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Introduction: The Quest of

Quantum Gravity and

Noncommutativity

The 20th century has been defined by many the century of physics. When it started,

111 years back, our understanding of the world was still constrained within the context

of what is now called classical physics. The two major revolutions in physics, which

later would be called General Relativity and Quantum Mechanics, were yet to come.

Physicists were still thinking in terms of just three flat dimensions and in a complete

deterministic manner.

Not more than 30 years later the warm and convenient setting of classical physics

every physicist was comfortable with, was completely turned up side down. By the thir-

ties Quantum Mechanics and General Relativity had already become almost universally

accepted theories which constituted the new frame where physics speculations could

find place. The transition from the three dimensional, ether-filled, static and eternal

flat universe where everything happened in a deterministic and uniquely predictable

way, to a strange four dimensional, curved, shape changing object, now appropriately

called space-time, where notion of simultaneity and present-past-future became much

fuzzier concepts and with a totally messy and chaotic behaviour at the microscopic

level, was long and painful. At least for the physicists that from the beginning em-

braced the new ideas of the universe. Only incontrovertible evidences could defeat an

extremely conservative old school physics community which for years laughed at the

ones presenting the ideas which later on revolutionized completely our understanding

of how nature works.
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Such new ideas affected not only physics, but the whole approach of human thinking.

Countless are the philosophical implications of Special Relativity, but probably none is

as deeply disturbing as the ones brought up by quantum mechanics. Once and for all,

human ambitions to be able to understand the world as a clock going forward in time,

where everything is a uniquely determined effect of the cause who produced it, were

killed by the theory of quanta. And it was quite of a brutal murder.

Once the new theories were accepted and the new ideas pushed forward it was

time to let them bloom. And the spring of physics was a very pleasant one. For the

remaining 60/70 years it was a non-stop flow of wonderful insights which let the seeds

of General Relativity and Quantum Mechanics flower in what is today known as the

Standard Model of Particle Physics and Cosmology. We now understand physics all

the way down to almost 10−18 cm and could reconstruct the history of the universe

from 10−36 s after a yet not understood event which has been called Big Bang but of

which we really have little idea about.

Despite how pleasant the status of High Energy physics might appear, very few

physicists have chosen to step back and spend the rest of their time proudly celebrating

their achievements. The theory is still missing few ingredients (or maybe many more

than we now think) which will hopefully lead us to fill up the holes still present in our

current understanding. Discontent and desire to better understanding, easily prevailed

on pride. Already Einstein in the last few decades of his life felt the urge of a theory

which would unify General Relativity and Quantum Mechanics and would push the

limits of our understanding, both in time and distance, all the way down to what

needed to enlighten the darkness surrounding the Big Bang, the beginning of the whole.

Although Einstein was not very successful in his attempts, many have decided to follow

his steps and to embark in the challenging trail which might lead to what Einstein liked

to call “The theory of everything”. Such a theory is now called “Quantum Gravity”

and this thesis is aimed to give a modest small contribution in the direction of its

development.

Do we have any ideas on what Quantum Gravity should look like? Will it be a

quantum or a classical theory? And how do we know that such a theory should exist

to begin with? Any of these questions has hardly a firm and solid answer but easily

many speculative ones. We hope to soon be able to answer all. And as it happens in
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physics it will only come from experiments. But let’s try to unroll a few ideas here to

get a taste of how the challenge looks like.

The questions are likely in decreasing order of difficulty to be answered. It is fair

to say that we really have little idea on what the features of Quantum Gravity might

be. More and more physicists have convinced themselves that the new pillar of physics

which will be taken down is the number of spacetime dimensions. Extra-dimensions,

whose number varies a lot depending on the specific proposal going from 1, in Randall-

Sundrum type of model, all the way up to 26 in the case of bosonic String Theory,

have become almost ubiquitous in the realm of Beyond the Standard Model physics

proposals. But other physicists prefer to get rid of something else feeling particularly

comfortable in a four-dimensional spacetime. Most of these theories are not less deeply

disturbing. The notion to be abandoned is our perception of spacetime as a continuous.

Noncommutative Geometry, which it is the subject of the present work, falls into this

set of theories. As we will have time to explain below, we will get rid of the notion of

a point altogether.

Possibly the second question has a more grounded answer. Although we do not

have a certainty, nor has anybody come up with a no-go theorem, there is common

agreement that quantum effects should have their appearance in Quantum Gravity.

There exist arguments which strongly sustain the inconsistency of a unified theory

of Gravity and Quantum Mechanics where the former is still treated classically but

yet interacts with quantized matter fields. We don’t want to get deeper into such

arguments. We just want to mention that most of the problems with a non-quantized

theory of gravity which interacts with particle described quantum mechanically, arise

because of the way a gravity mediated measurement would affect the wave function. It

can be easily proven that, under a wide range of assumption, such a possibility opens

to exchange of superluminal signal. We will refer to the literature for more details (? ).

In the treatment of Noncommutative Geometry which will be presented here, in fact,

Quantum Fields will still represent the mathematical objects which we will be using

to construct our formalism. Part of the treatment will be in fact devoted on how to

construct quantum fields on a spacetime which does not carry a meaningful notion of

points, a noncommutative spacetime.

The answer to the last question is probably the most important one and at the

same time likely the most solid. Although we know quite little about what a theory of
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“Quantum Gravity” might look like, there are plenty of insights on its existence. Thus

far what physicists have exploited to circumvent the absence of a unified theory, is the

huge scale separation between the three “quantum forces” and gravity1. Thanks to

this seemingly lucky coincidence, for the most part we can carry out extremely precise

calculations completely neglecting one of the two side of the whole picture. The really

problematic side of the story is that there is no sharp distinction in nature between

what can be treated classically and what quantum mechanically. And there are cases

where there is absolutely no possibility to favor one approach over the other (black

holes or the Big Bang are two cases where gravity should be as important as quantum

effects). If from the theoretical point of view seems to be obvious that a theory of

Quantum Gravity should exist and we should soon abandon our vision of a two-sided

world made of either classical or quantum object (and often the same object acquires

different connotations depending on what it is interacting with or which one of its

features is under study), the experiments have coexisted quite well with such a fuzzy

distinction. Despite lack of experimental results that quantum gravity proposals can

attempt to explain, there are reasons to believe that things can change drastically in

the years to come. We have recently entered an extremely promising age of physics

with many running experiments aiming at probing our current frontiers of knowledge.

It is therefore not exceedingly optimistic to hope that soon we could also appeal to

experimental evidences of a theory of quantum gravity. Let us keep our hopes well

alive, further major revolutions in our understanding of physics might be waiting for

us around the corner, and their secrets might be unveiled much sooner than we expect.

0.1 Noncommutative Geometry

As we explained above, the central idea in noncommutative geometry is dealing with

spaces which do not rely on the notion of points. In fact, we will show below that

spacetime coordinates in a theory of quantum gravity, under certain set of assumptions,

do not commute, therefore it is forbidden to make an infinite precise measurement of

spacetime coordinates. Before entering a more technical discussion, we would like to

1Feynman once calculated that including gravitational interaction in the study of the Hydrogen

atom would change its wave function phase by a tiny 43 arcseconds in 100T , where T is the age of the

universe! (? ).
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present a more heuristic argument that already shows how different spacetime might

look at the Plank scale.

Imagine to set up a measurement which aims to probe the spacetime at the Plank

scale, LP

LP =

√
G~
c3
' 1.6× 10−33 cm. (1)

(Just for this section we will keep track of all the G, ~ and c factors which we in later

sections set equal to 1.) Such a measurement requires very energetic particles, precisely

we need a particle whose Compton Wavelength is smaller than LP

λC =
~
M∗c

≤ LP (2)

from which we can easily solve for the Compton Mass of the particle

M∗ ≥
~
LP c

' 1019 GeV (3)

which is 15 orders of magnitude higher than what the LHC will be able to produce at

its maximum center of mass energy! But the complications of probing the spacetime

at the Plank Length go even beyond the enormous amount of energy already required

to be able to achieve the goal. One of these complications is the possible collapse of

the spacetime. The theory of General Relativity sets an upper limit to the amount

of energy density that the spacetime structure can sustain, exceeded which nothing

can prevent its collapse into a black hole. Such a limit is given by the Schwarzshild

Radius RS associated to a given massive object (we assume spherical symmetry for

simplicity). If the radius of the object is pushed below RS , keeping its mass fixed,

the collapse becomes unavoidable. We can then compute RS for our particle and ask

whether it is bigger or not than the length scale we are trying to probe with it, that is

LP

R∗S =
2GM∗
c2

≥ 2LP . (4)

From (??) we can conclude that there is an intrinsic limit in how precise a spacetime

measure can be. We have in fact shown that such a limit should be bigger than the

Plank Scale. Probing the spacetime at LP requires an amount of energy density which

exceeds what the spacetime can sustain. The 4-volume we attempt to probe collapses

into a black hole and falls beyond the event horizon and therefore beyond our reach.
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0.1.1 FDR argument

Let’s now try to carry out a treatment of the measurement process in a slightly more

quantitative and formal way (? ? ). We treat the measurement process semi-classically

assuming the gravitational field propagates at the speed of light. This means that the

expression for a the gravitational field generated at the point ~r′ by a given energy

density distribution ρ(~r, t) is

ϕ(~r′) = −G
∫
ρ(~r, tr)

|~r − ~r′|d
3r (5)

where tr is the retarded time which takes into account the finite speed of propagation

of the field

tr =
|~r − ~r′|
c

(6)

In the following we work in natural units so we set G = c = ~ = 1.

Assume that we now want measure the event x̄ = (−t, 0, 0, 0) with uncertainties

∆x̄ = (∆x0,∆x1,∆x2,∆x3) and compute how the gravitational field generated by the

energy density needed to perform the measurement (for instance the compton mass

of the probe)3 affects an observer seating at the origin xO = (0, 0, 0, 0). E represents

the energy of the measurement probe and we also assume uniform spreading of the

energy E after the measurement, with all speeds not exceeding the speed of light. The

gravitational field at xO is then:

ϕ(xO) ≈ −
∫ ∞

0

1

r

E

Π3
i=1(∆xi + r)

r2 dr . (7)

An expression for E can be derived from Heisenberg uncertainty principle, E ≈
1/∆x0 or E ≈ 1/∆xi, depending which uncertainty is smaller, we will assume ∆x0 �
∆xi so that

ϕ(xO) ≈ − 1

∆x0

∫ ∞
0

r

Π3
i=1(∆xi + r)

dr . (8)

In order to derive limitations on the uncertainties ∆xµ we should impose that the

gravitational field, generated by the performed measurement, does not create a black

hole. In our semi-classical framework this can be done by asking that a photon with

energy ε at the origin does not get trapped by the gravitational field, that is its energy

remains always positive

ε+ εϕ(xO) & 0 ⇒ −ϕ(xO) . 1 (9)
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We now focus just on the uncertainty ∆x0∆x1, the other relations can be derived

in a completely analogous manner. There are three different regimes which we should

consider

∆x1 ∼ ∆x2 ∼ ∆x3, ∆x1 ∼ ∆x2 � ∆x3, ∆x1 � ∆x2 ∼ ∆x3 (10)

Consider the latter, ∆x1 � ∆x2 ∼ ∆x3. From (??) and (??)

∆x0 &
∫ ∞

0

r

(∆x1 + r)(∆x2 + r)2
dr (11)

We can pull out 1/∆x1 and change variable r → r′ = r/∆x1

∆x0∆x1 &
∫ ∞

0

r′

(1 + r′)
(

∆x2
∆x1

+ r′
)2dr

′ (12)

performing the integral and neglecting higher powers in ∆x2/∆x1 we get

∆x0∆x1 & ln

(
∆x1

∆x2

)
. (13)

Similarly in the other two regimes in (??) we obtain

∆x0∆x1 & 1 (14)

Since ∆x1 � ∆x2 the absolute limitation is ∆x0∆x1 & 1. Following a similar

reasoning, and reintroducing the appropriate powers of G, c and ~, we can derive the

following absolute limitations for ∆xµ

∆x0

3∑
i=1

∆xi & L2
P (15)

3∑
i<j=1

∆xi∆xj & L2
P (16)

where LP is the previously introduced Plank Length. We therefore obtained that in-

cluding the effect of gravity implies a lower bound on uncertainties on the measurement

of space-time coordinates. In the formalism of quantum mechanics this means that the

spacetime coordinates operators do not commute. In particular it can be proven that

relations (??) and (??) are implied by the following two conditions:

[xµ, xν ] = iθµν [xρ, θµν ] = 0 (17)
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so θµν must be a constant or more precisely it must belong to the center of the algebra.

Thus every value of θµν identifies a representation of the “Quantum space-time”.

The noncommutation relations introduced in (??) will be our starting point for what

we are going to present in the next chapter. As we will show, they imply a modification

of the product between functions over space-time. This will bring new features in the

quantum theories defined over such spaces which is the main topic of the current thesis.

We now present a different motivation for noncommutativity both for completion

and for the extreme neatness of the result that Connes and his group were able to

achieve.

0.1.2 Connes’ proposal

We now present another argument which supports the idea of the space-time as a

noncommutative space rather than a differential manifold (we will explain how to deal

with noncommutative spaces in the next chapter). It follows somewhat different ideas.

In particular our main motivation does not come from measuring the very fine structure

of space-time but from the symmetry group of a theory of quantum gravity. So we turn

now to discuss such symmetries.

Symmetry groups play an absolutely essential role in physics. In our modern under-

standing, particles that mediate forces come as connections of principal bundles, or in

a less technical sense, as fields with certain properties, to enforce a specific symmetry

group to be a gauge group. We no longer write down the Lagrangian and then study its

symmetries but we choose the symmetry group first and write down the most general

Lagrangian having the chosen group as gauge symmetry. In this sense global symme-

tries are treated in a completely different manner. They are not imposed but derived

and for this reason often called accidental global symmetries. Yet it is very likely that

Quantum Gravity breaks any global, that is non gauge, symmetry (? ? ). We will now

concentrate just on gauge symmetries and will not mention global symmetries anymore.

Our current understanding of physics is based on the theory of General Relativity

and the Standard Model of Particle Physics. These two theories have very different

symmetry groups. Any theory of gravity defined on any space-time manifold M, as

we currently understand it, it is invariant under the group of diffeomorphisms of M.

We call such a group Diff(M). On the other side the Standard Model is the theory of

8



0.1 Noncommutative Geometry

Strong, Weak and Electro-Magnetic interactions which come from the Gauged SU(3)×
SU(2)× U(1).

The symmetry group of the two theory is a slightly non trivial combination of the

two that takes into account that the action of a diffeomorphism onM does affect Stan-

dard Model gauge transformations which are obviously gauged over the same manifold

M. The total symmetry group is precisely the semi-direct product of the two:

GGR+SM =
(
SU(3)× SU(2)× U(1)

)
oDiff (M) . (18)

Two remarks are in order. First the total group comes from two different arguments,

one based on General Relativity and the other on the Standard Model. We instead

would like to be able to obtain (??) as a symmetry group of a single theory. Second,

more on the technical side, the two groups play quite a different role in terms of the

proper mathematical formulation of gauge theories. Specifically Diff(M) acts also on

the base manifold whereas SU(3) × SU(2) × U(1) just on the fiber. Connes then

asked whether could be possible to find a unified picture which naturally gives (??) as

symmetry group.

Specifically is it possible to have a theory of gravity which naturally contains the

Standard Model? We could call such a theory Quantum Gravity, and such a require-

ment can be re-phrased as finding a space-time manifold N whose diffeomorphism

group is isomorphic to (??)

Diff (N ) ∼=
(
SU(3)× SU(2)× U(1)

)
oDiff (M) . (19)

It is possible to prove that so long as we look for N as a differential manifold,

(??) has no solution. The reason being that if N is a differential manifold (more

generically a topological space), Diff(N ) is always simple (that is does not contain

normal subgroup) whereas in (??), the right hand side contains SU(3)×SU(2)×U(1)

has a normal subgroup. Things change drastically if N is a noncommutative space.

Moreover in such a case Diff(N ) has a semi-direct product structure

if N is noncommutative ⇒ Diff (N ) ∼= G1 o G2 (20)

We will come back to this argument in the next chapter after we introduce how to

mathematically describe noncommutative spaces showing that we can in fact find a

solution for (??) if we are willing to release the commutativity of our space-time.
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Connes at al.’s approach, which we just briefly outlined, has achieved even more

remarkable results than finding the non-commutative space N solving (??). Using

the appropriate formalism to treat noncommutative space-times, which we are going

to discuss in the next chapter, they were able to show that such models are highly

constrained, that is very few solutions exist. In particular there is a constrained on

the number of matter fields (fermions) which the theory can accommodate. It happens

that the Standard Model has just the right number of fermions, that is 16. We want

to stress that besides cancellation of anomalies, which constrains, roughly speaking,

the number of leptonic chiral families to be the same of the quark chiral families, and

asymptotic freedom, which through the strong coupling beta function constrains the

number of families to be less than 16 (number of families is very different from number

of fermionic fields, also the Standard Model only provides an upper bound), there is no

analog constrain on the Standard Model. Also using the extremely involved techniques

of Spectral Analysis (? ? ), which are beyond the scope of this thesis, Connes at al.

Noncommutative Standard Model constrains the Higgs mass to be around 110 GeV.

Although this value has been ruled out by now, it is nevertheless extremely remarkable

that a value so close to where we expect the Higgs to be can be derived by solving an

equation of the kind of (??).

0.1.3 Final Remarks

Before entering a more formal treatment of noncommutative spacetimes, it is helpful

to pause on the physical interpretation on what we have presented so far:

• In the noncommutative spaces we have called for in the previous two sections,

the notion of continuous does not break down. More precisely the spectrum of

each xµ is still continuous. In other words we can make a measurement of a

single spacetime coordinate as precise as we want, at the cost of having complete

uncertainty on the others. The situation resembles closely the noncommutativity

of Quantum phase space. There are example of noncommutativity in which the

space-time becomes a lattice1 but we will not treat such cases in the present

1One of the most famous examples is the “Fuzzy Sphere” (? ) where the algebra of spacetime

coordinates is isomorphic to the SU(2) algebra. It is well-known from angular momentum theory, that

representation of such an algebra are finite dimensional and identified by a half-integer. The spectrum

of coordinate functions operator becomes discrete and the spacetime as a continuous is lost.

10



0.1 Noncommutative Geometry

thesis.

Thus it is not appropriate to think at noncommutativity as a spacetime with a

lowest length scale
√
θ but more as spacetime with a lowest four volume ∼ θ2.

Discreteness was the way noncommutativity was initially introduced by Snyder (?

). A lowest lenghtscale
√
θ would introduce a natural cut-off in momentum space

Λ ∼ 1/
√
θ which would fix all the ubiquitous UV-divergencies in Quantum Field

Theory. In many of the formulations of quantum field theory on noncommuta-

tive space-times, the UV-behaviour is instead worsened. In such theories a new

phenomenon which entangles together the IR and UV behaviour, arises. The UV-

IR mixing makes application of renormalization techniques to noncommutative

QFT’s difficult and not at all straightforward (? ).

• The fate of Poincaré symmetry is not a trivial point either. Although not dis-

crete, it is still not easy to come up with a definition of Lorentz symmetry for

noncommutative spacetimes. This is potentially a very serious problem. The kind

of particles which can be observed, and we do observe, is strongly constrained by

Poincaré symmetry (? ). We will discuss this point in much more depth in the

next chapter. The definition of symmetries on a noncommutative spacetime turns

out to be not at all an easy task. We will need to introduce the notion of Quan-

tum Groups and Hopf Algebras which allows to restore Poincaré symmetry in

a deformed fashion. Quantum Groups allow to circumvent the naively explicit

breaking of Poincaré invariance by θµν and recover its essential role in any QFT

formulation.

Having enlightened the connections between Quantum Gravity and Noncommmu-

tative Geometry, we hope that by now the reader feels the need to understand non-

commutative spaces in a more quantitative and formal sense. And this is exactly what

we are turning into in the next chapter.
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The Math of noncommutativity:

noncommutative spaces and

Quantum Symmetries

In the previous chapter we motivated in many different ways, why we expect noncom-

mutativity of the spacetime to appear once we get to probe its finer structure. Yet

we don’t know how to deal with these spaces and how to even treat them mathemat-

ically. Differential geometrical or topological methods will definitely not suffice for it:

spacetime coordinates do not commute

[xµ, xν ] = iθµν (1.1)

so on noncommutative spaces there is no operational definition of points. Topology

and differential geometry are the study of respectively continuous and smooth spaces.

We then need to turn our perspective on how to deal with spacetimes quite radically.

In this chapter we introduce the tools to do it. The main idea which will allow us

to circumvent the problem of lack of points is contained in the first Gel’fand-Naimark

theorem which proves that there is an algebraic way of looking at topological spaces.

Algebras will be the tool we use to talk about some kind of “noncommutative topology”.

Most of the technical details will not be needed for the remaining part of the thesis.

Therefore we will try to keep the treatment as simple as possible but still mathe-

matically accurate, focusing mainly on conceptual ideas rather than formal subtleties.

13



1. THE MATH OF NONCOMMUTATIVITY: NONCOMMUTATIVE
SPACES AND QUANTUM SYMMETRIES

Yet some mathematical notion about algebras will be required. In order to keep the

treatment self-contained, we devoted an appendix to “algebraic preliminaries”.

The presentation of the material in this chapter, follows quite closely (? ).

1.1 From topological/geometrical methods to algebraic

ones

In this section we will make heavy use of the terminology and definitions introduced in

Appendix ?? so we refer to it for most of the definitions not given here. Below we will

outline the main idea which allows us to treat mathematically noncommutative spaces,

the existence of a duality between topological methods and algebraic ones, starting

with the main pillar, a duality between topological spaces and commutative algebras.

1.1.1 Topological spaces ↔ Commutative C∗-algebras

The first Gel’fand-Naimark theorem represents the pillar of the reformulation of topol-

ogy in terms of algebraic notions: Every commutative C∗-algebra can be realized

as an algebra of continuous function on a certain Hausdorff topological space

M . In other words there is a one to one correspondence between Hausdorff topological

spaces and commutative C∗-algebras.

Given a Hausdorff topological space M , we can immediately obtain a commutative

C∗-algebra as the algebra of continuous functions over M , C0(M), with supremum

norm:

∀f ∈ C0(M) ‖f(x)‖ = supx∈M |f(x)| . (1.2)

If M is not compact, C0(M) is the algebra of continuous functions vanishing at infinity.

We then obtain that (non)compact Hausdorff topological spaces are dual to (non)unital

C∗-algebra.

The other side of the correspondence is less trivial. So given a commutative

(non)unital C∗-algebra C how do we re-construct M? First we should explain how

to construct Ĉ, the space of all characters of C. A character of C is a one-dimensional

irreducible, ∗-linear representation of C, x : C → C. x preserves the multiplication map

on C
x(f · g) = x(f) · x(g) ∀f, g ∈ C (1.3)
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where the RHS is just the multiplication on C. The space Ĉ can be made into a

topological space endowing it with the topology of pointwise convergence on C. This

simply means that a sequence of characters {xn} in Ĉ converges to x ∈ Ĉ if and only

if the sequence {xn(f)} ∈ C converges to {x(f)} in the topology of C for any f ∈ C.
We then have shown that given a Hausdorff topological space M we can construct

a commutative C∗-algebra C0(M) and that given a commutative C∗-algebra C we can

construct a topological space associated with it, Ĉ. The last question left is, if we

start from M , construct C0(M), and then its topological space Ĉ0(M), how are Ĉ0(M)

and M related? The relation between the two can be constructed by noticing that

any x ∈ M allows us to construct a ∗-linear homomorphism φx ∈ Ĉ0(M) through the

evaluation map:

φx : C0(M)→ C, φx(f) = f(x), φx(f · g) = (f · g)(x) = f(x) · g(x) (1.4)

Then the map φx is a homeomorphism of M onto Ĉ0(M)1. We then obtain the re-

sult which we state few lines above, there is a one-to-one correspondence between

commutative C∗-algebras and the homeomorphism classes of locally compact topolog-

ical spaces. We can rephrase it also in a fancy, categorial language as the fact that

there is a complete duality between the category of (locally) compact Hausdorff spaces

and continuous maps and the category of commutative (non) unital C∗-algebras and

∗-homomorphisms.

1.1.2 Vector Bundles ↔ Finite Projective Modules

The Serre-Swan theorem represents the analog of the first Gel’fand-Naimark theorem

for Vectors Bundles: Complex vector bundles over an Hausdorff space M are in

one-to-one correspondence with finite projective modules over the algebra

A = C∞(M). In this section we will first introduce what projective modules are

and then we will proceed to convince the reader that the correspondence is in fact

one-to-one. We will again avoid the formal proof of the mathematical theorem.

1To avoid confusion we want to clarify this point. φx is an homomorphism if seen as a map from

C0(M) → C. In fact (??) shows that φx preserves the multiplication in C0(M). At the same time φx

can be seen as a map between topological spaces, namely the topological space M and the space of

character Ĉ0(M) with the topology of pointwise convergence. In this latter perspective φx is instead a

homeomorphism.
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1. THE MATH OF NONCOMMUTATIVITY: NONCOMMUTATIVE
SPACES AND QUANTUM SYMMETRIES

Free Modules

Let A be an algebra over C and E a vector space over C. E is a (right) left module over

A if it carries a (right) left action such that

A× E 3 (a, v)→ av ∈ E
(a1a2)v = a1(a2v), (a1 + a2)v = a1v + a2v, a(v1 + v2) = av1 + av2 (1.5)

∀a1, a2 ∈ A & v1, v2 ∈ E , in other words E carries a (right) left representation of A.

Let {en} be a set of linearly independent vectors of E . If any element in E can

be uniquely written as linear combination of {en} with coefficient in A, that is ∀v ∈
E , ∃!{ai} ∈ A such that v =

∑
i aiei, then {en} is a basis for E . A module is free if it

admits a basis. In other words a module is free if it is isomorphic to AN = A ⊗ CN .

This looks very much similar to the condition of triviality for a vector bundle, E =

V ×M . As we just anticipated trivial bundles correspond to free modules but in order

to accommodate non trivial ones we should also introduce projective modules.

Projective Modules

An A-module E is projective if it is a direct summand in a free module, that if there

exists a free module F and a module E ′ such that

F = E ⊕ E ′ (1.6)

From the definition given, it follows immediately that E ′ is then projective as well.

The definition above is quite obscure. We can provide an equivalent and hopefully

more transparent definition in terms of a A-modules’ homomorphism, that is a linear

map ρ which also preserves the A action

ρ : E → E ′ ρ(av) = aρ(v) ∀a ∈ A & v ∈ E (1.7)

A module E is projective if and only if there exists an AN -endomorphism e, which

is idempotent, e2 = e, such that E = eAN . It then follows that

AN = eAN ⊕ (1− e)AN = E ⊕ E ′ (1.8)

And AN is obviously free. The map e can be represented as N ×N matrix with entries

in A acting on AN . The above definition means that E is projective if and only if it

can be written as a non-trivial projection of a free module AN . In the definition above

the projection map is e.
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1.1 From topological/geometrical methods to algebraic ones

The correspondence between projective modules and bundles goes as follow. A vector

bundle E → M is completely characterized by the space E = Γ(E,M) of its section,

that is vector fields. It can be easily shown that E is a finite projective module over

C∞(M). The converse requires a bit more care, that is given E ∼= Γ(E,M) how do we

construct the vector bundle E →M .

The fiber Ex̃ of E →M over the point x̃ ∈M , is a vector space. It can be obtained

from Γ(E,M) as a space of equivalence classes where two vector fields are equivalent if

they coincide at x̃ or alternatively they differ by a vector field which vanishes at x̃. The

space of vector fields which vanish at x̃ is generated by Ix̃, the set of functions which

vanish at x̃ (such a set is in fact a ideal of A = C∞(M)). Given a projective module

E over C∞(M), the fiber Ex̃ of the associated vector bundle over the point x̃ ∈ M is

obtained

Ex̃ = E/(E ⊗ Ix̃) (1.9)

1.1.3 Diffeomorphisms ↔ Automorphisms of A = C∞(M)

The group of diffeomorphisms of a manifold M is the set of smooth maps from M

in itself, which are invertible and whose inverse is also smooth, and where the group

operation is composition of maps

φ ∈ Diff (M), φ : M →M, φ(x) ∈ C∞(M) (1.10)

Diffeomorphims can be accommodated in the algebraic description of manifold in a

straightforward way by considering the action of a diffeomorphism φ on a smooth

function f(x) ∈ A ≡ C∞(M),

φ : C∞(M) 3 f(x)→ f(φ−1(x)) ∈ C∞(M) (1.11)

Therefore the group Diff(M) of diffeomorphisms of M is naturally isomorphic to the

group Aut(C∞(M)) of automorphisms of C∞(M). The group of Aut(A) of a given

algebra A, is the set of maps from A into itself which also preserves the multiplication

map. The group operation being the composition of maps.

In order to motivate what we stated in the previous chapter about finding solutions

of (??) for noncommutative spaces, we should study the structure of Aut(A) for any,
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commutative or noncommutative, C∗-algebras. If the algebra A is noncommutative,

invertible elements u ∈ A, define automorphisms of A by the equality

Adu(a) = u ◦ a ◦ u−1, ∀a ∈ A (1.12)

These automorphisms are not trivial (unless a belongs to the center of A) and form a

normal subgroup of Aut(A). We call the elements of Aut(A) which can be written as in

(??) internal automorphisms and indicate them as Int(A). Elements of Aut(A) which

cannot be written as in (??) are called outer automorphisms and will be indicated as

Out(A). Thus the group of automorphisms of a C∗-algebra has generically the form

Aut(A) = Int(A) n Out(A) . (1.13)

in the above, A n B indicates the semi-direct product of A and B, with B being the

invariant subgroup.

Specifically if A = Mn(C∞(M)), that is A is the algebra of n × n matrices with

entries in C∞(M), and we restrict Int(A) to the solely unitary elements, (??) reduces

to

Aut(Mn(C∞(M))) = Map(M,G) nDiff (M) (1.14)

where Map(M,G) is the group of maps from M → G, and G is the group SU(n)1, that

is Map(M,G) is the SU(n) gauge group.

Although we have not fully shown how to find a solution for (??), we hope to have

provided enough details for the reader to be convinced that if we move to noncommu-

ative C∗-algebras we can construct a theory which naturally provides both gravity and

the standard model gauge group. As we stated in the introduction, in the remaining

part of the thesis we will not follow Connes et al. approach to noncommutative ge-

ometry, therefore we will not discuss this topic any further but refer the reader to the

literature for a detailed and explicit resolution of (??), see for instance (? ).

1.1.4 Noncommutative Spacetimes ↔ Noncommutative C∗-algebras

At this point it should be quite obvious for the reader how we could define a noncom-

mutative space. Following the construction outlined in the beginning of the section, a

1To be precise, since (??) is trivial if a belongs to the center of the algebra, G is the coset of SU(n)

and its finite center.
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1.2 Quantum Symmetries and Hopf algebras

noncommutative space is the space of characters Ĉ of a C∗-algebra C when

C is now noncommutative.

In particular in the approach to noncommutative geometry followed in this thesis,

we will be dealing with a very specific type of non-commutative C∗-algebras: The ones

obtained from a deformation of the product of the algebra of functions over R4. In fact

from (??) we obtain that on noncommutative spaces

xµ ? xν 6= xν ? xµ (1.15)

that is the product among functions is changed and it is now noncommutative. We will

encounter different deformations of the algebra of functions on R4, but we will often

use A? to indicate that we are dealing with a noncommutative deformation of C∞(R4).

A final remark is in order. At this point the reader might wondering whether or

not we are really dealing with a spacetime without points since we still constructed the

noncommutative spacetime in terms of old tools, that is functions over the spacetime

R4. Although we will be still using R4 coordinates and we will be able to exactly

evaluate a function at a point x̃, we want to remind the reader that the spacetime

associated with A? is no longer R4. As explained previously, such a spacetime should

be constructed from space of characters of A?. In general the evaluation map φx in

(??) is not a character anymore since for a generic ? product, φx does not preserve the

multiplication map on A?:

φx : f → f(x) but φx(f1 ? f2) = (f1 ? f2)(x) 6= f1(x)f2(x) (1.16)

Therefore the underlying spacetime associated to A? is not R4 and it is truly noncom-

mutative.

1.2 Quantum Symmetries and Hopf algebras

The importance of group theory in the formulation of quantum mechanics and quantum

field theory can in no way be overstated. The spectrum of particles that we measure

(fermions, vector bosons and scalar-0 particles), all comes from theory of representation

of the Poincaré symmetry group. What goes usually unnoticed is that we deal with

more structure than just a group. A system of two or more particles lives in a tensor
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product (of single-particle Hilbert spaces) Hilbert space,

H(n) = H⊗ ...⊗H︸ ︷︷ ︸
N factors

(1.17)

If a representation ρ of a group G on H is given, there is no unique nor canonical way of

defining its action on the tensor product space H⊗H. Specifying how G acts on H⊗H
enriches the group structure with a new operation, which is called the co-multiplication

or co-product and is indicated with ∆. ∆ : G → G ⊗ G is a map which has to satisfy

a certain set of properties. Once these properties are satisfied, the group G acquires

the structure of a Hopf algebra. Before turning into the formal definition we should

convince ourselves of the importance of the co-product ∆.

The theory of angular momentum and the angular momentum addition rules, in-

cluding Clebsch-Gordan coefficient, for instance, is a consequence of a particular choice

of ∆ on the algebra of rotation group SO(3)

[Jj , Jk] = iεjklJl, ∆0(Ji) = Ji ⊗ 1 + 1⊗ Ji (1.18)

We call such a choice ∆0 since it represents the co-product suited for quantum me-

chanics on commutative spacetime. If |±〉 indicates a state of spin ±1/2 and use

|a, b〉 for |a〉 ⊗ |b〉, we then obtain, for instance, the well-known result for |1, 0〉 =

(|+,−〉+ |−,+〉)/
√

2

∆0(Jz)|1, 0〉 = 0 & ∆0(J2)|1, 0〉 = ∆0( ~J) ·∆0( ~J)|1, 0〉 = 2|1, 0〉 (1.19)

where the last property, that is ∆0(a · b) = ∆0(a) ·∆(b) is one of the crucial properties

that the map ∆ should fulfill.

Hopf algebras

An algebra A endowed with a co-multiplication map or co-product ∆ : A → A ⊗ A,

a co-unit ε : A → C and an antipode S : A → A is a Hopf algebra if the following

properties are satisfied

(id⊗∆)∆ = (∆⊗ id)∆ (coassociativity of ∆) (1.20)

(id⊗ ε)∆(a) = (ε⊗ id)∆(a), ∀a ∈ A (1.21)

m(S ⊗ id)∆(a) = m(id⊗ S)∆(a) = ε(a)1 ∀a ∈ A (1.22)
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1.2 Quantum Symmetries and Hopf algebras

m : A⊗A → A represents the multiplication map on A. In addition to the properties

above, all three maps should be algebra homomorphisms, that is should preserve the

multiplication map m on A

∆(a1a2) = ∆(a1)∆(a2) (1.23)

ε(a1a2) = ε(a1)ε(a2) (1.24)

S(a1a2) = S(a2)S(a1) (1.25)

On the RHS’s we left the multiplication map implicitly defined by the context, that is

in (??) the product is given by the multiplication map mA⊗A induced by m on A⊗A,

in (??) is the multiplication on C whereas in (??) is simply m.

An example of a Hopf algebra is the Group Algebra, which is roughly speaking a

group with extra information on how to act on tensor-product spaces. The situation

is slightly more subtle than this, since from the definition above, a Hopf algebra is an

algebra in the first place. For a given group G , we can define an algebraic structure as

follow. For simplicity we here consider the case G is discrete so we can have a discrete

index labeling its elements. The generalization to continuous groups is straightforward

(issues of convergence apart) with the sum replaced by an integral over the group.

Consider a formal sum over C of elements of G

γ =
∑
i

λigi, λi ∈ C, gi ∈ G (1.26)

elements of G are clearly of the form λi = 0 ∀i 6= ī and λī = 1. We can now define

the sum and the multiplication of two elements γ1 and γ2 the former inherited by the

addition over C and the latter by the multiplication over G

γ1 + γ2 :=
∑

i(λ
1
i + λ2

i )gi (1.27)

γ1 ◦ γ2 :=
∑

i,j λ
1
iλ

2
j (gi ◦ gj) (1.28)

The multiplication ◦ is clearly distributive over +

(γ1 + γ2) ◦ γ3 = γ1 ◦ γ3 + γ2 ◦ γ3 (1.29)

so the set of all gammas, forms an algebra. We call it the Group Algebra CG . CG

becomes a Hopf algebra once endowed with the co-product

∆0 : CG → CG ⊗ CG , ∆0(gi) := gi ⊗ gi (1.30)
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the action of ∆0 on a generic element γ ∈ CG can be obtained by linearity.

The algebra of CG , which we indicate as Cg, is also endowed with a Hopf algebra

structure once (??) is given1. It is possible to show that (??) induces the following map

on its algebra Cg:

∆0 : Cg→ Cg⊗ Cg, ∆0(X) = X⊗ 1 + 1⊗ X, ∀X ∈ g. (1.31)

endowing Cg with a Hopf algebraic structure. The co-product (??) coincides with the

usual action of angular momentum operators on multi-particle states, showing indeed

that Quantum Mechanics needs a Hopf algebra structure rather than just a group.

1.3 Noncommutative space and deformed Poincaré action

From (??), at first sight it seems that the noncommutativity of spacetime coordinates

also violates Poincaré invariance: the L.H.S. of (??) transforms in a non-trivial way

under the standard action of the Poincaré group whereas the R.H.S. does not. The

issue can be solved by noting that the L.H.S. of (??) is to be interpreted in terms of

tensor products and ?, the deformed noncommutative product on the algebra C∞(M):

[xµ, xν ] = xµ ? xν − xν ? xµ = mθ(xµ ⊗ xν − xν ⊗ xµ) . (1.32)

Here we introduced a notation which will be used often in the following. The ?-product

can be seen as a map from Aθ ⊗ Aθ → Aθ, which we will indicate by mθ since in the

limit θµν → 0, ? goes to the standard pointwise, commutative product:

mθ : Aθ ⊗Aθ → Aθ, mθ(f1 ⊗ f2)(x) := (f1 ? f2)(x) (1.33)

As we described in the previous section, the way the Poincaré group P acts on the

tensor product space is a further information which is not given by the way elements

of the group act on xµ. For this we need to define a coproduct ∆ from P → P ⊗P

(More precisely ∆ is a homomorphism from the group algebra CP to CP ⊗CP.) In

physics the standard choice is the diagonal map:

∆0 : g ∈P → ∆0(g) = g ⊗ g ∈P ⊗P . (1.34)

1Although we don’t want to make the treatment heavier than it already is, we should mention that

Cg is very different from g, the algebra of G . Formally Cg is called the enveloping algebra of g. We will

not address all the subtleties of such a definition here, referring the reader to the literature for details

(? ? ).
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Endowed with ∆, P becomes a Hopf algebra, we will indicate it as HP and call

if Poincaré-Hopf algebra. We have now enough information to define an action on

tensor products. For example, for ∆0, P acts on xµ ⊗ xν according to xµ ⊗ xν →
∆0(g)xµ ⊗ xν := (gxµ ⊗ gxν).

In (? ? ? ), it has been shown that there exists a choice for ∆, different from

(??), which allows an action of the Poincaré group algebra (indicated in what follows

by g . f) preserving the relations (??). The new Poincaré action we get is called the

twisted action. The coproduct ∆θ, which defines it, is called the twisted coproduct.

Finally ∆θ changes the standard Hopf algebra structure associated with the Poincaré

group (the Poincaré-Hopf algebra HP) given by ∆0 (??) to a twisted Poincaré-Hopf

algebra HθP. In the next chapter we will explain in details the theory of Hopf algebras

twist deformations. For a complete treatment of deformations of Hopf algebras we refer

to Appendix ?? or to the literature (? ? ? ).

We conclude this chapter providing a further motivation why to expect the coprod-

uct for the Poincaré group to be deformed with respect to the standard choice ∆0,

when acting on a noncommutative space. The action of a group on a algebra A is by

definition an automorphism, that is it preserves the multiplication map in the following

sense:

g . f1 ? f2 : g(f1 ? f2) = mθ

(
g . (f1 ⊗ f2)

)
= mθ

(
∆(g)(f1 ⊗ f2)

)
(1.35)

which can be summarized as the product mθ has to commute with the group action

(remember that the action of g on the tensor product A ⊗ A is always given by the

coproduct ∆).

It can be shown that the choices ∆0 (??) and (??) are suitable action in the case

of the pointwise product among functions. That is for a quantum field theory on a

commutative space. On noncommutative spaces, ∆0 does no longer commutes with

mθ. The coproduct should then be deformed to make the action of the group an

automorphism. Interestingly enough, the deformation ∆θ which commutes with the

multiplication map mθ coincides with the deformed coproduct choice which restores

Poincaré invariance.

The explicit construction of such deformation ∆θ and the theory of quantum fields

on a noncommutative spacetime will be the topic of the next chapter.
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2

Quantum Fields on

noncommutative Spaces: The

Twisted Field Approach

So far we have been given the mathematical tools to deal with noncommutative spaces.

Our next step is to introduce quantum fields on spaces where spacetime coordinates do

not commute as in (??).

As we have seen in the last chapter, the action of the symmetry group in general,

and the Poincaré group in particular, is modified on noncommutative spacetimes for

compatibility with the spacetime coordinates commutation relations. Such a deforma-

tion is crucial in the construction of quantum fields on noncommutative spacetimes. We

construct the fields à la Weinberg, that is creation and annihilation operators should

provide an irreducible representation of the deformed Poincaré group. We also discuss

a series of consequences of such a construction like the twisted statistics.

Such a construction might be extremely hard for generic Quantum Groups (de-

formed Hopf Algebras) so we restrict to a subset of them of which we can provide an

explicit representation on a Hilbert space.

2.1 The Drinfel’d twist and deformed coproduct

In the previous chapter we noticed that the relations (??) can be implemented by

deforming the product of the standard commutative algebra of functions on our n-
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dimensional space-time. We indicate such an algebra as A0 ≡ (C∞(M),m0), where

M ∼= Rn, C∞(M) are smooth functions on M and m0 is the point-wise multiplication

map:

m0(f ⊗ g)(x) = f(x)g(x) = g(x)f(x) = m0(g ⊗ f)(x).

There is a general procedure to deform such a product in a controlled way using the

so-called twist deformation (? ) which we are now going to introduce.

2.1.1 Twisting the Product

Let us denote as Aθ = (C∞(M),mθ) a deformation of A0 which leads to (??). Hence-

forth we assume that Aθ is a twist deformation, that is the deformed product can be

written as mθ = m0 ◦ Fθ, where m0 is the point-wise, commutative product, and Fθ,
the map which makes m0 not commutative anymore, gets the name of twist map. The

two satisfy:

mθ(f ⊗ g)(x) = m0 ◦ Fθ(f ⊗ g)(x) := (f ? g)(x), (2.1)

Fθ : C∞(M)⊗ C∞(M)→ C∞(M)⊗ C∞(M) and Fθ → 1 as θ → 0.

An explicit form of Fθ is, for example,

Fθ = exp
i

2
θ[∂x ⊗ ∂y − ∂y ⊗ ∂x]. (2.2)

In particular the unit is preserved by the deformation. We notice that

1) Fθ is one-to-one and invertible;

2) Fθ acts on the tensor product in a non-factorizable manner, i.e. the action on

C∞(M)⊗ C∞(M) intertwines the two factors.

The above choice (??) is a particular one and it is called the Moyal deformation.

So Fθ ≡ FMθ leads to the Moyal plane AMθ :

mMθ (f ⊗ g)(x, y) ≡ f(x, y) · g(x, y) +
i

2
θ
[
(∂xf)(∂yg)− (∂yf)(∂xg)

]
+
∑
n=2

[
i
2θ(∂x ⊗ ∂y − ∂y ⊗ ∂x)

]n
n!

(f ⊗ g).
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But it is not unique. Another choice, leading to the Wick-Voros plane AVθ is

FVθ = exp
1

2
θ[∂x ⊗ ∂x + ∂y ⊗ ∂y]FMθ = FMθ exp

1

2
θ[∂x ⊗ ∂x + ∂y ⊗ ∂y]. (2.3)

We will have chance later in the text, to discuss how the choice between the two affects

the physics.

2.1.2 Twisting the Coproduct

As we already noticed at the end of the last chapter, the noncommutative relations (??)

bring with them another problem: at first sight it seems that the noncommutativity

of spacetime coordinates violates Poincaré invariance: the l.h.s. of (??) transforms in a

non-trivial way under the standard action of the Poincaré group P whereas the r.h.s.

does not. Yet we can exploit the freedom we have, to choose the action on the tensor

product space of the Poincaré group, or rather, of its group algebra CP, to try to

find a way to consistently act on the deformed algebras Aθ. What we obtain is called

twisted action (? ? ? ). It goes as follows. The l.h.s. of (??) is an element of the

tensor product space followed by mθ : AM,V
θ ⊗AM,V

θ → AM,V
θ . The way in which CP

acts on the tensor product space requires a coproduct ∆:

∆ : CP → CP ⊗ CP.

Usually we assume for the coproduct the diagonal map ∆0:

∆0(g) = g ⊗ g ∀ g ∈P. (2.4)

which extends to CP by linearity. But (??) is not the only possible choice. The idea

proposed in (? ? ? ) is that we can assume a different coproduct on CP, that is

“twisted” or deformed with respect to ∆0, to modify the action of the Poincaré group

on tensor product spaces in such a way that it does preserve relations (??). As we

already stressed previously, the change of ∆0 is not a mere mathematical construction,

as it affects the way composite systems transform under spacetime symmetries. This

observation will have deep consequences in the physical interpretation of the theory as

it will be shown later. This modification changes the standard Hopf algebra structure

associated with the Poincaré group (the Poincaré–Hopf algebra HP) to a twisted

Poincaré–Hopf algebra HθP (H0P ≡ HP).
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We already introduced two possible deformations, (??) and (??), therefore the

deformed algebra is not unique. For the Moyal and Wick–Voros cases they are different,

although isomorphic1. The isomorphism map is

γ = e−
1
4
θ(∂2x+∂2y), γ : AMθ → AVθ and FVθ = γ ⊗ γFMθ ∆

(
γ−1

)
.

We denote them by HM,V
θ P when we want to emphasise that we are working with

Moyal and Wick–Voros spacetimes. The question of whether or not they give rise to

equivalent QFT’s will be addressed in the next chapter.

The explicit form of the deformed coproduct ∆θ of HθP is obtained from requiring

that the action of CP is an automorphism of the new algebra of functions Aθ on space-

time. That is, the action of CP has to be compatible with the new noncommutative

multiplication rule (??) in the sense of (??).

It is easy to see that the standard coproduct choice (??) is not compatible (? ? ? )

with the action of CP on the deformed algebra Aθ. In the cases under consideration,

where Aθ are twist deformations of A0, there is a simple rule to get deformations ∆θ

of ∆0 compatible with mθ. They are given by the formula:

∆θ = (Fθ)
−1∆0Fθ, (2.5)

where Fθ is an element in HθP⊗HθP and it is determined by the map Fθ introduced

before, Fθ being the realisation of Fθ on Aθ ⊗Aθ.
For Fθ = FM,V

θ , the corresponding FM,V
θ give us the Hopf algebras HM,V

θ P.

Without going deeper into the deformation theory of Hopf algebras, which will be

discussed in Appendix ??, we just note that the deformations we are considering here

are very specific ones since we keep the multiplication rule unchanged and deform only

the co-structure of the underlying Hopf algebra. Thus for CP, we only change ∆0 to

∆θ leaving the group multiplication the same. For a deeper discussion on deformations

of algebras and Hopf algebras, we refer again to Appendix ?? and the literature (? ?

? ? ).

1The two deformations are in fact equivalent in Hopf algebra deformation theory. That is they

belong to the same equivalence class in the non-Abelian cohomology that classifies Hopf algebra twist-

deformations. See Appendix ?? or for even more details (? ).
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2.1.3 Twisting Statistics

Lastly we have to introduce the concept of twisted statistics. It is a strict consequence of

the twisted action of the Poincaré group on the tensor product space (??). In quantum

mechanics two kinds of particles, with different statistics, are admitted: fermions, which

are described by fully antisymmetrised states, and bosons, which are instead completely

symmetric. LetH be a single particle Hilbert space. Then given a two-particle quantum

state, α⊗ β with α, β ∈ H, we can get its symmetrised and anti-symmetrised parts as:

α⊗S,A β =
1± τ0

2
α⊗ β,

where the map τ0 is called the flip operator and it simply switches the elements on

which it acts,

τ0(α⊗ β) = β ⊗ α.

From the foundations of quantum field theories it can be proved that the statistics

of particles have to be superselected, that is Poincaré transformations cannot take

bosons (fermions) into fermions (bosons). In other words, a symmetric (antisymmetric)

state must still be symmetric (antisymmetric) after the action of any element of the

Poincaré group. This requirement implies that the flip operator has to commute with

the coproduct of any element of CP. As can be trivially checked, the action of τ0

commutes with the coproduct ∆0(g) of g ∈ P, but not with ∆θ(g). If we do not

modify the flip operator, we end up with a theory in which, for example, a rotation

can transform a fermion into a boson.

If the deformation of the coproduct is of the kind we have been considering so far,

that is a twist deformed coproduct as in (??), again it is easy to find a deformation τθ

of the flip operator τ0 which commutes with ∆θ:

τ0 → τθ = (Fθ)
−1τ0Fθ (2.6)

and, moreover τ2
θ = 1 ⊗ 1. This equation contains the R-matrix of a quasi-triangular

Hopf algebra. By definition, R is given by

τθ = R ◦ τ0. (2.7)

Hence:

R := F−1
θ ◦ Fθ21, Fθ21 ≡ τ0Fθτ

−1
0 . (2.8)
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In quantum physics on a noncommutative spacetime, we then consider symmetrisation

(antisymmetrisation) with respect to τθ rather then τ0:

α⊗Sθ,Aθ β =
1± τθ

2
α⊗ β. (2.9)

2.2 Examples: Moyal and Wick-Voros planes

We now proceed with the study of two explicit examples: Moyal and Wick-Voros planes.

We denote by FM,V
θ and mM,V

θ the twists and multiplication maps for the deformed

algebras AM,V
θ respectively

mM,V
θ (f ⊗ g) ≡ m0 ◦ FM,V

θ (f ⊗ g) . (2.10)

In the following, for the sake of simplicity, we will work in two dimensions. The

generalization to arbitrary dimensions will be discussed at the end of the section.

In two dimensions, we can always write θµν as

θµν = θεµν (2.11)

ε01 = − ε10 = 1 (2.12)

where θ is a constant. Then the two twists FM,V
θ assume the form

FMθ = exp i
2θ[∂x ⊗ ∂y − ∂y ⊗ ∂x] , (2.13)

FVθ = exp 1
2θ[∂x ⊗ ∂x + ∂y ⊗ ∂y]FMθ = FMθ exp 1

2θ[∂x ⊗ ∂x + ∂y ⊗ ∂y] . (2.14)

Hereafter we will call FMθ and FVθ the Moyal and Wick-Voros twists, and AMθ
and AVθ the Moyal and Wick-Voros algebras respectively. Both deformations, AMθ and

AVθ , realize the commutation relations (??). This fact shows how noncommutativity of

spacetime does not fix uniquely the deformation of the algebra. There are many more

noncommutative algebras of functions on spacetime that realize (??) with different

twisted products. We will address the study of how this freedom reflects on the quantum

field theory side in the next chapter. For these purposes it is enough to work with two

of them. Thus hereafter we will only work with AM,V
θ .

Given the above expressions for the twists, explicit expressions for the noncommu-

tative product of the functions in the two cases follow immediately from (??):

(f ?M g)(x) = mMθ (f ⊗ g)(x) ≡ f(x)e
i
2
θαβ
←−
∂α⊗
−→
∂βg(x) , (2.15)

(f ?V g)(x) = mV
θ (f ⊗ g)(x) ≡ f(x)e

i
2

(
θαβ
←−
∂α⊗
−→
∂β−iθδαβ

←−
∂α⊗
−→
∂β
)
g(x) . (2.16)
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If we let the ?-product to act on the coordinate functions, we get in both cases the

noncommutative relations (??).

Once the two twists are given, following (??), we can immediately write down the

deformations of the two coproducts as well:

∆M,V
θ (g) =

(
FM,V
θ

)−1
∆0(g)FM,V

θ =
(
FM,V
θ

)−1
(g ⊗ g)FM,V

θ (2.17)

Here FM,V
θ ∈ HP ⊗HP are:

FMθ = exp
(
− i

2θ[Px ⊗ Py − Py ⊗ Px]
)
, (2.18)

F Vθ = exp
(
−1

2θ[Px ⊗ Px + Py ⊗ Py]
)
FMθ = FMθ exp

(
−1

2θ[Px ⊗ Px + Py ⊗ Py]
)
.(2.19)

where Pµ are translation generators. Their realisation on AM,V
θ is:

Pµ . f(x) ≡ (Pµf)(x) = −i(∂µf)(x) . (2.20)

We end this section with a discussion on how the τ0 gets twisted in the two cases.

As FMθ is skew-symmetric and F Vθ is the composition of FMθ and a symmetric part,

we get:

FMθ21 =
(
FMθ

)−1
, (2.21)

F Vθ21 = exp
(
−1

2θ[Px ⊗ Px + Py ⊗ Py]
) (
FMθ

)−1
. (2.22)

In the R-matrix (??), any symmetric part of the twist cancels. Thus in both Moyal

and Wick-Voros cases, the statistics of particles is twisted in the same way:

RM,V =
(
FMθ

)−2
= exp (−iθ[Px ⊗ Py − Py ⊗ Px]) . (2.23)

Generalization to N-dimension

We can now briefly outline how to generalize our considerations on the Wick-Voros

twist (??) to 2N -dimensions1. We can always choose x̂µ so that θµν , now an 2N × 2N

skew-symmetric matrix, becomes a direct sum of N 2 × 2 ones. These 2 × 2 matrices

are of the form (??), but different 2×2 matrices may have different factors θ. For every

such 2 × 2 block, we have a pair of x̂’s which can be treated as in the 2-dimensional

case above. (Of course there is no twist in any block with a vanishing θ.)

1In 2N + 1-dimensions, we can always choose θµν so that θµ,2N+1=θ2N+1,µ=0.
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2.3 Quantum Field Theories on Moyal and Wick-Voros

planes

It is time now to discuss how to quantize the two theories introduced in the previous

section. Our approach to the Moyal plane is discussed in (? ? ) and to the Wick-Voros

plane can be found in (? ? ). For another approach to the latter, see (? ).

The quantization procedure consists in finding a set of creation operators, and by

adjointness the annihilation counterpart, which create multiparticle states providing a

unitary representation of the twisted Poincaré-Hopf symmetry. Such a set of creation

and annihilation operators must also implement the appropriate twisted statistics (??-

??). Out of them we can construct the twisted quantum fields. It has been in fact

proven elsewhere (? ? ) that the Hamiltionan constructed out of such twisted fields is

Hopf-Poincaré invariant.

Let us first consider the Moyal case. As our previous work (? ? ) shows,

aMp = cp exp(− i
2pµθ

µνPν) (2.24)

aM†p = c†p exp( i2pµθ
µνPν) (2.25)

where cp, c
†
p are the untwisted θµν = 0 annihilation and creation operators (we can

assume all such operators to refer to in-, out- or free-operators as the occasion demands),

provide the operators we were looking for. Let’s see that.

Since we are considering only deformations in which the coproduct is changed,

the way in which the Poincaré group acts on a single particle state is the usual one.

Therefore we expect the creation operator (??) to act on the vacuum like the untwisted

operator c†p. Since Pν |0〉 = 0, it is easy to see that this is in fact the case. It is then

plausible that the generators of Poincaré transformations on the Hilbert space under

consideration have to be the untwisted ones. We will now confirm this: if (a,Λ) →
U(a,Λ) ≡ U(Λ)U(a) is the θ = 0 unitary representation of the Poincaré group, we will

show that the multiparticle states created by acting with (??) on the vacuum transform

with the Moyal coproduct (??).

If we consider the action of a general group element of the Poincaré group (a,Λ) on

a two–particle state |p, q〉θ, we expect

∆Mθ

(
(a,Λ)

)
. |p, q〉θ =

(
FMθ

)−1(
(a,Λ)⊗ (a,Λ)

)
FMθ . |p, q〉θ (2.26)

= |Λp,Λq〉θe−
i
2

(p∧q−Λp∧Λq)e−i(p+q)·a,
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where a ∧ b := aµθ
µνbν , and we have used the properties of a momentum eigenstate,

Pµ . |p〉 = pµ|p〉 and (a,Λ) . |p〉 = |Λp〉e−ip·a.
For the θ = 0 generators of the unitary representation of the Poincaré group on the

Hilbert space under consideration, we have

U(a,Λ)c†pU
−1(a,Λ) = eip·ac†Λp (2.27)

Defining (? )1

|p, q〉Mθ = aM†q aM†p |0〉 (2.28)

we can now explicitly compute how U(a,Λ) acts on the two–particle state considered

in (??):

U(a,Λ)|p, q〉θ = U(a,Λ)c†qU
−1(a,Λ)U(a,Λ)e

i
2
q∧P c†p|0〉 = c†Λqc

†
Λp|0〉e−i(p+q)·ae

i
2
q∧p

= aM†Λq e
i
2
q∧P c†Λp|0〉e

i
2
q∧pe−i(p+q)·a = |Λp,Λq〉e− i

2
(p∧q−Λp∧Λq)e−i(p+q)·a (2.29)

In the above computation we have used Pν |0〉 = 0 and a relation which will be used

repeatedly in what follows: e
i
2
pµθµνPνc†qe

− i
2
pµθµνPν = e

i
2
pµθµν [Pν , · ]c†q = e

i
2
pµθµνqνc†q.

Thus (??) coincides with (??). It is a remarkable fact that the appropriate deformation

of the coproduct naturally appears as the θ = 0 Poincaré group generator acts on the

two particle states obtained by the creation operator (??). This result generalises to

n-particles states.

The two–particle state in (??) also fulfills the twisted statistics. From (??-??) we

expect that (throughout this paper we will only consider the bosonic case):

|p, q〉Mθ =
1 + τMθ

2
|p, q〉 =

1

2

(
|p, q〉+ e−i~q∧~p|q, p〉

)
(2.30)

and

|q, p〉Mθ =
1 + τMθ

2
|q, p〉 =

1

2

(
|q, p〉+ e−i~p∧~q|p, q〉

)
= e−i~q∧~p|p, q〉Mθ (2.31)

On the other hand using the definition (??) of two–particle states in terms of the

creation operators a†Mp ’s:

|q, p〉Mθ = aM†p aM†q |0〉 = c†p exp(
i

2
pµθ

µνPν)c†q|0〉 = e−
i
2
~q∧~pa†q exp(− i

2
qµθ

µνPν)c†p|0〉 = e−i~q∧~p|p, q〉θ
(2.32)

1In the case under study, because of the twisted statistics, the creation operators, and likewise

their adjoints, do not commute. The order in which they act on a state becomes then an issue. The

choice made here is motivated by asking for consistency (? ). The scalar product we consider for the

definition of the adjoint is the one associated with the untwisted creation and annihilation operators.
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where we have used the relation introduced above and the fact that c†p and c†q commute.

So these creation operators do implement the statistics we want.

The operators defined in (??) and (??) are referred to as dressed operators in the

literature (? ? ? ). They are obtained from the θ = 0 ones by dressing them using the

exponential term.

We can now introduce the quantum field on the Moyal plane ϕMθ :

ϕMθ (x) =

∫
dµ(p)

[
aMp e−p(x) + aM†p ep(x)

]
(2.33)

where ep(x) denotes eip·x as usual, through a similar dressing of the standard θ = 0

scalar field:

ϕMθ = ϕ0e
1
2

←−
∂ µθµνPν . (2.34)

This formula is first deduced for in-, out- or free-fields. For example,

ϕM,in
θ = ϕin

0 e
1
2

←−
∂ µθµνPν . (2.35)

But since the Heisenberg field becomes the ‘in’ field as x0 → −∞,

ϕ0(x)→ ϕin
0 as x0 → −∞ , (2.36)

and Pµ is time-independent, we (at least heuristically) infer (??) for the fully interacting

Heisenberg field.

Products of the field (??) have a further remarkable property which we have called

self-reproducing property:

(ϕMθ ?M ϕMθ )(x) =
[
(ϕ0 · ϕ0)(x)

]
e

1
2

←−
∂ µθµνPν . (2.37)

where the · represents the standard point-wise product. This property generalises to

products of N fields

ϕMθ ?M ϕMθ ?M ... ?M ϕMθ︸ ︷︷ ︸
N−factors

= ϕN0 e
1
2

←−
∂ µθµνPν (2.38)

where again ϕN0 indicates the N -th power with respect the commutative product m0.

This self-reproducing property plays a significant role in general theory. It is the basis

for the proof of the absence of UV-IR mixing in Moyal field theories (with no gauge

fields) (? ? ).
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Now consider the Wick-Voros case. The twisted creation operators, which correctly

create states from the vacuum transforming under the twisted coproduct, are (? )

aV †p = c†pe
i
2

(pµθµνPν−iθpνPν) (2.39)

where pνPν uses the Euclidean scalar product. Its adjoint is

aVp = e−
i
2

(pµθµνPν+iθpνPν)cp . (2.40)

We prove in Chapter ?? that (??) and (??) are also dictated by the covariance of

quantum fields.

It can be shown that, like in Moyal case, the states obtained by the action of aV †θ

reproduce the appropriate twisted statistics too.

Although we have obtained, like in Moyal, (??) and (??) by dressing the θ = 0

operators, the quantum field ϕVθ on Wick-Voros plane:

ϕVθ (x) =

∫
dµ(p)

[
aVp e−p(x) + aV †p ep(x)

]
(2.41)

cannot be obtained from an overall dressing like in (??). This property fails due to the

fact that is not possible to factorise the same overall exponential out of both (??) and

(??), since it is not possible in (??) and (??) to move the exponential from right (left)

to left (right), that is:

aV †p 6= exp

(
− i

2
(pµθ

µνPν + iθpνPν)

)
c†p , (2.42)

aVp 6= cp exp

(
− i

2
(pµθ

µνPν + iθpνPν)

)
. (2.43)

This is because c†p and cp do not commute with the exponentials in (??) and (??), in

fact moving c†p (cp) to the right (left) will bring a factor e−
θ
2
pνpν :

aV †p = exp

(
i

2
(pµθ

µνPν − iθpνPν)− θ

2
pνpν

)
c†p (2.44)

aVp = cp exp

(
− i

2
(pµθ

µνPν + iθpνPν)− θ

2
pνpν

)
(2.45)

A consequence is that we have to twist the creation-annihilation parts ϕ
(±)I
0 (I= in-,

out- or free-) fields separately:

ϕ
(+)V,I
θ =

∫
dµ(p)aV,I†ep = ϕ

(+)I
0 e

1
2

(
←−
∂ µθµνPν−iθ

←−
∂ µPµ) , (2.46)

ϕ
(−)V,I
θ =

∫
dµ(p)aV,Ie−p = e

1
2

(
−→
∂ µθµνPν+iθ

−→
∂ µPµ)ϕ

(−)I
0 , (2.47)

ep(x) = eip·x, dµ(p) := d3p

2
√
~p2+m2

m = mass of the field ϕI
0 , (2.48)
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where now we have added the superscript I to ϕI
0, aV,I†p , and aV,Ip .

Therefore to obtain the field (??) we have to twist creation and annihilation parts

separately

ϕV,Iθ = ϕ
(+)V,I
θ + ϕ

(−)V,I
θ (2.49)

A further point relates to the self-reproducing property of these Wick-Voros fields.

The quantum fields ϕ
(±)IV
θ enjoy the self-reproducing property, but in different ways.

Thus

ϕ
(+)V,I
θ ?V ϕ

(+)V,I
θ ?V ... ?V ϕ

(+)V,I
θ︸ ︷︷ ︸

M−factors

=
(
ϕ

(+)I
0

)M
e

1
2

(
←−
∂ µ)θµνPν−iθ

←−
∂ µPµ (2.50)

ϕ
(−)V,I
θ ?V ϕ

(−)V,I
θ ?V ... ?V ϕ

(−)V,I
θ︸ ︷︷ ︸

M ′−factors

= e
1
2

(
−→
∂ µ)θµνPν+iθ

−→
∂ µPµ

(
ϕ

(−)I
0

)M ′
(2.51)

where, as in (??),
(
ϕ

(±)I
0

)N
is the N -th power of ϕ

(±)I
0 with respect to the commutative

product m0. Given (??), it follows that the full field, ϕVθ , does not have the self-

reproducing property.
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3

Weak and Strong equivalence:

Moyal versus Wick-Voros

In the previous chapter we introduced the Moyal and Wick-Voros quantum field the-

ories. Given that we presented at least two way of realizing relations (??), it is a

legitimate question to ask how these different ways of implementing quantum fields on

a noncommutative spacetime relate to each other. More specifically whether or not

give rise to equivalent quantum theory.

We try to systematically address this question in the present chapter in the context

of dressing transformation, that is the specific quantization procedure outlined in the

previous chapter. Most of the material in the present chapter is based on two papers,

(? ) and (? ).

3.1 Weak Equivalence

We already addressed the question of equivalence of two quantum field theories on

noncommutative spaces in (? ) and (? ). We want to recall briefly here what we called

“classical equivalence” in the former manuscript and “weak equivalence” in the latter.

Mathematically, in the theories we are dealing with, there are two deformations in-

volved. The first one is at the product (algebraic) level because of the ?-product which

makes the algebra of functions on spacetime noncommutative. The second is the Hopf

algebraic deformation of the symmetry group acting on the deformed algebra of func-

tions. We have shown in (? ) how the two are strongly tied, but still mathematically
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different.

Let us denote by Aθ, Hθ and A′θ, H ′θ two different pairs of deformations of space-

time and of the Hopf algebras of the kinematical group acting on them. We will say

that the two theories constructed from them are “weakly equivalent” if both pair of

algebras are equivalent Aθ ∼= A′θ and Hθ
∼= H ′θ, where the notion of equivalence of

deformations of algebras and Hopf algebras can be found respectively in (? ) and (?

). (In (? ), this equivalence was called “classical equivalence”, but “weak equivalence”

seems more appropriate).

In (? ), we have shown that if the pair of deformations are equivalent both at the

algebraic and Hopf algebraic level, then the following diagram is commutative:

Aθ ⊗Aθ T⊗T−−−−→ A′θ ⊗A′θy∆θ(g)

y∆′θ(TgT−1)

Aθ ⊗Aθ T⊗T−−−−→ A′θ ⊗A′θ

(3.1)

for all g ∈ Hθ.

Here the map T is the one which maps Aθ to A′θ (? ). In Appendix ?? we will prove

that if Aθ ∼= A′θ, then the two Hopf algebra deformations which are compatible with

the product in each deformed algebra are also equivalent provided T ∈ Hθ. This result

reduces the “weak equivalence” of two field theories on noncommutative spacetimes to

the requirement that the two algebras of functions are equivalent under the action of

Hθ.

The meaning of diagram (??) is simple. It is just the requirement that the map T

which implements the isomporphism Aθ → A′θ also correctly implements the isomor-

phism Hθ → H ′θ.

We call (??) “weak equivalence” because (??) is a necessary condition but not

sufficient to establish the equivalence of quantum field theories on Hθ and H ′θ. We call

the obstruction blocking the implementation of this weak equivalence in quantum field

theories a “quantum field anomaly”. It is discussed in what follows. It does not appear

in quantum mechanics as already shown in (? ).
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3.2 Quantum Field Theory on a noncommutative space-

time

We want now to proceed to a comparison between the two quantum field theories,

namely Wick-Voros and Moyal. We already anticipated that in the former construction

new features arise with respect to the standard quantum field theory on the Moyal plane

(? ? ). In this section, we are going to recall the main points of a quantum field theory

on a noncommutative spacetime. Then we will show that quantum field theory on the

Wick-Voros spacetime is not consistent if constructed using dressing transformation the

way outlined in the previous chapter.

The twisted quantum fields should carry a unitary representation of the Poincaré

group which implements the twisted coproduct. These fields should also implement the

twisted statistics. We shown the details in the previous chapter.

Let us first consider the Moyal case. From (??) and (??),

aMp = cp exp(− i
2pµθ

µνPν) (3.2)

aM†p = c†p exp( i2pµθ
µνPν) (3.3)

where cp, c
†
p are the untwisted θµν = 0 annihilation and creation operators. (We can

assume all such operators to refer to in, out or free operators as the occasion demands),

pµ is the four momentum of the particle whereas Pµ is the momentum operator (of the

fully interacting theory). We have also explicitly shown in (??) that if (a,Λ)→ U(a,Λ)

is the θ = 0 unitary representation of the Poincaré group, then these operators acting on

the vacuum create states which transform with the Moyal coproduct under conjugation

by U(a,Λ).

We remark that the Fock space we use here is “standard” and can be created by

applying c†p’s on the vacuum. The unitarity of U(a,Λ) is with regard to the scalar

product on this Fock space.

Transformations of the form (??) and (??) from cp, c
†
p to aMp , aM†p appeared in

the context of integrable models in 1+1 dimensions (? ? ? ) where they are called

“dressing transformations”. A discretised version of these formulas has in fact appeared

there. For this reason, here too, we will call them dressing transformations.

In these equations, the dressing transformation could have been changed to

aMp = exp

(
− i

2
pµθ

µνPν

)
cp (3.4)
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aM†p = exp

(
i

2
pµθ

µνPν

)
c†p (3.5)

But in fact (??) equals (??) and (??) equals (??) because θµν = −θνµ (? ? ). This

observation is important. It ensures that aMp is the adjoint of (aMp )† for the standard

scalar product on Fock space.

One can deduce from (??) and (??) that the twisted Moyal quantum field is

ϕMθ = ϕ0e
1
2

←−
∂ µθµνPν . (3.6)

Although this formula is first deduced for in, out or free fields, we previously showed

how it can be inferred for fully interacting Heisenberg as well, see (??-??). The explicit

expression for a Moyal field is then

ϕM,in
θ =

∫ d3p
2|p0|

[
aMp e−p + aM†p ep

]
, (3.7)

ep(x) = eip·x, dµ(p) := d3p

2
√
~p2+m2

m = mass of the particle , (3.8)

An important feature of (??) was shown in (??), that is what we called self-

reproducing property:

ϕMθ ?M ϕMθ ?M ... ?M ϕMθ︸ ︷︷ ︸
N−factors

= ϕN0 e
1
2

←−
∂ µθµνPν (3.9)

This property plays a significant role in general theory. It is the basis for the proof of

the absence of UV-IR mixing in Moyal field theories (with no gauge fields) (? ? ).

Now consider the Wick-Voros case. The twisted creation operators which correctly

create states from the vacuum transforming by the twisted coproduct are (??)-(??)

aV †p = c†pe
i
2

(pµθµνPν−iθpνPν) (3.10)

aVp = e−
i
2

(pµθµνPν+iθpνPν)cp . (3.11)

where pνPν uses the Euclidean scalar product. We will show in Chapter ?? that (??)

and (??) are also dictated by the covariance of quantum fields.

The Moyal twist of ϕM0 is compatible with the adjointness operation since from

(??) and (??) we have for the adjoint (aM†p )† of aM†p ,

(aM†p )† = exp

(
− i

2
pµθ

µνPν

)
cp = aMp . (3.12)
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Thus we can put the dressing transformation on the right or on the left, and such

flexibility is needed to preserve the †-operation: the dressed operator aMp is equal to

the adjoint of the dressed operator aM†p . This is the significance of the remark following

(??-??).

As it was noticed previously, the above property fails for the Wick-Voros case. Thus

aVp = cp exp

(
− i

2
(pµθ

µνPν + iθpνPν)− θ

2
pνpν

)
6= cp exp

(
− i

2
(pµθ

µνPν + iθpνPν)

)
.

(3.13)

A consequence is that we have to twist the creation-annihilation parts ϕ
(±)I
0 (I=in, out

or free) fields separately:

ϕ
(+)V,I
θ =

∫
dµ(p)aV,I†ep = ϕ

(+)I
0 e

1
2

(
←−
∂ µθµνPν−iθ

←−
∂ µPµ) , (3.14)

ϕ
(−)V,I
θ =

∫
dµ(p)aV,Ie−p = e

1
2

(
−→
∂ µθµνPν+iθ

−→
∂ µPµ)ϕ

(−)I
0 , (3.15)

ep(x) = eip·x, dµ(p) := d3p

2
√
~p2+m2

m = mass of the field ϕI
0 , (3.16)

where now we have added the superscript I to ϕI
0, aV,I†p , and aV,Ip .

Therefore the field

ϕV,Iθ = ϕ
(+)V,I
θ + ϕ

(−)V,I
θ (3.17)

cannot be obtained by an overall twist acting on ϕI
0. As we have to twist the creation

and annihilation parts separately, we have to separately twist its positive and negative

frequency parts ϕ
(±)I
0 . But we cannot decompose the Heisenberg field ϕ0 for θµν = 0

into ϕ(±) such that ϕ
(±)
0 → ϕ

(±)I
0 as x0 → ∓∞. That means that we do not know how

to write the twisted Heisenberg field or develop the LSZ formalism for the Wick-Voros

case. (The LSZ formalism for the Moyal case was developed from (??) in (? ).)

But that is not all. The states created by the Wick-Voros quantum fields ϕ
(±)V
θ are

not normalised in the same way as in the Moyal case. For instance

〈0|aV,Ik1
aV,Ik2

aV,I†p2 aV,I†p1 |0〉 = (3.18)

= eθk1·k24

√
(~k2

1 +m2)(~k2
2 +m2)

[
δ3(k1 − p1)δ3(k2 − p2) + e

i
2
k1µθµνk2νδ3(k1 − p2)δ3(k2 − p1)

]
,

I = in, out, |0〉in = |0〉out; m = mass of the field ϕI0 . (3.19)

For scattering theory, normalisation is important. If we normalise the states as in

the Moyal case, since the normalisation constant in (??) is momentum dependent, the

normalised states no longer transform with the Wick-Voros coproduct.
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The normalisation (??) has been computed using the standard scalar product in

the Fock space. We can try changing it (? ) so that the states become correctly

normalised. But then the representation (a,Λ)→ U(a,Λ) ceases to be unitary.

A further point relates to the self-reproducing property of these Wick-Voros fields.

ϕ
(±)IV
θ enjoy the self-reproducing property, but in different ways. Thus

ϕ
(+)V,I
θ ?V ϕ

(+)V,I
θ ?V ... ?V ϕ

(+)V,I
θ︸ ︷︷ ︸

M−factors

=
(
ϕ

(+)I
0

)M
e

1
2

(
←−
∂ µ)θµνPν−iθ

←−
∂ µPµ (3.20)

ϕ
(−)V,I
θ ?V ϕ

(−)V,I
θ ?V ... ?V ϕ

(−)V,I
θ︸ ︷︷ ︸

M ′−factors

= e
1
2

(
−→
∂ µ)θµνPν+iθ

−→
∂ µPµ

(
ϕ

(−)I
0

)M ′
(3.21)

So ϕV,Iθ does not have sellf-reproducing property as in (??).

3.3 On a Similarity transformation

There is no similarity transformation transforming aM,I
p , aM,I†

p , aV,Ip , aV,I†p . One way to

quickly see this is to examine the operators without the Moyal part of the twist. So we

consider cI
p, c

I†
p and

aV,I
′

p = e
1
2
θpνPνcI

p , (3.22)

aV,I
′†

p = cI†
p e

1
2
θpνPν . (3.23)

Now

[cI
p, c

I†
k ] = 2|p0|δ3(p− k)1 , (3.24)

p0 =
√
~p2 +m2, m = mass of the field ϕI

0 . (3.25)

If there existed a W such that

WcI
pW
−1 = aV,I

′
p , WcI†

pW
−1 = aV,I

′†
p , (3.26)

then we would have

[aV,I
′

p , aV,I
′†

k ] = 2|p0|δ3(p− k)1 . (3.27)

But a direct calculation of the L.H.S. using (??) and (??) shows that is is not equal to

the R.H.S..
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But there exists an S which transforms aM,I†
p to aV,I†p :

S = e
θ
4

(PµPµ+K), K = −
∫

dµ(k)kµkµc
I†
k c

I
k (3.28)

SaM,I†
p S−1 = aV,I†p . (3.29)

where, as usual, I on cI†
k , cI

k denotes in, out or free while in PµPµ and kµkµ we use the

Euclidean scalar product.

But

SaM,I
p S−1 = e−

i
2

(pµθµνPν−iθpνpν)cI
p = ãV,Ip 6= aV,Ip . (3.30)

Let us pursue the properties of this operator further.

The operator S leaves the vacuum invariant and shows that certain correlators in

the Moyal and Wick-Voros cases are equal. From the explicit expression (??) follows

also that the map induced by the operator S is isospectral, but not unitary in the

standard Fock space scalar product. It is possible to define a new scalar product which

makes S unitary (? ). But again U(a,Λ) is not unitary in this scalar product.

Now consider the twisted fields

ϕM,I
θ =

∫
dµ(p)

[
aM,I
p e−p + aM,I†

p ep
]

, (3.31)

ϕ̃V,Iθ =
∫

dµ(p)
[
ãV,Ip e−p + aV,I†p ep

]
, (3.32)

where ep(x) denotes as usual eip·x. Then of course,

S : ϕM,I
θ → S . ϕM,I

θ :=

∫
dµ(p)S

[
aM,I
p e−p + aM,I†

p ep
]
S−1 = ϕ̃V,Iθ . (3.33)

Also

S|0〉 = S−1|0〉 = 0 (3.34)

From (??) and (??) we obtain trivially the equality of the n-points correlation

functions:

〈ϕM,I
θ (x1)ϕM,I

θ (x2)...ϕM,I
θ (xN )〉0 = 〈ϕ̃V,Iθ (x1)ϕ̃V,Iθ (x2)...ϕ̃V,Iθ (xN )〉0 . (3.35)

Consider simple interaction densities such as

H M
I = ϕM,I

θ ?M ϕM,I
θ ?M ... ?M ϕM,I

θ︸ ︷︷ ︸
N−factors

and H V
I = ϕ̃V,Iθ ?V ϕ̃

V,I
θ ?V ... ?V ϕ̃

V,I
θ︸ ︷︷ ︸

N−factors

.

(3.36)
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in either fields.

Since S only acts on the operator parts of the fields, the similarity transformation

in (??) will not map H M
I to H V

I :

S .H M
I 6= H V

I . (3.37)

Hence

〈ϕM,I
θ (x1)...ϕM,I

θ (xj)H
M

I (xj+1)ϕM,I
θ (xj+2)...ϕM,I

θ (xN )〉0 (3.38)

6= 〈ϕ̃V,Iθ (x1)...ϕ̃V,Iθ (xj)H
V

I (xj+1)...ϕ̃V,Iθ (xj+2)...ϕ̃V,Iθ (xN )〉0 .(3.39)

So we can immediately conclude that also in this case the two theories are different.

There is no such S for mapping ϕM,I
θ to ϕV,Iθ , so that the correlators are not equal

even at the free level.

3.4 A criterion for the strong equivalence of Twisted QFT’s

It seems reasonable to assert that two twisted quantum field theories obtained by

twisting the same quantum field ϕ0 are strongly equivalent if they give the same answer

for the same scattering cross sections. This criterion is logically distinct from the

criterion requiring the equality of Wightman functions, but is perhaps physically more

compelling. The reason that the equality of Wightman functions and that of scattering

cross sections need not mutually imply each other is the following. Below, in (??) and

(??), we have given the scattering amplitudes in the Moyal and Wick-Voros cases. Even

if they were equal due to equality of Wightman functions, it does not mean that the

corresponding cross sections are equal, as the states in the two cases are not normalised

in the same way.

Let us first recall the expression for a general scattering amplitude of spinless par-

ticles of mass mi in the Moyal case using the LSZ formalism.

In (? ) the LSZ formalism for Moyal field ϕMθ (??), constructed via dressing

transformations, was presented. For scattering amplitudes it leads to:

SMθ (k1, ..., kN ) = 〈−kM ,−kM−1, ...,−k1; out | kN , kN−1, ..., kN−M ; in〉M
=

∫
I GMN (x1, x2, ..., xN ) (3.40)
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where

GMN (x1, ..., xN ) = T e
i
2

∑
I<J ∂I∧∂JW 0

N (x1, ..., xN ) = T WMN (x1, ..., xN ) ,(3.41)

I =
∏N
i=1 dxie

−iqi·xii(∂2
i +m2) .(3.42)

The momenta ki are taken to be in-going so that
∑
ki = 0. Also since

aM†k |0〉 = c†k|0〉 , (3.43)

the single particle states are normalised canonically:

〈0|aMk′ aM†k |0〉 = 2|k0|δ3(k − k′) (3.44)

while the normalisation of the multiparticle states

aM†k1
· · · aM†kN

|0〉 (3.45)

is consistent with what is required by twisted statistics.

For the Wick-Voros case, we can tentatively construct an in, out or free Wick-Voros

field ϕV,I
′′

θ following the construction (??) of ϕ
(+)V,I
θ :

ϕV,I
′′

θ = ϕI
0(x)e

1
2

(←−
∂ µθµνPν−iθ

←−
∂ µPµ

)
. (3.46)

The annihilation part of the ϕV,I
′′

θ differs from ϕ
(−)V,I
θ so that ϕV,I

′′

θ does not have correct

adjointness properties. But the formula (??) does generalise to Heisenberg fields. Using

(??), we can obtain a formula like (??) for scattering amplitudes. It is

SV
′′

θ (k1, ..., kN ) = 〈−kM ,−kM−1, ...,−k1; out | kN , kN−1, ..., kN−M ; in〉V
=

∫
IGV ′′N (x1, ..., xN ), (3.47)

GV
′′

N (x1, ..., xN ) = T e
i
2

∑
I<J ∂I∧∂J e

θ
2

∑
I<J ∂I ·∂JW 0

N (x1, ..., xN )

= T W V
N (x1, ..., xN ) (3.48)

where ∂I · ∂J uses the Euclidean scalar product.

There is no reason to expect that SV
′′

θ (k1, ..., kN ) = SMθ (k1, ..., kN ). In particular

there is a problem with the normalisation of the states associated with aV,I† as was

pointed out already in (??).

We note however that the field (??) does have the self-reproducing property.
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4

Twisted-fields coming from

Covariance

The construction of QFT’s on noncommutative spacetimes presented so far, relies on

finding a unitary representation of the deformed Hopf-Poincaré group HM,V
θ P. Such

a choice is motivated by generalizing, to the θ 6= 0 case, the standard construction of

quantum fields on commutative Minkowski spacetime (see e.g. § 1 or 5 of (? )).

In this chapter we study further the constraints that the symmetry group imposes

on quantum fields. In particular we recall in what sense quantum fields are Poincaré

covariant in the θ = 0 case and use such a notion to present another possible way of

constructing quantum fields on noncommutative spacetimes. We will also show that

the results obtained here coincides with what we obtained in the previous chapters.

The work presented here is mostly based on (? ).

4.1 Poincaré covariance on commutative spacetimes

The Poincaré group P acts on Minkowski spaceM by transforming its coordinates (or

coordinate functions), x = (xµ) to Λx+ a

(a,Λ) ∈P : (a,Λ)x = Λx+ a . (4.1)

If the spacetime algebra of functions on M is the commutative C∞(M), and ϕ

is a quantum relativistic scalar field on M, we require that there exists a unitary

representation

U : (a,Λ)→ U(a,Λ) (4.2)
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on the Hilbert space H of states vectors such that

U(a,Λ)ϕ(x)U(a,Λ)−1 = ϕ
(
(a,Λ)x

)
. (4.3)

There are similar requirements on relativistic fields of all spins. They express the

requirement that the spacetime transformations (??) can be unitarily implemented in

quantum theory. It is analogous to the requirement in nonrelativistic quantum me-

chanics that infinitesimal spatial rotations are to be implemented by the (self-adjoint)

angular momentum operators.

A field ϕ fulfilling (??) is said to be a “covariant field” and the condition in (??)

is the covariance condition. We call it “primitive” as we later extend it to products of

fields.

We can write (??) in the equivalent form

U(a,Λ)ϕ
(
(a,Λ)−1x

)
U(a,Λ) = ϕ(x) (4.4)

Now in this form, covariance can be readly understood in terms of the coproduct

on the Poincaré group. Thus

ϕ ∈ L(H)⊗ S(M) (4.5)

where L(H) are linear operators on H and S(M) are distributions on the spacetime

M. There is an action of P on both, that on L(H) being the adjoint action AdU(a,Λ)

of U(a,Λ),

AdU(a,Λ)ϕ = U(a,Λ)ϕU(a,Λ)−1 (4.6)

and that on S(M) being

α→ (a,Λ) . α,
[
(a,Λ)α

]
(x) = α

(
(a,Λ)−1x

)
, α ∈ S(M) . (4.7)

We call the latter action as V . So

V
(
(a,Λ)

)
α(x) = α

(
(α,Λ)−1x

)
(4.8)

Now the coproduct on P↑
+ for commutative spacetimes is ∆0, where

∆0

(
(a,Λ)

)
= (a,Λ)⊗ (a,Λ) . (4.9)

Then by (??)

(AdU ⊗ V )∆0

(
(a,Λ)

)
ϕ = ϕ . (4.10)

We will have occasion to use both the versions (??) and (??,??) of covariance.
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4.2 Covariance for Tensor Products: Commutative Space-

times

We saw in the previous section that for a single field, covariance ties together spacetime

transformations and its implementation on the quantum Hilbert space. Products of

fields bring in new features which although present for commutative spacetimes, assume

prominence on quantum spacetimes. We now briefly examine these features in the

former case

4.2.1 Tensor Products

Consider

ϕ(x1)ϕ(x2)...ϕ(xN ) . (4.11)

This can be understood as the element ϕ⊗ ϕ...⊗ ϕ belonging to L(H)⊗
(
S(M)⊗

S(M)⊗ ...⊗ S(M)
)

evaluated at x1, x2, ..., xN

ϕ⊗ϕ⊗...⊗ϕ ∈ L(H)⊗
(
S(M)

)⊗N
, (ϕ⊗ϕ⊗...⊗ϕ)(x1, x2, ..., xN ) = ϕ(x1)ϕ(x2)...ϕ(xN ) .

(4.12)

Note that tensoring refers only to S(M), there is no tensoring involving L(H).

There is only one Hilbert space H which for free particles is the Fock space and U(a,Λ)

acts by conjugation on the L.H.S. for all N .

But that is not the case for S(M)⊗N . The Poincaré group acts on it by the co-

product

(1⊗ 1⊗ ...⊗ 1⊗∆0︸ ︷︷ ︸
N−1

)(1⊗ 1⊗ ...⊗ 1⊗∆0︸ ︷︷ ︸
N−2

)...∆0 (4.13)

of (a,Λ). Thus

(??) on (a,Λ) = (a,Λ)⊗ (a,Λ)⊗ ...⊗ (a,Λ) (4.14)

and(
(??) on (a,Λ).ϕ⊗N

)
(x1, x2, ..., xN ) = ϕ⊗N

(
(a,Λ)−1x1, (a,Λ)−1x2, ..., (a,Λ)−1xN

)
.

(4.15)

Covariance is now the demand

U(a,Λ)
(
ϕ⊗N

(
(a,Λ)−1x1, (a,Λ)−1x2, ..., (a,Λ)−1xN

))
U(a,Λ)−1 = ϕ⊗N (x1, x2, ..., xN ) .

(4.16)
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It is evidently fulfilled for the coproduct (??) if the primitive covariance (??,??) is

fulfilled.

For free fields (or in and out-fields), covariance can be verified in a different manner.

Thus for a free real scalar field ϕ of mass m, we have

ϕ =
∫

dµ(p)
(
c†pep + cpe−p

)
= ϕ(−) + ϕ(+) (4.17)

ep(x) = e−ip·x, |p0| = (~p2 +m2)
1
2 , dµ(p) = ddp

2|p0|

where cp, c
†
p are the standard annihilation and creation operators, and ϕ(∓) refer to the

annihilation and creation parts of ϕ.

Now ϕ(∓) must separately fulfill the covariance requirement. Let us consider ϕ(−).

We have that

ϕ(−)(x1)ϕ(−)(x2)...ϕ(−)(xN )|0〉 =

∫ ∏
i

dµ(pi)c
†
p1c
†
p2 ...c

†
pN
|0〉ep1(x1)ep2(x2)...epN (xN )

(4.18)

Let us first check translations. Let Pµ be the translation generators on the Hilbert

space,

[Pµ, c
†
p] = pµc

†
p, Pµ|0〉 = 0 (4.19)

and let Pµ = −i∂µ be the translation generator on S(M):

Pµep = −pµep (4.20)

The coproduct ∆0 gives for the Lie algebra element Pµ1,

∆0(Pµ) = 1⊗ Pµ + Pµ ⊗ 1 (4.21)

It follows that

(1⊗1⊗ ...⊗1⊗∆0)...∆0(Pµ)ep1⊗ep2⊗ ...⊗epN = −
∑
i

piµep1⊗ep2⊗ ...⊗epN (4.22)

Covariance for translations is the requirement

Pµc
†
p1c
†
p2 ...c

†
pN
|0〉ep1 ⊗ ep2 ⊗ ...⊗ epN + c†p1c

†
p2 ...c

†
pN
|0〉
(
−
∑
i

piµ
)
ep1 ⊗ ep2 ⊗ ...⊗ epN = 0

(4.23)

1If v is the representation of the Lie algebra of P↑+ on functions, and P̂µ is the Lie algebra generator

in the abstract group P↑+ so that v(Pµ) = Pµ, the L.H.S. here should strictly read v
(
∆0(P̂µ)

)
. So we

have simplified the notation in (??).
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which is clearly fulfilled.

Next consider Lorentz transformations. A Lorentz transformation Λ acts on ep

according to

(Λep)(x) = ep(Λ
−1x) = eΛp(x) (4.24)

or Λep = eΛp.

For Lorentz transformations Λ, covariance is thus the identity∫ ∏
i

dµ(pi)c
†
Λp1

c†Λp2 ...c
†
ΛpN
|0〉eΛp1⊗eΛp2 ...⊗eΛpN =

∫ ∏
i

dµ(pi)c
†
p1c
†
p2 ...c

†
pN
|0〉ep1⊗ep2 ...⊗epN

(4.25)

which is true because of the Lorentz invariance of the measure:

dµ(Λ−1pi) = dµ(pi) . (4.26)

4.3 Covariance for products: Multiplication Map and Self-

Reproducing Property

The multiplication map involves products of fields at the same point and hence the

algebra of the underlying manifold. It is not the same as the tensor product which

involves products of fields at different points.

There is a further property of ϕ, involving now the multiplication map, which

is easily understood on commutative spacetimes. It has much importance for both

commutative and noncommutative spacetimes. It is the self-reproducing property. Let

us first understand this property for C∞(M), the set of smooth functions on a manifold

M. If α : p→ αp, p ∈ M, is a diffeomorphism of M, it acts on f ∈ C∞(M) by pull-

back:

(α∗f)(p) = f(αp) . (4.27)

But C∞(M) has a further property, routinely used in differential geometry: C∞(M)

is closed under point-wise multiplication:

If f1, f2 ∈ C∞(M), then

f1f2 ∈ C∞(M) (4.28)

where (
f1f2

)
(p) = f1(p)f2(p) . (4.29)
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This property is very important for noncommutative geometry: the completion of

this algebra under the supremum norm gives the commutative algebra of C0(M), a

commutative C∗-algebra. As we showed in the first Chapter, by the Gel’fand-Naimark

theorem (? ? ) it encodes the topology of M.

Now by (??) and (??), we see that multiplication of functions preserves transfor-

mation under diffeos. This simple property gets generalised to covariant quantum field

thus:

The pointwise product of covariant quantum fields is covariant.

That means in particular that

U(a,Λ)ϕ2
(
(a,Λ)−1x

)
U(a,Λ)−1 = ϕ2(x) . (4.30)

This result is obviously true modulo renormalization problems. It is at the basis of

writing invariant interactions in quantum field theories on A0(M).

Note that generally we require covariance of the product of any two covariant fields,

distinct or the same.

4.3.1 The ∗-covariance

In quantum field theories on A0(M), another routine requirement is that covariance

and the ∗- or the adjoint operation be compatible. Thus if ψ is a covariant complex

field,

U(a,Λ)ψ
(
(a,Λ)−1x

)
U(a,Λ)−1 = ψ(x) , (4.31)

we require that ψ† is also a covariant complex field. That is fulfilled if U(a,Λ) is unitary.

Thus ∗-covariance is linked to unitarity of time-evolution and the S-matrix and

many more physical requirements.

The covariance requirements on quantum fields for commutative spacetimes (ignor-

ing the possibility of parastatistics of order 2 or more) can be then summarized as: A

quantum field should be ∗- covariant with commutation or anti-commutation

relations (symmetrisation postulates) compatible with ∗-covariance.
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4.4 Covariance on the Moyal Plane

We discussed lengthly the Moyal plane AMθ . The Poincaré group P acts on smooth

functions α ∈ AMθ by pull-back as before:

P 3 (a,Λ) : α→ (a,Λ)α,
(
(a,Λ)α

)
(x) = α

(
(a,Λ)−1x

)
(4.32)

We recall now the explicit form of the Moyal deformation on C∞(M), (cf. (??)):

(f ?M g)(x) = mMθ (f ⊗ g)(x) ≡ f(x)e
i
2
θαβ
←−
∂α⊗
−→
∂βg(x) (4.33)

and the deformed co-product turning the Poincaré group algerbra CP into the de-

formed Poincaré-Hopf algebra HMθ P (cf. (??)):

∆Mθ (g) = (FMθ )−1(g ⊗ g)(FMθ ), FMθ = e−
i
2
P̂µ⊗θµν P̂ν = Drinfel′d twist (4.34)

Here P̂µ is as before the translation generator in P with representatives Pµ = −i∂µ
and Pµ on functions and L(H) respectively.

Equation (??) is the starting point for further considerations.

Let ϕMθ be the twisted analogue of the field ϕ of section 2. Also let Uθ be the

unitary operator implementing P in L(H). Covariance then is the requirement

Uθ(a,Λ)ϕMθ
(
(a,Λ)−1x

)
Uθ(a,Λ)−1 = ϕMθ (x) (4.35)

and its multifield generalisation, while compatibility with ∗ or unitarity requires that

ϕM†θ is also covariant. There is also one further requirement, namely compatibility with

symmetrisation postulate.

The analysis of these requirements becomes transparent on working with the mode

expansion of ϕMθ which is assumed to exist:

ϕMθ =

∫
dµ(p)

[
aM†p ep + aMp e−p

]
= ϕ

(−)M
θ + ϕ

(+)M
θ , dµ(p) =

ddp

2|p0|
. (4.36)

The expansion can refer to in- , out- or free fields.

We also assume the existence of vacuum |0〉:

aMp |0〉 = 0, ∀p . (4.37)
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4. TWISTED-FIELDS COMING FROM COVARIANCE

4.4.1 The Primitive Covariance of a Single Field

We are here referring to (??). It requires that

Uθ(a,Λ)aM†p Uθ(a,Λ)−1 = aM†Λp , Uθ(a,Λ)aMp Uθ(a,Λ)−1 = aMΛp (4.38)

A particular consequence of (??,??) is that single particle states transform for all θ in

the same manner or assuming that Uθ(a,Λ)|0〉 = |0〉:

Uθ(a,Λ)aM†p |0〉 = aM†Λp |0〉 (4.39)

New physics can be expected only in multi-particle sectors.

4.4.2 Covariance in Multi-Particle Sectors

On the Moyal plane, multi-particle wave functions ep1⊗ep2⊗...⊗epN transform under P

with the twisted coproduct. This affects the properties of aMp , aM†p in a θµν-dependent

manner.

Let us focus on the two-particle sector:∫ ∏
i

dµ(pi)a
M†
p1 aM†p2 |0〉ep1 ⊗ ep2 (4.40)

Since translations act in the usual way on ep1 ⊗ ep2 ,

∆θ(Pµ)ep1 ⊗ ep2 = (1⊗ Pµ + Pµ ⊗ 1)ep1 ⊗ ep2 = −(
∑
i

piµ)ep1 ⊗ ep2 (4.41)

translational covariance requires the standard transformation of a†pi :

[P θµ , a
M†
p ] = pµa

M†
p , (4.42)

P θµ is the possibly θ dependent translation generator.

Lorentz transformations are more interesting. We have that

∆Mθ (Λ).ep1⊗ep2 = (FMθ )−1(Λ⊗Λ)(FMθ )ep1⊗ep2 = e
i
2

(Λp1)∧(Λp2)e−
i
2
p1∧p2eΛp1⊗eΛp2 .

(4.43)

(We do not consider the anti-unitary time-reversal in what follows.) Covariance thus

requires that∫ ∏
i

dµ(pi)Uθ(Λ)aM†p1 aM†p2 |0〉e
i
2

(Λp1)∧(Λp2)e−
i
2
p1∧p2eΛp1⊗eΛp2 =

∫ ∏
i

dµ(pi)a
M†
p1 aM†p2 |0〉eΛp1⊗eΛp2

(4.44)
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4.4.3 The Dressing Transformation

We can solve this requirement, as well as (??), by writing aM†p in terms of the c†p and

Pµ:

aM†p = c†pe
i
2
p∧P (4.45)

and setting

Uθ(a,Λ) = U0(a,Λ) = U(a,Λ) . (4.46)

The adjoint of (??) is

aMp = e−
i
2
p∧P cp = cpe

− i
2
p∧P , (4.47)

where the equality in the last step uses the anti-symmetry of θµν .

As we can twist cp on left or on right, we can write ϕMθ as a twist applied to ϕ0 ≡ ϕ:

ϕMθ = ϕ0e−
1
2

←−
∂ ∧P (4.48)

which is the same result we obtained in (??).

It is important to note that (??) is well-defined for a fully interacting Heisenberg

field ϕ0 if Pµ stands for the total four momentum of the interacting theory. In that

case ϕMθ is the twisted Heisenberg field.

We can now check that

U(a,Λ)ϕMθ (x1)...ϕMθ (xN )U(a,Λ)−1|0〉 = ϕMθ
(
(a,Λ)x1

)
...ϕMθ

(
(a,Λ)xN

)
|0〉 (4.49)

with a similar equation for the vacuum 〈0| put on the left. Since vacuum is a cyclic

vector, we can then be convinced that (??) fully solves the problem of constructing a

covariant quantum field on the Moyal plane at the multi-field level as well.

A particular implication of (??) is that

Uθ(a,Λ) = U(a,Λ) = U0(a,Λ) . (4.50)

Its expression in terms of in-, out- or free fields looks the same as in the commutative

case. It has no θµν- dependence.
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4. TWISTED-FIELDS COMING FROM COVARIANCE

4.4.4 Symmetrization and Covariance

We will now show that the dressing transformations (??,??-??) are exactly what we

need to be compatible with appropriate symmetrisation postulates.

At the level of the particle dynamics (functions on M and their tensor products),

we already showed that for the coproduct ∆θ, symmetrisation and anti-symmetrisation

should be based on the twisted flip operator (cf. (??))

τθ = F−1
θ τ0Fθ (4.51)

τ0α⊗ β := β ⊗ α (4.52)

where α, β are single particle wave functions.

As defined, τ0 and τθ act on two-particle wave functions and generate S2 since

τ2
0 = 1 ⇒ τ2

θ = 1 . (4.53)

But soon we will generalise them to N -particles to get SN .

Thus twisted bosons (fermions) have the two-particle plane wave states

ep1 ⊗Sθ ep2 =
1± τθ

2
ep1 ⊗ ep2 . (4.54)

Let us focus on SMθ , that is the twisted flip operator on the Moyal plane:

ep1 ⊗SMθ ep2 =
1

2

[
ep1 ⊗ ep2 + (FMθ )−2ep2 ⊗ ep1

]
(4.55)

=
1

2
[ep1 ⊗ ep2 + eip2∧p1ep2 ⊗ ep1 ] (4.56)

= eip2∧p1ep2 ⊗SMθ ep1 (4.57)

This gives ∫ 2∏
i=1

dµ(pi)a
M†
p1 aM†p2 |0〉ep1 ⊗SMθ ep2 (4.58)

=

∫ 2∏
i=1

dµ(pi)a
M†
p1 aM†p2 |0〉eip2∧p1ep2 ⊗SMθ ep1 (4.59)

=

∫ 2∏
i=1

dµ(pi)
(
eip1∧p2aM†p2 aM†p1

)
|0〉ep1 ⊗SMθ ep2 (4.60)

Thus we require that

aM†p1 aM†p2 = eip1∧p2aM†p2 aM†p1 (4.61)
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4.4 Covariance on the Moyal Plane

which is fulfilled by (??).

We can extend this demonstration regarding the consistency of the twist to multi-

nomials in a†’s and a’s. The necessary tools are in (? ). We just note one point. In

the N -particle sector, call F ij
θ the Drinfel’d twist (??) where in ∂µ⊗∂ν , ∂µ acts on the

ith and ∂ν on the jth factor in the tensor product.

Define a generalization of the twisted flip operator (??)

τ ijθ = F−1
θ τ ij0 Fθ = F−2

θ τ ij0 (4.62)

where τ ij0 flips the entries of an N -fold tensor product by flipping the ith and jth entries

as in (??). Then (
τ ij0

)2
= 1 (4.63)

which is obvious and

τ i,i+1
θ τ i+1,i+2

θ τ i,i+1
θ = τ i+1,i+2

θ τ i,i+1
θ τ i+1,i+2

θ (4.64)

which is not obvious. SN has the presentation

SN = 〈τi,i+1 : i ∈ [1, 2, ..., N − 1], τ2
i,i+1 = 1, τi,i+1τi+1,i+2τi,i+1 = τi+1,i+2τi,i+1τi+1,i+2〉

(4.65)

It follows then that τ i,i+1
θ ’s generate SN in this sector.

One can check that the Poincaré group action with the twisted coproduct commutes

with this action of SN .

4.4.5 ∗-Covariance

Covariance requirements on the Moyal plane has led us to the dressed field (??). We

now require it to be compatible with the ∗-operation. That is if ϕ∗0 = ϕ0, we want that

(ϕM)∗θ = ϕMθ . Now

(ϕMθ )∗ = e−
1
2
∂∧Pϕ0 (4.66)

where ∂µ acts just on ϕ0, Pν acts on ϕ0 and all that may follow. But since Pν acting

on ϕ0 is −i∂νϕ0 and ∂ ∧ ∂ = 0, we see that

(ϕM)∗θ = ϕ∗0e−
1
2

←−
∂ ∧P . (4.67)

So the dressing transformations preserves ∗-covariance. The antisymmetry of θ plays a

role in this process.
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4. TWISTED-FIELDS COMING FROM COVARIANCE

We can also understand these statements from (??). That gives

aMp = e−
i
2
p∧P cp = cpe

− i
2
p∧P (4.68)

since p ∧ p = 0. So we can twist both creation and annihilation operators on the same

side because θ is antisymmetric. It is only because of this that we can get the twisted

quantum Heisenberg field (??). The importance of its existence has been emphasised

before.

4.5 Covariance on the Wick-Voros plane

We have already introduced the Wick-Voros plane AVθ previously. The deformed prod-

uct on AVθ acts on plane waves as (cf. (??))

ep ?V eq = e−
1
2
θ̂p·qe−

i
2
p∧qep+q (4.69)

whereas the deformed coproduct on HV
θ P looks (cf. (??)):

∆θ,V (g) = (F V
θ )−1(g ⊗ g)(F V

θ ), where F V
θ = e

i
2
∂µ⊗θµν∂ν+θ̂∂µ·∂µ (4.70)

Let us first assume that the Wick-Voros ? also admits twisted creation-annihilatin

operators and associated (in-, out-, or free-) field ϕVθ as in (??):

ϕVθ =

∫
dµ(p)

[
aV †p ep + aVp e−p

]
:= ϕ

(−)V
θ + ϕ

(+)V
θ (4.71)

Primitive covariance gives as before

U(a,Λ)aVp U(a,Λ)† = aVΛp (4.72)

and

U(a,Λ)aV †p,V U(a,Λ)† = aV †Λp (4.73)

where we did not attach a θ to U .

In the two-particle sector, the coproduct is given in (??). As F V
θ is translationally

invariant, the coproduct for Pµ is not affected by the twist. So we focus on Lorentz

transformations.

For Lorentz transformations, (??) is modified to(∫ ∏
dµ(pi)U(Λ)aV †p1 a

V †
p2 |0〉

)
e
i
2

(Λp1)∧(Λp2)− θ̂
2

(Λp1)·(Λp2)e−
i
2
p1∧p2− θ̂2p1·p2eΛp1 ⊗ eΛp2

(4.74)
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4.5 Covariance on the Wick-Voros plane

giving the dressing equation

aV †p = c†pe
i
2
p∧P− θ̂

2
p·P , (4.75)

scalar products being Euclidean.

The adjoint of (??) is

aVp = e−
i
2
p∧P− θ̂

2
p·P cp = e

θ̂
2
p·pcpe

− i
2
p∧P− θ̂

2
p·P (4.76)

which is not what we get by dressing cp on the right.

We again came to the conclusion that ϕVθ is not the outcome of dressing ϕ0 by a

single twist. Its parts ϕ
(∓)V
θ get separate twists. Therefore it appears that there is no

way to dress a fully interacting Heisenberg field Φ0 since Φ0 cannot decomposed into

positive and negative frequency parts.
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5

Twisting over a finite group and

Geons

So far we have only considered the case of trivial spacetime topology, that is in the al-

gebra of functions C∞(M) we begin with, M ∼= Rd+1, where Rd represents the spatial

topology. The spatial slice Rd is not the only admissible spatial slice for asymptotically

flat spacetimes. Friedman and Sorkin (? ) have studied generic asymptotically flat

spatial slices and have come up with their remarkable interpretation in terms of gravita-

tional topological excitations called “topological” or “Friedman-Sorkin” “geons”. The

diffeomorphisms (diffeos) of geon spacetimes are much richer than those from the topo-

logically trivial ones. In particular, they contain discrete subgroups encoding the basic

physics of geons. It was a striking discovery of Friedman and Sorkin that the geon

spin even in pure gravity can be 1/2 or its odd multiples (? ? ? ? ). The statistics

groups of identical geons are also novel. Their precise identification requires further

considerations as we shall see.

In this chapter, we develop a machinery to construct Drinfel’d twists for generic

and in particular discrete diffeos. The notion of covariant quantum fields for generic

spacetimes (? ), discussed in the previous chapter, helps us construct covariant twisted

fields for geons using the above twists. The requirement of covariance puts conditions

on acceptable twists for quantum fields and eliminates many (? ? ).

Spacetimes emergent from these twists are noncommutative as is appropriate at

geon scales according to DFR (? ). There is a diffeo-invariant way to define the size of

a geon (? ) and it is expected to be of Planck-scale. Spacetime noncommutativity in
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this case is localised at geons and is of this scale just as we wish for.

As we indicate, several novel spacetimes including non-associative spacetimes and

new sorts of statistics algebras arise naturally (? ). These matters are discussed only

in a preliminary manner. But already, new phenomena like non-Pauli transitions are

suggested as we will see. Most of the work presented here is based on (? ).

To the seek of keeping the amount of mathematical details as limited as possible, we

devote a separate Appendix ?? to review what Geon spacetimes are, and the definition

of diffeos on a non-trivial topological spacetime.

5.1 Quantum Fields

In standard quantum physics, there is a relation between spacetime symmetries like the

Poincaré group P↑
+ and the statistics group that implements the identity of particles.

It can be described as follows. An element α of the Poincaré group acts on a member

ψ of the single particle Hilbert space H by pullback:(
αψ
)
(x) = ψ(α−1x) . (5.1)

This action extends to the N -particle Hilbert space H⊗N via the coproduct ∆0:

∆0(α) = α⊗ α (5.2)

Thus on H⊗N , it acts by

(1⊗ 1⊗ ...⊗∆0)︸ ︷︷ ︸
(N−1) factors

(1⊗ 1⊗ ...⊗∆0)︸ ︷︷ ︸
(N−2) factors

...∆0(α) = α⊗ α⊗ ...⊗ α︸ ︷︷ ︸
N factors

(5.3)

The statistics group expressing the identity of particles must commute with the

action of the symmetry group. This requirement just says that symmetry transforma-

tions, such as Lorentz transformations, should not spoil particle identity. It is fulfilled

by the permutation group SN which permutes the factors in the tensor product

ψ1 ⊗ ψ2 ⊗ ...⊗ ψN ∈ H⊗N (5.4)

Quantum fields compatible with the symmetry group such as P↑
+ and implement-

ing statistics exist. For these fields, the permutation group SN and say the Poincaré

transformation commute when acting on N -particle in- or out- states.
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In the case of geon spacetimes the situation is more involved. As we discussed in

Appendix ??, in the geon case the first homotopy group of the configuration space,

π1(Q), whose representation label inequivalent quantization H(l), is not trivial (cf.

(??)):

π1

(
Riem(M∞)/D∞

)
= D∞/D∞0 (5.5)

The equation above is true for a single geon spacetime. The generalization to the N-

geons case is discussed in details in section ?? where we also set up the notation. From

(??), π1(Q) for the N − geons case is:

D(N)∞/D
(N)∞
0 ≡

(
S o

[
×ND(1)∞/D

(1)∞
0

] )
o SN (5.6)

Where S are called slides, D(1)∞/D
(1)∞
0 internal symmetries and SN is the standard

N -dimensional permutation group. While for the standard coproduct like that in (??),

the internal symmetry D(1)∞/D
(1)∞
0 acts by its diagonal map into D(N)∞/D

(N)∞
0 and

that action commutes with SN , the slides present a more complex story. They do

not commute with SN (nor with α ⊗ ... ⊗ α for α ∈ D(1)∞/D
(1)∞
0 ) and can change

representations of SN : they can convert bosons into fermions! For such reasons, Sorkin

and Surya have suggested that elements of S represent interactions of geons. But for

now we let S act by the identity representation on quantum states. That means that

we will work with
[
×ND(1)∞/D

(1)∞
0

]
o SN and their group algebra.

Below we will work with the group algebra C
(
D(1)∞/D

(1)∞
0

)
with a twisted co-

product. In that case too, the algebra defining statistics is in the commutant of the

coproduct. It is still SN , but acts differently on H⊗N .

From (??), slides form an invariant subgroup in D(N)∞/D
(N)∞
0 . For this reason,

slides can be represented by identity on quantum states. Sorkin and Surya (? ? )

have suggested that we do so motivated by the considerations above. We follow their

suggestion.

5.2 Twists of Geon Spacetimes: Motivation

As we have repeatedly seen, the effect of noncommutativity can be encompassed via

the twist Fθ

Fθ = e−
i
2
Pµ⊗θµνPν . (5.7)
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The twist is the map which can be used to twist both the product and the coproduct

in a coherent and consistent manner. Its realization on the algebra of functions is just

the term appearing in between the two functions f1 and f2 in the deformed product.

We will indicate it by a script Fθ:

Fθ = e
i
2

←−
∂ µθµν

−→
∂ ν . (5.8)

whereas Fθ deforms the action of the symmetry group by twisting ∆0 into the deformed

coproduct

∆θ(g) = F−1
θ (g ⊗ g)Fθ . (5.9)

In this section we want to provide some motivation to generalize such a construction

to the case of geonic diffeos and in particular to D(1)∞/D
(1)∞
0 . It goes as follows.

If a sphere Sd−1 encloses the prime in Rd#Pα in the sense that the complement

of this sphere in Rd#Pα is homeomorphic to Rd/Bd where Bd is the d–dimensional

ball, then by suitably adjoining elements of D∞0 , we can ensure that D∞/D∞0 acts as

the identity outside Sd−1. So these diffeos can be taken to be localised on the geon. If

the geon size is of the order of the Planck volume, the action of D(1)∞/D
(1)∞
0 is also

confined to such Planck volumes (It is possible to define geon sizes in a diffeo-invariant

way (? )). As explained in the introduction, at these scales we expect the spacetime to

be noncommutative and the action of the symmetry group to be consequently twisted.

We will generalise Fθ toD(1)∞/D
(1)∞
0 and after that twist using elements ofD(1)∞/D

(1)∞
0 .

Then, as we shall see, spacetimes become noncommutative on the above Planck-scale

volumes. This is in accordance with the arguments of DFR (? ).

Thus the choice of twists using D(1)∞/D
(1)∞
0 appears to be one good way to imple-

ment the DFR ideas.

It is also one way to incorporate aspects of the topology of geons in these basic

quantum field theories as we shall see.

5.3 Twists of Geon Spacetimes: Coassociative Coprod-

ucts

The generalisation of Fθ to D(1)∞/D
(1)∞
0 is not immediate since D(1)∞/D

(1)∞
0 is dis-

crete. It can be finite or infinite, but it is certainly discrete. So we must know how to

adapt Fθ to discrete groups. The difficulty comes from the fact that for Lie groups, we
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write Fθ in terms of the exponential of the tensor product of Lie algebra elements, as

in (??). There is no analogue of the Lie algebra for discrete groups. As we will shortly

see, writing the twist Fθ in momentum space sheds light on the path to follow for the

generalization.

The plane waves ep, ep(x) = eip·x, carry the irreducible representations of the trans-

lation subgroup of CP↑
+. Since

Pµep = pµep , (5.10)

the restriction of Fθ (??) to ep ⊗ eq is given by

Fθep ⊗ eq = e−
i
2
pµθµνqνep ⊗ eq . (5.11)

Let Pp be the projection operator which acting on functions of Rd projects to the

subspace spanned by ep. It is thus the projector to the irreducible representation of

the translation subgroup identified by the real vector “p”. For a particle of mass m,

for which p0 =
√
~p2 +m2, we can define Pp by requiring that

Ppeq = 2|p0|δ(3)(~p− ~q)ep . (5.12)

Then we can see that

Fθ =

∫
dµ(p)dµ(q)e−

i
2
p∧qPp ⊗Pq, dµ(p) :=

d3p

2
√
~p2 +m2

(5.13)

where p ∧ q := pµθµνqν , and that

Fθ =

∫
dµ(p)dµ(q)e−

i
2
p∧qPp ⊗Pq . (5.14)

If ep is off–shell, so that p0 is not constrained to be
√
~p2 +m2, we can still write

Fθ in terms of projections by slightly modifying (??).

5.3.1 A Simple Generalisation to Discrete Abelian Groups

It is possible to find a simple generalisation of (??-??) to discrete abelian groups. We

first discuss this generalisation.

Consider first the group

Zn = {ξk ≡ ei
2π
n
k : k = 0, 1, ..., (n− 1)} . (5.15)
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Its IRR’s %m are all one-dimensional and given by its characters χm:

χm(ξ) = ξm, m ∈ {0, 1, ..., (n− 1)} . (5.16)

Then if ξ̂ is the operator representing ξ on the space on which it acts, the projector

Pm to the IRR %m is

Pm =
1

n

n−1∑
k=0

χ̄m(ξk)ξ̂k (5.17)

This follows from

ξ̂lPm =
1

n

n−1∑
k=0

χ̄m(ξk)ξ̂k+l =
1

n

n+l−1∑
k=l

χ̄m(ξk−l)ξ̂k = χm(ξl)Pm (5.18)

where we used the fact that

χ̄(ξl)χ(ξl) = 1, χ̄(ξl) = χ(ξ−l), (5.19)

and the orthogonality relations,

1

n

∑
ξ

χ̄m(ξ)χn(ξ) = δm,n , (5.20)

that imply,

PmPn = δm,nPn . (5.21)

Note that Pm is the image of

Pm =
1

n

n−1∑
k=0

χ̄m(ξk)ξk (5.22)

in the group algebra CZn and that

PmPn = δm,nPn,
n−1∑
m=0

Pm = 1 . (5.23)

5.3.2 The case of D(1)∞/D
(1)∞
0

From D(1)∞/D
(1)∞
0 , we pick its maximal abelian subgroup A and assume for the mo-

ment that A is finite. Then A is the direct product of cyclic groups:

A = Zn × Zn2 × ...× Znk . (5.24)

66



5.3 Twists of Geon Spacetimes: Coassociative Coproducts

Its IRR’s are given by:

%m1 ⊗ %m2 ⊗ ...⊗ %mk , mj ∈ {0, 1, .., nj − 1} , (5.25)

with characters

χ~m =
∏
i

χmi (5.26)

and projectors P~m = ⊗iPmi on the representation space or projectors

P~m = ⊗iPmi , P~mP ~m′
= δ~m,~m′P~m,

∑
~m

P~m = identity of A (5.27)

in the group algebra CA. (The summation of mj in (??) is from 0 to nj − 1).

Let θ = [θij = −θji ∈ R] be an antisymmetric matrix with constant entries. Fol-

lowing (??), we can write a Drinfel’d twist using elements of CA:

Fθ =
∑
~m,~m′

e−
i
2
miθijm

′
jP~m ⊗ P~m′ . (5.28)

But there are quantisation conditions on θij . That is because %m and %m+n give

the same IRR for Zn as (??) shows. That means that ~m and ~m + (0, ..., 0, ni, 0, ...0)

give the same IRR %~m, ni being the ith entry. Since Fθ must be invariant under these

shifts, we find that θij is restricted to the values

θij =
4π

nij
(5.29)

where

ni
nij

,
nj
nij
∈ Z . (5.30)

The twist (??) of the canonical coproduct of P↑
+ using Fθ leads to a coassociative

coproduct. Similarly the twist of the coproduct of D(1)∞/D
(1)∞
0 or any of its subgroups

leads to a coassociative coproduct. That is because the twist involves the abelian

algebra CA. As we will further discuss later on, the spacetime algebra is associative,

but not commutative if a θij = −θji 6= 0 (? ).
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5. TWISTING OVER A FINITE GROUP AND GEONS

Remarks

a) The condition (??) has a solution nij 6= ±1 only if ni and nj have a common

factor ( 6= ±1). Thus if say ni = 2, nj = 3 for some i, j then nij = ±1. For either

of these solutions,

e−
i
2
miθijm

′
j = 1 or θij is effectively equivalent to 0 . (5.31)

b) There are many instances where A contains factors of Z. The IRR’s %ϕ of Z are

given by points of S1 = {ei2πϕ : 0 ≤ ϕ ≤ 1}:

%ϕ : n ∈ Z→ ei2πnϕ. (5.32)

Note that

%ϕ = %ϕ+1 . (5.33)

Suppose now that A = ×ki=1Zni × Z. Now its IRR’s are labelled by the vector

(~m,ϕ) = (m1, ...,mk, ϕ). The twist Fθ is written as

Fθ =
∑
~m,~m′

∫ 1

0
dϕ

∫ 1

0
dϕ′ e−

i
2
miθijm

′
j ×

×e−
i
2

[mi(θmi,k+1)ϕ′−ϕ(θmi,k+1)m′i]P(~m,ϕ) ⊗ P(~m′,ϕ′) (5.34)

But the periodicity in ϕ, ϕ′ is 1 and hence θmi,k+1 = ±4π and the second ex-

ponential in (??) is 1 ⊗ 1. In short, Fθ has no twist factor involving Z and Fθ

reduces back to the earlier expression (??). If there are say two factors of Z so

that A = ×k−1
i=1 Zni ⊗ Z⊗ Z the second exponential in (??) is replaced by

eϕθk,k+1ϕ
′

(5.35)

and we require its periodicity in ϕ and ϕ′. Hence θk,k+1 ' 0. In this way, we see

that Fθ depends nontrivially only on compact abelian discrete groups.

c) Later in section ??, we will argue that the twists found above seem general so

long as we insist on the coassociativity of the coproduct (or equivalently the

associativity of the spacetime algebra).
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5.4 On Twisted Symmetrisation and Antisymmetrisation

Let H be a one-geon Hilbert space. It carries a representation of D(1) or more generally

of D. The “momentum constraint” is implemented by requiring that D∞0 → 1 in this

representation which we assume is satisfied.

Let τ0 be the flip operator on H⊗H:

τ0 α⊗ β = β ⊗ α, α, β ∈ H . (5.36)

When the coproduct is ∆0, ∆0(d) = d⊗ d for d ∈ D, τ0 commutes with ∆0 (by d here

we mean the representation of d on H.). So the subspaces 1±τ0
2 H ⊗ H are invariant

under diffeos and carry the identity representation of D∞0 . We can then use them to

define bosonic and fermionic geons.

But if we deform ∆0 into (??), τ0 does not commute with ∆θ(d) for all d anymore

if Fθ 6= 1⊗1. So the subspaces 1±τ0
2 H⊗H are not diffeomorphism invariant, nor need

they fulfill the constraint ∆θ(d)
[
τ0(α ⊗ β)

]
= τ0

[
∆θ(d)(α ⊗ β)

]
for d ∈ D(1). That

means that bosons and fermions cannot be associated with the subspaces 1±τ0
2 H⊗H.

Instead, as discussed in previous chapters, one should use the twisted flip operator

τθ = F−1
θ τ0Fθ, τ2

θ = 1⊗ 1 (5.37)

which commutes with the twisted coproduct ∆θ(d). Bosonic and fermionic geons are

thus associated with the subspaces 1±τθ
2 H⊗H.

The twist depends on D∞/D∞0 . So these twisted subspaces incorporate at least

aspects of the internal diffeos of geons unlike τ0. Such a twist of flip is a consequence

of deforming the coproduct to ∆θ. As we will discuss, this deformation introduces

spacetime noncommutativity localised at the geon. Further there are outlines available

for an approach to build an orderly quantum field theory (compatibly with the DFR

suggestion) incorporating this noncommutativity and deformed statistics, and trans-

forming by the twisted coproduct. These are all attractive aspects of introducing the

twist Fθ.
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5. TWISTING OVER A FINITE GROUP AND GEONS

5.5 Covariant Quantum Fields: Geons on Commutative

Spacetimes

In the previous chapter, we have carefully discussed the notion of covariant fields in

general including in particular the Moyal plane Aθ(Rd). This concept in the limit θ → 0

reduces to the corresponding well-known concept for θ = 0. We now want to generalize

such a construction to geons’ spacetimes.

We assume that a covariant quantum field ϕ0 can be associated with a geon when the

underlying spacetime is commutative. Diffeomorphism invariance implies that D
(1)∞
0

acts trivially on ϕ0. So the group D(1)/D
(1)∞
0 acts nontrivially on ϕ0 by the pull-back

of the action of D(1) on spacetime: if g ∈ D/D∞0
1 and ĝ = gg∞0 , g

∞
0 ∈ D∞0 is any

member of the equivalence class gD∞0 , then

g : ϕ0 → gϕ0, (gϕ0)(p) = ϕ0(ĝ−1p) (5.38)

This action does not depend on the choice of g∞0 since g∞0 ϕ0 = ϕ0 for all g∞0 ∈ D∞0 ,

and hence is consistent.

Equation (??) has been written for scalar geon fields for simplicity. It is easily

generalised to spinorial and tensorial fields.

Also for simplicity, we will henceforth write

(gϕ0)(p) = ϕ0(g−1p) (5.39)

even though on the r.h.s., we should write ĝ−1p.

Covariance implies that there exists a representation U of D/D∞0 so that

U(g)ϕ0(g−1p)U(g)−1 = ϕ0(p) (5.40)

or

U(g)ϕ0(p)U(g)−1 = ϕ0(gp) . (5.41)

The twist we now consider is based on abelian discrete compact groups A: as we saw,

its dependence on representations of Z is trivial. Let f
(±)
~m furnish the orthonormal basis

1From now on we will only refer to the single geon diffeo group. Therefore we will use D, D∞ and

D∞0 instead of D(1), D(1)∞ and D
(1)∞
0 to simplify the notation.
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on the geon spacetime which carry the UIRR ~m = (m1,m2, . . . ,mk) of A = ×ki=1Zni
and which have positive and negative frequencies ±|E~m|2:

f
(±)
~m (h−1p) = f

(±)
~m (p)χ~m(h), h ∈ A , (5.42)

i∂0f
(±)
~m = ±|E~m|f (±)

~m (5.43)

Here χ~m is the character function of A. Since χ̄~m = χ−~m, we can assume that

f̄
(±)
~m = f

(∓)
−~m (5.44)

If g ∈ D/D∞0 , we can then write

f
(±)
~m (g−1p) =

∑
~m′

f
(±)
~m′ (p)D~m′ ~m(g) (5.45)

where D is a unitary representation of D/D∞0 .

The untwisted quantum field ϕ0, assumed real for simplicity, and also assumed to

be in, out or free field, can be written as

ϕ0 =
∑
~m

[
c~mf

(+)
~m + c†~mf

(−)
−~m

]
(5.46)

Here c~m, c†~m are annihilation and creation operators:

[c~m, c
†
~n] = δ~m,~n , (5.47)

[c~m, c~n] = [c†~m, c
†
~n] = 0 . (5.48)

Covariance is the requirement that there is a unitary representation of D/D∞0 on

the Hilbert space of vector states such that

U(g)ϕ0(g−1p)U(g)−1 = ϕ0(p) . (5.49)

Hence since D̄~m′ ~m(g)D~n′ ~m(g) = δ~m′,~n′ (with sum over ~m being implicit),

U(g)c~mU(g)−1 = c~m′D̄~m′ ~m(g) , (5.50)

U(g)c†~mU(g)−1 = c†~m′D~m′ ~m(g) . (5.51)

For untwisted fields, the symmetrisation postulates on f
(±)
~m are based on Bose statis-

tics for tensorial fields. They are incorporated in (??,??) and are compatible with

covariance.
2We assume their existence as is normally the case.
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5.5.1 Covariance for Abelian Twists

The twisted quantum field ϕθ associated with ϕ0 is written as

ϕθ =
∑
~m

[
a~mf

(+)
~m + a†~mf

(−)
−~m

]
(5.52)

We will as before deduce the relation of a~m, a†~m to c~m, c†~m using covariance.

First consider

ϕ
(−)
θ |0〉 =

∑
~m

a†~m|0〉f
(−)
−~m =

∑
~m

a†~m|0〉f̄
(+)
~m . (5.53)

Covariance implies the requirement∑
~m

U(g)a†~mU(g)−1|0〉f̄ (+)
~m′ D̄~m′ ~m(g) = ϕ

(−)
θ |0〉 (5.54)

where U(g) represents g on the vector states and we use U(g)|0〉 = |0〉. Hence

U(g)a†~mU(g)−1|0〉 =
∑
~m′′

a†~m′′ |0〉D~m′′ ~m(g) (5.55)

Next consider the two-particle case:

ϕ
(−)
θ ⊗ ϕ(−)

θ |0〉 =
∑
~m,~n

a†~ma
†
~n|0〉f̄

(+)
~m ⊗ f̄ (+)

~n (5.56)

The action of g ∈ D/D∞0 on f̄
(+)
~m ⊗ f̄ (+)

~n is via the twisted coproduct:

g . f̄
(+)
~m ⊗ f̄ (+)

~n = F−1
θ (g ⊗ g)Fθf̄

(+)
~m ⊗ f̄ (+)

~n

= F−1
θ (g ⊗ g)f̄

(+)
~m ⊗ f̄ (+)

~n e−
i
2
miθijnj (5.57)

= F−1
θ

∑
~m′,~n′

f̄
(+)
~m′ ⊗ f̄

(+)
~n′ D̄~m′ ~m(g)D̄~n′~n(g)e−

i
2
miθijnj

=
∑
~m′,~n′

f̄
(+)
~m′ ⊗ f̄

(+)
~n′ e

i
2
m′iθijn

′
j D̄~m′ ~m(g)D̄~n′~n(g)e−

i
2
miθijnj .

The covariance requirement∑
~m,~n

U(g)a†~ma
†
~n|0〉

(
g . f̄

(+)
~m ⊗ f̄ (+)

~n

)
= ϕ

(−)
θ ⊗ ϕ(−)

θ |0〉 (5.58)

can thus be fulfilled by setting

a†~m =
∑
~m′

c†~me
i
2
miθijm

′
jP~m′ (5.59)
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and identifying U(g) as the untwisted operator with the action (??,??) on c~m, c†~m.

The adjoint of (??) gives

a~m =
∑
~m′

(
e−

i
2
miθijm

′
jP~m′

)
c~m ≡ V−~m c~m (5.60)

Now V−~m is unitary with inverse

V −1
−~m = V~m =

∑
~m′

e
i
2
miθijm

′
jP~m′ (5.61)

It is the unitary operator on the quantum HIlbert space representing the element

×je
i
2
miθij ∈ A (5.62)

(The quantisation condition on θij is also manifest from here.) Hence

V~ma~mV
−1
~m = e−

i
2
miθijmja~m = a~m (5.63)

and

a~m =
∑
~m′

c~me−
i
2
miθijm

′
jPm′j (5.64)

so that we can freely twist on left or right.

The twisted symmetrisation properties (statistics) of the multigeon states

a†~m1
a†~m2

...a†~mN |0〉 (5.65)

follows from (??).

Self-reproduction under the ?-product can also be easily verified:

(
a~mf

(+)
~m

)
?
(
a~nf

(+)
~n

)
=
(
c~mc~n

)
e
i
2

(mi+ni)θijm
′
jf

(+)
~m+~nPm′j

(5.66)

There are similar equation involving creation operators. Here again P~m =
∏
j Pmj be

the projection operator which acting on functions, projects out the IRR ~m of A. With

this notation, we can incorporate the dressing transformation directly in ϕθ:

ϕθ =
∑
~m,~m′

(
P~mϕ

)
e−

i
2
miθijm

′
jP~m′ . (5.67)

This equation is the analogue of the dressing transformation for the Moyal field.

73



5. TWISTING OVER A FINITE GROUP AND GEONS

5.6 How may we generalise?

Physical considerations outlined below suggest that the twist discussed above (and its

generalisations such as that in the Moyal case) is unique upto unitary equivalence if we

require the spacetime algebra to be associative. We do have nonassociative examples

(? ), they are associated with quasi-Hopf algebras as symmetries. We will now briefly

consider them as well.

5.6.1 Abelian Twists ⇒ Associative Spacetimes

For the abelian algebra, we retain A = ×ki=1Zni . If f
(η)
~m , (η = ±), denote the same

functions as before, then for the ?-product, we assume the general form

f
(η)
~m ? f

(%)
~m′ = σ(~m, ~m′)f

(η)
~m f

(%)
~m′ , η, % = ±, σ(~m, ~m′) ∈ C , (5.68)

where on the right, f
(η)
~m f

(%)
~m′ denotes point-wise product.

Now f
(η)
~m f

(%)
~m′ transforms by the representation ~m + ~m′ (modulo ni in each entry).

Taking this into account we require associativity:

f
(η)
~m ?

(
f

(%)
~m′ ? f

(ζ)
~m′′

)
=
(
f

(η)
~m ? f

(%)
~m′

)
? f

(ζ)
~m′′ . (5.69)

The l.h.s. and r.h.s. of this equation are

l.h.s. = σ(~m, ~m′ + ~m′′)σ(~m′, ~m′′)f
(η)
~m f

(%)
~m′ f

(ζ)
~m′′ (5.70)

r.h.s. = σ(~m, ~m′)σ(~m+ ~m′, ~m′′)f
(η)
~m f

(%)
~m′ f

(ζ)
~m′′ (5.71)

Therefore

σ(~m, ~m′ + ~m′′)σ(~m′, ~m′′) = σ(~m, ~m′)σ(~m+ ~m′, ~m′′) . (5.72)

It has the solution

σ(~m, ~m′) = e−
i
2
miθ̂ijm

′
j (5.73)

where θ̂ij is quantised as before:

θ̂ij =
4π

nij
,

ni
nij

,
nj
nij
∈ Z . (5.74)

Note that the quantisation requirement forces θ̂ij to be real, but not necessarily

antisymmetric. Hence we can in general write

θ̂ij = θij + sij , θij = −θij =
4π

nij
, sij = sji =

4π

mij
(5.75)

74



5.6 How may we generalise?

where both nij and mij divide ni and nj , that is fulfill the analogue of (??).

Thus associativity and quantisation conditions reduce σ to the form

σ(~m, ~m′) = e−
i
2
miθijm

′
j e

i
2
misijm

′
j (5.76)

with the constraints on θij and sij stated above.

The corresponding Drinfel’d twist is

Fσ =
∑
~m,~m′

σ(~m, ~m′)P~m ⊗ P~m′ (5.77)

Note that

|σ(~m, ~m′)| = 1, F−1
σ = Fσ̄ . (5.78)

If ε is the counit, then there is the normalisation condition (? )

(ε⊗ 1)Fσ = (1⊗ ε)Fσ = 1 . (5.79)

Here ε is the map to the “trivial” representation, so ~m and ~m′ become ~0 (mod ~n =

(n1, .., nk)) under ε and ε(P~m) = δ~m,~0, ε(P~m′) = δ~m′,~0. Since
∑

~m P~m =
∑

~m′ P~m′ = 1,

the above requirement is fulfilled by (??).

Next we show that the symmetric factor with sij can be eliminated by requiring

that the twist preserves the adjoint operation.

For the twist Fσ above, the dressed annihilation and creation operators are

a~m =
∑
~m′

c~me−
i
2
mi(θij+sij)m

′
jP~m′ (5.80)

a∗~m =
∑
~m′

c†~me
i
2
mi(θij+sij)m

′
jP~m′ (5.81)

where ∗ denotes that it is not necessarily the adjoint † of a~m, and we have used the

fact that a∗~m transforms by the representation −~m.

Now

a†~m =
(∑

~m′

e
i
2
mi(θij+sij)m

′
jP~m′

)
c†~m (5.82)

The prefactor is the unitary operator U~m representing the element

×j e
i
2
mi(θij+sij) (5.83)

in A. Hence

U~mc
†
~mU
−1
~m = e

i
2
mi(θij+sij)mjc†~m = e

i
2
misijmjc†~m (5.84)
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since θij = −θji. Thus

a†~m = e
i
2
misijmja∗~m . (5.85)

The requirement

a∗~m = a†~m . (5.86)

imposes the constraint

e
i
2
misijmj = 1 (5.87)

From this we can infer that sij = 0 mod 4π/mij where ni/mij , nj/mij ∈ Z. For example

the successive choices ~m = (1,0), (0, 1,~0), (1, 1,~0), shows that sij = 0 if i, j ≤ 2. Thus

(??) reduces σ to

σ(~m, ~m′) = e−
i
2
miθijm

′
j (5.88)

It thus appears that our previous considerations are general for associative spacetime

algebras.

5.6.2 Nonabelian Generalisations of Drinfel’d Twists

We now discuss nonabelian generalisations of the above considerations. They generally

lead to quasi-Hopf algebras based on D∞/D∞0 as the symmetry algebras and non-

associative spacetimes.

Here is an approach to such a generalisation. Let us consider the following nested

groups:

D∞/D∞0 ≡ G0 ⊃ G1 ⊃ ... ⊃ GN = A (5.89)

Here A = ×ki=1Zni is the maximal abelian subgroup of G0 (quotiented by factors of Z)

while the rest, Gk for k < N , can be nonabelian. The chain is supposed to be such

that there exists an orthonormal basis {b(~%)}
(
~% = (%0, %1, ..., %N )

)
for the vector space

V (%0) for the IRR %0 of G0 where b(~%) is a vector in the representation space for the

IRR %j of Gj . In this notation, %N= our previous ~m. Thus the chain (??) leads to a

complete system of labels for the basis vectors.

Let P~% be the projector to the space Cb(~%):

P~% b(~%) = b(~%) . (5.90)

Then

P~%P~%′ = δ~%,~%′P~%,
∑
~%

P~% = 1 . (5.91)
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Let ~%ε label the IRR associated with the counit ε. Then

ε(P~%) = δ~%,~%ε (5.92)

Now consider

Fσ =
∑
~%,~%′

σ(~%, ~%′)P~% ⊗ P~%′ , σ(~%, ~%′) ∈ C . (5.93)

We plan to use Fσ as the Drinfel’d twist. Its realization used to deform the ?-product

of functions will be indicated as usual as Fσ. It involves the realization of P~%’s on

functions which again we will call P~%’s. The Drinfel’d twist of the coproduct as in

(??), requires Fσ to be invertible so that

σ(~%, ~%′) 6= 0 for any %̃, %̃′ . (5.94)

For then,

F−1
σ =

∑
~%,~%′

1

σ(~%, ~%′)
P~% ⊗ P~%′ . (5.95)

The next requirement on Fσ is the normalisation condition

(ε⊗ 1)Fσ = (1⊗ ε)Fσ = 1 . (5.96)

In view of (??), this requires that

σ(~%ε, ~%) = σ(~%, ~%ε) = 1 . (5.97)

According to Majid (? ), there is no further requirement on Fσ if quasi-Hopf

algebras are acceptable. The spacetime algebra with its star product governed by Fσ

as in previous sections is then its module algebra which is generally nonassociative

(with an associator) (? ? ? ). It is associative only if its symmetry algebra is Hopf.

The spacetime orthonormal basis is now denoted by b
(±)
~% instead of by f

(±)
~m while

the twisted quantum field is written as

ϕθ =
∑

~%,~%′

[
a~% b

(+)
~% + a∗~% b

(−)
~%

]
(5.98)

a~% =
∑

~%′ c~% σ(~%, ~%′)P~%′ (5.99)

a∗~% =
∑

~%′ c
†
~% σ̄(~%, ~%′)P~%′ (5.100)

where c~%, c
†
~% are the untwisted annihilation and creation operators.
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Unitarity requires that

a∗~% = a†~% =
∑
~%′

σ̄(~%, ~%′)P~%′c†~% =
∑
~%′

c†~% σ̄(~%, ~%) σ̄(~%, ~%′)P~%′ . (5.101)

Hence we have also

σ(~%, ~%) = 1 . (5.102)

Thus it appears that we have an approach to a quantum field theory if the normal-

isation condition (??) and the unitary condition (??) are fulfilled.

If P~% is the projector on the space of functions to the IRR ~%, the twisted field can

be written without a mode expansion:

ϕθ =
∑
~%,~%′

σ(~%, ~%′)
(
P~%ϕ0

)
P~%′ . (5.103)

It is then easily verified that the dressed field (??) coincides with (??) and it has the

self-reproducing property:

ϕθ ? ϕθ =
∑
~%,~%′

σ(~%, ~%′)
(
P~%ϕ

2
0

)
P~% . (5.104)

But there is in general no associativity:

(ϕθ ? ϕθ) ? ϕθ 6= ϕθ ? (ϕθ ? ϕθ) . (5.105)

Such quantum fields merit study. They seem to lead to Pauli principle violations

with testable experimental consequences.

5.7 On Rings and Their Statistics (Motion) Groups

A theoretical approach to the investigation of statistics of a system of identical con-

stituents is based on the properties of the fundamental group of its configuration space.

For N spinless identical particles in a Euclidean space of three or more dimensions,

for example, this group is known to be the permutation group SN (? ). There is fur-

thermore an orderly method for the construction of a distinct quantum theory for each

of its unitary irreducible representations (UIRs). As these theories describe bosons,

fermions and paraparticles according to the choice of the representation, the study of

the fundamental group leads to a comprehensive account of the possible statistics of

structureless particles in three or more dimensions.
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It has been appreciated for some time that the statistical possibilities of a particle

species confined to the plane R2 can be quite different from those in three or more

dimensions. This is because the fundamental group for N identical spinless particles

in a plane is not SN . It is instead an infinite group BN , known as the braid group.

Since SN is a factor group of BN , and hence representations of SN are also those of

BN , it is of course possible to associate Bose, Fermi or parastatistics with a particle

species in a plane. But since BN has many more UIRs which are not UIRs of SN ,

there are also several possibilities for exotic planar statistics. One such possibility of

particular interest, for instance, is that of fractional statistics, which is of importance

in the context of fractional quantum Hall effect.

As we discussed earlier, it was pointed out some time ago that configuration space

with unusual fundamental groups, and hence exotic statistical possibilities, occur not

merely for point particles on a plane, but also for topological geons. It was also em-

phasized elsewhere (? ) that there are many remarkable properties associated with

the quantum version of geons, such as the failure of the spin-statistics connection and

the occurrence of states in three spatial dimensions which are not bosons, fermions or

paraparticles.

In (? ? ) the investigation of exotic statistics was continued by examining another

system of extended objects, namely a system of identical closed strings assumed to be

unknots and imbedded in three spatial dimensions. Using known mathematical results

on motion groups (? ), it was shown that the fundamental group of the configuration

space of two or more such strings is not the permutation group either. It is instead

an infinite non-Abelian group which bears a certain resemblance to the gravitational

fundamental groups mentioned a moment ago. It was further shown that quantum

strings as well may not be characterized by permutation group representations. Thus

they may not obey Bose, Fermi or parastatistics. They may also fail to obey the familiar

spin-statistics connection.

Thus identical geons and identical knots share certain topological properties. For

this reason, in this section we briefly examine the statistics of identical unknots. We here

consider only the configuration spaces of one and two unknots and their fundamental

groups.

We denote the configuration space of N unknots in R3 as Q(N) and consider N = 1

and 2. These unknots can be unoriented or oriented. These cases will be discussed
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Figure 5.1: (a) Circle of unit radius centered at the origin. (b) Two oriented inequivalent

knots.

separately.

5.7.1 The case of one unoriented unknot

An unoriented unknot is a map of a circle S1 into R3 where the image is the unoriented

unknot. That means the following:

a) It can be deformed to the standard map where the image is say the circle {(x, y, 0) :∑
x2 + y2 = 1} in the 1-2 plane. (Here we chose the flat metric δij).

b) Two maps which differ by an orientation reversal of S1 are identified.

Intuitively, an unknot is a closed loop deformable to the above standard loop.

The configuration space Q(1) of the unknot consists of all such maps.

We now consider the fundamental group π1(Q(1)).

The construction of π1(Q(1)) involves the choice of a fixed (“base”) point q̄ in Q(1).

As Q(1) is the space of maps from S1 to R3, q̄ in this case is one particular choice of

such maps. If Q(1) is connected, as is the case for us, it can be any point q̄ of Q(1). The

resultant group π1(Q(1), q̄), where we have put in the base point q̄ in the notation for

the fundamental group, does not depend on q̄. So we can talk of π1(Q(1)) and omit q̄.

But there is no canonical isomorphism between π1(Q(1); q̄) and π1(Q(1); q̄′) with

q̄ 6= q̄′. Any isomorphism depends on the choice of the path from q̄ to q̄′ (? ).

For q̄, we can for convenience choose the flat metric δij in R3 as we did above, and

choose q̄ to be a circle of unit radius centered at the origin in the x− y plane as in Fig.

?? (a).
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Consider rotating this figure by π around the x-axis. It maps q̄ to q̄ and creates a

loop T in Q(1) as the rotation evolves from 0 to π. The loop cannot be deformed to a

point, the point loop based at q̄. So [T], the homotopy class of this loop is a non-trivial

element of π1(Q(1)).

Rotating q̄ around another axis n̂ (n̂ · n̂ = 1) through the origin generates a loop

which however is homotopic to T: just consider the sequence of loops got by rotating

n̂ to the x-axis î to this result.

By repeating T k-times, we get a kπ rotation loop call it Tk, of q̄. If J1 is the

angular momentum of SO(3), then

{eiθJ1 : 0 ≤ θ ≤ 2π} (5.106)

is a 2π-rotation loop in SO(3) and T2 is just {eiθJ1 q̄ : 0 ≤ θ ≤ 2π}.
But this loop can be deformed to a point. For consider the sequence of loops

{eiθn̂ ~J q̄ : 0 ≤ θ ≤ 2π, n̂ · n̂ = 1} (5.107)

as n̂ varies from (1,0,0) to (0,0,1). The starting loop is T, the final loop is a point.

Thus [T2]=e.

We thus see that

π1(Q(1)) = Z2 = 〈[T ], [T2] = e〉 (5.108)

5.7.2 The case of the oriented unknot

In this case we drop the identification b) above so that there is an arrow attached to

the unknot like in Fig. ?? (b). Otherwise, its configuration space Q(1) is defined as

above.

As for π1(Q(1)), the base point q̄ is as above, but there is now an arrow on the circle

in Fig. ?? (b). Hence the curve

T = 〈eiθJ1 q̄ : 0 ≤ θ ≤ π〉 (5.109)

does not close (is not a loop). We conclude that

π1(Q(1)) = {e} (5.110)
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Figure 5.2: (a) The configuration space of two identical unoriented unknots. (b) Pair of

unordered identical knots.
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Figure 5.3: The loop E defining “exchange”.

5.7.3 The case of two identical unoriented unknots

Its configuration space Q(2) can be informally described (see Fig. ??) (a) as follows: A

point q ∈ Q(2) consists now of 2 unlinked unknots in R3. The pair is unordered as the

knots are “identical”, see Fig. ?? (b). This requirement is as for identical particles (?

).

For q̄, using our flat metric, we choose two circles of unit radius on the x− y plane

centered in ±2.

The discussion of identical unknots here is to be compared with the corresponding

discussion of identical geons (? ).

We can now recognize the following elements of π1(Q(2)):
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• Exchange [E]: The loop E defining “exchange” rotates q̄ from 0 to π around third

axis:

E = 〈eiθJ3 q̄ : 0 ≤ θ ≤ π〉 . (5.111)

Its evolving pictures are depicted in Fig. ??.

There are standard proofs that

E2 ≡ 〈eiθJ3 q̄ : 0 ≤ θ ≤ 2π〉 (5.112)

is deformable to e and that the loop with θ → −θ in (??) is homotopic to E.

The homotopy class [E] of E in π1(Q(2)) is the exchange. The corresponding

group is S2.

• The π-rotations [T(1)], [T(2)].

The loop T(1) rotates the ring 1 (on left) by π around x-axis, T(2) does so for the

ring 2 on right. They are inherited from Q(1) and generate the elements [T(i)] in

π1(Q(2)). Clearly

[E][T(1)][E−1] = [T(2)], [E][T(2)][E−1] = [T(1)] (5.113)

where the products in π1(Q(2)) are as usual defined by concatenation of loops in

Q(2).

[T(1)] and [T(2)] commute.

• The Slide: Let us first consider the loop S12 or the slide [S12] of 2 through 1.

Figure ?? above explains the loop:

The homotopic class [S12] of S12 is the slide of 2 through 1.

The slide [S21] of 1 through 2 is similarly defined. We can show that

[E][S12][E]−1 = [S21] , (5.114)

[E][S21][E]−1 = [S12] . (5.115)

The full group π1(Q(2)) is thus generated by [T(1)], [T(2)], [E], [S12], [S21] with

the relations

[T(1)]2 = [E]2 = [T(2)]2 = e, [E][T(1)][E]−1 = [T2], [T(1)][T(2)] = [T(2)][T(1)] ,

(5.116)
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Figure 5.4: The “slide” loop S12.

and (??,??). There are no further relations.

If S is the group that [Sij ] generate, we have the semi-direct product structure

π1(Q(2)) =
{

S o
(
π1(Q(1))× π1(Q(1))

)}
o S2 (5.117)

Here G1oG2 is the semi-direct product of G1 and G2 with G1 being the invariant

subgroup. Also π1(Q(1)) acts trivially on S .

Eq. (??) is to be compared with the corresponding equation for the mapping

class group D(2)∞/D
(2)∞
0 of two identical geons (? ? ) if S is its group of slides,

D(2)∞/D
(2)∞
0 =

{
S o

(
D(1)∞/D

(1)∞
0 ×D(1)∞/D

(1)∞
0

)}
o S2 (5.118)

5.7.4 The case of two identical oriented unknots

Orienting the knots reduces π1(Q(1)) to {e}. With that in mind, we can repeat the

above discussion (with q̄ chosen analogously to above) to find

π1(Q(2)) = S o S2 . (5.119)

Some discussion about the quantum theory of these unknots and their unusual statis-

tical features can be found in (? ? ).
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Conclusion

Here it comes the end of our fairly long journey through some of the subtleties of

noncommutative quantum field theory. We hope to have provided a clear enough pre-

sentation of some of the aspects of quantum field theory on spacetimes whose coordinate

operators do not commute, yet we are aware that many more issues are left unaddressed

by the present manuscript.

After providing some mathematical background, we presented a throughout expla-

nation of the twisted field formalism. Such an approach can be summarized in a few

key steps. At first we noticed that the commutation relations (??) can be implemented

by a deformation of the pointwise product of the commutative algebra of functions.

The new noncommutative product has throughout been indicated with a ?. The twist

(??) makes its first appearance when writing down an explicit form for a ?-deformation

which is suited for (??). Consistency with the new deformed product requires the ac-

tion of the Poincarè group to be modified as well (cf. Section ??). Specifically the

?-product carries a very peculiar modification of the group: is the way in which the

group acts on the tensor product space and not the group multiplication itself which

gets deformed. This is done in order to keep the Poincarè group an automorphism

of the, now noncommutative, algebra of functions. For a generic ?-product, it is not

an easy task to find the appropriate modification of the group co-structure. Twist

deformation are different in this respect, and we can immediately write the deformed

coproduct (??), again using the twist previously introduced to write down the deformed

product. Before addressing the quantization of the classical fields, we need to ensure

that the new action on tensor product spaces, preserves the notion of statistics, that is

being fermionic or bosonic remains an intrinsic property of a state on noncommutative

spacetimes as well, and cannot be changed by the new action of the Poincarè group.

Surprisingly enough, the standard definition of either bosonic or fermionic states, is
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not left invariant by the new action of the group. Again for twist deformations, it is

straightforward to account for this last modification which brings the notion of twisted

statistics (cf. Section ??).

The quantization of the classical fields, proceeds then in the standard way. The cre-

ation and annihilation operators ought now to provide a representation of the deformed

Poincarè group. The new creation and annihilation operators can be written in terms

of the ones which provide a representation of the Poincarè group in the commutative

case. The difference lying in the former ones being the “dressed” version of the latter

(??-??). Creation and annihilation which provide the appropriate representation, also

satisfy the twisted commutation relations, they are then consistent with the twisted

statistics (??-??) as well.

The quantization of the fields can be also carried out by asking for covariance.

Chapter ?? is devoted to give a detailed account of the notion of covariant fields in the

commutative case and its generalization to noncommutative spacetiemes. Both quanti-

zation procedures give rise to equivalent results, providing some ground for confidence

in the twisted field formalism.

Since the introduction of the twist, we pointed out that the commutation relations

(??) do not constrain the choice uniquely. Different twist choices are allowed (??-

??). We study in details two of the most popular twists: Moyal and Wick-Voros.

Chapter ?? addresses lengthly the comparison between the quantum theories obtained

from quantizing fields on the Moyal and Wick-Voros planes. The two are shown to

be inequivalent, the reason being the impossibility to carry through the equivalence

of the two Twist deformations established at the level of deformation of algebras and

Hopf algebras (cf. Appendix ?? and section ??). Also the Moyal twist appears to be

more suitable for quantum theory. As shown in (??), the normalization of states in the

Wick-Voros case is momentum dependent. This fact causes problems for a coherent

definition of scattering theory, suggesting that the Wick-Voros quantum theory might

be inconsistent. Throughout, in order to derive our conclusions, we made heavily use

of the specific “dressing transformation” quantization technique.

Lastly we presented an interesting scenario in which non-trivial topological excita-

tions of the spacetime, called Geons by Friedman and Sorkin, could be the source of

noncommutativity. We argued that the non trivial structure of the group of diffeomor-

phisms of a multi-geon spacetime, which cannot be decomposed as a tensor product
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of diffeos of a single geon spacetime, could be an evidence for the twisted coproduct

structure. So the existence of geons might motivate a twisted coproduct and therefore

a noncommutative spacetime. The geon case, though, differs in a few, interesting, as-

pects from the more standard noncommutative quantum field theory. They are worth

pointing out. We first noticed that the spacetime noncommutativity which naturally

arises in the geon case, is localised at the geons’ scale. The reason being that we can

completely encircle all the topological “defects” with d-dimensional balls Bd outside of

which the spacetime is isomorphic to Rd/Bd. The second aspect is the nature of the

group G we are twisting. In standard twisted quantum field theory, G is always a Lie

group. The definition of the twist strongly relies on such a property: Fθ is a map which

is defined as a function of the Lie algebra elements. In the geons case the group which

we need to twist is instead generically discrete. In order to carry through the twisting

Hopf algebra theory, we developed a non-trivial generalization of the twist map in the

discrete case. This technique in itself might find different application in future studies.

Many aspects of noncommutativity have not been addressed here. One of the deep-

est question pertains to whether or not noncommutativity is a fundamental or effective

description of reality. Although questions of this kind are in general very hard to tackle,

the different approaches to noncommutativity briefly listed in the introduction seem to

suggest that different ideas have been developed on the matter. There are approaches

to noncommutativity which do not treat it as a low-energy effective description of a

possibly quite differently looking theory of Quantum Gravity, but as fundamental prop-

erty of nature. To be more explicit, in Connes’ et al., the matter content of the theory

can be derived from first principle, choosing the appropriate spectral triple. Although

seeing noncommutativity as a guiding principle for Quantum Gravity is an appealing

one, the ?-product noncommutative quantum field theory presents itself more coher-

ently as a low-energy effective theory. The commutation relations (??) can in fact be

derived as a four-dimensions low energy limit of certain String theories, the fundamen-

tal theory being the fullfledged 10 or 11 dimensional superstring theory. Even the more

quantum field theoretical derivation of (??), presented in section ??, uses semiclassical

arguments involving low-energy properties of both Quantum Mechanics and General

Relativity.

The argument, for as abstract as it could appear, is not condemned to remain a

purely speculative one. For instance SUSY searches at the LHC could say a word in
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such a dispute, pushing away or towards an effective view point. In case of any SUSY

discovery, for example, it seems unlikely that the wonderful and coherent description

of the Standard Model presented by Connes et al., could include, without drastic mod-

ifications, the doubling of the matter fields which SUSY would compel.

Quantum Gravity does remain the ultimate challenge for theoretical physicists,

though the path to get there might be not as straight as we hope. There are experiments

which specifically addressed the seek of evidences for the “Theory of Everything”, see

for example (? ? ? ? ? ), yet we believe Quantum Gravity effects to become dominant

at energy scales of the order of MP ∼ 1019 GeV. Such an extremely high energy scale,

more than 15 orders of magnitude higher than the highest energy scale human beings

have ever been able to probe via an Earth located laboratory, relegates, currently,

direct probing of the ultimate theory almost in the fantascientific realm. Yet a better

understanding of much lower energy physics, can tell us a lot about what could or could

not happen at the Plank scale.

Probing the physics at the TeV scale is definitely the task of this decade. The list of

direct and indirect experiments aiming at it is extremely rich and exciting. The LHC

has definitely taken a big part of attention, but not less care should be devoted to the,

at the moment contradictory, results coming from the different Dark Matter searches,

like Dama, Crest, Xenon, etc.. Not last the extremely recent result of superluminal

neutrinos, obtained by the OPERA collaboration (? ). Which, although hardly likely

to be confirmed by future measurements, has the potential of completely turn upside

down the setting in which to develop our speculations about Quantum Gravity.

Finally interesting insights could come from cosmological observations which during

the last ten years have improved dramatically our understanding of the universe. Just

to mention few experiments, the WMAP 7 year (? ) which provides the best WMAP

observation to date, the 2dF and SDSS galaxy surveys (? ? ) which look at the number

and brightness of galaxies to infer the baryonic content of the universe, and the Planck

satellite whose results are not out yet, but they will improve on the WMAP.

The inflationary expansion of the very early universe, stretched a minuscule region

of spacetime of the Plank size into cosmological scales. Arguably for the former, quan-

tum spacetime fluctuations were considerably important. Inflation could then act as a

incredibly powerful magnifying glass to probe quantum effects whose length scale would

otherwise be of the order of the Plank Legnth, LP ∼ 10−33 cm, orders of magnitudes
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away from our current reach. Many have therefore studied what kind of constraints

can cosmology provide in the context of noncommutative geometry (? ? ? ? ? ? ? ?

? ? ? ). For instance in (? ? ) from the minuscule temperature fluctuations in the

CMB data, a pretty stringent bound on the noncommutative parameter θ was derived:

√
θ < 1.36× 10−19 m ∼ 10 TeV

This work is meant to be a small contribution in the incredibly exciting task of

understanding and develop the theory of Quantum Gravity. Whether or not the com-

mutation relations (??) would turn out to be an accurate description of nature at any

energy scale, it is hard to tell at the current stage. Yet it is very likely to expect

the most fundamental structure of the spacetime to show unexpected behaviours as

we approach the Plank scale MP . In this respect noncommutative geometry, and the

study presented in this manuscript of quantum field theories on noncommutative space-

times, represent a very useful arena in which to understand how quantum fluctuations

of spacetime texture could generically appear at the field theoretic level.
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Appendix A

Algebraic Preliminaries

The material presented in this appendix is quite standard, and our presentation follows

quite closely the standard literature (? ? ? ? ? ? ). Here and in the following an

algebra will be indicated as A and it will be over the field of complex number C. That

is A is a vector space over C,

if a, b ∈ A, αa+ βb ∈ A ∀α, β ∈ C. (A.1)

Moreover, there is a further internal operation, which we call the product

A×A → A, A×A 3 (a, b)→ ab ∈ A (A.2)

The product above is distributive over the addition (??) but generically noncommu-

tative, ab 6= ba. Furthermore the algebra A is unital if it possesses a unit, that is an

element 1 such that

a1 = 1a = a, ∀a ∈ A . (A.3)

A topological algebra is an algebra with a Hausdorff topology for which both the

operations, addition and multiplication, are continuous. Where a Hausdorff topological

space M , or simply separated space, is a space where any two distinct points x, y ∈M
can be separated by neighbourhoods. That is there exists a neighbourhood U of x and

a neighbourhood V of y, such that U and V are disjoint, U ∩V = ∅. A normed algebra

A is an algebra with a norm ‖ · ‖ : A → R. ‖ · ‖ should satisfy the following properties:

‖a+ b‖ ≤ ‖a‖+ ‖b‖, ‖αa‖ = |α|‖a‖, (A.4)

‖ab‖ ≤ ‖a‖‖b‖, (A.5)

‖a‖ ≥ 0, ‖a‖ = 0 ⇐⇒ a = 0 (A.6)
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for any a, b ∈ A and α ∈ C. A normed algebra is more restricted than a topological

one. That is a normed algebra can be made into a topological algebra with the norm

topology, the topology defined by its norm ‖ · ‖. It is a metric topology with metric

given by d(a, b) = ‖a − b‖, ∀a, b ∈ A. The corresponding ε−neighbourhoods of a

are given by U(a, ε) = {b ∈ A | ‖a − b‖ < ε}. The norm function is continuous since

| ‖a‖+ ‖b‖ | ≤ ‖a− b‖.
A (proper, norm closed) subspace I of the algebra A is a left ideal (right ideal) if

a ∈ A and b ∈ I imply that ab ∈ I (ba ∈ I). The sets {0} and A are trivial ideals. A

two-sided ideal is a subspace which is both a left and a right ideal. The ideal I (left,

right or two-sided) is called maximal if there exists no other ideal which contains I.

Each ideal is automatically an algebra.

A normed algebra which is complete in the norm topology is called a Banach algebra.

Finally a C∗-algebra is a Banach algebra, endowed with an involution ∗, (a∗)∗ = a, and

whose norm satisfies the additional identities

‖a∗‖ = ‖a‖, ‖a∗a‖ = ‖a‖2 (A.7)

in most cases, as A is over C, the ∗ operation is simply complex conjugation. A C∗-

algebra A is called simple if it has no nontrivial two-sided ideals.

Example #1

An example of a commutative C∗-algebra is provided by the algebra of complex valued

continous functions C0(M) on a Hausdorff topological space M , which vanish at infin-

ity. The product being the pointwise multiplication and the ∗ involution the complex

conjugation. The norm is the supremum norm

‖f‖∞ = supx∈M |f(x)| (A.8)

This algebra is not unital. If M is compact then C0(M) has a unit, 1 = the constant

function f = 1, which in fact does not vanish at infinity. One can prove that C0(M) is

complete in the suprimum norm. Indeed the algebra C0(M) is the closure in the norm

(??) of the algebra of functions with compact support.
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Example #2

An example of a noncommutative C∗-algebra is provided by the algebra of bounded

linear operators B(H) on a Hilbert space H. The involution ∗ is the adjoint and the

norm is given by the operator norm

‖B‖ = sup{‖Bh‖H|h ∈ H, ‖h‖ ≤ 1} (A.9)

where ‖ · ‖H is the Hilbert space norm.

In the case that H has finite dimension n, B(H) is the noncommutative algebra of

n × n matrices with complex entries Mn(C). Now T ∗ is the Hermitian conjugate of

T ∈Mn(C). And the norm reduces to

‖T‖ = positive square root of the largest eigenvalue of T∗T. (A.10)

We conclude this appendix with a discussion of algebra morphisms. A ∗-morphism

between two C∗-algebras A and A′, is any C-linear map π : A → A′ which is a

homomorphism of algebras, that is it preserves the multiplication on A, π(ab) =

π(a)π(b) ∀a, b ∈ A, and it is ∗-preserving, π(a∗) = π(a)∗. It can be shown that π

is automatically continuous in the norm topology and the image π(A) ⊂ A′ is a C∗-

subalgebra of A′. A morphism from A in itself, is an automorphism. The sunbset of

Aut(A), the set of automorphisms, which contains automorphisms which can be written

as conjugation by elements of A

π : ∃ b ∈ A : π(a) = bab−1 ∀a ∈ A (A.11)

is indicated by Int(A) and called the set of inner or internal automorphisms. The

complement of Int(A) in Aut(A) is indicated as Out(A) and called the set of outer

automorphisms. A ∗-morphism which is also bijective as a map is a ∗-isomorphism.

A representation of a C∗-algebra is a pair (H, π) where H is a Hilbert space and π a

∗-morphism into the algebra of bounded operator B(H):

π : A → B(H) (A.12)

The representation (H, π) is called faithful if ker(π) = {0}, so that π is a ∗-

isomorphism. It can be shown that a representation is faithful if and only if ‖π(a)‖ =
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‖a‖ for any a ∈ A or π(a) > 0 for all a > 0. The representation (H, π) is called irre-

ducible if the only closed subspaces which are left invariant under the action of π(A) are

the trivial subspace {0} and the whole H. Alternatively a representation is irreducible

if and only if the commutant of π(A), i.e. the set of all elements in B(H) which com-

mute with each element in π(A), consists of multiples of the identity operator. Two

representations (H1, π1) and (H2, π2) are said to be unitary equivalent if there exists a

unitary operator U : H1 → H2, such that π1(a) = U∗π2(a)U , for any a ∈ A.
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Appendix B

Deformation theory &

Cohomology

This appendix is by no mean aimed to be a self-cointened treatment of neither coho-

mology nor deformation theory. We just want to provide the essential information for

the interested reader to understand how cohomology enters in relations with deforming

the product of the algebra of functions or the coproduct of the symmetry group. For

a more detailed and complete treatment of the subject we refer to (? ? ) as for co-

homology in general, (? ) for algebra deformation theory and Hochschild cohomology

and (? ? ) for Hopf algebra deformation and cohomology. In the following A and H

represent respectively an algebra and a Hopf algebra over the field of complex number

C.

B.1 Hochshild cohomology and Algebras’ deformation

The Hochshild cohomology is naturally suited in order to study algebras’ deformation,

as we shall show in a few moments. In the case in exam, a p-chain C ∈ Cp(A,A) is a

p-linear map from A⊗p into A, that is

C : (a1, ..., ap) ∈ A⊗p → C(a1, ..., ap) ∈ A (B.1)

C(a1, ...αiai + βibi...ap) = αiC(a1, ...ai...ap) + βiC(a1, ...bi...ap), αi, βi ∈ C (B.2)
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and its coboundary bC ∈ Cp+1(A,A) is a p+ 1-chain. It acts on A⊗p+1
and its action

is defined as

bC(a0, a1..., ap) = a0C(a1, ..., ap)− C(a0a1, ..., ap) + ... (B.3)

...+ (−1)pC(a0, ..., ap−1ap) + (−1)p+1C(a1, ..., ap−1)ap

It can be shown that the boundary map above is nihilpotent, i.e. b2 = 0. We now

proceed as usual. A p-chain C is a p-cocycle if bC = 0. We denote by Zp(A,A)

the space of p-cocycles and by Bp(A,A) the subspace of Cp(A,A) of p-chains which

are coboundaries of (p-1)-cochain1. We are now ready to define the p-th Hochshild

cohomology space Hp(A,A)

Hp(A,A) = Zp(A,A)/Bp(A,A) (B.4)

We can now turn into the theory of deformations of algebras. We will indicate as

ab the undeformed product and as a ? b its deformation. Formally a deformation a ? b

of a multiplication map ab is a power series in a “small parameter” θ that reduces to

ab in the θ → 0, or

a ? b = ab+
∞∑
i=1

θiCi(a, b), Ci(a, b) ∈ C2(A,A) (B.5)

therefore deformations can be written as a series of 2-cochain. In order for the new

product to be associative, we need

(a ? b) ? c = a ? (b ? c), ∀a, b, c ∈ A (B.6)

This property sets strong restrictions on the possible 2-cochain which could give rise to

associative deformed products. In fact expanding both sides of (??), and equating on

both sides same powers of θ, we find the constraint:

Dr(a, b, c) = bCr(a, b, c), where Dr(a, b, c) :=
∑
j+k=r

[
Cj(Ck(a, b), c)−Cj(Ck(a, b), c)

]
(B.7)

After some algebra it is possible to show that bDr(a, b, c, d) = 0, that is the LHS is a

3-cocycle for any r and which can be written as a function of just the precedent r − 1

1As usual it’s immediate to show that Bp(A,A) ⊂ Zp(A,A), that is any p-cochain which can be

written as a co-boundary of a (p− 1)-cochain is a p-cocycle. This follows from b2 = 0.
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2-cochains. Thus in order to construct a deformation we need to satisfy (??) for any

r. Starting from r = 1, we immediately obtain that bC1(a, b, c) = 0 or, C1 should be

a 2-cocycle. In order to proceed to higher order in θ, we should make sure that the

3-cocycle D2(a, b, c), which is uniquely defined once our 2-cocycle C1 has been chosen,

can be written as a coboundary of a 2-cochain C2 which will then be our choice for the

θ2 term in (??). At every order we should then be able to write the 3-cochain Dr as a

coboundary of a 2-cochain Cr which is going to be the θr contribution for the deformed

product. In conclusion, the obstructions to build a deformed associative product, lie

in the third Hochshild cohomology space H3(A,A). If H3(A,A) is trivial, than any

3-cocycle is a 3-coboundary and any deformation comes up to be associative.

Hochshild cohomology helps also in studying the equivalence of deformations of the

kind (??). First of all, two deformation ? and ?′ are said equivalent if there exists an

isomorphism T = 1 +
∑∞

i=1 θ
iTi, where Ti ∈ C1(A,A), i.e. Ti are linear maps of A in

itself, such that

T (a ?′ b) = (Ta ? Tb) (B.8)

Expanding both sides in power θ we can carry out a similar analysis as before. After

some algebra it is possible to show that at O(θ) the deformation is trivial if the 2-

cocycle C1 is also a 2-coboundary. More generally, exactly as above, we can show (? ?

) that if two deformations are equivalent up to some order t, the condition to extend the

equivalence one step further is that a 2-cocycle (uniquely defined using the Tk, k ≤ t)

is the coboundary of the required Tt+1 and therefore the obstructions to equivalence

lie in the 2-cohomology H2(A,A). In particular, if that space is null, all deformations

are trivial.

B.2 Nonabelian cohomology and Hopf Algebras’ deforma-

tions

In a similar manner, we can introduce a cohomological theory which can help us study-

ing Hopf algebras’ deformation. We tackle this task in this section. Generic Hopf

algebras deformation involve deformation of possibly both the product and the coprod-

uct. Here we will only deal with a much more restricted set of deformations, namely

the ones we have considered in the main text where the product is left unchanged and
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the coproduct is deformed by conjugation:

χ ∈ H ⊗H, ∆θ = χ∆0χ
−1 (B.9)

so χ can be associated with what we call the twist in (??). The material presented

here can be found in a more extensive form in (? ). We will call the cohomology suited

for the study of deformations (??) Hopf Algebra cohomology. For the study of generic

Hopf algebras’ deformation we refer the reader to (? ) instead.

Let χ be an element of H⊗
p
, χ is a p-chain if in addition is invertible. We indicate

its coboundary by ∂χ which is defined as

∂χ = (∂+χ)(∂−χ
−1) =

( i even∏
i=0

∆iχ
)( i odd∏

i=1

∆iχ
−1
)

(B.10)

where

∆i : H⊗
n → H⊗

n+1
, ∆i = 1⊗ ...⊗∆⊗ ...⊗ 1 (B.11)

and the ∆ is in the ith position. χ is a p-cocycle if ∂χ = 1.

Definition (??) at first is quite obscure. In order to gain a better understanding of

it, we here write explicitly what 1 and 2-cocycles look like. A 1-cocycle is an invertible

element of H which satisfies

χ⊗ χ = ∆χ (B.12)

that is χ is group-like. A 2-cocycle is instead an invertible element of H ⊗H such that

(1⊗ χ)(1⊗∆)χ = (χ⊗ 1)(∆⊗ 1)χ (B.13)

this property, although not as self-explanatory as the 1-cocylce condition, will be the

main constraint for χ to give rise to a proper Hopf algebra deformation.

The definition of the cohomology groups Hp(H,H) is more involved in this case.

The coboundary map (??) involves possibly noncommutative operations so ∂2 is not

necessarily 1. It can be shown that ∂2 = 1 for 1 and 2-cochains. The 1st and 2nd Hopf

algebra cohomology group are then defined as before as Zp(H,H)/Bp(H,H), where

Zp(H,H) is the set of p-cocycles and Bp(H,H) the set of p-coboundaries. Because

of the noncommutativity of (??), the coset operation is not trivial. Specifically two

p-cocycles χ and χ′ are cohomologous if there exists a (p-1)-cochain γ:

χ′ = (∂+γ)χ(∂−γ
−1) (B.14)
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where ∂+γ and ∂−γ
−1 are defined via (??).

We are ready to state the main result of the section (cf. Th. 2.3.4. (? )). Let H

be a co-associative Hopf algebra and let χ be a 2-cocycle (??). Then there is a new

co-associative Hopf algebra Hχ, defined by the same algebra and counit and a deformed

coproduct

∆χh = χ(∆h)χ−1, ∀h ∈ H (B.15)

The new antipode, Sχ, can similarly defined in terms of χ but such definition is not

very transparent and not needed in the present discussion.

Also let χ and ψ be two 2-cocyles and Hχ and Hψ the Hopf algebras obtained by the

deformations (??) using respectively χ and ψ. Hχ and Hψ are isomorphic via an inner

automorphism if χ and ψ are cohomologous as in (??). The map γ in (??) provides the

inner automorphism. It follows that if χ is a coboundary, then Hχ is isomorphic to the

initial, underformed, Hopf algebra. Therefore if H2(H,H) is trivial, all the 2-cocycles

are 2-coboundaries and all the deformation which we can construct by conjugation are

isomorphic to the trivial one.

B.3 A Technical Result

Here we want to show a technical result which connects the cohomologies describing

deformations of Hopf algebras and their module algebras which have been introduced

in the previous two sections. Here we restrict our studies mainly to the deformations

of the algebra of smooth function on R4 and deformations of the Hopf Poincaré group

algebra, denoted as HPθ.

Given two deformations of the spacetime algebra of functions Aθ and A′θ and the

compatible deformations of the action of Poincaré group algebra HPθ and HP ′
θ, the

condition of equivalence of two algebraic deformations is (??):

∀ f1, f2 ∈ Aθ, T
[
(f1 ? f2)

]
(x) =

[
T(f1) ?′ T(f2)

]
(x) . (B.16)

where ? and ?′ are the deformed products in, respectively, Aθ and A′θ and T : Aθ → A′θ
is the invertible map which implements the equivalence.

The condition of equivalence of the two Hopf algebras characterized by the twists

Fθ and F ′θ, call them HPθ and H ′Pθ (? ), is (??)

F ′θ = ∆0(T′)FθT
′−1 ⊗ T′

−1
. (B.17)
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Here T′ maps H to H ′ according to

H 3 h→ T′hT′
−1

= h′ ∈ H ′ (B.18)

where T′ is an element of the Hopf algebra. Notice that in general T 6=T′. This discus-

sion is very relevant for what we called “weak equivalence” in the main text (cf. section

??) since the condition of “weak equivalence” only involves a further requirement: the

map T and T′ must be the same.

This condition of weak equivalence can be formulated for any two Hopf algebras

H and H ′ acting on two algebras A and A′ respectively if the following conditions are

fulfilled:

1) A and A′ as vector (topological) spaces are the same and differ only in their

multiplications maps m and m′.

2) The Hopf algebras H and H ′ as algebras are the same and act on elements of A
and A′ in the same way. They differ only in their coproducts.

3) The products m and m′ in A and A′ are given by twists F ∈ H ⊗H and F ′ ∈
H ′ ⊗H ′ and a common multiplication map m0 as follows:

m(f ⊗ g) = m0F(f ⊗ g) (B.19)

m′(f ⊗ g) = m0F ′(f ⊗ g) (B.20)

4) The algebra A0 with the multiplication map m0 is also a module for a Hopf

algebra H0. H0 differs from H and H ′ only in its coproduct. It acts on elements

of A0 just as H and H ′ act on elements of A and A′

We consider only such algebras below. They cover the case of Moyal and Wick-Voros

algebras and their corresponding Poincaré-Hopf algebras.

We are now going to show that if the two algebras A and A′ are equivalent, that

is (??) is satisfied, then the equivalence automatically lifts to the equivalence of the

corresponding Hopf algebras provided that T ∈ H. In that case T′ = T We can hence

say that what has been called “weak equivalence” is nothing but the equivalence of the

two algebras A and A′ under a map T∈ H.
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Let ∆0, ∆ and ∆′ be the coproducts for H0, H and H ′. The proof is easily obtained

by writing (??) using (??):

T
[
m0 ◦ F(f1 ⊗ f2)

]
(x) = m0 ◦ F ′

[
T⊗ T(f1 ⊗ f2)

]
(x) . (B.21)

Since the co-product compatible with the point-wise product is ∆0, we get:[
m0 ◦∆0(T)Fθ(f1 ⊗ f2)

]
(x) = m0 ◦ F ′θ

[
T⊗ T(f1 ⊗ f2)

]
(x) (B.22)

which translates exactly into the equivalence condition (??) on the twists.
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Appendix C

Geons & Mapping Class Group

C.1 What are geons

This is a short review section on the topology of low–dimensional manifolds leading

up to those which support geons (“geon manifolds”). The original literature is best

consulted for detailed information (? ? ? ? ).

Given two closed (compact and boundary–less) manifoldsM1 andM2 of dimension

d, their connected sum M1#M2 is defined as follows. Remove two balls B1 and B2

from M1 and M2, leaving two manifolds Mi\Bi with spheres Sd−1
i (Sd−1

i ∼ Sd−1) as

boundaries ∂(Mi\Bi). ThenM1#M2 is obtained by identifying these spheres. IfMi

are oriented, this identification must be done with orientation-reversal so thatM1#M2

is oriented.

identify

∼=
T 2\D2

S2\D1

T 2

∼=identify

S1\D0
1

S1\D0
2

S1
(a) (b)

T 2

∼=

martes 16 de noviembre de 2010

Figure C.1: (a) S1#S1 ∼= S1. (b) T 2#S2 ∼= T 2 ∼= S2#T 2
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T 2#T 2 = Σ2identify

A genus 2 surface

∼=

T 2\D1

T 2\D2

martes 16 de noviembre de 2010

Figure C.2: T 2#T 2 ∼= Σ2. Genus 2 surface.

Connected summing, #, is associative and commutative:

a) M1#(M2#M3) ∼= (M1#M2)#M3 so that we can write M1#M2#M3;

b) M1#M2
∼=M2#M1.

Here are some simple examples:

• d = 1. S1#S1 ∼= S1. (See Fig. ?? (a)).

• d = 2. S2#S2 ∼= S2.

• d = 2. T 2#S2 = T 2 ∼= S2#T 2. (See Fig. ?? (b)).

• d = 2. T 2#T 2 ∼= Σ2. Genus two manifold. (See Fig. ??).

As the examples here suggest, for any dimension d, M#Sd ∼= Sd#M∼=M.

These considerations can be extended to asymptotically flat manifolds. If M1 is

asymptotically flat andM2 is closed and both are oriented (and of the same dimension),

thenM1#M2 is obtained by removing balls Bi fromMi and identifying the boundaries

∂(Mi\Bi) compatibly with orientation as pointed out above. The connected sum

M1#M2 is asymptotically flat and oriented.

We will now state certain basic results in low–dimensional topology considering

only closed or asymptotically flat, and oriented manifolds M. In the asymptotically

flat case, we will insist that there is only one asymptotic region. That is, the asymptotic
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region ofM is homeomorphic to the complement of a ball Bd in Rd. In other wordsM
has one asymptotic region if all its topological complexities can be encompassed within

a sphere Sd−1 ⊂M.

The case d = 1 is trivial, there being only two such manifolds S1 and R1. (R1 has

“one” asymptotic region in the above sense even though it is not connected.)

The basic results of interest for d = 2 and 3 are as follows.

C.1.1 Closed Manifolds

In d = 2 and 3, there is a class of special closed manifolds called prime manifolds. Any

closed manifold M 6= Sd for d = 2 or 3 is a unique connected sum of prime manifolds

Pα (with the understanding that spheres are not inserted in the connected sum):

M = #αPα . (C.1)

(All manifolds have the same dimension. If M = Sd, then (??) is substituted by the

triviality Sd = Sd, hence, a better way to write (??) is M = #αPα mod Sd.)

The uniqueness of (??) implies that a prime Pα cannot be decomposed as the

connected sum of two or more primes. (It is indecomposable just like a stable elementary

particle.)

For d = 2, there is just one prime, namely the torus. In that case, T 2#T 2#...#T 2

with k terms is just a genus k surface (see Fig. ?? for k = 2).

For d = 3, there are an infinity of prime manifolds. They are not fully known.

Representative examples are the following:

a) Spherical Space Forms. Notice that S3 ∼= SU(2) by writing

SU(2) 3 g =

(
ξ1 −ξ̄2

ξ2 ξ̄1

)
, |ξ1|2 + |ξ2|2 = 1 . (C.2)

Then SO(4) = SU(2)×SU(2)
Z2

acts on S3 by

g → hgh′−1, h, h′ ∈ SU(2) . (C.3)

There are several discrete subgroups of SO(4) which act freely on S3. Such free

actions are given for example by the choices h ∈ Zp, h′ ∈ Zq where p and q are

relatively prime. The quotients of S3 by the free actions of discrete subgroups of

SO(4) are called spherical space forms. For the above example with cyclic groups

105



C. GEONS & MAPPING CLASS GROUP

Zp,q := Zp × Zq the quotients are Lens spaces Lp,q (? ). Of these L1,2 and L2,1

are RP 3.

Spherical space forms are prime and admit metrics with constant positive curva-

ture. They have been studied exhaustively from the point of view of quantum

gravity by Witt (? ).

b) Hyperbolic spaces. Consider the hyperboloid

H+ : {x = (x0, ~x) ∈ R× R3 ∼= R4 : (x0)2 − (~x)2 = 1, x0 > 0} (C.4)

in R4. The connected Lorentz group L ↑
+ acts transitively on H+. Let D ⊂ L ↑

+

be a discrete subgroup acting freely on H+. Then H+/D is a hyperbolic space.

Hyperbolic spaces are prime and admit metrics with constant negative curvature.

There are other primes as well such as S2×S1 which do not fall into either of these

classes.

C.1.2 Manifolds with one asymptotic region

These manifolds M∞ also have a unique decomposition of the form

M∞ = Rd#αPα (C.5)

where Pα are the prime manifolds we discussed previously. Manifolds with one asymp-

totic region can be obtained from closed manifolds M by removing a point (“point at

∞”).

C.2 On Diffeos

Spatial manifolds of interest for geons are M∞. They serve as Cauchy surfaces in

globally hyperbolic spacetimes. Spacetime topology is taken to be M∞ × R where R
accounts for time.

In the standard Drinfel’d twist approach, the twist Fθ belongs to CG ⊗CG , where

G represents the symmetry group which in relativistic quantum field theory is taken to

be P or its identity component P↑
+. In order to let the twist act on a geon spacetime

we should identify the substitute for P or P↑
+. To achieve that we need to recall a
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few properties of quantization of diffeomorphism-invariant theories. We will present a

summary of the main ideas here. For a self-contained treatment of the topic we refer

the reader to (? ).

It is a result of quantization on multiply connected configuration spaces (? ) that

there is an action on the Hilbert space H of π1(Q), where Q is the configuration space

of the classical system we want to quantize. This action can also be shown to commute

with the action of any observable on H. Now H can be decomposed into the direct sum

H ∼=
⊕H(l) of carrier spaces of irreducible representation of π1(Q). (More precisely

this is so only if π1(Q) is abelian. Otherwise H carries only the action of the center of

the group algebra Cπ1(Q), see for instance (? ).) Since all the observables commute

with the action of π1(Q), they take each H(l) into itself. These quantizations for

different l are generally inequivalent. In other words each H(l) provides an inequivalent

quantization of the classical system (? ). These results have been widely used from

molecular physics to quantum field theory. The θ angle of QCD it is in fact understood

in such a topological way.

In a theory of quantum gravity we consider π1(Q) as the group to twist. We turn

now into the study of what this group looks like.

In general relativity the configuration space is very different from the usual R3n,

as it is in the n-particle case. Specifically it is constructed from the set of all possible

Riemannian metrics on a given space-like Riemannian manifold M, which we will

indicate as Riem(M). We also require, in order to make sense of concepts constantly

used in physics like energy, that M is asymptotically flat. So we restrict M to what

has been called M∞ above. We indicate by Riem(M∞) the space of metrics on it.

Not all possible metrics on M∞ represent physically inequivalent “degrees of free-

dom” though. Because of diffeomorphism invariance we should consider only Riem(M∞)

upto the action of D∞, the diffeos which act trivially at infinity. We thus find for the

configuration space Q of general relativity: Q ≡ Riem(M∞)/D∞.

The next step is to compute the fundamental group of Q. We first quote the result:

π1

(
Riem(M∞)/D∞

)
= D∞/D∞0 := MCG(M∞) (C.6)

where D∞0 is the (normal) subgroup of D∞ which is connected to the identity and MCG

denotes the Mapping Class Group. This group is an important invariant of topological

spaces.
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Here is the proof of (??). It can be shown that the action of D∞ on Riem(M∞)

is free. Thus Q is the base manifold of a principal bundle Riem(M∞) with structure

group D∞. By a well-known theorem of homotopy theory (? ), the following sequence

of homotopy groups is then exact:

...→ π1

(
Riem(M∞)

)
→ π1(Q)→ π0(D∞)→ π0

(
Riem(M∞)

)
→ ... (C.7)

As the space of Riemmanian asymptotically flat metrics is topologically “trivial”, that

is πn

(
Riem(M∞)

)
≡ 1, ∀n, (??) becomes:

1→ π1(Q)→ π0(D∞)→ 1 (C.8)

from which (??) follows.

The nontrivial structure of the MCG(M∞) leads to striking results like the possi-

bility of spinorial states from pure gravity. Let us briefly discuss this interesting result.

The group D∞ contains a diffeo called the 2π-rotation diffeo R2π. It becomes a 2π rota-

tion on quantum states. It may or may not be an element of D∞0 . Now “the momentum

constraints” of general relativity imply that D∞0 acts as identity on all quantum states.

Thus it is only the group D∞/D∞0 (or more generally D/D∞0 where D may contain

elements which asymptotically act for example as rotations and translations) which can

act nontrivially on quantum states. The conclusion in the following relies on this fact.

If R2π ∈ D∞0 then it maps to the identity in D∞/D∞0 and on quantum states.

If R2π /∈ D∞0 , then it does not map to identity in D∞/D∞0 and can act nontrivially

on quantum states.

For d ≥ 3, R2
2π is always in D∞0 and hence always acts trivially on quantum states.

Thus if d ≥ 3 and R2π /∈ D∞0 , there can exist quantum geons with 2π rotation=−1
on their Hilbert space. In fact suppose that ψ ∈ H is a physical state on which R2π

does not act trivially, R̂2πψ 6= ψ. But R4π = R2
2π acts trivially on H. Then the state

ψ′ := (1−R̂2π
2 )ψ is spinorial:

R̂2πψ
′ =

1

2
(R̂2π − R̂4π)ψ = −ψ′ . (C.9)

It was a remarkable observation of Friedman and Sorkin (? ? ? ) that there exist

primes Pα such that R2π /∈ D∞0 for M = Rd#Pα. These are the “spinorial” primes.

The quantisation of the metric of such R3#Pα can lead to vector states with spin 1
2 +n

(n ∈ Z+). Thus we can have “spin 1
2 from gravity”.
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For d = 2, the situation is similar, but R2
2π or any nontrivial power of R2π, need

not be in D∞0 . That is indeed the case for R2#T 2 (? ). That means that the quantum

states for such geon manifolds can have fractional spin, can be anyons.

C.2.1 Notation.

Here we introduce some notation. We will call the diffeo groups of M∞ = Rd#Pα
which are asymptotically Poincaré, asymptotically identity and the component con-

nected to the identity of the latter as D(1), D(1)∞ and D
(1)∞
0 respectively. We will also

refer to D(1)∞/D
(1)∞
0 as the internal diffeos of the prime Pα. Similarly D(N),D(N)∞

and D
(N)∞
0 will refer to the corresponding groups in the case of N -geon manifolds

M∞ = Rd#Pα#...#Pα, where the primes are all the same. They are appropriate for

constructing vector states of several identical geons.

The MCG of an N -geon manifold can be decomposed into semi-direct products

involving three groups:

D(N)∞/D
(N)∞
0 ≡

(
S o

[
×ND(1)∞/D

(1)∞
0

] )
o SN . (C.10)

Here A o B indicates the semi-direct product of A with B where A is the normal

subgroup.

In the above we could remove the brackets as it has been shown in (? ? ) that the

above semi-direct product is associative.

The last two factors in (??) are easily understood, the second term being the N -th

direct product of the MCG of the single geon manifold M∞ = Rd#Pα and SN being

the usual permutation group of N elements that consists of elements which permute

the geons.

The first term, namely S , is called the group of “slides” and consists of diffeos

which take one prime through another along non-contractible loops. The existence of

such a term is strictly linked with the fact that the primes are not simply connected.

In fact elements of S can be described using elements of fundamental groups of the

single primes Pα. Since we are not interested in the full details of the MCG, we refer

the reader to the literature for further details (? ? ) while we now move on to the

analysis of the N = 2 case where we can also get a better understanding of what slides

represent.
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P1 P2

S12slide

miércoles 1 de diciembre de 2010

Figure C.3: Rd#P1#P2

As we said the group D(2)∞/D
(2)∞
0 of the manifold Rd#Pα#Pα appropriate for two

identical geons contains diffeos corresponding to the exchange E(2) of geons and a new

type of diffeos called slides besides the diffeos D(1)∞/D
(1)∞
0 of Rd#Pα.

If Rd#Pα#Pα is represented as in Fig. ?? with bumps representing Pα, the ex-

change diffeo E(2) can be regarded as moving the geons so that they exchange places.

This diffeo (mod D
(2)∞
0 ) is the generator of S2 in (??). For d = 3, E(2)2 ∈ D(2)∞

0 , but

for d = 2 that is not so. Thus for d = 2, we can have geons with fractional statistics (?

).

Slides S (2) arise because for Pα 6= Sd, π1(Pα) 6= {e} for d = 2 (where Pα = T 2), and

d = 3 (in view of the now-proved Poincaré conjecture). Thus let L be a non-contractable

loop threading Rd#P(1)
α , where P(j)

α are primes and let Bp be a ball containing a point

P on L in its interior. Then S
(2)
21 , the slide of P(2)

α along L through P(1)
α , is obtained

by attaching P(2)
α to ∂Bp and dragging it along L by moving p in a loop around L.

Note that the slide S
(2)
12 of P(1)

α through P(2)
α is not equal to S

(2)
21 .
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045009 (2007) [arXiv:hep-th/0608179] 32, 39, 40

[24] A. P. Balachandran and M. Martone, Twisted Quantum Fields on Moyal and Wick-Voros

Planes are Inequivalent Mod. Phys. Lett. A24:1721-1730 (2009), [arXiv:hep-th/0902.1247].

32, 35, 37, 38, 42, 43, 61

112



REFERENCES

[25] A. P. Balachandran, A. Ibort, G. Marmo and M. Martone, Inequivalence of QFT’s on

Noncommutative Spacetimes: Moyal versus Wick-Voros, Phys. Rev. D81:085017 (2010),

[arXiv:hep-th/0910.4779]. 32, 37, 61

[26] S. Galluccio, F. Lizzi and P. Vitale, Twisted noncommutative field theory with the Wick-

Voros and Moyal products, Phys. Rev. D 78, 085007 (2008), [arXiv:hep-th/0810.2095].

32

[27] A. P. Balachandran, A. Pinzul and A. R. Queiroz, Twisted Poincaré Invariance, Non-
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