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Abstract

A clarification of the heuristic concept of decoherence requires a consis-
tent description of the classical behavior of some quantum systems. We
adopt algebraic quantum mechanics since it includes not only classical
physics, but also permits a judicious concept of a classical mixture and
explains the possibility of the emergence of a classical behavior of quan-
tum systems. A nonpure quantum state can be interpreted as a classical
mixture if and only if its components are disjoint. Here, two pure quan-
tum states are called disjoint if there exists an element of the center of
the algebra of observables such that its expectation values with respect
to these states are different. An appropriate automorphic dynamics can
transform a factor state into a classical mixture of asymptotically disjoint
final states. Such asymptotically disjoint quantum states lead to regular
decision problems while exactly disjoint states evoke singular problems
which engineers reject as improperly posed.

1 On the classical behavior of quantum systems

Since the first years of quantum mechanics the relation between quantum-
theoretical and classical descriptions has been controversial. According to Niels
Bohr measuring instruments must be described classically. He justified his view
by the remark that a prerequisite of any communication is the possibility of a
description of facts in a classical language.1 Every reasonable statement about
an experimental fact has to be either true or false. This condition requires a
domain of discourse which has a classical Boolean description. In a theoretical
description the Boolean character is characterized by the absence of coherent
superpositions of states describing this domain. Bohr’s requirement reflects the
actual scientific practice: every experiment ever performed in physics, chemistry
and biology has a classical operational description. In the early years of quan-
tum mechanics it has not been realized that quantum systems are capable of

∗Published in: Decoherence: Theoretical, Experimental, and Conceptual Problems. Edited
by Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu. Springer, Berlin, 2000;
Pp.161-178.

1Compare for example Bohr (1949), p.209.
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developing classical structures so that these two reasonable requirements have
often been considered as contradictory.2

To discuss the emergence of classical behavior of quantum systems we need
a single theory which allows a coherent description of quantum physics, classical
mechanics, electrodynamics, and engineering physics in the same mathematical
language. A convenient framework for such a unified description is the formal-
ism of algebraic quantum mechanics. Algebraic quantum mechanics is nothing
but a mathematically precise and complete codification of the heuristic ideas of
quantum mechanics of the pioneer days. It is a general representation theory of
the basic kinematical symmetry group and the associated canonical commuta-
tion relations. It is valid for microscopic, mesoscopic and macroscopic systems
with finitely or infinitely many degrees of freedom. They can be either purely
quantal, purely classical or mixed quantal/classical.

A quantum system is called classical if its algebra of observables is commu-
tative. In this case, we speak of a classical quantum system. By construction, a
classical quantum system never contradicts the Heisenberg inequality for non-
commuting observables. The behavior of a classical quantum system depends
on the physical value of Planck’s constant ~. The still widely held view that
classical mechanics is the limiting case for vanishing Planck’s constant ~ is un-
tenable. Since the fictitious limit ~ → 0 does not exist in the norm topology,
there is no universal classical limit of quantum mechanics.

2 Individual and statistical descriptions

Many discussions of the emergence of classical behavior of particular quantum
systems are flawed by severe category mistakes. Philosophers speak of a category
mistake when a term that belongs to one category is treated as if it belonged
to another. In quantum physics a popular category mistake is the confusion of
individual and statistical descriptions. A related category mistake occurs when
one gives an ontic answer to an epistemic question, or an epistemic answer to
an ontic question. The problem of the ontology of a scientific theory refers
to the problem of the existence of the postulated entities. Ontological realism
is the doctrine that at least part of nature is independent of human beings.
An ontic description refers to the intrinsic properties of an individual object
system, irrespective of whether we know them or not, and irrespective of obser-
vational arrangements. An epistemic description refers to our knowledge of the
properties or modes of reactions of observed systems. Ontic descriptions reflect
some “laws of nature”, while epistemic descriptions summarize the results of
observations and experiments.

As it is well known from classical mechanics, the mathematical formalism
2For example, Bohr argued that the description of a measuring instrument cannot be in-

cluded in the realm of quantum mechanics. Most clearly Bohr stated his view in a letter of
October 26, 1935 to Schrödinger: “Das Argument ist ja dabei vor allem, dass die Messin-
strumente, wenn sie als solche dienen sollen, nicht in den eigentlichen Anwendungsbereich der
Quantenmechanik einbezogen werden können.” Quoted on p.510 in Kalckar (1996).
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required for an individual description is different from the formalism required
for a statistical description. A basic postulate for a statistical description is
Mackey’s axiom IX which calls for the commutativity of the operation of
mixing with the time evolution.3 This postulate implies the linearity of the dy-
namics of any statistical theory. Well-known examples are Koopman’s Hilbert-
space formalism (which rephrases the nonlinear Hamiltonian equations of mo-
tion of classical point mechanics in terms of linear equations of motion for clas-
sical statistical mechanics), the equivalence of nonlinear stochastic differential
equations in the sense of Itô (which provide a stochastic individual description)
with the linear Fokker-Planck equations (which give a statistical ensemble de-
scription). This connection suggests that the linear Schrödinger equation refers
to a statistical description and that any suggested nonlinear generalization of
the Schrödinger equation is inappropriate for a statistical description.

On the other hand, there are no arguments against a nonlinearity of the
Schrödinger equation for an individual description. The linearity of the dy-
namics of statistical quantum mechanics has absolutely nothing to do with the
quantum-mechanical superposition principle. The superposition principle just
says that one can construct a completely new pure state from any two different
pure states. Nonlinear equations for the dynamics of individual states do not
violate any fundamental laws of quantum mechanics but can be derived from
the interaction between quantum and classical systems.

The so-called “wave function collapse” is an example for a category mis-
take which confuses individual and statistical descriptions. In the individual
description the time evolution transforms an individual state into an individual
state, never into a mixture of individual states. If one refers to a collapse of
a coherent superposition of individual states into a statistical mixture of indi-
vidual states, one commits a category mistake. If we describe a measurement
process statistically, we have to use linear equations of motion. The resulting
final state describes a statistical ensemble, never a particular outcome. On the
other hand, an individual description of the measuring process requires a non-
linear stochastic dynamics whose ensemble average results in a linear dynamics
and corresponds to the usual equations of motion for the statistical state.

3 C*-algebraic description of individual systems

Among all the abstractions of classical science the idea of an isolated system
is central. Yet, on the fundamental level there are no isolated system. Every
physical system is interacting and entangled with the rest of the world which
we call its environment. Long ago, Arthur Eddington stressed that “the
environment must never be left out of consideration”.4 This implies that the
evolution of any object system is not governed by intrinsic laws only. Since
the environment of every material object includes the electromagnetic field, a

3Mackey (1963), p.81.
4Eddington (1946), p.13.
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proper discussion of finite open systems requires a theory which can handle
infinite systems.5

Ontic and epistemic descriptions have not only categorially different refer-
ents but they require also different mathematical tools. Ontic descriptions are
intended to have quite universal validity and should give – as far as possible or
reasonable – a context-independent description of the material world. On the
other hand, every epistemic description depends on the observational context :
it refers to empirical observations obtained via our cognitive apparatus or by
instruments used by the experimentalist. Typical for epistemic descriptions are
phenomenological Hamiltonians and phenomenological laws which depend on
contextual parameters like relaxation times or diffusion constants.

Relative to a fixed universe of discourse a context-independent ontic de-
scription of an individual physical system can be given in terms of an abstract
C*-algebra A.6 A state of the system is represented by a positive linear func-
tional ρ on A, ρ(1) = 1, ρ(A∗A) ≥ 0 for all A ∈ A . The set S(A) of all
state functionals on A is a convex and weak* compact subset of the dual A∗

of A, so that by the Krein–Milman theorem the state space S(A) is the weak*
closed convex hull of the set P(A) of its extreme points. The elements of P(A)
are called pure state functionals since they cannot be decomposed into different
state functionals. More precisely: A state functional ρ ∈ A∗ is pure if and only
if ρ = pρ1 + (1 − p)ρ2 with ρ1, ρ2 ∈ S(A) and 0 < p < 1 implies ρ = ρ1 = ρ2.

If a system with the C*-algebra A is described by the state functional ρ,
then the reduced state functional of a subsystem described by the C*-algebra
B ⊂ A is given by the restriction ρB of ρ to B,

ρB(B) := ρ(B) for all B ∈ B , ρB ∈ B∗ .

As a rule, the restriction of a pure state functional is not pure. The fact that
a system consisting of an object system and its environment may be in a pure
state without the object system being in a pure state is a typical quantum
phenomenon reflecting the nonseparability of quantum systems. A reduced
quantum state functional allows the evaluation of all expectation values of the
observables of the object system but gives no information about the holistic
correlations between the object system and its environment. Nonpure states are
usually called “mixed states” but we shall avoid this term since it is conceptually
misleading. As a rule, nonpure quantum states cannot be interpreted as mixtures
of individual states.

A C*-algebra is a topological algebra with the extraordinary property that
its topology (the so-called norm topology) is determined algebraically. Hence the
topology of a C*-algebra is intrinsic and does not depend on any experimental

5The uniqueness theorem by Stone (1930) and von Neumann (1931) implies that tradi-
tional quantum mechanics is valid only for systems with finitely many degrees of freedom.

6A *-algebra A is a collection of mathematical objects A, B, C, . . . that can be combined
linearly, multiplied in a bilinear and associative way, and mapped by the conjugate linear
*-operation A → A∗ which satisfies A∗∗ = A and (AB)∗ = B∗A∗. If a *-algebra A is endowed
with a Banach-space norm ‖ · ‖ with the properties ‖AB‖ ≤ ‖A‖‖B‖ and ‖A∗A‖ = ‖A‖2,
then A is called a C*-algebra.
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context. The chosen C*-algebra A characterizes the chosen universe of discourse.
Relative to this universe the context-independent intrinsic properties can be
represented by the selfadjoint elements of the C*-algebra. They describe what
is taken to be real independently of any observation.

4 Inequivalent epistemic descriptions

A most interesting feature of algebraic quantum mechanics is that it provides
the mathematical tools for the construction of contextual descriptions. A new
coarser, contextually selected topology can be introduced by picking out a par-
ticular reference state, given by a positive linear state functional ρ on the
context-independent abstract C*-algebra A of intrinsic properties. The so-
called GNS-construction (according to Gelfand, Naimark and Segal) allows
the construction of a context-dependent Hilbert space Hρ and an associated
faithful representation πρ(A) of the C*-algebra A acting on Hρ.7 The closure
of πρ(A) of the C*-algebra A in the weak topology of the algebra B(Hρ) of
all bounded operators acting on Hρ is a context-dependent W*-algebra Mρ,
πρ(A) ⊂ Mρ ⊂ B(Hρ), called the algebra of contextual properties.8 Every
W*-algebra is a C*-algebra, but not every C*-algebra is closed in the coarser
W*-topology. The new contextual topology on A which is induced by the ref-
erence state functional ρ corresponds to the weak operator topology on B(Hρ).

The σ-weak topology induced by the reference state functional ρ is of crucial
importance for the representation of statistical states. It is a continuity require-
ment necessary for a continuous representation of the contingent initial condi-
tions. While all state functionals of the basic C*-algebra A represent individual
states, not all states on the C*-algebra A of intrinsic properties are admissible
states for a contextual statistical description in terms of the W*-algebra Mρ

of contextual properties. In analogy to the concept of additivity of a measure
in classical probability theory a linear positive functional ϕ on a W*-algebra
Mρ is said to be completely additive if it satisfies ϕ(∨Fn) =

∑
ϕ(Fn) for every

set {Fn} of pairwise orthogonal projections in Mρ, FnFm = 0 for n �= m. In
measure theory the additivity of a measure implies Lebesgue’s monotone con-
vergence theorem. In analogy, a linear positive functional ϕ is said to be normal
when ϕ(Mn) ↑ ϕ(M) for each monotonically increasing net {Mn} of operators
Mn in Mρ with least upper bound M . Statistical states are represented by
normal state functionals; they are elements of the predual (Mρ)∗ ⊂ (Mρ)∗ of
the W*-algebra Mρ of contextual observables. Note that in a particular repre-
sentation πρ only a small portion of the state functionals on the algebra A of
intrinsic properties corresponds to operationally accessible σ-additive statistical
state functionals. The contextually selected topology is characterized by the
fact that in the representation πρ the reference state functional ρ is the restric-
tion of an operationally accessible statistical state functional. Statistical states

7For all mathematical questions we refer to Takesaki (1979), chapter I, section 9.
8A W*-algebra M is a C*-algebra which is the dual of some Banach space M∗, called the

predual of M, M = (M∗)∗.
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are epistemic states: they refer to our knowledge of the ontic state as it appears
in the context-independent C*-formalism.

A contextual W*-algebra Mρ is strictly larger than the faithful represen-
tation πρ(A) of the C*-algebra A of intrinsic properties. That is, all intrinsic
properties appear also as contextual properties, but in addition there are new
properties which are not intrinsic. The elements in the W*-algebra Mρ of con-
textual properties which are not in the faithful representation πρ(A) of the C*-
algebra A of intrinsic properties are called emergent properties. They represent
properties which are novel in the sense that they are absent in the context-
independent C*-algebraic description. The emergence of novelty in contextual
descriptions is a compelling consequence of algebraic quantum theory.

With the only exception of von Neumann’s codification of traditional quan-
tum mechanics (where the basic C*-algebra is the algebra of compact operators
acting one a separable Hilbert space), there are always infinitely many physically
inequivalent W*-representations of the underlying basic C*-algebra of intrinsic
properties. Different inequivalent representations represent physically inequiva-
lent contextual descriptions of one and the same C*-system. Even if the algebra
A of intrinsic observables (hence also πρ(A)) has no center, the contextually
constructed W*-algebra Mρ usually has a large center Zρ(Mρ),

Zρ(Mρ) := {Z|Z ∈Mρ , ZM = MZ for every M ∈Mρ} .

The center Zρ is a commutative W*-algebra. It represents the classical part of
the system. The center is said to be trivial if it consists of the multiples of
the identity element only. A W*-algebra with a trivial center is called a fac-
tor. Nontrivial selfadjoint elements of the center are called classical observables.
They commute with all elements of the W*-algebra Mρ.

Most classical observables are emergent – they are elements of Zρ but not
elements of πρ(A). Such emergent classical observables (like temperature or
order parameters describing phase transitions) are neither intrinsic observables
nor are they functions of the intrinsic observables. Nevertheless, they are gener-
ated by the basic C*-algebra A of intrinsic observables together with a context
which selects a particular representation. In the algebraic approach emergent
properties are not postulated but derived from contextual conditions which are
necessary to describe physical systems besides the natural law.

Von Neumann’s irreducibility postulate9 – the assumption that all selfadjoint
operators acting on the Hilbert space of state vectors are observables – implies
that the center of the algebra of observables is trivial so that in the traditional
formulation there are no classical observables. However, we know empirically
that von Neumann’s irreducibility postulate is not universally valid.

5 Disjoint states and classical mixtures

The central part of a quantum system allows an important classification of
states. The support Sϕ of a normal state functional ϕ of a W*-algebra Mρ is

9Neumann (1932).
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defined as the smallest projection operator S ∈ Mρ such that ϕ(S) = 1. The
central support Cϕ of a state functional ϕ is defined as the smallest projection
operator C ∈ Zρ(Mρ) such that ϕ(C) = 1. With this definitions we get the
following classification of state functionals on a W*-algebra Mρ with the center
Zρ(Mρ):

• A state functional ϕ on the W*-algebra Mρ is pure if its support Sϕ is an
atom.

• Two state functionals ϕ′ and ϕ′′ are called orthogonal if their supports
Sϕ′ and Sϕ′′ are orthogonal, Sϕ′Sϕ′′ = 0.

• Two state functionals ϕ′ and ϕ′′ are called disjoint if their central supports
Cϕ′ and Cϕ′′ are orthogonal, Cϕ′Cϕ′′ = 0.

• Two state functionals ϕ′ and ϕ′′ are called classically equivalent if their
central supports Cϕ′ and Cϕ′′ are equal, Cϕ′ = Cϕ′′ .

• A state functional ϕ which is dispersion-free with respect to every classical
observable, ϕ(Z2) = {ϕ(Z)}2 for every Z = Z∗ ∈ Zρ(Mρ) is called a factor
state functional.

Disjointness implies orthogonality, but only in commutative algebras orthog-
onality implies disjointness. Disjointness is a much stronger condition than
orthogonality. Two pure states are disjoint if and only if there exists a classical
observable such that the expectation values with respect to these states are dif-
ferent. Therefore, mutually disjoint states can be distinguished and classified in
a classical manner.

Every state functional can be decomposed uniquely into a sum or an integral
of disjoint factor state functionals.10 In classical theories the convex set of all
state functionals is a simplex11 so that every nonpure state can be decomposed
uniquely into a mixture of pure states. Such a classical mixture allows an
ignorance interpretation. In contrast to the classical case the convex set of state
functionals of a nonclassical quantum system is not a simplex. A nonpure factor
state functional allows infinitely many different decompositions into a convex
sum of pure states. The nonpurity of factor states is always due to Einstein–
Podolsky–Rosen correlations of the open system with its environment. It can
never be interpreted as some kind of mixing.

If we think of a classical mixture of two components (like a mixture of water
and alcohol), then we tacitly presuppose that we can distinguish operationally
between the two components. That is, it must be possible to label every com-
ponent of a proper mixture so that the components can be distinguished. Since
such a label must be determinable together with any other property of the com-
ponent, it has to be characterized by a value of a classical observable. More
precisely: Nonpure quantum states can be interpreted in terms of a classical

10For details, compare for example Takesaki (1979), chap.IV.6.
11The state space is a simplex if and only if the C*-algebra is commutative. Compare

Takesaki (1979), p.251.
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mixture of factor states if and only if these factor states are mutually disjoint.
Since in von Neumann’s codification there are no disjoint states, a straightfor-
ward ignorance interpretation is not possible in traditional quantum mechanics.

Disjoint states are of crucial importance as final states in any processes –
natural processes or measurement processes – which produce facts. The mea-
surement problem is not, as often asserted, the problem how a pure statistical
state can be transformed into a nonpure state, or how the density operator can
become diagonal in a preferred basis. This is a trivial task – appropriate dy-
namical linear semigroups and their Hamiltonian dilations can describe such a
decoherence mechanism. The same is true for the so-called “stochastic unrav-
eling of dynamical semigroups of statistical descriptions”: in the framework of
traditional quantum mechanics there are always infinitely many stochastic dif-
ferential equations for pure states which in the statistical average result in one
and the same statistical dynamical semigroup. A proper statistical description
of the measurement process requires a dynamics which transforms factor states
into a classical mixture of disjoint factor states.

Classical observables and disjoint states exist only if the joint system con-
sisting of the object and its environment has infinitely many degrees of freedom.
However, a dynamical description of the emergence of new classical observables
is not straightforward. A general result due to Klaus Hepp shows that auto-
morphisms preserve the disjointness of states:12

If ϕ′ and ϕ′′ are two disjoint state functionals on a C*-algebra and
if α is an automorphism of this C*-algebra, then the transformed
state functionals ϕ′ ◦ α and ϕ′′ ◦ α are disjoint.

This theorem is not at all surprising since an automorphism is a symmetry
which transforms a description into a fully equivalent description. The fact that
an automorphic time evolution on any C*-algebra cannot generate new disjoint
states is not a “no-go theorem” for the possibility of a theoretical description of
measurement-type processes. First, the postulate of an automorphic dynamics
has no sound physical basis. It is not acceptable simply to postulate that the time
evolution should be an automorphism – we have to derive the dynamics from the
known interactions. It is true that the dynamics of group-theoretically defined
elementary systems is usually automorphic, but this fact does not imply that
the dynamics of interacting systems is automorphic. Many physically reasonable
C*-algebraic systems without an automorphic dynamics are known. But since
at present no general theory is available for nonautomorphic time evolutions, I
confine myself to the simpler case of an automorphic dynamics.

For automorphic time evolutions Hepp showed that there exist quantum
systems with an automorphic dynamics {αt|t ∈ R} such that for equivalent
initial state functionals ϕ′ and ϕ′′ the asymptotic limits ϕ′ ◦ α and ϕ′′ ◦ α exist
for t → ∞ and are disjoint. Such state functionals are called asymptotically
disjoint. It has been objected that processes with asymptotically disjoint final
states require an infinite measurement time.13 This is a misunderstanding:

12Hepp (1972), lemma 2, p.246.
13For example by Bell (1975), and again by Landsman (1995), p.55.
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every measurement in engineering physics is asymptotic. In the following we
will show that disjoint quantum states lead to singular decision problems which
engineers reject as unrealistic idealizations.

6 Robustness of statistical decision procedures

To illustrate the measurement process from an engineering point of view, we
consider the simplest statistical decision test as commonly used in experimen-
tal science.14 Decision procedures use attributes of empirical observations to
achieve a Boolean classification of facts. Since empirical data are invariably
contaminated with noise, all experimental observations have to be considered
to be subject to random variations. For a formal development of a statisti-
cal theory of classification it is irrelevant what is the cause of these random
variations. They may be due to measurement errors, external noises, imper-
fect experimental procedures, or residual non-Boolean quantum effects. In the
framework of statistical classification theory an observation is considered as a
sample value x = X(ω) ∈ X, ω ∈ Ω , of a X-valued random element X, defined
on a Kolmogorov probability space (Ω ,Σ , µ). The random element X may be
a real-valued random variable (X = R), a random vector (in the case of n inde-
pendent real-valued observed values we have X = R

n), or a stochastic process
(for example X = S ′).

For the following it is sufficient to consider the special case of a binary
decision. Assume that an experimenter knows that an observation x = X(ω)
comes either from a distribution with the probability measure µ′ or from a
distribution with the probability measure µ′′. A statistical test is a method to
assign the observation to one of the two populations. The error of a statistical
test is defined as the probability that the decision is false. Independently of how
we perform this test, the minimal error probability is given by15

emin(µ′, µ′′) := inf
B∈Ω

{µ′(B) − µ′′(Ω −B)} ,

The minimal error probability is not easy to evaluate, but it can be estimated
with the aid of the Hellinger integral H(µ′, µ′′),16

H(µ′, µ′′) :=
∫
Ω

√
f ′(ω)f ′′(ω) dµ(ω) ,

f ′ := dµ′/dµ , f ′′ := dµ′′/dµ , 0 ≤ H(µ′, µ′′) ≤ 1 ,

14For a review of the application of statistical decision theory in engineering science compare
for example chapters 18–23 in Middleton (1960).

15Rényi (1966), Rényi (1967).
16Kraft (1955), lemma 1, p.127. The so-called Hellinger integral has been introduced by

Hellinger (1909) in his investigation of unitary invariants of selfadjoint operators. Compare
also Hahn (1912). In a statistical context these integrals have been introduced by Bhat-
tacharyya (1943). Later Kakutani (1948) stressed the fact that the Hellinger integral is an
inner product. The Hellinger integral was again introduced by Matusita (1951) under the
name “affinity”.
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1 −
√

1 − H(µ′, µ′′)2 ≤ emin(µ′, µ′′) ≤ H(µ′, µ′′) .

Here µ is any dominating measure (for example µ = 1
2µ′ + 1

2µ′′), so that both µ′

and µ′′ are absolutely continuous with respect to µ. Since the convergence of the
Hellinger integral to zero is equivalent to the convergence of the minimal error
probability to zero, we can use the Hellinger integral H(µ′, µ′′) as a criterion
for the “nearness” of the two probability measures µ′ and µ′′. The smaller
the Hellinger integral, the easier is it to distinguish the two measures from
each other. If the Hellinger integral vanishes, a perfect decision can be made
with probability one. Such statistical tests are called singular. Singular binary
decision problems are characterized by mutually singular probability measures.
Two measures µ′ and µ′′ are called equivalent, µ′ ∼ µ′′, if f ′(ω)f ′′(ω) > 0 for
µ-almost all ω ∈ Ω . Two measures µ′ and µ′′ are called mutually singular,
µ′ ⊥ µ′′, if f ′(ω)f ′′(ω) = 0 for µ-almost all ω ∈ Ω . It follows that

µ′ ∼ µ′′ if and only if H(µ′, µ′′) = 1 ,
µ′ ⊥ µ′′ if and only if H(µ′, µ′′) = 0 .

Only in the unrealistic case of infinitely many measurements or an infinitely
long data acquisition period one can possibly get an error-free decision with
H(µ′, µ′′) = 0. In engineering science one requires that the performance of
statistical procedures is insensitive to small deviations of the actual situation
from the idealized theoretical model. Such tests are called robust. Singular
tests deteriorate seriously for small deviations from the nominal model. Since
one never knows the underlying probability distribution accurately, singular
tests are rejected by engineers as improperly posed.17

7 Disjoint states and singular decision problems

The Hellinger integral can be used as a physically meaningful measure of the
approximate disjointness of quantum states. For simplicity we restrict our dis-
cussion to boson-type environments which can be described by Weyl systems.

For finitely many degrees of freedom Weyl’s canonical commutation relations
are expressed in terms of unitary Weyl operators ζ �→ W (ζ) over the phase space
C
n. They fulfill the commutation relations

W (ζ)W (ζ ′) = eiσ(ζ|ζ′)/2 W (ζ + ζ ′) , W (ζ)∗ = W (−ζ) , ζ, ζ ′ ∈ Cn .

The symplectic form is defined by σ(ζ|ζ ′) := i (ζ|ζ ′)−i (ζ ′|ζ), (ζ|ζ ′) :=
∑
k ζ∗k ζ ′k.

For infinitely many degrees of freedom, we have to proceed more carefully
since the topology on the phase space C∞ of Weyl’s canonical commutation re-
lations is not intrinsically defined. For the present setting a nuclear phase space
is appropriate. We choose the Schwartz sequence space S and its topological
dual S ′, defined by

S := { ζ | ζk ∈ C , lim
k→∞

kp|ζk| = 0 for all positive integers p } ,

17Slepian (1958), Root (1963), Root (1964), Root (1968).
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S ′ := { ζ | ζk ∈ C , lim
k→∞

(1 + k2)−p |ζk| = 0 for all sufficiently large integers p } .

With the canonical bilinear form (ξ|ζ) :=
∑∞
k=1 ξ∗k ζk (ζ ∈ S, ξ ∈ S ′) that links

S and S ′, the symplectic form is again given by σ(ζ|ζ ′) := i (ζ|ζ ′) − i (ζ ′|ζ),
ζ, ζ ′ ∈ S. Weyl’s canonical commutation relations over the symplectic group
S×S are given by

W (ζ)W (ζ ′) = eiσ(ζ|ζ′)/2 W (ζ + ζ ′) , W (ζ)∗ = W (−ζ) , ζ, ζ ′ ∈ S .

For infinite systems the phase space is no longer locally compact so that there
exists no nontrivial translation-invariant measure. Yet, there are uncountably
many inequivalent quasi-invariant measures. This fact implies that there exist
uncountably many physically inequivalent representations of Weyl’s canonical
commutation relations so that the uniqueness theorem by Stone, von Neu-
mann, Mackey and Loomis for systems with a locally compact phase space
no longer holds.18 The richness of inequivalent representations reflects the com-
plexity of infinite systems which requires the use of the C*-algebraic approach
with its distinction between intrinsic properties (described by the kinemati-
cal C*-algebra) and contextual properties (described by an appropriate W*-
representation of the kinematical C*-algebra).

Every normal state functional ϕ on a W*-algebra Mρ generated by a W*-
Weyl system ζ �→ W (ζ) is uniquely characterized by its state-generating func-
tional ζ �→ Gϕ(ζ) := ϕ {Wϕ(ζ)}. A straightforward generalization of a theorem
by Cushen and Hudson19 says that the product of two state-generating func-
tionals is the characteristic functional of some probability measure. Let ϕ be a
normal state functional and let ρ be a normal reference state functional with the
state-generating functionals Gϕ and Gρ, respectively. Then we call the proba-
bility measure µϕ associated with the characteristic functional ζ �→ Gϕ(ζ) Gρ(ζ)
the Husimi measure accompanying the state functional ϕ. It is defined on the
measurable space (S ′,ΣS′), where ΣS′ is the minimal σ-field containing all cylin-
der sets in the dual S ′ of the Schwartz sequence space S. Minlos’ theorem20

allows a characterization of this probability measure via a symplectic Fourier
transform∫

S′
eiσ(ξ|ζ)µϕ(dξ) = Gϕ(ζ) Gρ(ζ) , ϕ ∈ (Mρ)∗ , ζ ∈ S .

In the traditional irreducible Hilbert-space representation and the special
case of a single degree of freedom the Radon–Nikodým derivative hϕ of µϕ
with respect to the Lebesgue measure has been introduced by Husimi21 as
the expectation value of the density operator Dϕ with respect to pure co-
herent states, hϕ(z) = 〈z|Dϕ|z〉. Here, the state vector |z〉 is defined by

18Stone (1930), Neumann (1931). The generalization of this uniqueness theorem to locally
compact groups is due to Mackey (1949) and Loomis (1952). Compare also the discussion
by Hegerfeldt & Melsheimer (1969).

19Cushen & Hudson (1971), proposition 5, p.464.
20Minlos (1959). Compare also the review by Hida (1980), chapter 3.
21Husimi (1940), p.278.
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〈z|W (ζ)|z〉 = exp (−|ζ|2 + z∗ζ − z ζ∗), z, ζ ∈ C. In this case the reference state
is the ground state of the harmonic oscillator with the state-generating function
ζ �→ exp (−|ζ|2). The Husimi function z �→ hϕ(z) has the remarkable property
that it is strictly positive, hϕ(z) > 0 for every z ∈ C.22

The positivity properties of Husimi functions can be used to discuss the ex-
act or approximate disjointness of normal state functionals. Consider two nor-
mal factor state functionals ϕ, φ ∈ (Mρ)∗ and their associated positive Husimi
measures µϕ and µψ on the measurable space (S ′,ΣS′). With respect to a dom-
inating measure µ (for example µ = 1

2µϕ + 1
2µψ) we can define positive Husimi

functions as Radon–Nikodým derivatives hϕ := dµϕ/dµ and hψ := dµψ/dµ.
The corresponding Hellinger integral is defined by

H(µϕ, µψ) :=
∫
S′

√
hϕ hψ µ(dξ) .

For two factor state functionals ϕ and ψ we have:

ϕ and ψ are equal, if and only if H(µϕ, µψ) = 1 ,

ϕ and ψ are classically equivalent, if and only if H(µϕ, µψ) > 0 ,

ϕ and ψ are disjoint, if and only if H(µϕ, µψ) = 0 .

This result implies that the Hellinger integral can be used as a criterion for the
approximate disjointness of two classically equivalent factor state functionals.
The smaller the value of H(µϕ, µψ), the more the state functionals ϕ and ψ
behave like disjoint states.

Let ϕ and ψ be the state functionals of two classically equivalent initial
factor states. If the dynamics is given by a one-parameter automorphism group
{αt | t ∈ R}, then the time-evolved state functionals are given by ϕt := ϕ ◦ αt
and ψt := ψ ◦αt. Hepp’s theorem implies that for t → ∞ the time-evolved state
functionals ϕt and ψt are still equivalent. If for t → ∞ the asymptotic limits of
the state functionals exist, and if the asymptotic final states are disjoint,

H(µϕt
, µψt

) > 0 for t < ∞ , lim
t→∞

H(µϕt
, µψt

) = 0 ,

then we call the two classically equivalent factor states ϕt ad ψt asymptotically
disjoint. The convergence of the function t �→ H(µϕt , µψt) for t → ∞ means
that for every ε > 0 there is a finite time T < ∞ such that H(µϕt , µψt) < ε for
every t ≥ T .

Every test for deciding whether the reduced state of the apparatus is given
by the state functional ϕt or by the state functional ψt has to be made by
classical measurements. Independently of how we carry them out, their error
cannot be smaller than the minimal error probability emin(µϕt

, µψt
). If the

state functionals ϕt and ψt are asymptotically disjoint the error probability can
be made arbitrarily small, emin(µϕt , µψt) ≤ H(µϕt , µψt)

t→∞−→ 0 . For a given
threshold level ε an effective measuring time T can be defined by H(µϕT

, µψT
) =

22Compare McKenna & Klauder (1964), Mehta & Sudarshan (1965), p.B277.
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ε. It depends in an essential way on the interaction terms in the Hamiltonian
of the joint system. To summarize: Measurements with asymptotically disjoint
final states do not require an infinite measuring time. In special cases, the
effective measuring time T can be very short.

8 A simple example

At this stage it is helpful to give a simple example. We consider a two-level
quantum system which is linearly coupled to an environment consisting of many
bosons. We use a Hamiltonian formulation and assume that the joint system
“object system & environment” is a purely quantum-mechanical system, char-
acterized by an algebra of observables with a trivial center. The object system
is taken to be a two-level quantum system while the environment is modeled by
many harmonic oscillators. The object system is assumed to be linearly coupled
to the environment so that the Hamiltonian H of the joint system is given by

H/~ = 1
2 ω σ3 ⊗ 1 +

∑
k
ωk 1 ⊗ a∗

kak + 1
2 σ3 ⊗

∑
k
λk (a∗

k + ak) ,

with the real-valued frequencies ω, ωk, λk. The boson operators a1, a2, a3, . . .
are defined via the Weyl operator W (ζ) = exp {

∑
k(ζk a∗

k − ζ∗l ak)/2 }, ζ ∈ S.
The Pauli operator σ:= (σ1, σ2, σ3) is characterized by σ = iσ ×σ and σ2 = 1.
This model is explicitly solvable for any number of the environmental degrees
of freedom. Despite of its triviality, it is useful to demonstrate in a transparent
way the emergence of classical observables and asymptotically disjoint quantum
states.

The nature of the interaction between the object system and its environment
is to a large extent determined by the so called memory function t �→ K(t),
defined by K(t) :=

∑
k(λ

2
k/ωk) cos(ωkt), t ∈ R. The memory function is real-

valued and independent of the state of the system. We choose the parameters
in the Hamiltonian in such a way that in the limit of infinitely many bosons we
have K(0) < ∞, so that the Hamiltonian is bounded from below. In this case
the function t �→ K(t) is a characteristic function, hence the Fourier–Stieltjes
transform K(t) =

∫ ∞
−∞ eiλtdK̂(λ) of some distribution function λ �→ K̂(λ).

If the environment has only finitely many degrees of freedom, then the dis-
tribution function λ �→ K̂(λ) is necessarily discrete, so that the object system
cannot exhibit a genuine relaxation behavior. To avoid unnecessary difficulties,
we will choose a memory function without a discrete and without a singular
part. In this case the distribution function is absolutely continuous and has a
nonnegative derivative λ �→ k̂(λ) := dK̂(λ)/dλ almost everywhere.

The emergence of asymptotically disjoint states and of induced superselec-
tion sectors depends in a crucial way on the low frequency behavior of the
distribution density λ �→ k̂(λ). For the power law k̂(λ) ∼ λν for λ → 0 one
distinguishes between ohmic, subohmic an superohmic interactions:

• if k̂(λ) ∼ λν with ν > 0 , then the interaction is called superohmic,
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• if k̂(λ) ∼ λν with ν = 0 , then the interaction is called ohmic,

• if k̂(λ) ∼ λν with ν < 0 , then the interaction is called subohmic.

For ν = 0 the behavior of the system is called ohmic since in many models such
an interaction leads to a dissipative term linearly proportional to a velocity.23

Both ohmic and subohmic systems are distinguished by the so-called infrared
singularity, characterized by

∑
k(λ

2
k/ω

2
k) = 2

∫ ∞
0

k̂(λ)λ−1dλ = ∞ . The infrared
singularity is characteristic for electromagnetic interactions. It is due to the zero
photon mass, which is responsible for their long-range and quasi-classical char-
acter. Since every quantum object is observed through its electromagnetic in-
teractions, ohmic interactions establish a bridge between pure quantum systems
and classical observational tools.

Since generality is not the point here, we restrict ourselves to an initial
state which is given by a product state functional ρ=ϕ ⊗ φβ with an arbitrary
state functional ϕ for the object system and a β-KMS functional φβ for the
environment with the thermal relaxation time τβ = ~β/2. On account of the
simplicity of the model one proves without much difficulty that the expecta-
tion value m±

β (t) = ρ {σ±(t)} of the Pauli operator in the Heisenberg picture
σ±(t) := {σ1(t) ± i σ2(t)}/2 is given by

m±
β (t) = m±e±iωt exp

{
− 4

∫ ∞

0

coth(λτβ) sin2(λt/2) k̂(λ)λ−1dλ

}
,

with the initial value m± = ϕ(σ±). The state functional ρt of the joint system
at time t can be written as

ρt = 1
2 ϕ(σ3 + 1)ϕ+⊗ φ+

β (t) + 1
2 ϕ(σ3 − 1)ϕ+⊗ φ−

β (t) ,

where the object state functional ϕ± is characterized by ϕ±(σ3 ± 1) = 1 and
ϕ±(σ3 ∓ 1) = 0. The approximate disjointness between the two factor state
functionals φ+

β (t) and φ−
β (t) can be measured by the Hellinger integral

H
{
µφ+

β (t) , µφ−
β (t)

}
= exp

{
− 2

∫ ∞

0

{1 − exp(2λτβ)} sin2(λt/2) k̂(λ)λ−1dλ

}
.

Using the well-known asymptotic expansion of Fourier integrals24 one finds in
an ontic description for a pure initial state with β= ∞,

lim
t→∞

m±
∞(t) e∓iωt > 0 for the superohmic case ν > 0 ,

lim
t→∞

m±
∞(t) e∓iωt = 0 for the ohmic and subohmic case ν ≤ 0 ,

lim
t→∞

H
{
µφ+

∞(t) , µφ−
∞(t)

}
> 0 for the superohmic case ν > 0 ,

lim
t→∞

H
{
µφ+

∞(t) , µφ−
∞(t)

}
= 0 for the ohmic and subohmic case ν ≤ 0 .

23Compare Leggett et al. (1987), p.5
24Compare for example Lighthill (1958), chapter 4.
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That is, only if the interaction shows an infrared singularity (i.e. in the ohmic
and subohmic case) the asymptotic final states are asymptotically disjoint.

This behavior changes in an epistemic description. If the environmental
initial state is given by a β-KMS state functional with β < ∞, then an ohmic
interaction does no longer lead to asymptotically disjoint final states. For the
sake of brevitiy we discuss only the high-temperature limit for which we get the
following results:

lim
t→∞

m±
β (t) e∓iωt > 0 for ν > 1 ,

lim
t→∞

m±
β (t) e∓iωt = 0 for ν ≤ 1 ,

lim
t→∞

H
{
µφ+

β (t) , µφ−
β (t)

}
> 0 for every ν > −1 .

That is, in the high temperature limit the expectation values of σ+(t) and σ−(t)
vanish asymptotically already for ν ≤ 1. Also, the off-diagonal elements of the
reduced density operators (in the eigenbasis of σ3) of the object system go to
zero for t → ∞ more rapidly than in the pure-state case. Yet, for any value of
ν the Hellinger integral reaches asymptotically a nonvanishing constant so that
the two epistemic states associated with the eigenstates of σ+ and σ− are never
asymptotically disjoint. This example shows that the asymptotic behavior of
the reduced density operator of the object system says nothing about a possible
decoherence in the sense of an exact or asymptotic disjointness.

The qualitatively different behavior of the individual description (with a
pure environmental initial state) and a statistical description (with a nonpure
β-KMS initial state) can be interpreted as a signal-to-noise problem. The pure-
state description corresponds to a detection problem of a noise-free signal while
the epistemic description parallels the detection of a deterministic signal in the
presence of noise. The condition β > 0 guarantees that the test is nonsingular,
hence robust.

It is straightforward to prove that the epistemic quantum-mechanical expec-
tation value m±

β (t) is the same as the stochastic mean value
∫
Ω

m±
∞(t|ω) dµβ(ω)

of the single-system quantum-mechanical expectation value m±
∞(t|ω) of σ±(t|ω)

with respect to the pure ground-state functional ϕ. Here t �→ σ±(t|ω)} is the
solution of Heisenberg’s equation of motion with the time-dependent Hamilto-
nian H(t|ω) = H + 1

2 ~ωσ3gβ(t|ω), where the classical input force t �→ gβ(t|ω)
is a tracjectory of a zero-mean Gaussian stochastic process with the covari-
ance 2τ−1

β

∫ ∞
0

cos(λt) k̂(λ) dλ. This input force function corresponds to frac-
tional noise with the low-frequency power spectrum |λ|ν . For ohmic interactions
(ν = 0) the input force gβ corresponds to a white noise process. For superohmic
interaction (ν > 0) the stochastic process gβ is a fractional derivative of white
noise while for subohmic interactions (ν < 0) gβ is a fractional integral of white
noise.25

To summarize: The epistemic description of the model by a β-KMS ini-
tial state of the environment can be interpreted as a statistical average of the

25Compare Mandelbrot (1967), Mandelbrot & Ness (1968)
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pure-state ontic description. The average is over an ensemble of external pertur-
bations modeled as a classical stochastic processes with a power spectrum whose
low-frequency part corresponds either to white noise or to fractional noise. The
statistical averaging procedure deteriorates the signal-to-noise ratio of the deci-
sion test, but it also regularizes the asymptotic singular behavior of the ohmic
and subohmic case. Although for β < ∞ there are no asymptotically disjoint
states, for appropriate parameters in the Hamiltonian there can be approximately
disjoint final states.
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