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Abstract

In present-day physics the fundamental dynamical laws are taken as a
time-translation-invariant and time-reversal-invariant one-parameter groups
of automorphisms of the underlying mathematical structure. In this
context-independent and empirically inaccessible description there is no
past, present or future, hence no distinction between cause and effect.

To get the familiar description in terms of causes and effects, the
time-reversal symmetry of the fundamental dynamics has to be broken.
Thereby one gets two representations, one satisfying the generally ac-
cepted rules of retarded causality (“no effect can precede its cause”). The
other one describes the strange rules of advanced causality. For entangled
(but not necessarily interacting) quantum systems the arrow of time must
have the same direction for all subsystems. But for classical systems,
or for classical subsystems of quantum systems, this argument does not
hold. As a cosequence, classical systems allow the conceptual possibility
of advanced causality in addition to retarded causality.

Every mathematically formulated dynamics of statistically reproducible
events can be extended to a description in terms of a one-parameter group
of automorphisms of an enlarged mathematical structure which describes
a fictitious hidden determinism. Consequently, randomness in the sense
of mathematical probability theory is only a weak generalization of deter-
minism. The popular ideas that in quantum theory there are gaps in the
causal chain which allow the accommodation of the freedom of human ac-
tion are fantasies which have no basis in present-day quantum mechanics.
Quantum events are governed by strict statistical laws.

Freedom of action is a constitutive necessity of all experimental science
which requires a violation of the statistical predictions of physics. We con-
clude that the presently adopted first principles of theoretical physics can
neither explain the autonomy of the psyche nor account for the freedom
of action necessary for experimental science.
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1 Determinism Does not Deal with Predictions

A large part of the difficulty with the “determinism versus indeterminism” de-
bate lies in the failure to define the terms of discussion clearly. Many physicists
and philosophers do not make the important distinction between determinism
and the concept of predictability, and thereby commit a category mistake by
claiming that determinism implies the possibility of prediction the future course
of the universe.

For example, Max Born considers the distinction between determinism and
predictability as hairsplitting and completely superfluous.1 He maintains that
classical point mechanics is not deterministic since there are unstable mechanical
systems which are epistemically not predictable.

I think the following remarks by John Earman are appropriate:2

“The history of philosophy is littered with examples where ontology and epis-
temology have been stirred together into a confused and confusing brew. . . .
Producing an ‘epistemological sense’ of determinism is an abuse of language
since we already have a perfectly adequate and more accurate term – prediction
– and it also invites potentially misleading argumentation – e.g., in such-an-such
a case prediction is not possible and, therefore, determinism fails.”

That is, determinism does not deal with predictions. Nevertheless, ontic descrip-
tions are often confused with epistemic ones.3 In the philosophical literature
there are many examples for such category mistakes. For example Rudolf
Carnap says: “Causal relation means predictability.”4 Likewise, Karl Pop-
per maintains: “Scientific determinism is the doctrine that the state of any
closed physical system at any future instant can be predicted.” 5 Physicists
drop similar careless assertions. For example Leon Brillouin: “The Poincaré
discontinuities correspond to conditions where prediction is actually impossible
and determinism cannot exist.”6

2 Terminology and Basic Concepts

In order to set the stage for my discussion, I introduce some definitions and
notions I will use in the following.

Determinism: First of all, determinism will be taken to refer exclusively to
ontic descriptions, and should not be confused with statements concerning our
knowledge or beliefs. In particular, according to the definition adopted here,

1Compare for example Max Born (Born (1955a); Born (1955b), Born (1958)). For a
critique of Born’s view compare von Laue (1955).

2Earman (1986). pp.7–8.
3For more details on the ontic/epeistemic distinction compare the contribution by Harald

Atmanspacher in this volume.
4Carnap (1966), p.192
5Popper (1982), p.36.
6Brillouin (1964), p.135.
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determinism does not to imply predictability. Both, predictability and retrod-
ictability have their proper place only in the framework of epistemic descrip-
tions.

Causal relations: A process within which one event is a necessary condition
for another event is described by a causal relation. The producing event is
known as the cause and the event produced as its effect. A causal relationship is
an irreflexive, antisymmetric and transitive binary relation between two events.
That is:
• no event can be the cause of itself;
• if a is the cause of b, then b cannot be the cause of a;
• if a is the cause of b, and b the cause of c, then a is the cause of c.

Causal ordering: A causal nexus requires some universal order. A funda-
mental issue is the relation of causality to time. According to David Hume
causal relations have three components: contiguity of time and place, temporal
priority of the cause, and constant conjunction.7 For Hume “all inferences from
experience . . . are effects of custom, not of reasoning”,8 so that according to
Hume’s view the idea of cause and effect is not a matter of fact but a mental
habit of association, that is, essentially subjectively fabricated. Hume’s char-
acterization implies that causal and temporal arrows are related by definition.
Yet, this merging of the two very different ideas of causal order and temporal
order is conceptually not sound. Moreover, it precludes many logical possibil-
ities, like a backward causation, or a time-independent ordering of the causal
nexus.

Arrowless time in physics: If one wants to characterize causal ordering by
temporal ordering, then one has first to introduce temporal direction. Yet, the
generally adopted first principles of physics do not distinguish the future from
the past. First principles are characterized by high symmetries. A corresponding
physical law is said to be fundamental if it is as independent as possible of any
particular context. For example, we assume that the laws of nature are the
same all the time and everywhere.

The assumption that there is neither a favored point of the origin nor a
preferred direction in time and space is a basic symmetry postulate required in
in all fundamental physical theories. Since a fundamental theorem by Emmy
Noether theorem implies a deep connection between symmetries and conser-
vation laws, the idea that fundamental laws should be characterized by high
symmetries is not just an aesthetic concept.9 For example, Noether’s theo-
rem requires that the time-translation symmetry implies and is implied by the

7Hume (1793), book 1, part 3, p.466.
8Hume (1748), section V, part 1.
9Noether (1918). Noether’s theorem says that if the action integral of a dynamical system

is invariant with respect to a n-parameter continuous group of symmetry transformation, then
the equations of motion have n linearly independent conservation laws.
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conservation of energy. In fundamental physical theories the basic dynamical
laws are not only taken as a time-translation-invariant but also as time-reversal-
invariant. In the mathematical jargon we say that a fundamental dynamics is
given by a time-translation-invariant and time-reversal-invariant one-parameter
group of automorphisms of the underlying mathematical structure.

If we consider the time-reversal symmetry as primary, then there is no order-
ing so that we cannot use the concepts of cause and effect. In such a formulation
of physics all reality is already pre-existent, and nothing new can come into ex-
istence. In order for time and causality to be genuinely active, some degree of
freedom is necessary to provide a mechanism by which the events “come into be-
ing”. Without breaking the time-reversal symmetry nothing new can ever arise.
Within special contexts a spontaneous breaking of this symmetry is possible, so
that the direction of time has to be considered as contextual.

3 Breaking the Time-Reversal Symmetry

Every experiment requires nonanticipative measuring instruments, hence a dis-
tinction between past and future. In engineering physics the direction of causa-
tion is always assumed to go from past to future. That is, to derive experimental
physics from first principles, the time-reversal symmetry of the fundamental laws
has to be broken. The anisotropy of time is a precondition for any theory of
irreversible processes.

The phenomenon of symmetry breaking is well-understood in modern phys-
ical theories. It is not an ad-hoc postulate, but follows from the first principles
of theoretical physics. Nevertheless, there remains an important problem. The
time-reversal symmetry is represented by a group of order two. If the time-
reversal symmetry is broken one gets two representations, one satisfying the
generally accepted rules of retarded causality (forward causation) and the other
one the strange rules of advanced causality (backward causation).

That is, if it is possible at all to derive the principle of retarded causality (“no
effect can precede its cause”), then the very same methods allow the derivation
of processes goverened by advanced causality. The decision which of the two
possibilities is appropriate can therefore not be derived from the first principles
of physics. So the conceptual problem is not the breaking of the time-reversal
symmetry, but the proper selection of one or the other one-sided realization.

4 Arrow of Time

Mechanical and electrical input–output systems are non-anticipative. In other
words, they are characterized by the fact that any present output values do not
depend on future input values. The success of such traditional phenomenological
physical descriptions suggests that in epistemic descriptions the time-reversal
symmetry is always broken. Also, conscious perception and cognition seems
to presuppose the usual forward direction of time, implying a memory of the
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past, but no anticipation of the future. The one-way property of time which we
experience in our everyday life, and which we find in phenomenological physical
laws has been called “time’s arrow” by Arthur Stanley Eddington.10

In spite of these empirical facts, advanced causality is a conceptual possibility
which is not ruled out by any fundamental physical law. So even on an ontic
level we have to distinguish between the following two possibilities:

• Forward determinism, that is the thesis that, given the past of a physical
system, there is a unique future (retarded realization).

• Backward determinism, that is the thesis that, given the future of a phys-
ical system, there is a unique past (advanced realization).

The nature and origin of a temporal asymmetry in the physical world is a
perplexing problem for a theoretician. What is the origin of the arrow of time?
Why do most (perhaps all) observable processes show the same arrow of time?
What is puzzling about this temporal asymmetry is the universality of the
direction of the arrow of time. The usual choice of retarded causality cannot be
explained by a statistical mechanical formulation of the “second law” without
an a priori postulate imposing an asymmetric evolution toward increasing time.

Backward causation is usually disregarded in science, but – as indicated abov
– should not be excluded rashly. From the viewpoint of physical first principles
there are no reasons to select one of the two temporal directions. The question
of whether epistemic descriptions in terms of backward causality are rewarding
or not, should not be decided by some a-priori argument. It seems to be more
reasonable not to hold any prejudices, but first to work out the theory in full
mathematical detail and then discuss the consequences.11

5 Indeterminism

The phrase “indeterminism” hides a number of different concepts and implica-
tions. It can refer to limits of knowledge, inherent or practical unpredictability,
unpredictable mechanistic or non-mechanistic causation, uncaused action, or
even lawlessness.

First we have to emphasize that noncausation has to be distinguished from
indeterminism. On the other hand, there are ontically deterministic systems
which produce epistemically irreducible random outcomes. In addition, the ex-
istence of strict statistical laws for certain random events suggests that there
must be some causation. If a system produces epistemically irreducible random
outcomes which fulfill the statistical laws of Kolmogorov’s probability theory,12

then we speak of statistical causation. It may be tempting to exclude indeter-
ministic events which are not ruled by the laws of mathematical probability
or any kind of statistical laws. But this would be premature without further
arguments. The concept of noncausation will be used to refer to such events.

10Eddington (1928), p.68.
11Compare also the contribution by Phil Dowe in this volume.
12Kolmogoroff (1933).
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6 Statistical Causality

A broken time-reversal symmetry gives rise to two epistemic causal relations:
prediction and retrodiction. Forward causality is logically independent from
backward causality. Ontic determinism implies neither epistemic predictability
nor epistemic retrodictability.

The usual causal explanations have predictive power and refer to a world to
be acted on. Predictions require a memory of the past, they refer to probabilistic
inferences of the future behavior of a system from empirically estimated past
states. In a statistical description, predictive processes are entropy-increasing.
Retrodictive explanations require a Carrollian “memory of the future”, they
refer to probabilistic inferences of the past behavior of a system. In a statistical
description retrodictive processes are entropy-decreasing.13

Forward causal and backward causal descriptions have the same logical sta-
tus a priori. Progress in science depends on the discovery of causal connections
between events, regardless of whether this nexus is backward or forward. In
spite of the fact that memories usually store past events only, we have to ac-
knowledge that advanced causations are not forbidden by the first principles of
physics.

A theme recurring again and again is the obsession that the second law of
thermodynamics is related with the arrow of time, and that it precludes the
existence of entropy-decreasing systems. However, a system showing a glob-
ally entropy-increasing behavior can nevertheless possess open subsystems with
locally retrodictive and entropy-decreasing behavior. There are many every-
day physical examples for entropy-decreasing systems. A successful retrodictive
teleological description of entropy-decreasing living systems is just as legitimate
as the predictive description of an entropy-increasing system.

7 Why Can There Be Laws of Chance?

Mathematical probability theory refers to events or processes whose outcomes
are individually random, but are governed by strict statistical laws. This theory
has a rich mathematical structure so we have to ask under which conditions
the usual “laws of chance” are valid. Long ago, Marian von Smoluchowsky
pointed out that the concept of probability can be defined, and the laws of
probability can be derived from the theory of strictly deterministic but non-
robust classical dynamical systems.14 So it may be tempting to presume that
chance events which satisfy the axioms of classical mathematical probability
theory always result from the deterministic behavior of an underlying physical
system. Such a claim cannot be demonstrated though. What can be proven is
the weaker statement that every probabilistic system which fulfills the axioms

13For details compare Watanabe (1968), Watanabe (1969a), Watanabe (1970), Watanabe
(1975), Watanabe (1986).

14Von Smoluchowsky (1918).
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of classical mathematical probability theory can be embedded into a fictitious
larger deterministic description.

To understand this claim we recall that the logic of classical probability
theory is given by a (usually nonatomic) Boolean σ-algebra. Mathematical
probability is defined as a σ-additive norm on a Boolean σ-algebra. A theorem
by Lynn H. Loomis and Roman Sikorski implies that every probabilistic sys-
tem has a (nonunique) extension to an atomic Boolean algebra, such that every
probability can be represented as a mean over two-valued states. It follows that
random variables fulfill the laws of chance if and only if it is possible to find a
larger Boolean system such that every expectation value is the mean of a (pos-
sibly hidden) variable with respect to a two-valued state of the enlarged system.
Such deterministic embeddings are usually not constructive and nothing sub-
stantial can be said about a possible ontic interpretation of hidden variables of
the enlarged deterministic system. The important point is that the strict statis-
tical regularities are due to the mere possibility of a deterministic mathematical
description.

Mathematical details on probability and hidden determinism

Mathematical probabilistic theory15 can be described in terms of a probability
algebra (B, p) where the probability p is a strictly positive σ-additive normed
measure on the elements of a Boolean σ-algebra B of events. According to the
fundamental Loomis–Sikorski representation theorem every Boolean σ-algebra B
is isomorphic to a σ-algebra Ω/∆ , where Ω is some point set and ∆ is a σ-ideal
Σ, B ∼ Ω/∆ .16 Every statistical state can be represented by a probability
p on B, or equivalently, by the restriction of a probability measure � on the
measurable space (Ω,Σ) to the Boolean algebra Ω/∆ . Equivalently, a statistical
state can be represented by the restriction of a probability measure � on the
measurable space (Ω,Σ) to the Boolean algebra Ω/∆ . In this representation
the nonnegative number �(B) is the probability of the event B ∈ Σ in this
statistical state.

The power set Π(Ω) of all subsets of the set Ω is a complete and atomic Boolean
algebra which can be considered as an extension of the Boolean σ-algebra B of
events. Every element � ∈ Ω defines a dispersion-free individual state χ� by

χ�(B) =

�
1 � ∈ B
0 � /∈ B , B ∈ Π(Ω) .

The classical system characterized by the Boolean algebra Π(Ω) is one of the
many possible hidden-variable extension of the probability algebra (B, p), or
equivalently, of the Kolmogorov probability space (Ω,Σ,�). Every probability
measure � on (Ω,Σ) is a mean over a family {χω |� ∈ Ω} of two-valued states
of the extended system with the Boolean algebra Π(Ω),17

�(B) =

Z
B

χ� �(d�) , B ∈ Σ .

Usually the sample space Ω is uncountable so that an atom � ∈ Ω cannot rep-
resent an experimental proposition. In spite of the fact that the points of an
uncountable phase space have no epistemic relevance whatsoever, the introduc-
tion of such “hidden variables” is a convenient mathematical tool. This result

15For an outline of the “point-free” approach to probability, compare Halmos (1944); Kol-
mogoroff (1948); Loś (1955), Kappos (1969).

16Loomis (1947). Compare also Sikorski (1969), p.117.
17Compare Kamber (1964), §7; Kamber (1965), §14.
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implies that random variables fulfill the laws of chance if and only if they can
formally be reduced to hidden two-valued variables.

Since the requirement Ω/∆ ∼ B does not determine the set Ω uniquely, any
interpretation of individual points of the Kolmogorov probability space (Ω,Σ,�)
can be misleading and should be avoided.

The possibility of a fictitious deterministic embedding of the statistical laws of
mathematical probability theory explains the possibility of a frequency interpre-
tation of probabilistic physics. Similarly, the modern consistent formulations of
subjective probabilities postulate hat a rational man acts as if he had a deter-
ministic model compatible with his preknowledge.18 Accordingly, these theories
also presuppose a hidden Boolean determinism as an underpinning for a coher-
ent rational behavior.

Conclusion: A probabilistic system fulfills the axioms of classical
mathematical probability theory if and only if it can be embedded into
a larger deterministic system. The question whether physical theories
are deterministic or merely probabilistic in the sense of mathematical
probability theory is empirically undecidable.

8 Are There Statistically Irreproducible Events?

From a logical point of view one can neither exclude the occurrence of unique
irreproducible events nor the existence of chance events for which the tradi-
tional “laws of chance” do not apply. Empirically this question is not decidable.
Within the framework of the usual frequency interpretation of probability one
encounters the well-known difficulty of “small probabilities”. Already in 1866
John Venn tried to define a probability explicitly in terms of relative frequen-
cies of occurrence of events “in the long run”. He added that “the run must
be supposed to be very long, in fact never to stop.” Yet, without additional
assumptions nothing can be inferred about the value of the limiting frequency
of a finite segment, no matter how long it may be. Supplementary decision rules
that allow to decide which probability statements we should accept are notori-
ously difficult to formulate. Even Kolmogorov19 had to adopt the working rule
by Antoine Augustine Cournot:20

If the probability of an event is sufficiently small, one should act
in a way as if this event will not occur at a solitary realization.

Yet, the theory gives no criterion for deciding what is “sufficiently small”. As
emphasized by Wolfgang Pauli, no frequency interpretation can avoid a sub-
jective factor:21

18Compare for example Savage (1954), Savage (1962), Good (1965), Jeffrey (1965),
De Finetti (1972), De Finetti (1974), De Finetti (1975). For a convenient collection of
the most important papers on the modern subjective interpretation, compare Kyburg &
Smokler (1964).

19Kolmogoroff (1933), p.4, postulate B.
20Cournot (1843).
21Pauli (1954), p.114. English translation quoted according to Pauli (1994), p.45.
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In this purely mathematical form, Bernoulli’s theorem is thus not as yet sus-
ceptible to empirical test. For this purpose it is necessary somewhere or other to
include a rule for the attitude in practice of the human observer, or in particular
the scientist, which takes account of the subjective factor as well, namely that
the realisation, even on a single occasion, of a very unlikely event is regarded
from a certain point on as impossible in practice. Theoretically it must be con-
ceded that there is still a chance, different from zero, of error; but in practice
actual decisions are arrived at in this way, in particular also decisions about
the empirical correctness of the statistical assertions of the theories of physics
or natural science. At this point one finally reaches the limits which are set in
principle to the possibility of carrying out the original programme of the rational
objectivation of the unique subjective expectation.

Wolfgang Pauli made the inspiring proposal to characterize unique events
by the absence of any type of statistical regularity:22

“The synchronicity phenomena considered by [Jung] elude being captured by
“laws” of nature, since they are not reproducible, that is to say, they are unique
and blurred by the statistics of large numbers. In physics, on the other hand,
‘acausalities’ are captured just by statistical laws of large numbers.”

9 Hadamard’s Principle of Scientific
Determinism

For a mathematical formulation the traditional philosophical doctrine that each
event is the necessary and unique consequence of prior events has to be sharp-
ened by introducing the concept of the state of a physical system. What changes
in a dynamical system is called the state of the system.

In modern system theory a state of a nonanticipative input-output system
is represented by a kind of memory. It represents “the minimal amount of
information about the past history of the system which suffices to predict the
effect of the past upon the future”.23 Intuitively a system-theoretical state can
be considered as a kind of memory, representing the relevant history of the
system. Under very general conditions there exists a state-space realization for
every nonanticipative input-output system. The most compact description is
given by the so-called Nerode state at time t, defined as the equivalence class of
all histories for t < 0 of the system which give rise to the same output for all
conceivable future.24 No particular ontic or epistemic interpretation is implied
by this definition.

A well-posed nonanticipative dynamical system requires a rule for deter-
mining the Nerode state at a given future time from a given present state.

22Letter of June 3, 1952, by Wolfgang Pauli to Markus Fierz, quoted from Von Meyenn
(1996), p.634. German original: “Die von [Jung] betrachteten Synchronizitätsphänomene . . .
entziehen sich der Einfangung in Natur-‘Gesetze’ , da sie nicht-reproduzierbar, d.h. einmalig
sind und durch die Statistik grosser Zahlen verwischt werden. In der Physik dagegen sind die
‘Akausalitäten’ gerade durch statistische Gesetze (grosse Zahlen) erfassbar.”

23Kalman (1963), p.154. Compare also Kalman, Falb & Arbib (1969), section 1.1.
24For the first time this idea was clearly expressed by Nerode (1958) in the context of

automata theory. Compare also Kalman, Falb & Arbib (1969), chapters 1.3 , 6.3, and 7.2.
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Hadamard’s principle of scientific determinism requests that in a well-posed
forward-deterministic dynamical system every initial state determines all future
states uniquely.25 Hadamard’s principle of scientific determinism is not a nat-
ural law but a regulative principle which leads to an appropriate choice of the
state space. If Hadamard’s principle is not fulfilled then it can often be enforced
by choosing a larger state space.

Example: Hadamard’s principle in classical point mechanics

Newton’s second law mq̈t = F (qt, t), qt ∈ R3, for a point particle of mass
m under the influence of a force F does not fulfill Hadamard’s principle for
the configuration space R3. All the information about the past is given by the
specification of the position and the velocity of every point particle at a particular
time. The Lagrangian formulation considers the positions q and the velocity v :=
q̇ as independent variables. This move allows us to rewrite Newton’s second law
in a system-theoretic form as a system of two first order differential equations,
q̇t = vt, mv̇t = F (qt, t), qt ∈ R3, vt ∈ R3. This Lagrangian formulation
fulfills Hadamard’s principle in the state space R6. The pair {q0,v0} ∈ R6

represents the Nerode state specifying the initial conditions necessary for the
unique determination of the solution of the equations of motion for t > 0.

Since a stochastic process is nothing else but a family of random variables,26

every stochastic process can be dilated to a family of two-valued variables. More-
over, under appropriate continuity conditions, every stochastic process can be
dilated to a Hadamard-deterministic process. Nevertheless, without further as-
sumptions no ontological implication can be attributed to such a dilation.

Mathematical models for deterministic motions

The mathematical description of any kind of motion uses an uninterpreted con-
cept of time. In fundamental descriptions time is represented by the additive
group {t | t ∈ R} of real numbers. Our ability to distinguish between before
and after requires that time intervals are oriented. If the time interval t2 − t1
between two instance is positive, the time t2 is said to be later than t1. The phys-
ically fundamental equations of motion are not only invariant under translations
t → t′ = t + τ , τ ∈ R, but also under the time-reversal transformation, an invo-
lution which exchanges the time parameter t by −t.27 If the time-reversal sym-
metry is broken, time is represented either by the additive semigroup {t | t ≥ 0},
or by the additive semigroup {t | t ≤ 0}.
In a mathematical description of a dynamical system a Nerode state at time t
is represented by an element xt of some topological space, called the state space
X. A motion of the system is represented by a function t �→ xt ∈ X which maps
each instant t on exactly one element xt of the state space.

For a Hadamard-deterministic system the motion t �→ xt of a system-theoretical
state element xt is ruled by a family {ϕr,s | 0 ≤ s ≤ r} of of continuous state
transition maps ϕs,t , fulfilling

ϕr,s ◦ ϕs,t = ϕr,t , ϕt,t = identity , 0 ≤ t ≤ s ≤ r .

25Hadamard (1923). Compare also Hille & Phillips (1957), sect. 23.6.
26Doob (1953), p.46.
27An involution is an operation whose square is the identity. The involution associated with

time-reversal does not only change the direction of time but also associated quantities like
the velocity, the momentum, the angular momentum, the electrical current and the magnetic
field. In elementary particle physics, the invariant involution PCT is associated with time-
reversal T (T 2 = 1) also involves the space reflection P (P 2 = 1) and the charge conjugation
C (C2 = 1) (PCT -theorem).
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The dynamics of a Hadamard-deterministic system is then given by the func-
tional relation xs = ϕs,t {xt} with s ≥ t.

A dynamical system is called autonomous if it is not subject to time-varying
external influences. In this case the state transition map ϕs,t depends only on the
difference s−t so that the time evolution is time-translation-invariant and given
by the one-parameter semigroup {ϕt | t ≥ 0} with ϕt = ϕ0,t and ϕs ◦ϕt = ϕs+t.
The semigroup of time-translation invariant state transition maps ϕt is called a
semiflow. Under very general conditions, a non-autonomous dynamical system
can be embedded into a larger autonomous dynamical system.28

An autononous dynamical system is said to be reversible if for each t ≥ 0 the
inverse state transition map ϕ−1

t exists. If the family of state transition maps
ϕt form a one-parameter group, ϕs ◦ ϕt = ϕs+t, s, t ∈ R, then {ϕt | t ∈ R} is
called a flow. For every initial state element x0 the state element xt at a later
instant t is given by xt = ϕt {x0}. For a reversible time-translation-invariant
dynamical system the inverse ϕ−1

t is given by ϕ−t, so that the trajectory s �→
ϕ−s {xs}, 0 ≤ s ≤ t, arrives back at x0 after the time t, x0 = ϕ−t {xt}. Since
the dynamics can be uniquely reversed, we speak of a time-reversal-invariant
dynamics. Note that a time-reversal-invariant dynamics entails the possibility
of a process reversal, not the reversal of the direction of time.

10 Experimental Science Requires
Freedom of Action

The premise that we often have a choice about what we are going to do is
called the free-will thesis.29 Some philosopher claim the laws of physics and the
freedom of will are of a different type and operates at a different level so that
one can without contradiction subscribe to both determinism and free will. An
example for such a “compatibilist viewpoint” is the suggestion that we should
abandon the view that the laws of nature act like inviolable prescriptions, and
that we should adopt a descriptive view of natural laws so that the problem of
free will does not even arise. This descriptive view claims that whatever happens
in the world, there are true descriptions of those events, and that whatever you
do, there is a true description of what you have done. Other philosophers and
scientists opt for another variant, claiming that all behavior is determined, and
that “free will” is a “meaningless concept”, or an “illusion” .

At present the problem of how free will relates to physics seems to be in-
tractable since no known physical theory deals with consciousness or free will.
Fortunately, the topic at issue here is a much simpler one. It is neither our
experience of personal freedom, nor the question whether the idea of freedom
could be an illusion, nor whether we are responsible for our actions. The topic
here is that the framework of experimental science requires a freedom of action
in the material world as a constitutive presupposition. In this way “freedom”
refers to actions in a material domain which are not governed by deterministic
first principles of physics.

28Compare Howland (1974); Reed & Simon (1975), section X.12; Nickel (1996); Engel
& Nagel (2000); section VI.9. Compare also the contribution by Gregor Nickel in this
volume.

29Van Inwangen (1983), p.222.
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To get a clearer idea of what is essential in this argument we recall that
the most consequential accomplishment by Isaac Newton was his insight that
the laws of nature have to be separated from initial conditions. The initial
conditions are not accounted for by first principles of physics, they are assumed
to be “given”. In experimental physics it is always taken for granted that the
experimenter has the freedom to choose these initial condition, and to repeat
his experiment at any particular instant. To deny this freedom of action is to
deny the possibility of experimental science.

In other words, we assume that the physical system under investigation is
governed by strictly deterministic or probabilistic laws. On the other hand, we
also have to assume that the experimentalist stands out of these natural laws.
The traditional assumption of theoretical physics that the basic deterministic
laws are universally and globally valid for all matter thus entails a pragmatic
contradiction between theory and practice. A globally deterministic physics is
impossible.

11 Quantum Randomness

Often it is claimed that according to quantum mechanics “the basic constituents
of matter behave in a fundamentally random way,”30 or that quantum mechanics
allows “uncaused” events.31 Such statements are misleading since all quantum
events are governed by strict statistical laws. Probability is an essential element
in every complete epistemic description of quantum events. From an epistemic
viewpoint, individual quantum events are in general irreducibly random. But
this epistemic quantum randomness does neither imply ontic randomness nor
that determinism has been refuted by quantum theory. As the following exam-
ple illustrates, a link between randomness and determinism, analogous to that
discussed in Section 7, holds also for quantum physics.

Example of a deterministic embedding for quantum measurements

In spite of the fact that no experiment can ever realize a measurement of the first
kind, it is worthwhile to discuss this customary idealization in the framework of
quantum theory. We consider the simple example of a first-kind measurement
of the observable σ3,

σ3 = |α〉〈α| − |β〉〈β| , α, β ∈ C2 , 〈α|α〉 = 〈β|β〉 = 1 , 〈α|β〉 = 0 ,

of a two-level quantum object system. We assume that the initial state is pure. It
can either be described by a normalized state vector Ψinitial = c1 α + c2 β ∈ C2,
or by the density operator Dinitial = |Ψinitial〉〈Ψinitial|.
The result of any measurement is irreversibly recorded by a Boolean device.
Therefore a full statistical description of a first-kind measurement process has to
include the object system, the measuring apparatus, and the classical recording
device. In the framework of algebraic quantum mechanics such a full description
is possible. Here we discuss only the resulting statistical state transition map
Dinitial → Dfinal connecting the initial with the final state of the object system.

30Compare for example Barrett (1999), p.1
31Margenau (1957), p.724.
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For a first-kind measurement of σ3 the final density operator of the object system
is given by

Dfinal = |c1|2 |α〉〈α| + |c2|2 |β〉〈β| = 1
2
σ3 + 1

2
tr{Dinitial σ3} σ3 .

Since in quantum mechanics the set of statistical state functionals is not a sim-
plex, the final density operator Dfinal allows infinitely many distinct convex
decompositions into pure states. Therefore the linear map Dinitial → Dfinal

does not imply that the final state is a classical mixture of pure states described
by the density operators |α〉〈α| and |β〉〈β|. Nevertheless, the probabilities |c1|2
and |c2|2 are the correct conditional probabilities for a measurement of the first
kind. The condition is that the classical measuring instrument has factually and
irreversibly registered one of the eigenvalues of the observable σ3. In other words,
the density operator Dfinal is the conditional expectation of Dinitial, conditioned
by the commutative W*-algebra generated by the observable σ3.

The simplest dynamical description of the state transition map Dinitial → Dfinal

is given by the linear dynamical semigroup

Ḋ(t) =
ω

2i

�
σ3, D(t)

�
− κ

4

�
σ3,

�
σ3, D(t)

��
,

with Dinitial = D(0), Dfinal = D(∞). The constant ω ∈ R is an angular fre-
quency describing the Hamiltonian dynamics, and κ > 0 is a relaxation frequency
describing the dissipative interaction with the environment. For an arbitrary ini-
tial density matrix D(0) we get the asymptotic density matrix D(∞),

D(∞) := lim
t→∞

D(t) = 1
2
σ3 + 1

2
tr{D(0) σ3} σ3 .

The statistical map Dinitial → Dfinal can be generated in many different ways by
an individual Hadamard deterministic motion. Consider for example a solution
t �→ Φ(t) of the following nonlinear stochastic Schrödinger equation in the sense
of Stratonovich

i dΦ(t) = 1
2

ω σ3 Φ(t) dt + i κ 〈Φ(t) |σ3 Φ(t)〉
n

σ3 − 〈Φ(t) |σ3 Φ(t)〉
o

Φ(t)

+ i
p

κ/2
n

σ3 − 〈Φ(t) |σ3 Φ(t)〉
o

Φ(t) ◦ dw(t) , Φ(0) = Ψinitial .

Then the mean density operator DΦ(t) = E
�
|Φ(t)〉〈Φ(t)|

�
satisfies the same

dynamical semigroup as the density operator D(t). Moreover, an individual tra-
jectory t �→ Φ(t) describes the individual behavior of the object system within the
hypothetical extended description. For an arbitrary initial state vector Ψinitial

one gets asymptotically32

Ψinitial
t→∞−−−−→

�
α with probability |〈α|Ψinitial〉|2
β with probability |〈β|Ψinitial〉|2

,

where α and β are the normalized eigenvectors of σ3.

The white noise process t �→ dw(t)/dt is a generalized stationary Gaussian pro-
cess. It is well known that the trajectories of every continuous Gaussian pro-
cesses can be generated by a linear Hamiltonian system.33 A physically realistic
stochastic differential equation is never driven by white noise processes but by
some variant of band-limited smooth noise processes . A theorem by Wong and
Zakai implies that the white-noise limit of a stochastic differential equation with
an essentially band-limited noise process is the solution of the corresponding
stochastic differential equations in the sense of Stratonovich.34 Therefore the
stochastic Stratonovich equation mentioned above has a Hadamard deterministic

32Gisin (1984).
33Compare for example Picci (1988).
34Wong & Zakai (1965a), Wong & Zakai (1965b).
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dilation to a Hamiltonian equation of motion for the deterministic trajectories
of the the stochastic process t �→ Φ(t).

Of course, the sketched construction of a deterministic representation of a quan-
tum measurement process is quite ad hoc and implies nothing about an ontic
interpretation. The salient point is to show that the strict statistical regularities
of a quantum measuring process can be understood in terms of a hidden deter-
minism. Note that the various theorems which show that in quantum theory
it is impossible to introduce hidden variables only say that it is impossible to
embed quantum theory into a deterministic Boolean theory.

The context-independent laws of an ontic description of quantum mechanics are
strictly deterministic but refer to a non-Boolean logical structure. The epis-
temically irreducible probabilistic structure of quantum theory is due to the
fact that every communication in terms of an unequivocal language requires a
Boolean domain of discourse. The nonpredictable outcome of a quantum exper-
iment is related to the projection of the non-Boolean lattice of the deterministic
ontic description to the Boolean algebra of the epistemic description of a par-
ticular experiment. The associated epistemic quantum-theoretical probabilities
cannot be attributed to the object system; they are conditional probabilities for
state transitions induced by the interaction of the object system with a classical
measuring apparatus. The epistemic probabilities depend on the experimental
arrangement, but for a fixed context they are objective since the underlying
ontic structure is deterministic.

12 Quantum Mechanics Cannot
Explain Free Will

Since the Hadamard determinism of classical mechanics and the freedom of
actions collide, some physicists and many philosophers find delight in the belief
that the so-called “uncertainty principle” of quantum mechanics can solve the
problem of freedom.35 For instance, the neurophysiologist John Eccles argued
that in addition to the material world there is a nonmaterial and nonsubstantial
mental world. He speculated that our mind acts on the brain at the quantum
level by momentarily increasing the probability of exocytosis in selected cortical
areas and thereby controlling “quantum jumps”, turning them into voluntary
excitations of the neurons that account for body motion.36

The main idea of all such fantasies seems to be that in quantum theory
there are gaps in the causal chain which allow the accommodation of free will
and corresponding action. Yet, quantum events are governed by the strict math-
ematical laws of Kolmogorov’s probability theory which lead to the empirically
reproducible statistical rules of statistical physics. Consequently, quantum ran-
domness is just a weak generalization of determinism.37 Human actions are,
however, in general not reproducible, hence not subject to the mathematical

35Compare for example Jordan (1932); Jordan (1934); Jordan (1956), pp.114ff.; Marge-
nau (1957); Rohs (1996), pp.232–239.

36Beck & Eccles (1992); Eccles (1994).
37Similarly, Wolfgang Pauli has stressed that “quantum mechanics is a very weak general-
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laws of probability theory.38 Freedom of action requires a violation of the sta-
tistical predictions of quantum theory. Hence present-day quantum theory is
neither in a position to explain the autonomy of the psyche nor the existence of
free will.

13 Why Does Time’s Arrow Always Point
in the Same Direction?

The presupposed possibility of breaking the time-reversal symmetry and defin-
ing the arrow of time locally is not yet sufficient to understand the seemingly
global character of the direction of time. Why should the arrow of time in two
noninteracting physical systems point to the same direction? Classical causal-
ity is local and cannot explain the universality of the direction of the arrow of
time. In quantum physics the omnipresence of Einstein–Podolsky–Rosen cor-
relations even between noninteracting subsystems implies a global character of
the time-reversal operation in quantum systems. In an entangled system it
is impossible to define a local time-reversal operation for one subsystem only.
Consequently the arrow of time of entangled (but not necessarily interacting)
quantum systems must have the same direction. Quantum causality is holistic
and requires the same direction of the arrow of time even for non-interacting
entangled subsystems.

Representing time-reversal symmetry in quantum mechanics

In the C*-algebraic description of arbitrary physical systems a symmetry is rep-
resented by a Jordan automorphism of the underlying C*-algebra A. A Jordan-
automorphism is a linear *-preserving bijection which respects the symmetrized
product,39

α(A∗) = α(A)∗ , α(AB + BA) = α(A)α(B) + α(B)α(A) , A, B ∈ A .

A C*-automorphism α is a Jordan-automorphism which preserves the order of
the ordinary product, α(AB) = α(A)α(B). An anti-automorphism α, which
reverses the order of the terms in the ordinary product, α(AB) = α(B)α(A),
is also a Jordan-*-isomorphism. Every Jordan-automorphism of a C*-algebra is
the sum of a C*-automorphism and a C*-anti-automorphism.40

ization of the old causality”. In a letter to Markus Fierz of November 26, 1949 Pauli writes:
“Ich habe keinen Zweifel, daß die quantenmechanische ‘statistische Korrespondenz’, viel näher
auf der Seite des alten Determinismus liegt als auf der Seite des Synchronizitätsphänomens.
Vom letzteren aus betrachtet muß die Quantenmechanik als eine sehr schwache Verallge-
meinerung der alten Kausalität gelten. Und doch scheint mir die Quantenmechanik auch
jenen Wegweiser nach der anderen Richtung zu haben, wo von willkürlicher Reproduzier-
barkeit keine Rede mehr sein kann. Die Quantenmechanik scheint mir eine Art Mittelstellung
einzunehmen.” Quoted from von Meyenn (1993), p.710.

38Curiously, Warren Weaver (1948) (p.33) claims “that individual human decisions, like
the individual events of physics, are not ruled by causality; while the statistical behavior of
a man, like the statistics of a physical ensemble, is ruled by causality.” It may be that some
human actions are ruled by statistical laws, but certainly there are also singular non-recurring
human actions.

39Compare for example Emch (1972), p.152.
40Kadison (1951), theorem 10.
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In the irreducible representation of quantum mechanics on a Hilbert space H, the
time reversal is represented by an anti-unitary operator on the algebra B(H),41

so that it implements a C*-anti-automophism on the algebra B(H). More gen-
erally, for an arbitrary physical system, the time reversal is represented by an
involutary anti-automorphism τ of the underlying C*-algebra A,

τ(A∗) = τ(A)∗ , τ(AB) = τ(B)τ(A) , τ{τ(A)} = A , A, B ∈ A .

The time-reversal map τ is positive, but for quantum systems (where A is non-
commutative) the map τ is not completely positive.42 That is, if (A1, τ1) and
(A2, τ2) describe two noninteracting quantum systems, then the local map τ1⊗12

and the local map 11⊗ τ2 on the minimal C*-tensor product A1⊗ A2 are not
positive, hence they are not time-reversal maps. The time-reversal map for the
composite quantum system is given by the global positive map

(τ1 ⊗ 12)(11⊗ τ2) = τ1 ⊗ τ2 .

This fact implies that even when the two quantum systems do not interact in
any way, the time-reversal for the first quantum system is not given by τ1 ⊗ 12.
The map τ1 ⊗ 12 represents the time-reversal operator for the first subsystem
if and only if the two systems are not entangled with Einstein–Podolsky–Rosen
correlations. This is the case for every state of the combined system if and
only if at least one of the subsystems is classical (in the sense that either A1

or A2 is commutative).43 In an entangled system with broken time-reversal
symmetry the direction of the arrow of time has to point to the same direction
for all (even noninteracting) subsystems. This requirement of global consistency
distinguishes quantum causality from classical causality.

14 Hadamard Determinism Cannot Be
Globally Valid

Complex systems can sometimes establish truly novel emergent properties, new
properties that the component parts do not have. Often the doctrine of deter-
minism is opposed by the principle of emergence. Yet, if the underlying physical
system is deterministic in the sense of Hadamard, then all consistent higher-level
theories can be extended to deterministic systems in the sense of Hadamard.

From the point of view adopted here freedom refers to actions in the material
world which are not determined by the presently adopted first principles of
physics. Such a view violates the usually assumed universal validity of the first
principles of physics. Yet, such a violation is not surprising. The postulate
that the underlying fundamental time evolution should be an automorphism is
a queer assumption indeed. An automorphism is by definition a map which does
not change any physically relevant feature. From a physical point of view the
dynamics of interacting systems cannot simply be postulated to be automorphic,
but has to be derived from first principles. Yet, a mathematically consistent
theory of interactions does not yet exist.

41Wigner (1932). Compare also Wigner (1959), chapter 26.)
42A linear map τ : A → A is said to be completely positive if the linear map τ ⊗ 1n :

A ⊗ B(Cn) → A ⊗ B(Cn) is positive for all n ≥ 1, where B(Cn) is the C*-algebra of all
complex n × n-matrices and 1n is the identity transformation of B(Cn) onto itself.

43This is a consequence of theorem 4.14 in Takesaki (1979), p.211.
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Remarks on the derivation of the dynamics from first principles

Nowadays it is generally accepted that all known interactions of matter are due
to gauge fields. The dynamics of so-called bare elementary systems is known to
be automorphic. Here, a bare elementary system is defined as an indecomposable
representation of a kinematical group (like the Galilei or Lorentz group), disre-
garding interactions intermediated by gauge fields. Such elementary systems are
are called bare since they only characterize the transformation properties under
the actions of the kinematical group. Yet, elementary systems with non-zero
mass or non-zero electrical charge are inevitably coupled to the gravitational
or electromagnetic gauge fields. Due to this interaction, a bare elementary sys-
tem acquires a complicated structure. This process is referred to as dressing.
The derivation of the dynamics of a dressed system from the group-theoretically
known automorphic dynamics of the bare elementary systems and the bare gauge
fields in a mathematically rigorous way involves many difficulties. In particular
our understanding of radiation effects and the infinities of self-interactions is
far from satisfactory. It is an open question whether the resulting dynamic is
automorphic. In spite of the fact that present-day quantum field theory is quite
successful, it has only the status of a phenomenological theory.

Notwithstanding the problematic character of automorphic time evolutions,
mounting evidence shows that for practically all concrete applications the time
evolution of any open subsystem of the material world can be described by the
restriction of an automorphic dynamics of a larger system consisting of the ob-
ject system and its environment. So we have to ask why a hypothetical universal
automorphic dynamics leads to contradictions. A possible answer derives from
the remark that not everything that is locally true is necessarily true globally.
So it may be worthwhile to contemplate about theories which only locally, but
not globally correspond to the contemporary theories. At present we have no
idea how to achieve such a goal. Besides, it is questionable whether a solution
of this problem could contribute to an understanding of the problem of freedom
of action in the material world.

It is disquieting that we have no idea where precisely in the material domain
the presently adopted first principles of physics do not apply. Presumably new
physical principles will need to be discovered. Since in physics time is used in a
rather ad-hoc manner, one could think about a more physical concept of time,
say as time operator which represents time as a dynamical observable.44 But
it is very much an open question what form a physical theory including the
freedom of action will take.
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