that method itself the basis of a general method for
the application of the mathematical doctrine of Probabilities … ” 41

Mathematical probability is anything that satisfies the axioms of mathematical probability theory.
As we will explain in the following in some more details, mathematical probability theory is the
study of a pair   ( , )� p , where the algebra of events is a   s-complete Boolean algebra   �, and the
map   p : [ , ]� → 0 1  is a   s-additive probability measure.42

Pro memoria: Boolean algebras 43

A Boolean algebra is a non-empty set   �  in which two binary operations ∨  (addition or disjunction) and ∧
(multiplication or conjunction), and a unary operation ⊥  (complementation or negation) with the following
properties are defined
    • the operations ∨  and ∧  are commutative and associative,
    • the operation ∨  is distributive with respect to ∧ , and vice versa,
    • for every A ∈�  and every B ∈� we have A B B∨ ∨Α⊥ ⊥=  and A B B∧ ∧Α⊥ ⊥= ,
    • A A A A A∨ ∧ ∧ ∨Α Α( ) ( )⊥ ⊥= =
These axioms imply that in every Boolean algebra there are two distinguished elements   1 (called the unit of  � )
and         00 (called the zero of � ), defined by     A A A∨ ∧Α Α⊥ ⊥= = ∈1 , 00 for every �. With this it follows that         00
is the neutral element of the addition ∨ ,    A A∨ 00 =  for every   A ∈� , and that  1  is the neutral element of the
multiplication ∧ , A A∧ 1 =  for every A ∈� .

An algebra of events is a Boolean algebra  ( , , )� ∧ ∨ ,⊥ . If an element  A ∈� is an event, then Α⊥

is the event that A  does not take place. The element A B∨  is the event which occurs when at least
one of the events A  and B  occurs, while A B∧  is the event when both events A  and B  occur. The
unit element    1  represents the sure event while the zero element     00 represents the impossible
element. If A  and B  are any two elements of the Boolean algebra � which satisfies the relation
A B B∨ =  (or the equivalent relation A B A∧ = ) we say that “ A  is smaller than B”, or that “ A
implies B”, and write A B≤ .

Probability is defined as a norm p : [ , ]� → 0 1  on a Boolean algebra � of events. That is, to
every event   A ∈� there is associated a probability p A( ) for the occurrence of the event A . The
following properties are required for p A( ):

• p  is strictly positive, i.e. p A( ) ≥ 0  for every A ∈� and p A( ) = 0  if and only if A = 0,
where 0  is the zero of   �,

41 Boole (1854), p.1.
42 Compare Halmos (1944), Kolmogoroff (1948), LoS, (1955). A detailed study of the purely lattice-

theoretical (“point-free”) approach to classical probability can be found in the monograph by Kappos
(1969).

43 For more details, compare Sikorski (1969).
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• p  is normed, i.e.   p( )1 = 1, where   1  is the unit of  �,
• p  is additive, i.e. p A B p A p B( ) ( ) ( )∨ = +  if A  and B  are disjoint, that is if A B∧ = 0.

It follows that 0 1≤ ≤p A( )  for every  A ∈�, and A B p A p B≤ ⇒ ≤( ) ( ).
In contrast to a Kolmogorov probability measure, the measure p  is strictly positive. That is,

p B( ) = 0  implies that B  is the unique smallest element of the Boolean algebra   � of events.
In probability theory it is necessary to consider also countably infinitely many events so that one

needs in addition some continuity requirements. By a Boolean   s-algebra one understands a
Boolean algebra where the addition and multiplication operations are performable on each
countable sequence of events. That is, in a Boolean   s-algebra   � there is for every infinite sequence
A1, A2 ,   A3 ,L of elements of � a smallest element     A A A1 2 3∨ ∨ ∨L ∈ �. The continuity
required for the probability p  is then the so-called  s-additivity:

• a measure p  on a   s-algebra is   s-additive if   p A p Ak k k k� �∨ ∑=
∞

=
∞=1 1 ( )

whenever   � �Ak  is a sequence of pairwise disjoint events, 
      
A Aj k∧ = 00  for all j k≠ .

Since not every Boolean algebra is a s-algebra, the property of countable additivity is an essential
restriction.

2.2 Set-theoretical probability theory

It is almost universally accepted that mathematical probability theory consists of the study of
Boolean   s-algebras. For reasons of mathematical convenience, one usually represents the Boolean
algebra of events by a Boolean algebra of subsets of some set. Using this representation one can go
back to a well-established integration theory, to the theory of product measures, and to the Radon–
Nikodym′ -theorem for the definition of conditional probabilities. According to a fundamental
representation theorem by Marshall Harvey Stone  every ordinary Boolean algebra with no
further condition  is isomorphic to the algebra        ( )( ), , ,� � � � �  of all subsets of some point set
�.44 Here � corresponds to the power set �( )�  of all subsets of the set �, the conjunction ∧
corresponds to the set-theoretical intersection   �, the disjunction  ∨  corresponds to the set-
theoretical union �, and the negation  ⊥  corresponds to the set-theoretical complementation   � .
The multiplicative neutral element   1  corresponds to the set   �, while the additive neutral element
corresponds to the empty set  ∅. However, a  s -complete Boolean algebra is in general not
s -isomorphic to a s -complete Boolean algebra of point sets. Yet, every s -complete Boolean
algebra is   s -isomorphic to a   s -complete Boolean algebra of point sets modulo a   s -ideal in that
algebra.45

Conceptually, this result is the starting point for the axiomatic foundation by Andrei
Nikolaevich Kolmogorov  of 1933 which reduces mathematical probability theory to classical
measure theory.46 It is based on a so-called probability space ( , , )� � �  consisting of a non-empty
set � (called sample space) of points, a class   �  of subsets of � which is a s-algebra (i.e. is closed
with respect to the set-theoretical operations executed a countable number of times), and a
probability measure �  on � . Sets that belong to �  are called � -measurable  (or just measurable
if   �  is understood). The pair ( , )� � is called a measurable  space . A probability measure �  on

  ( , )� �  is a function   � �: [ , ]→ 0 1  satisfying   � ( )∅ = 0 ,  � �( ) = 1, and the condition of

44 Stone (1936).
45 Loomis (1947).
46 Kolmogoroff (1933). There are many excellent texts on Kolmogorov’s mathematical probability theory.

Compare for example: Breiman (1968), Prohorov & Rozanov (1969), Laha & Rohatgi (1979), Rényi
(1970a), Rényi (1970b). Recommendable introductions to measure theory are, for example: Cohn (1980) ,
Nielsen (1997).
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countable additivity (that is,         � �� ��n n n n=
∞

=
∞=1 1� �∑ ( ) whenever     � ��n  is a sequence of

members of   �  which are pairwise disjoint subsets in  �). The points of  � are called elementary
events. The subsets of   � belonging to  �  are referred to as events. The nonnegative number   � ( )�

is called the probability  of the event     � ∈�.
In most applications the sample space  � contains uncountably many points. In this case, there

exist non-empty Borel sets in �  of measure zero, so that there is no strictly positive  s-additive
measure on � . But it is possible to eliminate the sets of measure zero by using the s -complete
Boolean algebra � = � �� , where �  is the s-ideal of Borel sets of � -measure zero. With this,
every Kolmogorov probability space  ( , , )� � �  generates probability algebra with the
s-complete Boolean algebra       � = � ��  and the restriction of �  to � is a strictly positive measure
p . Conversely, every probability algebra   ( , )� p  can be realized by some Kolmogorov probability
space   ( , , )� � �  with         � � � �� , where   �  is the  s-ideal of Borel sets of  � -measure zero.

One usually formulates the set-theoretical version of probability theory directly in terms of the
conceptually less transparent triple ( , , )� � � , and not in terms of the probabilistically rele vant
Boolean algebra       � = � �� . Since there exist non-empty Borel sets in   �  (i.e., events differ ent from
the impossible event) of measure zero, one has to use the “almost everywhere” terminology. A
statement is said to be true “almost everywhere” or “for almost all � ” if it is true for all � �∈
except, may be, in a set     � ∈� of measure zero,   �( )� = 0 . If the sample space  � contains
uncountably many points, elementary events do not exist in the operationally relevant version in
terms of the atom-free Boolean algebra � �� . Johann von Neumann  has argued convincingly
that the finest events which are empirically accessible are given by Borel sets of nonvanishing
Lebesgue measure, and not by the much larger class of all subsets of   �.47

This setting is almost universally accepted, either explicitly or implicitly. However, some
paradoxical situations do arise unless further restrictions are placed on the triple ( , , )� � � . The
requirement that a probability measure has to be a perfect  measure avoids many difficulties.48

Furthermore, in all physical applications there are natural additional regularity conditions. In
most examples the sample space �  is polish (i.e. separable and metrisable), the s-algebra   �  is
taken as the   s-algebra of Borel sets49 and   �  is a regular Radon measure .50 Moreover, there are
some practically important problems which require the use of unbounded measures, a feature
which does not fit into Kolmogorov’s theory. A modification, based on conditional probability
spaces (which contains Kolmogorov’s theory as a special case), has been developed by Alfréd
Rényi.51

47 Von Neumann (1932a), pp.595–598. Compare also Birkhoff & Neumann (1936), p.825.
48 Compare Gnedenko & Kolmogorov (1954), §3.
49 If   �  is a topological space, then the smallest   s -algebra with respect to which all continuous complex-

valued functions on   �  are measurable, is called the Baire   s -algebra of  � . The smallest  s -algebra
containing all open sets of   �  is called the Borel  s -algebra of   � . In general, the Baire   s -algebra is
contained in the Borel  s -algebra. If   �  is metrisable, then the Baire and Borel   s -algebras coincide.
Compare Bauer (1974), theorem 40.4, p.198.

50 A polish space is a separable topological space that can be metrized by means of a complete metric; compare
Cohn (1980), chapt.8. For a review of probability theory on complete separable metric spaces, compare
Parthasarathy (1967). For a discussion of Radon measures on arbitrary topological spaces, compare
Schwartz (1973). For a critical review of Kolmogorov’s axioms, compare Fortet (1958), Lorenzen
(1978).

51 Rényi (1955). Compare also chapter 2 in the excellent textbook by Rényi (1970b).
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2.3 Random variables in the sense of Kolmogorov

In probability theory observable quantities of a statistical experiment are called statistical  observ-
ables . In Kolmogorov’s mathematical probability theory statistical observables are represented by

  � -measurable functions on the sample space   �. The more precise formulation goes as follows.
The Borel   s-algebra     S®  of subsets of   ® is the  s-algebra generated by the open subsets of  ®. The
members of     S®  are called Borel subsets of   ®. In Kolmogorov’s set-theoretical formulation, a
statistical observable is a   s-homomorphism x S: ® → � �� . In this formulation, every observable
x can be induced by a real-valued Borel function x : � → ®  via the inverse map52

            x : : S( ) ( ) ( ) , .� � � �x x− ∈ ∈ ∈1 � �� � �| ®

In mathematical probability theory a real-valued Borel function x  defined on  � is said to be a
real-valued random  variable .53 Every statistical observable is induced by a random variable, but an
observable (that is, a s-homomorphism) defines only an equivalence class  of random variables
which induce this homomorphism. Two random variables x  and y  are said to be equivalent if
they are equal   � -almost everywhere,54

        x y x y( ) ( ) ( ) ( ) .� � � � � � �� ⇔ ∈ ≠ =� �| 0

That is, for a statistical description is not necessary to know the point function     � �a x ( ), it is
sufficient to know the observable   x, or in other words, the equivalence class  [ ]( )x �  of the point
functions, which induce the corresponding s-homomorphism,

x :⇔ [ ]( ) ( ) ( ) ( ) .x y y x� � � �� �| �

The description of a physical system in terms of an individual function   � �a f ( ) distin guishes
between different points   � �∈  and corresponds to an individual description  (maybe in terms of
hidden variables). In contrast, a description in terms of equivalence classes of random variables
does not distinguish between different points and corresponds to a statistical ensemble description.

If     � �a x ( ) is a random variable on   �, and if     � �a x ( ) is integrable over   � with respect
to � , we say that the expectation of x  with respect to �  exists, and we write

   
E ( ) ( ) ( ) ,x x d: � � �

�∫
and call   E ( )x  the expectation value  of x . Every Borel-measurable complex-valued function

  x f xa ( )  of a random variable   � �a x ( ) on   ( , , )� � �  is also a complex-valued random
variable on ( , , )� � � . If the expectation of the random variable � �a f x{ ( )} exists, then

    
E ( ) ( ) ( ) .{ }f f x d= ∫ � � �

�

A real-valued random variable � �a x ( ) on a probability space ( , , )� � �  induces a probabil ity
measure       �x : [ , ]S® → 0 1  on the state space   ( , )S® ®  by

            � � � � � �x x x( ) ( ) ( ) , ,� � � �: S� � � �− = ∈ ∈ ∈1 | ®
so that

E ( ) ( ) ( ) .f f x d xx= ∫ �
®

52 Sikorski (1949).
53 A usual but rather ill-chosen name since a “random variable” is neither a variable nor random.
54 While the equivalence of two continuous functions on a closed interval implies their equality, this is not true

for arbitrary measurable (that is, in general, discontinuous) functions. Compare, for example Kolmogorov
& Fomin (1961), p.41.
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2.4 Stochastic processes

The success of Kolmogorov’s axiomatization is largely due to the fact that it does not busy itself
with chance.55 Probability has become a branch of pure mathematics. Mathematical probabil ity
theory is supposed to provide a model for situations involving random phenomena, but we are
never told what exactly “random” conceptually means besides the fact that random events cannot
be predicted exactly. Even if we have only a rough idea what we mean by “random”, it is plain that
Kolmogorov’s axiomatization does not give sufficient conditions for characterizing random
events. However, if we adopt the view proposed by Friedrich Waismann56 and consider
probability not as a property of a given  sequence of events  but as property of the generating
conditions  of a sequence then we can relate randomness with predictability and retrodictability.

A family       { }( )x t t� ∈®  of statistical observables  x( )t  indexed by a time parameter t  is called a
stochastic process . In the framework of Kolmogorov’s probability theory a stochastic process is
represented by a family       {[ ] }( )x t t� �� ∈®  of equivalence classes     [ ]( )x t ��  of random variables

    x t( )��  on a common probability space ( , , )� � � ,

[ ]( ) ( ) ( ) ( ) .x t y t y t x t� � � � �� � � �: � �|
Two individual point functions       ( , ) ( )t x t� �a �  and       ( , ) ( )t y t� �a �  on a common probability
space ( , , )� � �  are said to be statistically equivalent (in the narrow sense), if and only if

� � � � �� �∈ ≠ = ∈| x t x t t( ) ( ) .� � 0 for all ®
Some authors find it convenient to use the same symbol for functions and equivalences classes of
functions. We avoid this identification, since it muddles individual and statistical descriptions. A
stochastic process is not an individual function but an indexed family of s-homomorphism

        x S( ) :t ® → � ��  which can be represented by an indexed family of equivalence classes  of random
variables. For fixed   t ∈® the function       � �a x t( )�  is a random variable. The point function
t x ta ( )��  obtained by fixing �  is called a realization , or a sample path , or a trajectory  of the
stochastic process       t x ta [ ]( )�� . The description of a physical system in terms of an individual
trajectory t x ta ( )��  (�  fixed) of a stochastic process {[ ] }( )x t t� �� ∈®  corre sponds to a point
dynamics , while a description in terms of equivalence classes of trajectories and an associated
probability measure corresponds to an ensemble dynamics.

Kolmogorov’s characterization of stochastic processes as collections equivalence classes of
random variables is much too general for science. Some additional regularity requirements like
separability or continuity are necessary in order that the process has “nice trajectories” and does
not disintegrate into an uncountable number of events. We will only discuss stochastic pro cesses
with some regularity properties, so that we can ignore the mathematical existence of nonseparable
versions.

Furthermore, the traditional terminology is somewhat misleading since according to
Kolmogorov’s definition precisely predictable processes also are stochastic processes. However,
the theory of stochastic processes provides a conceptually sound and mathematically workable
distinction between so-called singular processes that allow a perfect prediction of any future value
from a knowledge of the past values of the process, and so-called regular processes  for which long-

55 Compare Aristotle’s criticism in Metaphysica, 1064b 15: “Evidently, none of the traditional sciences busies
itself about the accidental.” Quoted from Ross (1924).

56 Waismann (1930).



13

term predictions are impossible.57 For simplicity, we discuss here only the important special case
of stationary  processes.

A stochastic process is called strictly stationary if all its joint distribution functions are invari ant
under time translation, so that they depend only on time differences. For many applications this is
too strict a definition, often it is enough to require that the mean and the covariance are time-
translation invariant. A stochastic process       {[ ] }( )x t t� �� ∈®  is said to be weakly stationary  (or:
stationary in the wide sense) if

•             E � �x t t( ) ,�� 2 < ∞ ∈for every ®
•             E E� � � �x t x t t( ) ( ) , ,+ = ∈t … t…� � for all ®
•             E E� � � �x t x t x t x t t t( ) ( ) ( ) ( ) , , .+ ′+ = ′ ′ ∈t … t … t… …� � � � for all ®

Since the covariance function of a weakly stationary stochastic process is positive definite,
Bochner’s theorem58 implies Khintchin’s spectral decomposition of the covariance:59 A  complex-
valued function R : ® ©→  which is continuous at the origin is the covariance function of a
complex-valued second-order, weakly stationary and continuous (in the quadratic mean) stochastic
process if and only if it can be represented in the form

R t e d Ri t( ) ˆ ( ) ,=
−∞

∞

∫ l l

where   ˆ :R ® ®→  is a real, never decreasing and bounded function, called the spectral distribution
function of the stochastic process.

Lebesgue’s decomposition theorem says that every distribution function ˆ :R ® ®→  can be
decomposed uniquely  according to

ˆ ˆ ˆ ˆ , , , , .d d s ac ac d ac d acR c R c R c R c c c c c cs s s= + + ≥ ≥ ≥ + + =0 0 0 1

where ˆ dR , ˆ sR  and ˆ acR  are normalized spectral distribution functions. The function ˆ dR  is a step
function. Both functions  ˆ sR  and ˆ acR  are continuous,  ˆ sR  is singular and ˆ acR  is absolutely con-
tinuous. The absolute continuous part has a derivative almost everywhere, it is called the spectral
density function       l l la d R dˆ ( )ac � . The Lebesgue decomposition of spectral distribution of a
covariance function t R ta ( )  induces an additive decomposition of the covariance function into a
discrete distribution function  t R ta d ( ) , a singular distribution function  t R ta s( ), and an
absolutely continuous distribution function   t R ta ac( ). The discrete part Rd  is almost periodic
in the sense of Harald Bohr , so that its asymptotic behavior is characterized by
lim sup ( )d

� � � �t R t→∞ = 1. For the singular part the limit lim sup ( )s
� � � �t R t→∞  may be any

number between  0 and 1. The Riemann-Lebesgue lemma implies that for the absolutely contin-
uous part Rac , we have   lim ( )ac

� � � �t R t→∞ = 0 .

57 Compare for example Doob (1953), p.564; Pinsker (1964), section 5.2; Rozanov (1967), sections II.2 and
III.2. Sometimes, singular processes are called deterministic, and regular processes are called purely
nondeterministic. We will not use this terminology since determinism refers to an ontic description, while
the singularity or the regularity refers to epistemic predictability of the process.

58 Bochner (1932), §20. The representation theorem by Bochner (1932), §19 and §20, refers to continuous
positive-definite functions. Later, Cramér (1939) showed that the continuity assumption is dispensable.
Compare also Cramér & Leadbetter (1967), sect.7.4.

59 Khintchine (1934). Often this result is called the Wiener–Khintchin-theorem but this terminology should
be avoided since Khintchin’s theorem relates the ensemble averages of the covariance and the spectral
functions while the theorem by Wiener (1930), chapt.II.3, relates the autocorrelation function of a single
function with a spectral function of a single function.
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A strictly stationary stochastic process {[ ] }( )x t t� �� ∈®  is called singular if a knowledge of its
past     {[ ] }( )x t t� �� < 0  allows an error-free prediction. A stochastic process is called regular  if it is
not singular and if the conditional expectation is the best forecast. The remote past of a singular
process contains already all information necessary for the exact prediction of its future behavior,
while a regular process contains no components that can be predicted exactly from an arbitrary
long past record. The optimal prediction of a stochastic process is in general nonlinear.60 Up to
now, there is no general workable algorithm for nonlinear prediction.61 Most results refer to
linear prediction of weakly stationary second-order processes. The famous Wold decomposition says
that every weakly stationary stochastic process is the sum of a uniquely determined linearly
singular and a uniquely determined linearly regular  process.62 A weakly stationary stochastic
process       {[ ] }( )x t t� �� ∈®  is called linearly singular if the optimal linear  predictor in terms of
the past     {[ ] }( )x t t� �� < 0  allows an error-free prediction. If a weakly stationary stochastic process
does not contain a linearly singular part, it is called linearly  regular .

There is an important analytic criterion for the dichotomy between linearly singular and lin-
early regular processes, the so-called Wiener–Krein criterion63: A weakly stationary stochastic
process       {[ ] }( )x t t� �� ∈®  with mean value         E � �x t( )� … = 0 and the spectral distribution function
l la ˆ ( )R  is linearly regular if and only if its spectral distribution function is absolutely con -
tinuous and if

    

ln ˆ ( )
.

� ��d R d
d

l l

l
l

1 2+
−∞

∞

> − ∞∫
Note that for a linearly regular process the spectral distribution function   l la ˆ ( )R  is necessarily
absolutely continuous so that the covariance function  t R ta ( )  vanishes for t →∞. However,
there are exactly predictable stochastic processes with an asymptotically vanishing covariance
function, so that an asymptotically vanishing covariance function is not sufficient for a regular
behavior.

There is a close relationship between regular stochastic processes and the irreversibility  of
physical systems. 64 A characterization of genuine irreversibility of classical linear input–output
system can be based on the entropy-free non-equilibrium thermodynamics with the notion of lost
energy  as central concept.65 Such a system is called irreversible if the lost energy is strictly positive.
According to a theorem by König and Tobergte66 a linear input–output system behaves
irreversible if and only if the associated distribution function fulfills the Wiener–Krein criterion
for the spectral density of a linearly regular stochastic process.

60 Compare for example Rosenblatt (1971), section VI.2.
61 Compare also the review by Kallianpur (1961).
62 This decomposition is due to Wold (1938) for the special case of discrete-time weakly stationary processes,

and to Hanner (1950) for the case of continuous-time processes. The general decomposition theorem is due
to Cramér (1939).

63 Wiener (1942), republished as Wiener (1949); Krein (1945), Krein (1945). Compare also Doob (1953),
p.584.

64 Compare also Lindblad (1993).
65 Meixner (1961), Meixner (1965).
66 König & Tobergte (1963).
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2.5 Birkhoff’s individual ergodic theorem

A stochastic process on the probability space  ( , , )� � �  is called ergodic if its associated mea sure-
preserving transformation  	 t  is ergodic for every t ≥ 0  (that is, if every  s-algebra of sets in � ,
invariant under the measure-preserving semiflow associated with the process, is trivial). According
to a theorem by Wiener and Akutowicz 67 a strictly stationary stochastic process with an
absolutely continuous spectral distribution function is weakly mixing, hence ergodic. Therefore,
every regular process is ergodic  so that the so-called ergodic theorems apply. Ergodic theorems
provide conditions for the equality of time averages and ensemble averages. Of crucial importance
for the interpretation of probability theory is the individual (or pointwise) ergodic  theorem by
George David Birkhoff.68 The discrete version of the pointwise ergodic theorem is a
generalization of the strong law of large numbers. In terms of harmonic analysis of stationary
stochastic processes, this theorem can be formulated as follows.69 Consider a strictly stationary
zero-mean stochastic process       {[ ] }( )x t t� �� ∈®  over the probability space  ( , , )� � � , and let
� �a x t( )�  be quadratically integrable with respect to the mea sure � . Then for � -almost all

  �  in   � , every trajectory t x ta ( )��  the individual autocorrelation function    t C ta ( )�� ,

          

C t
T

x x t d t
T

T

T

( ) lim ( ( ) , , ,)� � �� � � �: t t t
→∞

∗

−

+

+ ∈∫
1

2
® fixed

exists and is continuous on ®. Moreover, the autocorrelation function t C ta ( )��  equals for

  � -almost all   � �∈  the covariance function   t R ta ( ) ,

        

C t R t

R t x t x d

( ) ( ) ,

( ) ( ) ( ) ( ) .

�

� �

� � � �

� � � �
�

= ∈−

∫

for almost all

: 0

The importance of this relation lies in the fact that in most applications we see only a single
individual trajectory, that is, a particular realization of the stochastic process. Since Kolmogorov’s
theory of stochastic processes refer to equivalence classes of functions Birkhoff’s individual
ergodic theorem provides a crucial link between the ensemble description and the individual
description of chaotic phenomena. In the next chapter we will sketch two different direct
approaches for the description of chaotic phenomena which avoid the use of ensembles.

67 Wiener & Akutowicz (1957), theorem 4.
68 Using the linearization of a classical dynamical system to Hilbert-space description introduced by Bernard

Osgood Koopman (1931), Johann von Neumann (1932b) (communicated December 10, 1931,
published 1932) was the first to establish a theorem bearing to the quasiergodic hypothesis: the mean ergodic
theorem which refers to L2-convergence. Stimulated by these ideas, one month later George David
Birkhoff (1931) (communicated December 1, 1931, published 1931) obtained the even more fundamental
individual (or pointwise) ergodic theorem which refers to pointwise convergence. As Birkhoff & Koopman
(1932) explain, von Neumann communicated his results to them on October 22, 1931, and „raised at once
the important question as to whether or not ordinary time means exist along the individual path-curves
excepting for a possible set of Lebesgue measure zero“. Shortly thereafter Birkhoff proved his individual
ergodic theorem.

69 This formulation has been taken from Masani (1990), p.139–140.



16

3. Individual descriptions of chaotic processes

3.1 Deterministic chaotic processes in the sense of Wiener

More than a decade before Kolmogorov’s axiomatization of mathematical probability theory,
Norbert Wiener  invented a possibly deeper paradigm for chaotic phenomena: his mathe-
matically rigorous analytic construction of an individual  trajectory of Einstein’s idealized
Brownian motion70 nowadays called a Wiener process .71 In Wiener’s mathematical model chaotic
changes in direction of the Brownian path take place constantly. All trajectories of a Wiener
process are almost certainly continuous but nowhere differentiable, just as conjectured by Jean
Baptiste Perrin  for the Brownian motion.72 Wiener’s constructions and proof are much closer
to physics than Kolmogorov’s abstract model, but also very intricate so that for a long time
Kolmogorov’s approach has been favored. Nowadays, Wiener’s result can be derived in a much
simpler way. The generalized derivative of the Wiener process is called “white noise” since
according to the Einstein–Wiener theorem its spectral measure equals the Lebesgue measure
d ( )l p�2 . It turned out that white noise is the paradigm for a nonpredictable regular process; it
serves to construct other more complicated stochastic structures.

Wiener’s characterization of individual chaotic processes is founded on his basic paper
“Generalized harmonic analysis”.73 The purpose of Wiener’s generalized harmonic analysis is to
give an account of phenomena which can neither be described by Fourier analysis nor by almost
periodic functions. Instead of equivalence class  of Lebesgue square summable functions, Wiener
focused his harmonic analysis on individual Borel measurable functions  t x ta ( ) for which the
individual autocorrelation function

    

C t
T

x t x t t dt t
T

T

T

( ) lim ( ) ( ) , ,:
→∞

−

+

′ + ′ ′ ∈∫
1

2
®

exists and is continuous for all t . Wiener’s generalized harmonic analysis of an individual trajec -
tory t x ta ( ) is in an essential way based on the spectral representation of the autocorrelation
function. The Bochner–Cramér representation theorem implies that there exists a non-decreas ing
bounded function     l la ˆ ( )C , called the spectral distribution function of the individual function
t x ta ( ),

C t e d Ci t( ) ˆ ( ) .=
−∞

∞

∫ l l

This relation is usually known under the name individual Wiener–Khintchin theorem .74 How -
ever, this name is misleading. Khintchin’s theorem75 relates the covariance function and the
spectral function in terms of ensemble averages . In contrast, Wiener’s theorem76 refers to indi-
vidual  functions. This result was already known to Albert Einstein long before. 77 The

70 Einstein (1905), Einstein (1906).
71 Wiener (1923), Wiener (1924).
72 Perrin (1906). A rigorous proof of Perrin’s conjecture is due to Paley, Wiener & Zygmund (1933).
73 Wiener (1930). In his valuable commentary Pesi P. Masani (1979) stresses the importance of role of

generalized harmonic analysis for the quest for randomness.
74 Compare for example Middleton (1960), p.151.
75 Khintchine (1934).
76 Wiener (1930), chapt.II.3.
77 Einstein (1914a), Einstein (1914b).
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terminology “Wiener–Khintchin theorem” caused many confusions78 and should therefore be
avoided. Here, we refer to the individual theorem as the Einstein–Wiener theorem.  For many
applications it is crucial to distinguish between the Einstein–Wiener theorem which refer to
individual functions , and the statistical Khintchin theorem which refers to equivalence classes of
functions  as used in Kolmogorov’s probability theory. The Einstein–Wiener theorem is in no way
probabilistic.  It refers to well-defined single functions  rather than to an ensemble of functions.

If an individual function   t x ta ( ) has a pure point spectrum, it is almost periodic in the sense
of Besicovitch,     x t x i tj j j( ) ˆ exp( )� ∑ =

∞
1 l . In a physical context an almost-periodic time function

  x : ® ©→  may be considered as predictable since its future   � �x t t( )| > 0  is completely
determined by its past     � �x t t( )| ≤ 0 . If an individual function has an absolutely continuous
spectral distribution, then the autocorrelation function vanishes in the limit as t →∞ . The
autocorrelation function   t C ta ( ) provides a measure of the memory: if the individual func tion

  t x ta ( ) has a particular value at one moment, its autocorrelation tells us the degree to which we
can guess that it will have about the same value some time later. In 1932, Koopman and von
Neumann conjectured that an absolutely continuous spectral distribution function is the crucial
property for the epistemically chaotic behavior of an ontic deterministic dynamical system.79 In
the modern terminology, Koopman and von Neumann refer to the so-called “mixing property”.
However, a rapid decay of correlations is not sufficient as a criterion for the absence of any
regularity. Genuine chaotic behavior requires stronger instability properties than just mixing. If
we know the past � �x t t( )| ≤ 0  of an individual function t x ta ( ), then the future � �x t t( )| > 0  is
completely determined if and only if the following Szegö condition for perfect linear
predictability is fulfilled,80

ln ˆ ( )
,

ac� ��d C d
d

l l

l
l

1 2+
−∞

∞

= −∞∫
where ˆ acC  is the absolutely continuous part of the spectral distribution function of the auto -
correlation function of the individual function   t x ta ( ). Every individual function   t x ta ( )
with an absolutely continuous spectral distribution Ĉ  fulfilling the Paley–Wiener criterion

   

� �ln ˆ ( ) )
,

d C d
d

l l

l
l

�
1 2+

−∞

∞

< ∞∫
will be called a  chaotic function in the sense of Wiener.

Wiener’s work initiated the mathematical theory of stochastic processes and functional inte-
gration. It was a precursor of the general probability measures as defined by Kolmogorov.
However, it would be mistaken to believe that the theory of stochastic processes in the sense of
Kolmogorov has superseded Wiener’s ideas. Wiener’s approach has been criticized as unneces-
sarily cumbersome 81 since it was based on individual functions t x ta ( ), and not on Kolmo-
gorov’s more effortless definition of measure-theoretical stochastic processes (that is, equiva lence

78 Compare for example the controversy by Brennan (1957), Brennan (1958) and Beutler (1958),
Beutler (1958), with a final remark by Norbert Wiener (1958).

79 Koopman & Neumann (1932), p.261.
80 Compare fore example Dym & McKean (1976), p.84. Note that there are processes which are singular in

the linear sense but allow a perfect nonlinear prediction. An example can be found in Scarpellini (1979),
p.295.

81 For example by Kakutani (1950).
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classes       t x ta [ ]( )�� ). It has to be emphasized that for many practical problems only Wiener’s
approach is conceptually sound . For example, for weather prediction or anti-aircraft fire control
there is no ensemble of trajectories but just a single individual trajectory from whose past
behavior one would like to predict something about its future behavior.

The basic link between Wiener’s individual and Kolmogorov’s statistical approach is
Birkhoff’s individual ergodic theorem. Birkhoff’s theorem implies that  � -almost every trajectory
of an ergodic stochastic process on a Kolmogorov probability space  ( , , )� � �  spends an amount
of time in the measurable set � ∈� which is proportional to � ( )� . For � -almost all points

  � �∈ , the trajectory       t x ta ( )��  (with a precisely fixed   � �∈ ) of an ergodic regular
stochastic process       t x ta [ ]( )��  is an individual chaotic function in the sense of Wiener. This
result implies that one can switch from an ensemble  description in terms of a Kolmogorov prob-
ability space   ( , , )� � �  to an individual chaotic deterministic description in the sense of Wiener,
and vice versa. Moreover, Birkhoff’s individual ergodic theorem implies the equality

      

lim ( ) ( ) lim ( ) ( )
T

T
T

T

T

T
x x t d

T
x x t d
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so that for ergodic processes the autocorrelation function can be evaluated in principle from
observations of the past      { }( )x t t� �� ≤ 0  of a single  trajectory        t x ta ( )�� , a result of crucial im-
portance for the prediction theory of individual chaotic processes.

3.2 Algorithmic characterization of randomness

The roots of an algorithmic definition of a random sequence can be traced to the pioneering work
by Richard von Mises  who proposed in 1919 his principle of the excluded gambling system.82

The use of a precise concept of an algorithm has made it possible to overcome the inadequacies of
the Mises’ formulations. Von Mises wanted to exclude “all” gambling systems but he did not
properly specify what he meant by “all”. Alonzo Church  pointed out that a gambling system
which is not effectively calculable is of no practical use.83 Accordingly, a gambling system has to be
represented mathematically not by an arbitrary function but as an effective algorithm for the
calculation of the values of a function. In accordance with von Mises’ intuitive ideas and Church’s
refinement a sequence is called random if no player who calculates his pool by effective methods
can raise his fortune indefinitely when playing on this sequence.

An adequate formalization of the notion of effective computable function was given in 1936 by
Emil Leon Post  and independently by Alan Mathison Turing  by introducing the concept of
an ideal computer nowadays called Turing machine.84 A Turing machine is essentially a computer
having an infinitely expandable memory; it is an abstract prototype of a universal digital computer
and can be taken as a precise definition of the concept of an algorithm. The so-called Church–
Turing thesis states that every functions computable in any intuitive sense can be computed by a by
a Turing machine.85 No example of a function intuitively considered as computable but not
Turing-computable is known. According to the Church–Turing thesis a Turing machine
represents the limit of computational power.

82 Von Mises (1919). Compare also his later books Von Mises (1928), Von Mises (1931), Von Mises
(1964).

83 Church (1940).
84 Post (1936), Turing (1936).
85 Church (1936)
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The idea, that the computational complexity of a mathematical object reflects the difficulty of
its computation, allows to give a simple, intuitively appealing and mathematically rigorous
definition of the notion of randomness of sequence. Unlike most mathematicians, Kolmogorov
himself has never forgotten that the conceptual  foundation of probability theory is wanting. He
was not completely satisfied with his measure-theoretical formulation. Particularly, the exact
relation between the probability measures   �  in the basic probability space   ( , , )� � �  and real
statistical experiments remained open. Kolmogorov emphasized that

“the application of probability theory … is always a matter of consequences of
hypotheses about the impossibility of reducing in one way or another the
complexity of the description of the objects in question”.86

In 1963, Kolmogorov again took up the concept of randomness. He retracted his earlier view
that “the frequency concept … does not admit a rigorous formal exposition within the framework
of pure mathematics”, and stated that he came “to realize that the concept of random distribution
of a property in a large finite population can have a strict formal mathematical exposition.”87 He
proposed a measure of complexity based on the “size of a program” which, when processed by a
suitable universal computing machine, yields the desired object.88 In 1968, Kolmogorov sketched
how information theory can be founded without recourse to probability theory and in such a way
that the concepts of entropy and mutual information are applicable to individual events (rather
than to equivalence classes of random variables or ensembles). In this approach the “quantity of
information” is defined in terms of storing and processing signals. It is sufficient to consider
binary strings, that is, strings of bits, of zeros and ones.

The concept of algorithmic complexity allows to rephrase the old idea that “randomness
consists in a lack of regularity” in a mathematically acceptable way. Moreover, a complexity
measure and hence algorithmic probability refers to an individual object. Loosely speaking the
complexity K x( )  of a binary string x  is the size in bits of the shortest program for calculating it.
If the complexity of x  is not smaller than its length  l( )x  then there is no simpler way to write a
program for x  then to write it out. In this case the string x  shows no periodicity and no pattern.
Kolmogorov and independently Solomonoff and Chaitin suggested that patternless finite
sequences should be considered as random sequences.89 That is, complexity is a measure of
irregularity in the sense that maximal complexity means randomness. Therefore, it seems natural to
call a binary string random if the shortest program for generating it is as long as the string itself.
Since K x( )  is not computable, it is not decidable whether a string is random.

This definition of random sequences turned out not to be quite satisfactory. Using ideas of
Kolmogorov, Per Martin-Löf  succeeded in giving an adequate precise definition of random
sequences.90 Particularly, Martin-Löf proposed to define random sequences as those which
withstand certain universal tests of randomness, defined as recursive sequential tests. Martin-Löf ’s
random sequences fulfill all stochastic laws as the laws of large numbers, and the law of the
iterated logarithm. A weakness of this definition is that Martin-Löf requires also stochastic
properties that cannot be considered as physically meaningful in the sense that they cannot be
tested by computable  functions.

86 Kolmogorov (1983a), p.39.
87 Kolmogorov (1963), p.369.
88 Compare also Kolmogorov (1968a), Kolmogorov (1968b), Kolmogorov (1983a), Kolmogorov

(1983b), Kolmogorov & Uspenskii (1988). For a review, compare Zvonkin & Levin (1970).
89 Compare Solomonoff (1964), Chaitin (1966), Chaitin (1969), Chaitin (1970).
90 Martin-Löf (1966), Martin-Löf (1969b).
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A slightly different but more powerful variant is due to Claus-Peter Schnorr .91 He argues
that a candidate for randomness must be rejected if there is an effective procedure to do so. A
sequence such that no effective process can show its non-randomness must be considered as
operationally random. He considers the nullsets of Martin-Löf’s sequential tests in the sense of
Brower (i.e. nullsets that are effectively computable) and defines a sequence to be random if it is
not contained in any such nullset. Schnorr requires the stochasticity tests to be computable instead
of being merely constructive. While the Kolmogorov-Martin-Löf approach is nonconstructive,
the tests considered by Schnorr are constructive to such an extent that it is possible to approximate
infinite random sequences to an arbitrary degree of accuracy by computable sequences of high
complexity (pseudo-random sequences). By that, the approximation will be the better, the greater
the effort required to reject the pseudo-random sequence as being truly random. The fact that the
behaviour of Schnorr’s random sequences can be approximated by constructive methods is of
outstanding conceptual and practical importance. Random sequences in the sense of Martin-Löf
do not have this approximation property, but non-approximable random sequences exist only by
virtue of the axiom of choice.

A useful characterization of random sequences can be given in terms of games of chance.
According to Mises’ intuitive ideas and Church’s refinement a sequence is called random if and
only if no player who calculates his pool by effective methods can raise his fortune indefinitely
when playing on this sequence. For simplicity, we restrict our discussion to, the practically
important case of random sequences of the exponential type. A gambling rule implies a capital
function C  from the set   � of all finite sequences to the set ® of all real numbers. In order that a
gambler actually can use a rule, it is crucial that this rule is given algorithmically. That is, the
capital function C  cannot be any function     � → ®, but has to be a computable  function.92 If we
assume that the gambler’s pool is finite, and that debts are allowed, we get the following simple
but rigorous characterization of a random sequence:

A sequence { , , }x x x1 2 3 L  is a random sequence (of the exponential type) if and only
if every computable capital function C : � → ® of bounded difference fulfills the
relation lim { , , }n nn C x x→∞

− =1
1 0L .

According to Schnorr a universal test for randomness cannot exist. A sequence fails to be random
if and only if there is an effective process in which this failure becomes evident. Therefore,  one can
refer to randomness only with respect to a well-specified particular test.

The algorithmic concept of random sequences can be used to derive a model for Kolmogo rov’s
axioms (in their constructive version) of mathematical probability theory. 93 It turns out that the
measurable sets form an s  algebra (in the sense of constructive set theory). This result shows the
amazing insight Kolmogorov had in creating his axiomatic system.

91 Schnorr (1969), Schnorr (1970a), Schnorr (1970b), Schnorr (1971a), Schnorr (1971b), Schnorr
(1973).

92 A function     C : � → ® is called computable if there is a recursive function R such that

  � �R n w C w n( , ) ( )− < −2  for all  w ∈�  and all   n ∈ { , , , }1 2 3 L . Recursive functions are functions
computable with the aid of a Turing machine.

93 For, a review of modern algorithmic probability theory, compare Schnorr (1971b).
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4. Why are there “laws of chance” ?

4.1 Laws of chance and determinism

It would be a logical mistake to assume that arbitrary chance events can be grasped by the sta-
tistical methods of mathematical probability theory. Probability theory has a rich mathematical
structure so we have to ask under what conditions the usual “laws of chance” are valid. The modern
concept of subjective probabilities presupposes a coherent  rational behavior based on Boolean
logic. That is, it is postulated that a rational man acts as if  he had a deterministic model
compatible with his preknowledge. Since also in many physical examples the appropriateness of
the laws of probability can be traced back to an underlying deterministic ontic description, it is
tempting to presume that chance events which satisfy the axioms of classical mathematical
probability theory result always  from the deterministic behavior of an underlying physical system.
Such a claim cannot be demonstrated.

What can be proven is the weaker statement that every probabilistic system which fulfills the
axioms of classical mathematical probability theory can be embedded  into a larger deterministic
system. A classical system is said to be deterministic  if there exists a complete set of dispersionfree
states such that Hadamard’s principle of scientific determinism is fulfilled. Here, a state is said to
be dispersionfree if every observable has a definite dispersionfree value with respect to this state.
For such a deterministic system statistical states are given by mean values of dispersionfree states. A
probabilistic system is said to allow hidden variables  if it is possible to find a hypothetical larger
system such that every statistical state of the probabilistic system is a mean value of dispersionfree
states of the enlarged system. Since the logic of classical probability theory is a Boolean s-algebra
we can use the well-known result that a classical dynamical system is deterministic if and only if
the underlying Boolean algebra is atomic.94 As proved by Franz Kamber , every classical system
characterized by a Boolean algebra allows the introduction of hidden variables such that every
statistical state is a mean value of dispersionfree states. 95 This theorem implies that random events
fulfill the laws of chance if and only if they can formally be reduced to hidden deterministic events .
Such a deterministic embedding is never unique but often there is a unique minimal dilation of a
probabilistic dynamical system to a deterministic one.96 Note that the deterministic embedding is
usually not constructive and that nothing is claimed about a possible ontic interpretation of
hidden variables of the enlarged deterministic system.

Kolmogorov’s probability theory can be viewed as a hidden variable representation of the basic
abstract point-free theory. Consider the usual case where the Boolean algebra � of mathematical
probability theory contains no atoms. Every classical probability system  ( , )� p  can be represented
in terms of some (not uniquely given) Kolmogorov space ( , , )� � �  as a   s -complete Boolean
algebra � = � �� , where �  is the s-ideal of Borel sets of � -measure zero. The points � �∈  of
the set   � correspond to two-valued individual states (the so-called atomic or pure states) of the
fictitious embedding atomic Boolean algebra �( )�  of all subsets of the point set �. If (as usual)
the set � is not countable, the atomic states are epistemically inaccessible. Measure-theoretically,
an atomic state corresponding to a point  � �∈  is represented by the Dirac measure   
� at the
point   � �∈ , defined for every subset   � of  � by     
�( )� = 1 if     � ∈�  and   
�( )� = 0  if   � ∉� .

94 Compare for example Kronfli (1971).
95 Kamber (1964), §7, and Kamber (1965), §14.
96 For the Hilbert-space theory of such minimal dilations in Hilbert space, compare Sz.-Nagy & FoiaH

(1970). More generally, Antoniou & Gustafson (1997) have shown that an arbitrary Markov chain can
be dilated to a unique minimal deterministic dynamical system.
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Every epistemically accessible state can be described by a probability density  f L∈ 1( , , )� � �

which can be represented as an average  of epistemically inaccessible atomic states,

  
f f d( ) ( ) ( ) .� � 
 ���

= ′ ′∫
The set-theoretical representation of the basic Boolean algebra  � in terms of a Kolmogorov
probability space   ( , , )� � �  is mathematically convenient since it allows to relate an epistemic
dynamics t fta  in terms of a probability density f Lt ∈

1( , , )� � �  to a fictitious deterministic
dynamics for the points     t ta � �∈  by   f ft t( ) ( )� �= − .97 It is also physically interesting since all
known context-independent physical laws are deterministic and formulated in terms of pure states.
In contrast, every statistical dynamical law depends on some phenomenological constants  (like the
half-time constants 98 in the exponential decay law for the spontaneous decay of a radioactive
nucleus). That is, we can formulate context-independent laws only if we introduce atomic states.

4.2 Quantum mechanics does not imply an ontological indeterminism

Although it is in general impossible to predict an individual quantum event, in an ontic
description the most fundamental law-statements of quantum theory are deterministic. Yet,
probability is an essential element in every epistemic description of quantum events, but does not
indicate an incompleteness of our knowledge. The context-independent laws of quantum
mechanics (which necessarily have to be formulated in an ontic  interpretation) are strictly
deterministic but refer to a non-Boolean  logical structure of reality. On the other hand, every
experiment ever performed in physics, chemistry and biology has a Boolean  operational
description. The reason for this situation is enforced by the necessity to communicate about facts
in an unequivocal language.

The epistemically irreducible probabilistic structure of quantum theory is induced by the
interaction of the quantum object system with an external classical observing system. Quantum
mechanical probabilities do not refer to the object system but to the state transition induced by the
interaction of the object system with the measuring apparatus. The nonpredictable outcome of a
quantum experiment is related to the projection of the atomic non-Boolean lattice of the ontic
description of the deterministic reality to the atomfree Boolean algebra of the epistemic
description of a particular experiment. The restriction of an ontic atomic state (which gives a
complete description of the non-Boolean reality) to a Boolean context is no longer atomic but is
given by a probability measure. The measure generated in this way is a conditional probability
which refers to the state transition induced by the interaction. Such quantum-theoretical
probabilities cannot be attributed to the object system alone; they are conditional probabilities
where the condition is given by experimental arrangement. The epistemic probabilities depend
on the experimental arrangement but, for a fixed context, they are objective since the underlying
ontic structure is deterministic. Since a quantum-theoretical probability refers to a singled out
classical experimental context, it corresponds exactly to the mathe matical probabilities of

97 For example, every continuous regular Gaussian stochastic processes can be generated by an deterministic
conservative and reversible linear Hamiltonian system with an infinite-dimensional phase space. For an
explicit construction, compare for instance Picci (1986), Picci (1988).

98 These decay constants are not “an invariable property of the nucleus, unchangeable by any external
influences”, (as claimed by Max Born (1949), p.172), but depend for example on the degree of ionization of
the atom.
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Kolmogorov’s set-theoretical probability theory. 99 Therefore, a non-Boolean generalization of
probability theory is not necessary since all these measures refer to a Boolean context. The various
theorems which show that it is impossible in quantum theory to introduce hidden variables only
say that it is impossible to embed quantum theory into a deterministic Boolean theory.100

4.3 Chance events for which the traditional “laws of chance” do not apply

Conceptually, quantum theory does not require a generalization of the traditional Boolean
probability theory. Nevertheless, mathematicians created a non-Boolean probability theory by
introducing a measure on the orthomodular lattice of projection operators on the Hilbert space
of quantum theory. 101 The various variants of a non-Boolean probability theory are of no con-
ceptual importance for quantum theory, but they show that genuine and interesting generaliza-
tions of traditional probability theory are possible.102 At present there are few applications. But, if
we find empirical chance phenomena with a nonclassical statistical behavior, the rele vance of a
non-Boolean theory should be considered. Worth mentioning are the non-Boolean pattern
recognition methods103, the attempt to develop a non-Boolean information theory104, and
speculations on the mind-body relation in terms of non-Boolean logic105.

From a logical point of view the existence of irreproducible unique events cannot be excluded.
For example, if we deny a strict determinism on the ontological level of a Boolean or non -
Boolean reality, then there are no reasons to expect that every chance event is governed by
statistical laws of any kind. Wolfgang Pauli made the inspiring proposal to characterize unique
events by the absence of any type of statistical regularity:

„Die von [Jung] betrachteten Synchronizitätsphänomene … entziehen sich der
Einfangung in Natur- ‘Gesetze’ , da sie nicht reproduzierbar, d.h. einmalig sind und
durch die Statistik grosser Zahlen verwischt werden. In der Physik dagegen sind die
‘Akausalitäten’ gerade durch statistische Gesetze (grosse Zahlen) erfassbar.“ 106
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99 In quantum theory, a Boolean context is described by a commutative W*-algebra which can be generated by
a single selfadjoint operator, called the observable of the experiment. The expectation value of the operator-
valued spectral measure of this observable is exactly the probability measure for the statistical description of
the experiment in terms of a classical Kolmogorov probability space.

100 The claim by Hans Reichenbach (1949) (p.15), “dass das Kausalprinzip in keiner Weise mit der Physik
der Quanta verträglich ist”, is valid only if one restricts arbitrarily the domain of the causality principle to
Boolean logic.

101 For an introduction, compare Jauch (1974) and Beltrametti & Cassinelli (1981), chapters 11 and 26.
102 Compare for example Gudder & Hudson (1978).
103 Compare Watanabe (1967), Watanabe (1969b), Schadach (1973). For a concrete application of non-

Boolean pattern recognition for medical diagnosis, compare Schadach (1973).
104 Compare for example Watanabe (1969a), chapter 9.
105 Watanabe (1961).
106 Letter of June 3, 1952, by Wolfgang Pauli to Markus Fierz, quoted from Von Meyenn (1996), p.634.
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