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Abstract 

During my PhD course, I focused my attention on the 

conformational analysis of peptides that interact with GPCR and 

ligand-receptor interactions from NMR spectroscopy with possible 

application to cytotoxic agents binding to DNA. 

In particular, I investigated the conformational behaviour of 

peptide analogues of Urotensin, Melanocortin and Somatostatin in 

water solution and membrane mimetic environment (SDS and DPC 

micelles).  

Another research field was the NMR-based screening as potent 

technique for the identification of small molecules that interact with 

macromolecule targets. Several methods based on the ligand 

observation have been proposed in the literature, among these 

WaterLOGSY (water-ligand observed via gradient spectroscopy), and 

STD-NMR (saturation transfer difference) experiments. I applied 

these NMR techniques for the evaluation of the DNA interactions of a 

new series of thiophen-naphthoquinones with interesting cytotoxic 

activity. 
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Abbreviations 

Abbreviations used for amino acids and designation of peptides 

follow the rules of the IUPAC-IUB Commission of Biochemical 

Nomenclature in J. Biol. Chem. 1972, 247, 977-983. Amino acid 

symbols denote L-configuration unless indicated otherwise. The 

following additional abbreviations are used: 

1D, 2D and 3D, one-, two- and three-dimensional; 
ACTH, adreno-corticotropic hormone;  
AGRP, agouti-related protein;  
Boc, tert-butyloxycarbonyl;  
Bzl, benzyl;  
cAMP, Cyclic adenosine monophosphate;  
Cpa, p-chloro-phenylalanine;  
DBU, 1,8-Diazabicyclo(5.4.9)undec-7-ene;  
DCM, dichloromethane;  
DF, differential frequency;  
dh-DSA- N, dehydrodiaminosuberic acid, N-terminus;  
dh-DSA-C, dehydrodiaminosuberic acid, C-terminus;  
DIPEA, N,N-diisopropylethyl-amine;  
DMF, N,Ndimethylformamide;  
DMSO, dimethylsulfoxide;  
DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; EDT, 1,2-
ethanedithiol;  
DPC, dodecyl phosphocholine;  
DQF-COSY, double quantum filtered correlated spectroscopy;  
EL, extracellular loop;  
EM, energy minimization;  
ESI-MS, electrospray ionization-mass spectrometry;  
Fmoc, 9-fluorenylmethoxycarbonyl;  
GH, growth hormone; Hag, L-2-allyl-Gly;  
GPCR, G-protein-coupled receptor;  
HATU, exafluorophosphate salt of the O-(7-Azabenzotriazol-yl)-tetramethyl 
uranium cation (this acronym does not longer correspond to the true structure);  
HBTU, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate;  
h-MCR, human Melanocortin Receptor;  
HOBt, Nhydroxy-benzotriazole; 
hU-II, human Urotensin-II peptide;  
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h-UTR, human Urotensin II receptor;  
IL, intracellular loop;  
LC, liquid chromatography;  
MD, molecular dynamic;  
MSH, melanocyte stimulating hormones;  
MW, molecular weight;  
Nal, Naphtylalanine;  
NMM, N-methyl morpholine;  
NMR, nuclear magnetic resonance;  
NOE, nuclear Overhauser effect;  
NOESY, nuclear Overhauser enhancement spectroscopy;  
Orn, Ornitine;  
PE COSY, primitive exclusive correlated spectroscopy;  
Pen, penicillamine;  
POMC, proopiomelanocortin;  
RCM, ring closing metathesis;  
RMSD, root mean square deviation;  
ROESY, rotating-frame Overhauser effect spectroscopy;  
RP-HPLC, reverse phase-high performance liquid chromatography; SPE, Solid 
Phase Extraction;  
r-UTR, rat Urotensin II receptor;  
SAR, Structure activity relationship;  
SD, standard deviation;  
SDS, sodium dodecylsulphate;  
SPPS, solid phase peptide synthesis;  
SRIF, somatostatin; sst, somatostatin receptor;  
STD, saturation transfer difference;  
TES, triethylsilane;  
TFA, trifluoroacetic acid;  
THF, tetrahydrofuran;  
Tic, tetrahydroisoquinoline;  
TLC, thin-layer chromatography;  
TM, trans-membrane domain;  
TOCSY, total correlated spectroscopy;  
TSP, 3-(trimethylsilanyl)propionic acid;  
U-II, Urotensin-II peptide;  
WaterLOGSY, water-ligand observed via gradient spectroscopy. 
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1.1 New Insight into the Binding Mode of Peptide Ligands at 

Urotensin-II Receptor: Structure-Activity Relationships 

Study on P5U and Urantide 

 

Urotensin II (U-II) is a disulfide bridged peptide-hormone 

identified as the ligand of a G protein-coupled receptor. Human U-II 

(H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) has been 

described as the most potent vasoconstrictor compound identified to 

date. 

We have recently identified both a superagonist of hU-II termed P5U 

(H-Asp-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH) and the compound 

termed Urantide (H-Asp-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH), 

which is the most potent UT receptor peptide antagonist described to 

date.  

In the present study, we have synthesized several analogues of P5U 

and Urantide in which the Asp4 residue in N-terminus position was 

replaced with coded and non-coded amino acids. The replacement of 

the Asp4 residue by Tic led to an analogue, compound 14, more potent 

as antagonist (pKB = 8.94) compared to Urantide. Furthermore, a 

different SAR was observed for the P5U compared to the Urantide 

analogues. NMR and docking studies revealed a different binding 
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mode for the agonist and antagonist ligands which could explain the 

observed SAR. 
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1.1.1. Introduction 

Urotensin-II (U-II) is a cyclic peptide originally isolated from 

goby fish urophysis.[1] Subsequently, it has been found that U-II is 

also present in tetrapods and that its gene is expressed in the CNS.[2] 

The U-II precursor has now been cloned in various vertebrate species 

including frog, rat and mouse, pig, monkey, and human.[3-6] U-II was 

identified as the natural ligand of an orphan G-protein-coupled 

receptor [7] now referred to as UT receptor. 

Recently, an analogue of  U-II, called urotensin-related peptide 

(URP), has been identified in mammals.[8] In all U-II and URP 

isoforms known so far, the sequence of the cyclic C-terminal 

hexapeptide has been fully conserved across species.[9] The U-II and 

URP genes are primarily expressed in motoneurons located in discrete 

brainstem nuclei and in the ventral horn of the spinal cord.[10-13] U-

II and URP mRNAs have also been detected, although at a much 

lower level, in various peripheral tissues including the pituitary, heart, 

spleen, thymus, pancreas, kidney, small intestine, adrenal, and 

prostate.[3, 8, 14]  

The U-II/UT receptor system seems to play an important role in 

cardiovascular functions; in fact, hU-II has been shown to be 1-2 

orders of magnitude more potent than endothelin-1 in producing 

vasoconstriction in mammals and thus is one of the most effective 
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vasoconstrictor compounds identified to date.[7, 15, 16] On the basis 

of its spectrum of activities, hU-II has been postulated to contribute as 

modulator to cardiovascular homeostasis and possibly to be involved 

in certain cardiovascular pathologies.[15, 17] It has been recently 

demonstrated that U-II is involved in inhibition of insulin release  [18] 

in the perfused rat pancreas and may play an important role in 

pulmonary hypertension.[19] Central nervous effects of U-II have also 

been described.[20] Hence, the hU-II ligands could be of therapeutic 

value in a number of pathological disorders. It has been demonstrated 

that the C-terminal octapeptide of U-II retains full biological activity 

and binding properties.[21-26] 

The (patho)physiological role(s) of the U-II/UT receptor system 

and, most importantly, the potential interest of UT receptor ligands as 

drug candidates prompted the development of low molecular weight 

compounds as non peptide UT receptor agonists and antagonists 

(Figure 1).[27] 
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Figure 1. Some representative structures of non-peptide UTR agonists (a), and 
antagonists (b). 

 

Our research group has been involved for a long time in the 

development of UTR peptide ligands. The optimization of a peptide as 

a lead structure is important to improve its pharmacokinetic 

properties, and in identifying the pharmacophore elements, that is, to 

determine the key amino acid residues that are involved in the 
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biological activity.[28] Interestingly, some common features are 

observable (two aryl moieties and a protonable nitrogen atom) in 

organic and peptide UTR ligands.[29] Hence, the structural 

information obtained by the peptide investigation might be useful for 

the design of both small-molecules and peptide ligands.  

In previous studies, we have identified both a superagonist 

named P5U (H-Asp-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH) [30] and 

an antagonist, Urantide (H-Asp-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-

OH) [31] of hU-II. The latter is the most potent peptide antagonist at 

UT receptor described to date. Actually, Urantide behaves as a pure 

antagonist in the rat aorta bioassay,[31] and as a full agonist in a 

calcium mobilization assay performed in CHO cells expressing the h-

UTR.[32] This point has been widely discussed elsewhere.[33] For 

sake of simplicity, we will refer to Urantide as an antagonist 

throughout the manuscript. 

Recently, we performed extensive NMR and computational 

studies on both P5U and Urantide that allowed us to formulate a 

hypothesis about the structural changes that determine the switching 

from agonist to antagonist activity.[33, 34] 

To aim to identify new leads for the development of both agonists and 

antagonists at UT receptor, we have studied the structure-activity 

relationships of a series of novel P5U and Urantide analogues based 
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on the chemical substitution of the Asp4 residue, with several other 

amino acid residues with different physicochemical properties (Figure 

2 and Figure S1). The most interesting analogues were then analysed 

by NMR and their structures fitted within h-UTR models to gain 

insight into the agonist and antagonist binding modes. 
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1.1.2 Results 

Chemistry. Peptides were synthesized according to the solid 

phase approach using standard Fmoc methodology in a manual 

reaction vessel (Experimental Section). [35] 

The purification was achieved using a semi-preparative RP-HPLC C-

18 bonded silica column (Vydac 218TP1010). The purified peptide 

was 98% pure as determined by analytical RP-HPLC. The correct 

molecular weight of the peptide was confirmed by mass spectrometry 

and amino acid analysis (Supporting Information). 

 

 

Figure 2. New synthesized compounds 

  

Biological Data. Receptor affinity at h-UTR and biological 

activity (rat aorta bioassay) of the synthesized compounds are reported 



Chapter 1 

- 13 -	
 

in Table 1. Substitution of the native Asp4 residue in P5U by an Ala 

residue (compound 1), which generated an URP analogue, slightly 

reduced the contractile potency of the peptide (pEC50=8.04). Similar 

modification in Urantide sequence produced compound 2 with 

antagonist activity but slightly less potent than Urantide (pKB 7.84). 

Subsequently, to evaluate the role of an aromatic residue in position 4 

we replaced Asp4 with a Phe residue in both sequence of P5U and 

Urantide. Compound 3 showed to be a superagonist as  P5U 

(pEC50=9.18) while the same substitution in Urantide sequence 

generated compound 4 with a reduced binding affinity but with an 

increased antagonist activity (pKi 7.71 and pKB 8.68). Then, the Asp4 

residue was replaced with some uncoded aromatic amino acids 

(Figure 2). Compound 5, in which Asp4 was replaced with a Cpa 

residue resulted to be less potent as agonist compared to P5U (pEC50  

8.86). Similar trend was observed in compound 6 with a reduced 

antagonist potency (pKB 7.85). Analogue 7, containing in position 4 a 

Nal(1) residue, showed a sensible reduction both in binding (pKi  

7.58) and functional activity (pEC50 6.99), while the same substitution 

in Urantide sequence (compound 8) resulted in a conserved antagonist 

activity (pKB 8.50). Interestingly, Nal(2) derivative of P5U 

(compound 9) regained high agonist activity (pEC50 8.28). On the 
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other hand, compound 10 resulted to be slightly less potent compared 

to compound 8 and Urantide (pKB 7.89). 

 

Table 1. Receptor Affinity and Biological Activity of P5U and 
Urantide Analogues of General Formula: 

R-c[Pena-Phe-Xaa-Yaa-Tyr-Cys]-Val-OH 

Peptide Xaa Yaa R pKi 
b pEC50 

c pKB
d 

hU-II Trp Lys * 9.10 ±0.08 8.30 ±0.06 - 

hU-II(4-
11) 

Trp Lys Asp 9.60±0.07 8.60 ± 0.04 - 

P5U Trp Lys Asp 9.70±0.07 9.60 ± 0.07 - 

Urantide DTrp Orn Asp 8.30 ± 0.04 Inactive 8.30 

1 Trp Lys Ala 9.10±0.08 8.04±002 - 

2 DTrp Orn Ala 8.78±0.08 - 7.84 

3 Trp Lys Phe 9.55±0.05 9.18±0.17 - 

4 DTrp Orn Phe 7.71±0.10 - 8.68 

5 Trp Lys Cpa 9.05±0.04 8.86±0.05 - 

6 DTrp Orn Cpa 8.02±0.06 - 7.85 

7 Trp Lys Nal(1) 7.58±0.06 6.99±0.13 - 

8 DTrp Orn Nal(1) 8.41±0.01 - 8.50 

9 Trp Lys Nal(2) 8.19±0.10 8.28±0.10 - 

10 DTrp Orn Nal(2) 7.93±0.01 - 7.89 

11 Trp Lys (pNO2)Phe 7.87±0.08 7.14±0.09 - 

12 DTrp Orn (pNO2)Phe 7.80±0.10 - 7.90 

13 Trp Lys Tic 8.58±0.03 8.87±0.18 - 

14 DTrp Orn Tic 8.03±0.07 - 8.94 

15 Trp Lys Lys 8.03±0.11 8.22±0.24 - 

16 DTrp Orn Lys 6.66±0.01 - 7.49 
a Cys in hU-II and hU-II(4-11). b pKi: -log Ki   c pEC50: -log EC50. 

d pKB (-log KB) 
values are from experiments in the rat thoracic aorta.  Each value in the table is 
mean ± s.e.m. of at least 4 determinations.  * H-Glu-Thr-Pro-Asp- 
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Replacing the Asp4 residue with the amino acid pNO2Phe in both 

parent peptides, led to compounds  with reduction in activity. In fact, 

compound 11 resulted to have a reduced binding affinity at UT 

receptor (pKi 7.87) and a more considerable reduction in functional 

activity (pEC50 7.14). Compound 12, resulted to be slightly less potent 

respect to Urantide showing a pKB of 7.90. Analogue 13, in which 

Asp4 residue was replaced with a Tic residue, showed a slightly 

reduced activity (pEC50 8.87). Surprisingly, the same substitution in 

Urantide sequence produced analogue 14 with increased antagonist 

potency showing a pKB value of  8.94. This compound represents a 

new potent antagonist discovered by this study. Finally, the 

replacement of Asp4 with a Lys residue in P5U (analogue 15) resulted 

in a reduced activity (pEC50 8.22). Worthy of note, the same 

modification in Urantide sequence produced an analogue (compound 

16) showing a dramatic reduction in binding affinity and antagonist 

activity (pKi  6.66 and pKB  7.49), being by far the weakest ligand 

among the synthesized compounds. 

NMR Analysis. A whole set of 1D and 2D NMR spectra in 200 

mM aqueous solution of SDS were collected for compounds 14, and 

16. These peptides were chosen since 14 is the most potent antagonist 

of the series while 16 has very low binding affinity and antagonist 

potency (Table 1). Micelle solution was employed since we have 
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recently reported the NMR structure of UT agonists (among which 

P5U) [34] and antagonist (among which Urantide) [33] in this 

medium. Complete 1H NMR chemical shift assignments were 

effectively achieved for the two peptides according to the Wüthrich 

procedure[36] via the usual systematic application of DQF-COSY,[37, 

38] TOCSY,[39] and NOESY [40] experiments with the support of 

the XEASY software package (Supporting Information).[41] Peptides 

14 and 16 differs from Urantide only for the N-terminal residue 

substitution and show diagnostic NMR parameters (H proton 

chemical shifts, NOE contacts, 3JNH-H and 3JH coupling constants, 

NH exchange rates and temperature coefficients) all similar to those 

observed in the parent peptide (Supporting Information). In particular, 

NOE contacts between H-NHi+2 of D-Trp7 and Tyr9 and between NH-

NHi+1 of Orn8 and Tyr9 indicated the presence of a -turn. This result 

was supported by the observation of slowly exchanging NH resonance 

of residue 9, and low value of the temperature coefficient for this 

proton (-T < 3.0 ppb/K). A short stretch of antiparallel -sheet 

involving residues 5-6 and 10-11 is inferred from a number of long-

range NOEs including H-NH connectivities between residues 5, 11 

and 10, 6 and a NH-NH connectivity between residues 6 and 9. All the 
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data indicated the preservation, in 14 and 16, of the -hairpin 

structure. 

 

 

Figure 3. Superposition of the 10 lowest energy conformers of 14 (a), 16 (b). 
Structures were superimposed using the backbone heavy atoms of residues 5-10. 
Heavy atoms are shown with different colours (carbon, green; nitrogen, blue; 
oxygen, red; sulfur, yellow). Hydrogen atoms are not shown for clarity. 

 

NMR-derived constraints obtained for the analyzed peptides 

(Supporting Information) were used as the input data for a simulated 

annealing structure calculation. For each peptide, 20 calculated 

structures satisfying the NMR-derived constraints (violations smaller 

than 0.40 Å) were chosen (Figure 3 a-b). As shown, both the peptides 

14, and 16 show a well defined type II’ -hairpin structure 

encompassing residue 5-10 (backbone rmsd values are 0.41 and 0.37 

Å, respectively). In contrast, the N- and C-terminal residues were 
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highly flexible. Considering the side chains orientation, Phe6, Orn8, 

and Tyr9 side chains showed a large preference for trans, g-, and g- 

rotamers, respectively, while D-Trp7 side chain is found both in trans 

and g+ conformation.  

Docking Studies of Urantide and its Analogues. The theoretical 

structure of the h-UT receptor (Figure 4) was generated by homology 

modeling based on the crystal structure of bovine rhodopsin (PDB 

code 1F88),[42] as described previously.[43] The resulting structure 

represents an inactive form of the h-UT receptor (h-UTRi) with an 

overall conformation very similar to that of bovine rhodopsin (1.22 Å 

rmsd between the backbone atoms of the transmembrane domains).  

 

Figure 4. Serpentine model of the h-UTR sequence. The black lines represent the 
boundaries of the membrane. Filled circles indicate the residues highly conserved 
among the GPCRs superfamily. The TM helices are denoted by roman numerals. 
The arabic numbers indicate the position of the residues inside the TM domain. 
The glycosilation sites on the N-terminal region are also shown. 
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Since the currently available docking programs may not work 

very well for peptide compounds, manual docking was conducted for 

Urantide. The NMR-derived Urantide structure [33] was placed in 

between the trans-membrane domains of the h-UTRi, employing the 

following criteria to achieve meaningful docking modes: (i) The 

positively charged amino group of Orn8 had to be close to and 

pointing in the direction of the carboxylate group of Asp130, which is 

conserved in many GPCRs and positioned in the TM-III region; (ii) 

N-terminal residues should point towards extracellular loops as 

experimentally determined [44]; (iii) No steric clashes should occur 

between any atom. To assess the stability of the Urantide/h-UTRi 

complex and to analyze the potential ligand/receptor interactions, 

energy minimization and MD simulations of 2 ns at a constant 

temperature of 300 K were run. During the MD simulation, the ligand, 

the EL’s, and all the receptor side chains were allowed to relax, while 

the TM’s and IL’s backbone atoms were held frozen. The distances 

between the peptide and the key receptor residues were monitored 

along the complete 2 ns MD trajectory (Supporting Information). 

To inspect the variations in the ligand conformation, rmsd with 

respect to the starting structure was calculated. Interestingly, the rmsd 

of Urantide backbone atoms turned out to be remarkably stable 
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throughout all the MD simulations (0 < rmsd < 0.6), indicating that 

the peptide settles into the receptor-binding site in a stable -hairpin 

conformation. Also the side chain orientations are those described by 

NMR. Interestingly, D-Trp7 prefers a trans orientation about 1 angle 

(1 ≈ 180°, 2 ≈ -70°). As shown in Figure 5a, the hypothetical 

binding site of Urantide is located among TM-III÷TM-VII, and EL-II. 

The -hairpin is oriented along the receptor helical axis, with the N- 

and C-terminal residues pointing towards the extracellular side. The 

binding mode of the peptide is determined mainly by the interactions 

showed in Figure 5b and Table 2. 

 

Table 2. Urantide/h-UTRi Interactions 

Residue* Surrounding residue 
Asp4 Ala187 (EL-II), Met188 (EL-II), Cys199 (EL-II), Arg206 

(EL-II), Ala207 (EL-II) 
Pen5 Gln278 (TM-VI), Pro287 (EL-III) 
Phe6 Cys123 (EL-I), Val184 (TM-IV), Met188 (EL-II)  
D-Trp7 Phe131 (TM-III), Met134 (TM-III), His135 (TM-III), 

Leu212 (TM-V), Leu215 (TM-V), Phe216 (TM-V), Ile220 
(TM-V), Trp275 (TM-VI), Gln278 (TM-VI) 

Orn8 Asp130 (TM-III), Thr301 (TM-VII), Thr304 (TM-VII) 
Tyr9 Phe127 (TM-III), Phe274 (TM-VI), Asn297 (TM-VII), 

Thr301 (TM-VII) 
Cys10 Cys199 (EL-II), Pro287 ((EL-III) 
Val11 Cys123 (EL-I), Arg189 (EL-II), Cys199 (EL-II), Leu288 

(EL-III). 
* For sake of clarity, the residue numbers of the ligands are reported as apex while 
those of the receptor are not.  
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In particular, (i) a tight charge-reinforced hydrogen-bonding 

network involving the carboxylate group of Asp130 and the 

protonated -amino group of Orn8 of Urantide is established. Such an 

interaction, which we assume to be an anchoring point of the ligand to 

h-UTR, remained stable during the whole production run (Supporting 

Information, Figure S2). (ii) Three hydrophobic pockets, delimited by 

residues listed in Table 2, host the aromatic side chains of Phe6, D-

Trp7, and Tyr9 of Urantide. Particularly, the indole system of D-Trp7 

appears to be optimally oriented for a -stacking interaction with the 

aromatic indole system of Trp275. Furthermore, the phenolic OH of 

Tyr9 is at hydrogen-bonding distance with the side chain CO of 

Asn297, and OH of Thr301. (iii) Asp4 in Urantide is involved in a 

hydrogen-bonding network. Particularly, the oxygen atoms of the 

carboxylate form two charge-reinforced hydrogen bonds with Arg206 

guanidinium group. In addition, the protonated N-terminal group of 

Asp4 engages additional hydrogen bonds with the backbone CO of 

Ala187, Cys199 and Met188. (iv) Finally, the negatively charged C-

terminal group establishes two hydrogen bonds with backbone HN of 

Cys123 and Cys 199, and a salt bridge with the protonated 

guanidinium moiety of Arg189 (EL-II). All the aforementioned 

interactions resulted to be quite stable during the whole MD 

production run (see Figure S2-S11 for details). The mean structure of 
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the last 1 ns of MD was extensively minimized and used for 

subsequent analysis. 

Since the NMR results indicate that the 3D structure of the Urantide 

analogues 14 and 16 did not change after the replacement of the N-

terminal residue, we used the energy-minimized structure 

of the Urantide/h-UTRi complex as starting point for the docking 

procedure of these derivatives. After replacing Asp4 of Urantide with 

Tic4  to give compound 14 and with Lys4 to give 16, the complexes 

were minimized and then subjected to a 200 ps MD simulation. The 

mean structures of the last 100 ps of the MD trajectory were then 

minimized and used for subsequent analysis. 
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Figure 5. (a) Stereoview of h-UTRi model complexed with Urantide. Urantide 
heavy atoms are colour coded as in Figure 2. Receptor backbones are represented 
in azure and labeled. (b) Stereoview of Urantide within the binding pocket of h-
UTRi. Hydrogen bonds are represented with dashed lines. 

 

While the same interactions with h-UTRi were recorded for the 

unchanged residues, in the 14/UTRi complex, Tic4 interacts with 

Val184 (TM-IV), Ala187 (EL-II), Leu200 (EL-II), Pro201 (EL-II), 

and Tyr211 (TM-V); while in the 16/UTR complex Lys4 residue takes 
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contact with Leu200 (EL-II), and Tyr211 (TM-V). In Table 3 

ligand/receptor Gbind values are reported as calculated employing the 

AutoDock4 program native scoring function.[45-47] Interestingly, 

there is a clear, although qualitative, correlation between the predicted 

Gbind values and the experimental binding constants (Table 1).  

Docking of P5U and its Analogues. The three-dimensional 

model of the h-UTR, in the active state (h-UTRa), was constructed 

from the model structure of the bovine rhodopsin, proposed by 

Mosberg,[48] and was generated by homology modeling following the 

same steps described for the inactive model.[43]  

 

Table 3. Binding free energies (ΔGAD4) calculated for the energy 
minimized averaged complexes deriving from the MD simulations. 

Receptor Ligand Gbind
a Electrb H-Bondb VdWb Desolvb Torsb 

h-UTRi
c Urantide -24.33 -4.99 -5.90 -26.50 7.09 5.97 

h-UTRi 14 -23.01 -3.21 -3.83 -26.98 5.94 5.07 
h-UTRi 16 -21.10 -3.31 -5.77 -25.16 6.28 6.86 
h-UTRa P5U -24.53 -4.99 -6.11 -25.89 6.69 5.76 
h-UTRa 13 -23.53 -3.35 -4.19 -27.40 6.03 5.37 
h-UTRa 15 -23.01 -4.11 -6.77 -25.40 6.31 6.96 
h-UTRa Urantide -20.65 -5.92 -6.42 -21.39 7.11 5.97 
h-UTRi P5U -18.68 -3.60 -3.47 -24.67 6.80 6.26 
aGbind: free energy of binding. bEnergy terms contributing to the AutoDock4 
scoring function. Electr: electrostatic; H-Bond: H-Bonding; VdW: Van der Waals; 
Desolv: desolvation; Tors: torsional entropy. All terms are given in kcal/mol. ch-
UTRi: receptor in the inactive state. h-UTRa: receptor in the active state.  
 

A comparison of models for the active and inactive states of h-

UTR reveals the structural changes that accompany activation. 
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Overall, the rmsd between these models is 2.3 Å calculated for the 

backbone atoms of all the TM’s, but decreases to 1.7 Å after 

excluding TM-VI, which experiences a rearrangements upon receptor 

activation. Indeed, TM-VI shifts outward and rotates 

counterclockwise (viewed from the extracellular side) during 

activation, moving its intracellular end away from TM-III and toward 

TM-V. As a result of this and other changes, the receptor structure 

tightens near its extracellular surface but opens up at the cytoplasmic 

side, providing a cavity for binding of the Gs subunit.  

The NMR-derived P5U structure [34] was placed in between the 

trans-membrane domains of the h-UTRa model, following the same 

criteria used for Urantide (see above) to achieve meaningful binding 

poses. Energy minimization and MD simulations (2 ns) were run to 

assess the stability of the P5U/h-UTRa complex and to analyze the 

potential ligand/receptor interactions.  

To inspect the variations in the ligand conformation, rmsd with 

respect to the starting structure was calculated. Interestingly, the rmsd 

of P5U backbone atoms turned out to be really stable throughout all 

the MD simulations (0 < rmsd < 0.5), indicating that the peptide 

settles into the receptor-binding site in a stable -hairpin 

conformation. Also the side chain orientations are those described by 

NMR.[34] 
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As shown in Figure 6a, the hypothetical binding site of P5U is 

located among TM-III÷TM-VII, EL-II and EL-III. The -hairpin is 

oriented along the receptor helical axis, with the N- and C-terminal 

residues pointing towards the extracellular side. The binding mode of 

P5U is determined mainly by the interactions showed in Figure 6b and 

Table 4. 

 

Table 4. P5U/h-UTRa Interactions 
Residue Surrounding residue 
Asp4 Pro201 (EL-II), Gln285 (EL-III) 
Pen5 His208 (EL-II), Trp277 (TM-VI), Ala281 (TM-VI), Ala286 

(EL-III) 
Phe6 Val184 (TM-IV), Met188 (EL-II), Leu212 (TM-V)  
Trp7 Phe131 (TM-III), Met134 (TM-III), Phe274 (TM-VI), 

Trp275 (TM-VI), Gln278 (TM-VI) 
Lys8 Asp130 (TM-III), Tyr305 (TM-VII) 
Tyr9 Trp116(TM-II), Cys123 (EL-I), Leu126 (TM-III), Phe127 

(TM-III), Cys199 (EL-II) 
Cys10 Trp277 (TM-VI) 
Val11 Arg189 (EL-II), Cys199 (EL-II) 
 

 

As for Urantide, a stable (Figure S12) charge-reinforced 

hydrogen-bonding network involved the carboxylate group of Asp130 

and the protonated -amino group of  Lys8 of P5U is observed. Three 

hydrophobic pockets, delimited by residues listed in Table 4, host the 

aromatic side chains of Phe6, Trp7, and Tyr9. These hydrophobic 

pockets only partially overlap with those of Urantide. For instance, 

Tyr9 OH group is not engaged in any hydrogen bond. Again, the 
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negatively charged C-terminal group of Val11 establishes a hydrogen 

bond with Cys199 backbone NH, and a salt bridge with the protonated 

guanidinium moiety of Arg189. 

Differently from Urantide, Asp4 in P5U is involved in a 

hydrogen-bond with the Gln285 (EL-III) NH2 group. This H-bond is 

not stable during the MD trajectory (Figure S13). The mean structure 

of the last 1 ns of MD was extensively minimized and used for 

subsequent analysis.  

Replacing the Asp4 residue of P5U with Tic or Lys residue 

(obtaining the derivatives 13 and 15, respectively) in the P5U/h-UTR 

model complex, and following the same optimization steps used for 

the complexes of Urantide analogues (see above), we obtained the two 

models: 13/h-UTRa and 15/h-UTRa, showing similar binding energy 

(Table 3) in accordance with the experimental binding data (Table 1). 

Switching the ligands. To assess the predictive value of the 

receptor models the ligands were switched, i.e. urantide was docked 

within h-UTRa and P5U within h-UTRi model (Figure S14). For the 

docking of urantide, we started from the optimized P5U/UTRa 

complex and superposed the NMR derived urantide structure with that 

of P5U (backbone atoms of residues 5-10). Then, we removed the 

P5U structure and optimized the urantide/UTRa complex. Analogous 
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steps were taken for the P5U/UTRi complex. In Table 3, the binding 

energies of the two complexes are reported. 

 

Figure 6. (a) Stereoview of h-UTRa model complexed with P5U. P5U heavy 
atoms are colour coded as in Figure 2. Receptor backbones are represented in 
azure and labeled. (b) Stereoview of P5U within the binding pocket of h-UTRa. 
Hydrogen bonds are represented with dashed lines. 
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1.1.3. Discussion 

Previous studies have demonstrated that the C-terminal 

octapeptide of hU-II [U-II(4-11), Table 1] mimicked the effects of U-

II on intracellular calcium concentration in UTR-transfected cells and 

contraction of rat aortic rings.[22, 24, 25] Recently, Coy et coll. have 

examined the role of the N-terminal Asp residue in UII(4–11) since 

this acidic amino acid embodies one of the main structural differences 

between the UII(4–11) and somatostatin octapeptides  which results in 

little somatostatin affinity for the UT receptor.[26] They found that 

the N-terminal amino acid does not require a negatively charged side 

chain, merely one which has a hydrogen bond acceptor CO group. The 

side chain can be constrained into a trans-olefinic configuration and 

can also contain an aromatic ring substituted with polar groups such as 

OH and NO2. Afterwards, Salvadori et coll. examined the same 

position of hU-II(4-11) using a number of aromatic residues.[49] They 

found that all of the new analogues behaved as full agonists, and that 

aromaticity is well tolerated; size, length and chirality of the side 

chain are not important, while substituents with a nitrogen atom are 

preferred. On bases of these considerations and to further investigate 

the contribution of the N-terminal Asp residue in the biological 

activity, we synthesized 16 analogues of P5U and Urantide substituted 

at this position with amino acids bearing different physicochemical 
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properties (Table 1). In particular, Urantide was used as lead 

compound to investigate the N-terminal position in analogues with 

potential antagonist activity. All synthesized compounds were tested 

for their binding affinity on h-UTR-transfected CHO cells and for 

their contractile activity on de-endothelialized rat aortic rings (Table 

1).[31] 

Overall, the biological data indicate that in the “agonist series” 

(i.e. derived from P5U) the N-terminal substitutions of Asp4 with 

uncharged, aromatic or positively charged residues are generally well 

tolerated. The consistent reduction in binding and activity is probably 

due to the lost of a hydrogen bond acceptor/donor group, in 

accordance with previous results.[26, 49] Concerning the “antagonist 

series” (i.e. derived from Urantide), while a positively charged amino 

acid (Lys) strongly reduces the binding and the activity (compound 

16), an aromatic residue is well tolerated and can increase the potency. 

In particular, compound 14, in which a Tic residue replaces the Asp4 

of Urantide, showed the highest antagonist potency in the functional 

rat aorta bioassay (pKB 8.94). Since the binding constant of 14 to h-

UTR is slightly reduced compared to Urantide, the enhanced 

functional potency should derive from improved tissue penetration of 

the more hydrophobic Tic amino acid in 14 replacing an Asp residue 

in Urantide. Species differences between h-UTR and r-UTR could 
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also be invoked. To check the last hypothesis, the sequences of h-UTR 

and r-UTR were compared (Figure S15). Since only minimal residue 

differences were observed near the bound ligand and, in particular, 

near to the Tic residue (EL2 is unchanged in the two receptors), the 

hypothesis was rejected.  

To determine whether the different biological activities of 

Urantide analogues were driven by different conformational properties 

of the peptides or by the different chemical functionalities at the N-

terminus, we performed an NMR study on the interesting analogues 

14 and 16 in SDS micelles solution. The use of SDS micelles to study 

the conformational properties of hU-II analogues is motivated on the 

basis of their interaction with a membrane receptor. For peptides 

acting as ligands of membrane receptors (such as GPCR), the use of 

membrane mimetic media, such as SDS or DPC, is suggested 

hypothesizing a membrane-assisted mechanism of interactions 

between the peptides and their receptors.[50] According to this model, 

the membrane surface plays a key role in facilitating the transition of 

the peptide from a random coil conformation adopted in the 

extracellular environment to a conformation that is recognized by the 

receptor. The increase of the local concentration of the peptide and the 

reduction of the rotational and translational freedom of the 

neuropeptide are membrane-mediated events acting as determinant 
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steps for the conformational transition of the peptide.[51, 52] NMR 

has proven useful to examine the structures of bioactive peptides that 

cross membrane barriers.[53-55] Actually, we succeeded in 

correlating the SDS-bound conformation of hU-II analogues with their 

biological activity.[33, 34] 

We showed that hU-II analogues, which retain high affinity for 

UT receptor, all possess a type II’ -hairpin backbone conformation 

regardless their agonist or antagonist activity, indicating that such 

backbone conformation is necessary for the UT recognition.[33, 34] 

The main conformational difference observed in the structures of the 

antagonists and the agonists was established in a different orientation 

of the (D/L)-Trp7 side chain. In particular, while in the agonists the 

(D/L)-Trp7 indole moiety is close to the Lys8 side chain, in the 

antagonists (D/L)-Trp7 side chain is more flexible and further from the 

ornitine side chain. The structural features of the “antagonist series” 

were found also for the analogues 14, and 16 (Figure 3) indicating that 

the different affinity-activity of the two compounds do not depend on 

a different spatial disposition of the “pharmacophoric” residues (i.e. 

(D/L)-Trp7, Lys/Orn8, Tyr9) [22, 23] but must depend on different 

interaction of the N-terminal residue with the receptor.  



Chapter 1 

- 33 -	
 

 
Figure 7. Stereoview of h-UTR models in the inactive (azure) and active (sienna) 
conformations complexed with Urantide (red) and P5U (gold), respectively. The 
h-UTR models are superimposed using the backbone heavy atoms of TM residues 
apart from TM-VI. Asp4 residue is evidenced by an arrow. 

 

To gain insight into this interaction mode we first undertook a 

docking study between the parent Urantide and h-UT receptor model. 

It is worth noting that, while docking studies regarding peptide agonist 

have been performed,[23, 43, 44, 56] the docking of peptide 

antagonist at UT receptor is unprecedented. Since the crystal structure 

of a GPCR in the active conformation is not yet disposable, we used 

the “active state” rhodopsin model developed by Mosberg et al. as 

template to build an h-UTRa model.[48] Hence, the rhodopsin receptor 

template was also chosen for the inactive state model (h-UTRi) to 

allow a direct comparison of the two models. The structures of other 
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mammalian GPCR’s in inactive state have been solved.[57-59] 

Interestingly, our h-UTRi model and the 2-adrenergic receptor 

(2AR, PDB code 2RH1) are quite similar around the urantide binding 

site showing an rmsd of the backbone heavy atoms of 1.5 Å (helices 

II÷VII, Figure S16).  

Urantide/h-UTRi complex (Figure 5) and the MD simulations 

indicated that: (i) the -hairpin structure adequately fits the binding 

site and is stable during the MD trajectory; (ii) the binding site, 

situated in the entrance of the TM bundle on the extracellular side, is 

formed by TM-III÷TM-VII, and EL-II; (iii) particularly important for 

the present study, the N-terminal Asp4 residue interacts with EL-II, 

mostly by stable electrostatic interactions with the Arg206. 

Replacement of Asp4 with a Lys residue (analogue 16), in the model 

complex, increase the binding energy (Table 3) since the favorable 

interactions are lost and, in contrast, electrostatic repulsions between 

N of Lys4 and the guanidinium group of five arginine and the N of 

one lysine residues located on the EL-II can occur. In contrast, the loss 

of favorable electrostatic interaction, upon the replacement of the Asp4 

of Urantide with a Tic residue (analogue 14), is partially compensated 

by van der Waals interactions of the phenyl ring of Tic and by a 

reduced desolvation energy.  
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Docking study between P5U and h-UTRa was also performed. 

The obtained complex (Figure 6) and the MD simulations indicated 

that: (i) the -hairpin structure adequately fits the binding site and is 

stable during the MD trajectory; (ii) the binding site, situated in the 

entrance of the TM bundle on the extracellular side, is formed by TM-

III÷TM-VII, EL-II; and EL-III; (iii) the N-terminal Asp4 residue lies 

between EL-II and EL-III. We found similarities, but also some 

differences, with previous reports describing the docking of peptide 

agonists (hU-II, and P5U) into an UTR model.[23, 43, 44, 56] In 

regards to our previous work,[43] the different docking results 

obtained for the P5U/h-UTR complex is ascribable to the different 

conformation of both the receptor and the ligand. In fact, in the 

present study the h-UTR structure is based on an active model of 

rhodopsin,[48] while in the previous work the receptor was 

constructed starting from the X-ray inactivated form of rhodopsin.[42] 

Moreover, herein the presented P5U 3D structure is obtained from a 

NMR study in SDS micelle solution,[34] while the one used in 2005 

was derived from a NMR study in DMSO solution.[30]  

To assess the predictive value of the models the ligands were 

switched, i.e. urantide was docked within h-UTRa model and P5U 

within h-UTRi (Figure S14). Both urantide/UTRa and P5U/UTRi 

complexes show negative binding energies (Table 3), but these are 
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significantly lower (absolute value) than the ones of urantide/UTRi 

and P5U/UTRa complexes, respectively. These results are not 

surprising. In fact, urantide still retains agonist activity being a full 

agonist in a calcium mobilization assay.[32] Interestingly, D-Trp7 

aromatic moiety of urantide within UTRa binding site is close to the 

Orn8 side chain in a conformation which characterizes the agonist 

peptide ligands (Figure S14).[33] As concern P5U/UTRi complex, the 

negative value of the binding energy can be explained admitting that, 

in a first step, even the agonists bind the receptor in its inactive 

(ground) state. Then, the system moves to a minimum of free energy 

which is reached with the receptor activation. 

Urantide/h-UTRi and P5U/h-UTRa interactions found in our 

models (Table 2, Table 4 and Figure 7) are different. In particular, 

Urantide plunges more deeply into the TM’s bundle compared to P5U, 

probably due to the ornitine side chain length reduction, and to the D-

Trp7 higher flexibility. As a consequence, the exocyclic carboxylate 

group of Asp4 of P5U, lying at the interface between EL-II and EL-III, 

is more external compared to the corresponding residue in Urantide, 

and establishes only non-stable hydrogen bond with the receptor. In 

accordance with SAR data obtained by us and others,[26, 49] the 

presence of both aromatic (13) or positively charged (15) residues at 
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position 4 of P5U leads to compounds with similar binding energy 

(Table 3).  

Recently published experimental results, reporting that the 

agonists and antagonists (partial agonists) interact differently with the 

UT receptor, are in accordance with our models.[44, 60] Boivin et al. 

measured the interactions of hU-II, URP and Urantide with separately 

synthesized h-UT receptor EL’s.[60, 61] They observed that agonist 

hU-II and URP bind EL-II and EL-III while the binding of Urantide 

was observed only with EL-II. None of these ligands were able to 

interact with EL-I. These results are fully consistent with our models. 

Leduc et al. found various interactions between photoreactive hU-II 

and Urantide analogues and r-UTR.[44, 62] Also, these interactions 

are compatible with our models. 

The proposed binding modes are also in qualitative agreement to 

the observed SAR at the core -Phe-Trp-Lys-Tyr- sequence. In fact, 

pharmacophoric residues Trp7, Lys(Orn)8, and Tyr9, whose 

substitution with Ala significantly reduces or abolishes the binding 

affinity of U-II analogues, show a high number of receptor 

interactions. In contrast, Phe6 shows only a few interactions in 

accordance with SAR indicating that its substitution with Ala results 

in a still full agonist peptide.  Furthermore, substitution of the 

hydroxyl group of Tyr9 of U-II with methoxy, nitro, amino, methyl, 
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fluoro, or a hydrogen atom does not affect the potency and the 

efficacy of the U-II analogues in the rat aorta bioassay.[63] These 

observations agree with our model since the phenolic OH is not 

involved in receptor binding in the P5U/UTRa model. Substitution of 

the Tyr residue by bulky aromatic amino acids such as (2-naphthyl)-L-

alanine, biphenylalanine,[23] or 3-iodo-tyrosine [25] may even 

increase the binding affinity and the biological activity. Consistently, 

the tyrosine-binding pocket of our model can accommodate a bulkier 

side chain with an enhancement of the hydrophobic interactions. SAR 

data suggest that the presence of an aliphatic amine at position 9 is 

mandatory for U-II activity.[63] The position of the NH2
 from the 

peptide backbone has been investigated using ornithine, 2,4-

diaminobutyric acid (Dab), and 2,3-diaminopropionic acid (Dap), i.e. 

with distances of 3, 2 and 1 carbon atoms, respectively. Reduction of 

the distance between the primary aliphatic amine and the peptide 

backbone of 3 and 2 methylene groups gradually reduces the potency 

and efficacy of the analogs and switch the activity towards 

antagonism. Further shortening of the amino acid side-chain increases 

potency and restores efficacy. Interestingly, the Dab8-urantide 

analogue UFP-803 behaves as a pure antagonist (pA2 7.46).[64] Our 

model can explain these results. In fact, a distance of 3 methylene 

groups is suitable for both UTRi and UTRa ligands, such as urantide 
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(Gbind = -3.88 Kcal/mol, Table 3). A distance of 2 methylene 

groups is also suitable for the two receptor states but with a much 

preferred antagonist mode (for UFP-803, Gbind = -5.41 Kcal/mol; 

data not shown). Little attention has been paid to the Trp9 residue in 

the SAR studies of U-II apart from the Ala- and D-scan approaches. 

Replacement of the Trp residue with 2-Nal,[23] or 4-benzoyl-L-

phenylalanine (Bpa) [62] significantly decreased agonist binding 

affinity and potency. This would suggest that the indole NH function 

may establish a hydrogen bond with some UTR residue. We don’t 

observe this postulated H-bond and believe that the indole electron 

rich system is more suitable for a cation- interaction with the Lys8 

side chain observed in the peptide agonist ligands.[33] 

Based on the binding mode of UTR peptide agonists and 

antagonists, we derived new 3D pharmacophore models illustrated in 

Figure 8. The distances between the pharmacophoric residues (i.e. 

mean distances observed during the 2 ns MD simulations) are in good 

accordance with those previously reported both for peptide agonists 

and antagonists.[33] These pharmacophore models might be useful for 

the next design cycle and, in particular, for the design of small-

molecule ligands.  
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Figure 8. Stereoview of the pharmacophore model for peptide antagonists (a) and 
agonists (b). The distances between the aryl ring centroids of (D)Trp7 and Tyr9, 
and the N of Lys(Orn)8, are displayed. Distances and standard deviations are 
obtained from one hundred structures saved every 20 ps of the MD simulations. 
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1.1.4 Conclusions 

In conclusion, we observed a different SAR at the N-terminus for 

P5U compared to Urantide analogues. P5U shows a high degree of 

tolerance upon N-terminal substitutions. In Urantide analogues, an 

aromatic residue is well tolerated and can increase the potency. In 

fact, replacement of the Asp4 residue by Tic led to an analogue, 

compound 14, more potent as antagonist (pKB = 8.94) compared to 

Urantide. Conversely, a positively charged amino acid (Lys) 

drastically reduces the binding and the activity. The results could be 

explained on the basis of the different receptor binding mode of the 

agonist P5U vs the antagonist Urantide. Understanding of the impact 

of amino acid substitutions in position 4, combined with information 

regarding the interactions between UT receptor and its ligands, is 

crucial to increase the knowledge of structure-function relationships 

focused to the design of new potent UT receptor ligands. 
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1.1.5. Experimental Section 

Synthesis. N-Fmoc-protected amino acids, HBTU and HOBt 

were purchased from Inbios (Naples, Italy). Wang resin was 

purchased from Advanced ChemTech (Louisville, KY). Protected Pen 

was purchased from Bachem (Basel, Switzerland). Peptide synthesis 

solvents, reagents, as well as CH3CN for HPLC were reagent grade 

and were acquired from commercial sources and used without further 

purification unless otherwise noted. The synthesis of hU-II analogues 

was performed in a stepwise fashion via the solid-phase method. N-

Fmoc-Val-OH was coupled to Wang resin (0.5 g, 0.7 mmol NH2/g). 

The following protected amino acids were then added stepwise N-

Fmoc-Cys(Trt)-OH, N-Fmoc-Tyr(OtBu)-OH, N-Fmoc-Yaa(N -

Boc)-OH (Yaa: Lys, Orn), N-Fmoc-Xaa(Nin-Boc)-OH (Xaa: Trp, 

DTrp), N-Fmoc-Phe-OH, N-Fmoc-Pen(Trt)-OH and N -Fmoc-R-

OH (R = Phe, Cpa, Ala, (pNO2)Phe, Tic, Nal(1), Nal(2), Lys).  Each 

coupling reaction was accomplished using a 3-fold excess of amino 

acid with HBTU and HOBt in the presence of DIEA. 

The N -Fmoc protecting groups were removed by treating the 

protected peptide resin with a 25% solution of piperidine in DMF, 

(1x5 min and 1x20 min). The peptide resin was washed three times 

with DMF and the next coupling step was initiated in a stepwise 

manner. All reactions were performed under an Ar atmosphere. The 
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peptide resin was washed with DCM (3x), DMF (3x) and DCM (4x), 

and the deprotection protocol was repeated after each coupling step. 

The N-terminal Fmoc group was removed as described above and the 

peptide was released from the resin with TFA/ Et3SiH /H2O (90:5:5) 

for 3 h. The resin was removed by filtration and the crude peptide was 

recovered by precipitation with cold anhydrous ethyl ether to give a 

white powder which was purified by RP-HPLC on a semi-preparative 

C18-bonded silica column (Vydac 218TP1010, 1.0 x 25 cm) using a 

gradient of CH3CN in 0.1% aqueous TFA (from 10 to 90% in 45 min) 

at a flow rate of 1.0 mL/min. The product was obtained by 

lyophilization of the appropriate fractions after removal of the CH3CN 

by rotary evaporation. Analytical RP-HPLC indicated a purity > 98% 

and molecular weights were confirmed by FAB-MS (Fisons mod. 

Prospec) or HR-MS (Kratos Analytical mod. Kompact) (Supporting 

Information). 

General Method of Oxidation and Cyclization. The peptides 

were oxidized by the syringe pump method previously reported.[65] 

The linear peptide (300-500mg) was dissolved in 40ml of 

50%H2O/25% acetonitrile/25% methanol, and nitrogen gas was 

passed through the solution for 20 min. Five milliliters of saturated 

ammonium acetate solution were added, and the pH was taken to 8,5 

with NH4OH. The peptide solution was then added at room 
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temperature via syringe pump to a stirred oxidant solution. The 

oxidant solution was prepared as follows: 2 equiv of potassium 

ferricyanide were dissolved in 400ml of H2O/200ml of acetonitrile 

/200ml of methanol. To this solution was added 100 ml of saturated 

ammonium acetate, and the pH was then taken to 8,5 with NH4OH. 

The peptide solution was added at such a rate that approximately 

10mg of peptide were delivered per hour per liter of the oxidant. After 

the addition of peptide was complete, the reaction mixture was stirred 

for an additional 5-6h and then taken to pH 3.5 with glacial acetic 

acid. Amberlite IRA-68 (Cl - form) was added to remove the iron ions 

and the solution stirred for 20min and then filtered. The solution was 

concentrated using a rotary evaporator at 30°C and then lyophilized. 

The material thus obtained was dissolved in glacial acetic acid, 

filtered to remove inorganic salts, and relyophilized. The crude cyclic 

peptides were purified by preparative HPLC on the system described 

above, using a gradient of 100% buffer for 20min, then 0-20% 

acetonitrile in 5 min, followed by 20-60% acetonitrile in 40 min, all at 

40ml/min. Again the peptides eluted near 50% organic /50% buffer. 

The purity of the cyclic peptides was checked by analytical HPLC (C-

18 column, Vydac 218TP104, 4,6mm X 25cm), using a Shimadzu 

SPD 10A vp with detection at 230 and 254 nm and by TLC in four 

solvent systems in silica gel with detection by UV light, iodine 
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vapours, and ninhydrin. The analytical data of the compounds 

synthesized in this work are given in the Supporting Information. 

Organ Bath Experiments. The experimental procedures 

employed in this study were approved by Institutional Animal Care 

and Use Committee and carried out in accordance with the legislation 

of Italian authorities (D.L. 116 27/01/1992), which complies with 

European Community guidelines (CEE Directive 86/609) for the care 

and use of experimental animals. 

Male albino rats (Wistar strain, 275–350 g) were euthanized by 

cervical dislocation, under ether anaesthesia. The thoracic aorta was 

cleared of surrounding tissue and excised from the aortic arch to the 

diaphragm. From each vessel, a helically cut strip was prepared, and 

then it was cut into two parallel strips. The endothelium was removed 

by gently rubbing the vessel intimal  surface with a cotton-tip 

applicator; the effectiveness of this manoeuvre was assessed by the 

loss of relaxation response to acetylcholine (1 µM) in noradrenaline (1 

µM) precontracted preparations. All preparations were placed in 5ml 

organ baths filled with normal Krebs solution warmed at 37° C and 

oxygenated with 95% O2, 5% CO2. The tissues were connected to 

isotonic force transducers (Ugo Basile, VA, Italy) under a constant 

load of 5mN and motor activity was digitally recorded by an Octal 

Bridge Amplifier connected to PowerLab/8sp hardware system and 



Chapter 1 

- 46 -	
 

analyzed using the Chart 4.2 software (AD Instruments, Australia). 

After 60 min equilibration, tissue responsiveness was assessed by the 

addition of 1 µM noradrenaline followed by a further equilibration of 

60 min. 

To assess the agonist activity cumulative concentration-response 

curves to hU-II and to the agonist peptide under examination were 

constructed in paired aortic strips and responses obtained were 

normalized towards the control hU-II maximal contractile effect 

(Emax). 

To assess the antagonist activity concentration–response curves 

to hU-II were constructed cumulatively in paired aortic strips. One 

strip was pretreated with vehicle (DMSO; 1-3 µl/ml) and used as a 

control, while the other strip was pretreated with the antagonist 

peptide under examination and, after a 30-min incubation period, hU-

II was administered cumulatively to both preparations. 

In each preparation only one cumulative concentration-response 

curve to hU-II was carried out and only one concentration of 

antagonist was tested. Concentration-response curves were analyzed 

by sigmoidal nonlinear regression fit using the GraphPad Prism 4.0 

program (San Diego, CA, U.S.A.) to determine the molar 

concentration of the agonist producing the 50% (EC50) of its maximal 

effect. Agonist activity of all compounds was expressed as pEC50 
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(−log EC50). The antagonist potency was expressed as apparent pKB 

(−logKB) calculated from the equation: pKB = − (log CR - 1 - log 

antagonist concentration) where the concentration-ratio (CR) is the 

ratio of equieffective concentrations (EC50) of hU-II in the presence 

and absence of antagonist.[66, 67] The nature of the antagonism was 

checked by means of Schild analysis. 

Binding experiments. All experiments were performed on 

membranes obtained from stable CHO-K1 cells expressing the 

recombinant human UT receptor (Euroscreen ES-440-M, Bruxelles, 

Belgium). Assay conditions were: TRIS-buffer (20mM, pH 7.4 at 37° 

C) added with MgCl2 (5mM) and 0.5% BSA. Final assay volume was 

0.1 ml, containing 1 µg membrane proteins. The radioligand used for 

competition experiments was [125I]Urotensin II (specific activity 2000 

Ci/mmol; Amersham Biosciences, Buckinghamshire, U.K.) in the 

range 0.07–1.4 nM (corresponding to 1/10–1/5 of its KD). Non-

specific binding was determined in the presence of 1 µM of unlabelled 

hU-II, and ranged between 10–20% of total binding. Competing 

ligands were tested in a wide range of concentrations (1 pM – 10 µM). 

The incubation period (120 min at 37° C) was terminated by rapid 

filtration through UniFilter-96 plates (Packard Instrument Company), 

pre-soaked for at least 2 h in BSA 0.5%, and using a MicroMate 96 

Cell Harvester (Packard Instrument Company). The filters were then 
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washed 4 times with 0.2 ml aliquots of Tris-HCl buffer (20mM, pH 

7.4, 4°C). Filters were dried and soaked in Microscint 40 (50 µl in 

each well, Packard Instrument Company), and bound radioactivity 

was counted by a TopCount Microplate Scintillation Counter (Packard 

Instrument Company). Determinations were performed in duplicate. 

All binding data were fitted by using GraphPad Prism 4.0 in order to 

determine the equilibrium dissociation constant (Kd) from homologous 

competition experiments, the ligand concentration inhibiting the 

radioligand binding of the 50% (IC50) from heterologous competition 

experiments. Ki values were calculated from IC50 using the Cheng-

Prusoff equation (Ki = IC50/(1 + [radioligand]/Kd) according to the 

concentration and Kd of the radioligand.[56] 

NMR Sample Preparation. 99.9% 2H2O were obtained from 

Aldrich (Milwaukee, USA), 98% SDS-d25 was obtained from 

Cambridge Isotope Laboratories, Inc. (Andover, USA), [(2,2,3,3-

tetradeuterio-3-(trimethylsilanyl)]propionic acid (TSP) from MSD 

Isotopes (Montreal, Canada). 

NMR Spectroscopy. The samples for NMR spectroscopy were 

prepared by dissolving the appropriate amount of peptide in 0.45 ml of 

1H2O (pH 5.5), 0.05 ml of 2H2O to obtain a concentration 1-2 mM of 

peptides and 200 mM of SDS-d25. NH exchange studies were 

performed dissolving peptides in 0.50 ml of 2H2O and 200 mM of 
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SDS-d25. NMR spectra were recorded on a Varian INOVA 700 MHz 

spectrometer equipped with a z-gradient 5 mm triple-resonance probe 

head. All the spectra were recorded at a temperature of 25 °C. The 

spectra were calibrated relative to TSP (0.00 ppm) as internal 

standard. One-dimensional (1D) NMR spectra were recorded in the 

Fourier mode with quadrature detection. The water signal was 

suppressed by gradient echo.[68] 2D DQF-COSY,[37, 38] TOCSY 

[39], NOESY [40] and PE-COSY [69] spectra were recorded in the 

phase-sensitive mode using the method from States.[70] Data block 

sizes were 2048 addresses in t2 and 512 equidistant t1 values. Before 

Fourier transformation, the time domain data matrices were multiplied 

by shifted sin2 functions in both dimensions. A mixing time of 70 ms 

was used for the TOCSY experiments. NOESY experiments were run 

with mixing times in the range of 150-300 ms. The qualitative and 

quantitative analyses of DQF-COSY, TOCSY, and NOESY spectra, 

were obtained using the interactive program package XEASY.[41]  

3JHN-H coupling constants were obtained from 1D 1H NMR and 2D 

DQF-COSY spectra.  3JHH coupling constants were obtained from 

1D 1H NMR and 2D PE-COSY spectra, the last performed with a  

flip angle of 35°. The temperature coefficients of the amide proton 

chemical shifts were calculated from 1D 1H NMR and 2D TOCSY 
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experiments performed at different temperatures in the range 25°-40 

°C by means of linear regression.  

Structural Determinations. The NOE-based distance restraints 

were obtained from NOESY spectra collected with a mixing time of 

200 ms. The NOE cross peaks were integrated with the XEASY 

program and were converted into upper distance bounds using the 

CALIBA program incorporated into the program package 

DYANA.[71] Cross peaks which were overlapped more than 50% 

were treated as weak restraints in the DYANA calculation. In a first 

step only NOE derived constraints (Supporting Information) were 

considered in the annealing procedures. Overall, 76 meaningful NOE-

derived restraints (9 NOEs per residue; that is: 32 intraresidue, 32 

sequential, 11 medium-range, and 1 long-range) for peptide 14, and 73 

(9 NOEs per residue; that is: 34 intraresidue, 29 sequential, 9 medium-

range, and 1 long-range) for peptide 16, were used as input for the 

calculation. For each examined peptide, an ensemble of 200 structures 

was generated with the simulated annealing of the program DYANA. 

An error-tolerant target function (tf-type=3) was used to account for 

the peptide intrinsic flexibility. Non standard Pen, D-Trp, Orn, and Tic 

residues were added to DYANA residue library using MOLMOL.[72] 

From these structures we could univocally determine the hydrogen 

bond atom acceptors corresponding to the slowly exchanging NH’s 
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previously determined for each peptide. In a second DYANA run 

these hydrogen bonds were explicitly added as upper and lower limit 

constraints (NH of Phe6 with CO of Tyr9, and NH of Tyr9 with CO of 

Phe6), together with the NOE derived upper limit constraints 

(Supporting Information). The second annealing procedure produced 

200 conformations from which 50 structures were chosen, whose 

interprotonic distances best fitted NOE derived distances, and then 

refined through successive steps of restrained and unrestrained EM 

calculations using the Discover algorithm (Accelrys, San Diego, CA) 

and the consistent valence force field (CVFF) [73] as previously 

described.[34] Coupling constants were not used in the constrained 

simulated annealing calculation, however, backbone and side chain 

conformations are in accordance with the experimental 3JHH and 

3JHH coupling constants, respectively. The final structures were 

analyzed using the InsightII program (Accelrys, San Diego, CA). 

Graphical representation were carried out with the InsightII program 

(Accelrys, San Diego, CA). RMS deviation analysis between energy 

minimized structures were carried out with the program 

MOLMOL.[72] 

h-UTR Models and Docking. The theoretical structure of the h-

UT receptor, in the inactive state, was generated by homology 

modeling based on the crystal structure of bovine rhodopsin (PDB 



Chapter 1 

- 52 -	
 

code 1F88),[42] as previously described.[43] The three-dimensional 

model of the the h-UTR, in the active state, was constructed from the 

model structure of the bovine rhodopsin, proposed by Mosberg,[48] 

and was generated by homology modeling following the same steps 

described for the inactive model.[43] To validate the reliability of the 

calculated models, the program PROCHECK,[74, 75] which 

automatically checks the stereochemical accuracy, packing quality, 

and folding reliability, was employed. All amino acids in the -helices 

were located in the favored region of the right-handed -helix in the 

Ramachandran plot. From calculated  angles, there were no cis 

peptide bonds in the calculated h-UTR model. All C atoms except 

Cys displayed S-chirality. For the packing quality, there were no bump 

regions in the calculated h-UTR models. 

The peptides Urantide and P5U were manually docked in the 

suspected binding site of the h-UTRi and h-UTRa, respectively. 

Employing the criteria described in the Results section, we generated 

10 poses for both urantide/h-UTRi and P5U/h-UTRa complexes. 

Refinement of each pose was achieved by in vacuo energy 

minimization with the Discover algorithm (50 000 steps;  = 1). The 

backbone atoms of the TM and IL domains of the h-UTR were held in 

their position; the ligand and EL’s were free to relax. Minimization 

was followed by a brief MD simulation period (200 ps). After this 
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period, many poses (7 and 8 out of the 10 poses for urantide and P5U, 

respectively) were discarded since the ligand was driven away from its 

starting position and lost the salt-bridge with the conserved Asp 

residue. The other poses (3 for urantide and 2 for P5U) converged to a 

very similar conformation (rmsd of the backbone atoms < 1 Å) and the 

lowest energy complex for each ligand was chosen as starting point 

for subsequent 2 ns MD simulations (time step = 1 fs, T = 300 K). The 

backbone coordinates of the TM helices were fixed during the MD 

simulations because, without environmental constraints (i.e. lipid 

bilayer and water solution), they can move away from each other and 

can lose their helical structure. Fixing TM helices should still allows 

for sufficient spatial/conformational sampling of the docked 

complexes since the ligand, in the discarded poses (see above), 

significantly changed both the initial position and conformation, after 

the MD simulations. An average structure was calculated from the last 

1 ns trajectory and energy-minimized using the steepest descent and 

conjugate gradient methods until a rmsd of 0.05 Kcal/mol per Å was 

reached. Starting from these energy minimized structures, the model 

complexes of the Urantide and P5U analogues 13-16 were obtained. 

The Asp4 was replaced with a Lys or a Tic residue and the complex 

was minimized first relaxing only the replaced residue (10 000 steps); 

then relaxing all the ligand (40 000 steps). Whereupon, a 200 ps MD 
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simulations was performed. The average structure of the last 100 ps 

was re-minimized until a rmsd of 0.05 Kcal/mol per Å was reached. 

For the docking of urantide within UTRa (switching of the ligands), 

we started from the optimized P5U/UTRa complex and superposed the 

NMR derived urantide structure with that of P5U (backbone atoms of 

residues 5-10). Then, we removed the P5U structure. The complex 

was minimized relaxing the ligand (40 000 steps). Whereupon, a 200 

ps MD simulations was performed. The average structure of the last 

100 ps was re-minimized until a rmsd of 0.05 Kcal/mol per Å was 

reached. Analogous steps were taken for the P5U/UTRi complex. All 

the MD trajectories were analyzed by means of the Analysis module 

of InsightII package. Molecular graphics images of the complexes 

were produced using the UCSF Chimera package.[76] Rescoring of 

the ligand/receptor models according to the AutoDock4 (AD4) [45-

47] scoring function was attained using a script provided within the 

MGLTools software package (http://mgltools.scripps.edu/). 
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1.2 Conformational Study on Cyclic Melanocortin Ligands and 

New Insight into their Binding Mode at the MC4 Receptor 

 

The melanocortin receptors are involved in many physiological 

functions, including pigmentation, sexual function, feeding behavior, 

and energy homeostasis, making them potential targets to treat 

obesity, sexual dysfunction, etc. Understanding the basis of the ligand-

receptor interactions is crucial for the design of potent and selective 

ligands for these receptors. 

The conformational preferences of the cyclic melanocortin 

ligands MTII (Ac-Nle4-c[Asp5-His6-DPhe7-Arg8-Trp9-Lys10]-NH2) 

and SHU9119 (Ac-Nle4-c[Asp5-His6-DNal(2’)7-Arg8-Trp9-Lys10]-

NH2), which show agonist and antagonist activity at the h-MC4R, 

respectively, were comprehensively investigated by solution NMR 

spectroscopy in different environments. In particular, water and 

water/DMSO (8:2) solutions were used as isotropic solutions and an 

aqueous solution of DPC (dodecylphosphocholine) micelles was used 

as a membrane mimetic environment. NMR derived conformations of 

these two ligands were docked within h-MC4R models. NMR and 

docking studies revealed intriguing differences which can help explain 

the different activities of these two ligands. 
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1.2.1 Introduction 

The melanocortin family contains five human receptors (h-

MC1R-h-MC5R) cloned to date and stimulates the cAMP second 

messenger and other signal transduction pathways.[77-84] 

Melanocortin receptors belong to the class A superfamily of 

rhodopsin-like G-protein-coupled receptors (GPCRs), characterized 

by having seven transmembrane α-helices (TM1-TM7) linked by three 

extracellular and three intracellular loops.[78, 81, 82] The 

endogeneous agonists of the MCRs, the melanocortins, are a family of 

peptides comprised of α, β-, and γ-melanocyte stimulating hormones 

(MSH) and adreno-corticotropic hormone (ACTH). They are derived 

from post-translational modification of a common precursor, 

proopiomelanocortin (POMC).[85] The natural melanocortins are all 

agonist for h-MCRs with exception of the h-MC2R, for which only 

ACTH is a full agonist.[86] Also, synthetic melanocortins have 

different pharmacological profiles for the five h-MCRs. For example, 

NDP-α-MSH [87] and MTII [88] are agonist for all h-MCRs except 

the h-MC2R.[89] There are also the endogeneous protein antagonists 

known as agouti and agouti-related protein (AGRP).[90, 91] 

Interaction of these effectors with MCRs results in the modulation of 

numerous biological functions which include among others regulation 

of skin pigmentation (MC1R), steroid production (MC2R), the 
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immune response, thermoregulation, food intake, sexual function 

(MC3R and MC4R), and stress-induced anxiety and depression.[92-

97] The MC4R subtype is regarded as a potential drug target, because 

it is involved in feeding and sexual behaviour.[90, 97-100] Mammals 

with a defective MC4R gene, which is expressed in the brain, are 

characterized by obese phenotype and increased food intake.[101-103] 

Pharmacological studies indicate that activation of the MC4R in 

rodents [100] and humans [93] modulates erectile function. 

Consequently, research efforts have been focused on the development 

of potent and MC4R-selective agonists as potential antiobesity drugs 

or as treatments for sexual dysfunction. [104] On the other hand, a 

MC4R antagonist that blocks the satiety-inducing effect of α-MSH 

could be helpful for treatment of anorexia or cancer cachexia.[105] 

A molecular understanding of MTII and SHU9119 activity at the 

h-MC4R may have important implications in the design of drugs. In 

addition, the identification of the essential amino acid residues of the 

h-MC4R responsible for MTII agonism and SHU9119 antagonism 

should be important for understanding the signalling events that 

regulate the melanocortin system under physiologic conditions.[106, 

107] 

Hence, we first studied the conformational preferences of the 

cyclic melanocortin ligands MTII, and SHU9119 (Table 5), agonist 
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and antagonist at h-MC4R, respectively. Conformational analysis was 

carried out by NMR spectroscopy in water, water/DMSO solutions, 

and 200 mM aqueous solution of DPC as membrane mimetic 

environment. Then, NMR derived structures of MTII and SHU9119 

were docked within the h-MC4 receptor model, in the active and 

inactive state, respectively.  

 

Table 5. Ligand Sequences 

Peptide Sequence 

MTII Ac-Nle4-c[Asp5-His6-DPhe7-Arg8-Trp9-Lys10]-NH2 

SHU9119 Ac-Nle4-c[Asp5-His6-DNal(2’)7-Arg8-Trp9-Lys10]-NH2 

NDP-MSH Ser1-Tyr2-Ser3-Nle4-Glu5-His6-DPhe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-Gly14
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1.2.2 Results 

Chemistry. Peptides were synthesized using the solid phase 

approach and standard Fmoc methodology in a manual reaction vessel  

(Experimental Section).[35] 

The purification was achieved using a semi-preparative RP-HPLC C-

18 bonded silica column (Vydac 218TP1010). The purified peptide 

was 98% pure as determined by analytical RP-HPLC. The correct 

molecular weight and composition of the peptide was confirmed by 

mass spectrometry and amino acid analysis (Table S5, Supporting 

Information). 

NMR Analysis.  Complete 1H NMR chemical shift assignments 

were achieved for MTII and SHU9119 according to the Wüthrich 

procedure [36] via the usual systematic application of DQF-COSY 

[37, 38], TOCSY [39], and NOESY [40] experiments (Tables S6-S13, 

Supporting Information) with the support of the XEASY software 

package.[41] The conformational preferences for the two peptides 

were investigated by solution NMR spectroscopy in different solvent 

environments. In particular, water and water/DMSO (8:2) solutions 

were used as isotropic solutions and 200 mM aqueous solution of 

DPC (dodecylphosphocholine micelles) was used as a membrane 

mimicking environment. 

Water solution. NMR analysis was performed in water at pH 5 



Chapter 1 

- 60 -	
 

and a peptide concentration of about 2 mM. First, we analyzed the 

peptides at 25 °C. Both peptides showed similar NMR parameters 

(Tables S6-S7) as previously reported.[108, 109] Almost all NMR 

parameters indicate structural flexibility: a) temperature effects 

|T| > 6 ppb/K; b) 3JHN-H coupling constants are all within the 

range 6-8 Hz; c) No standard -helix or -sheet structure from H 

CSI (chemical shift index) values [110] (Figure S17, Supporting 

Information); d) No unambiguous medium- or long-range backbone 

NOE connectivities were found in the ROESY or NOESY. Strong 

dN(i, i+1) NOEs, which are generally observed in extended 

structures, appeared along almost the entire length of the peptides.  

To reduce the conformational flexibility, we acquired the spectra 

also at 5°C. At this temperature, most of the NMR parameters did not 

change significantly (Tables S8-S9), though  improvements of the 

signal quality in the NOESY spectra were observed. Weak dN(i, i+2) 

NOEs between Nle4 and His6 and between His6 and Arg8 could be 

observed. Also the methyl protons of the N-terminal acetyl group 

show a weak NOE contact with the H of Asp5. Medium dNN(i, i+1) 

NOE between DPhe7 (DNal(2’)7) and Arg8 was observed. Among the 

possible observable contacts, the dN(i, i+2) NOE between Asp5 and 

DPhe7 could not be observed due to spectral overlap. 

Cryoscopic solution. To further reduce the peptide 
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conformational flexibility, NMR spectra were acquired at -10 °C in a 

cryomixture solution of water/DMSO 8:2. Such cryomixtures have 

been shown to produce physico-chemical conditions compatible with 

those of biological fluids.[111] Again, most of the NMR parameters 

did not change significantly (Tables S10-S11). Apart from the two 

dN(i, i+2) NOEs observed also in water (5 °C) the NOESY spectra 

showed dN(i, i+2) NOEs between Asp5 and DPhe7 (DNal(2’)7). 

Furthermore, dN(i, i+3) NOEs between Asp5 and Arg8 and dNN(i, i+2) 

NOEs between His6 and Arg8 also were observed.  

DPC micelles. Several NMR parameters indicate that MTII and 

SHU9119 are highly structured in DPC solution. In particular, 3JHN-H 

coupling constants (Tables S12-S13) and H CSI values (Figure S17) 

and many NOE signals (Tables S14-S15, Supporting Information) 

clearly point to a folded structure encompassing the N-terminal 

residues (4-7) and extended conformation of residues 8-9. Non-trivial 

medium range NOE interactions, among which dN(i, i+2) 4-6, 5-7, 6-

8, dNN(i, i+2) 6-8, and dN(i, i+3) 5-8, are observed indicating that the 

membrane mimetic environment stabilizes intrinsic conformational 

tendencies of the peptide. Additional medium and long range NOE 

contacts were observed. In particular, various NOEs connected the 

Nle4 side chain with both DPhe7 (DNal(2’)7) and Trp9 aromatic 

moieties indicating spatial proximity of these side chains. Other 
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interesting contacts were observed between the methyl protons of the 

N-terminal acetyl group and the HN of Asp5, and between amide 

protons of the C-terminal NH2 group and the H1 and H1 of Trp9. 

Structure Determination. NOE distance restraints obtained for 

MTII and SHU9119 in DPC micelles were used as the input data for a 

simulated annealing structure calculation using the program 

DYANA.[71] The annealing procedure produced 100 conformations 

from which 20 structures were chosen, whose interprotonic distances 

best fitted the NOE derived distances, and then refined through 

successive steps of restrained and unrestrained EM calculations using 

the Insight/Discover package (Accelrys Inc, San Diego, CA).  

Structure Description. Superposition of the 10 lowest energy 

conformers of MTII and SHU9119 are shown in Figure 9. Since a -

turn may be defined as four consecutive non-helical residues that have 

a C(i)-C(i+3) distance < 7 Å, two -turns that involve Nle4 to 

DPhe7 (DNal(2’)7) and Asp5 to Arg8, can be identified. Examination of 

the backbone dihedral angles at the central (i+1, and i+2) residues of 

the turns showed that these turn structures most closely resembled 

type I (residue 4 to 7) and type II (residue 5 to 8) -turns, although 

deviations from the standard dihedral angles of these two types of -

turn occurred (Table S16, Supporting Information). Residues 8 to 10 

are in extended conformations. The side chain 1-angles of Asp5, 
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Arg8, Trp9 and Lys10 are also well defined, preferring trans, gauche-, 

trans and gauche- orientations, respectively. Side chains of Nle4 and 

His6 are more flexible. The DPhe7 orientation in MTII is also well 

defined as trans. The DNal(2’)7 orientation in SHU9119 is less 

defined showing an equilibrium between trans and gauche+ rotamers. 

These results are consistent with the measured 3J coupling 

constants (Tables S12-S13).[112, 113]  

The peptide surface has amphipathic nature. In fact, considering 

the pseudo-plane defined by the backbone atoms (green ribbon, Figure 

9) the hydrophobic residues Nle4, DPhe7 (DNal(2’)7) and Trp9 lie on 

one side (right in Figure 9) while the positively charged residues His6 

and Arg8 lie on the other side. 
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Figure 9. Stereoviews of the 10 lowest energy conformers of MTII (a), and 
SHU9119 (b). Structures were superimposed using the backbone heavy atoms of 
residues 5-10. Heavy atoms are shown with different colours (carbon, green; 
nitrogen, blue; oxygen, red). Hydrogen atoms are not shown for clarity. 

 

Docking Studies. NMR derived structures of MTII and 

SHU9119 were docked within the h-MC4R models proposed by 

Mosberg.[114, 115] In particular, the agonist MTII was docked within 

an “active state” model (h-MC4Ra), while the antagonist SHU9119 

was docked within an “inactive state” model (h-MC4Ri). Figure 10 

shows a snake-like diagram of the h-MC4R sequence. 



Chapter 1 

- 65 -	
 

 

 

Figure 10. Snake-like diagram of the h-MC4R sequence. This plot was generated 
with the RbDe software.[116] Black residues indicate that mutation data are 
available. The ‘ . . .’ indicates hidden residues (see reference [114] for the 
complete sequence). 

 

Since the currently available docking programs may not work 

very well for peptide compounds (more than eight rotatable bonds) 

[117], manual docking was conducted. The NMR-derived MTII 

structure was placed in between the trans-membrane domains of the h-

MC4Ra. The following criteria were employed to achieve meaningful 

docking modes: (i) The positively charged side of the amphipathic 

surface of the peptides should be close to the carboxylate groups of 

Asp122, Asp126, and Glu100, as suggested by several mutagenesis 

studies [114, 115, 118-125]; (ii) DPhe7 residue should point towards 

Leu133 residue as suggested by a mutagenesis study [118]; (iii) No 

steric clashes should occur between any atom. To assess the stability 
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of the MTII/h-MC4Ra complex we analyzed the potential 

ligand/receptor interactions, energy minimization and MD simulations 

for 1 ns at a constant temperature of 300°K. During the MD 

simulation, the ligand, the EL’s, and all the receptor side chains were 

allowed to relax, while the TM’s and intracellular loops (ILS) 

backbone atoms were held frozen. The distances between the peptide 

and the key receptor residues were monitored along the complete 1 ns 

MD trajectory (Supporting Information). The mean structure of the 

last 0.5 ns of MD was energy minimized and used for subsequent 

analysis. 

 

Table 6. MTII/h-MC4Ra Interactions 

Residuea Surrounding residue 
Nle4 Val193(TM5), His264b (TM6), Leu265 (TM6), Tyr268 

(TM6) 
Asp5  
His6 Asp122 (TM3), Asn123(TM3), Asp126 (TM3) 
DPhe7 Asp126 (TM3), Ile129 (TM3), Leu133 (TM3), Phe184 

(TM4), Phe261 (TM6), Phe284 (TM7), Leu288 (TM7) 
Arg8 Glu100 (TM2), Asp122 (TM3), Ile125 (TM3), Asp126 

(TM3), Ile129(TM3)  
Trp9 His264 (TM6), Phe267 (TM6), Pro272 (EL3), Val278 

(EL3), Phe280 (EL3), Phe284 (TM7) 
Lys10 Tyr276 (EL3), Val278 (EL3), Met281 (EL3)  
a For sake of clarity, the residue numbers of the ligands are reported as superscript 
while those of the receptor are not. b Receptor residues involved in mutagenesis 
studies are shown in bold. 
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To inspect the variations in the ligand conformation, the rmsd 

with the respect to the starting structure was calculated. Interestingly, 

the rmsd of the MTII backbone atoms turned out to be stable 

throughout all of the MD simulations (0 < rmsd < 0.8 Å), indicating 

that the peptide settles into the receptor-binding site in a stable 

conformation. Also the side chain orientations are those described by 

NMR. In particular, the DPhe7 and Trp9 side chain prefer a trans 

orientation about 1 angle (1 ≈ 160° for DPhe7, 1 ≈ -163° for Trp9). 

As shown in Figure 11a, the hypothetical binding site of MTII is 

located among TM2-TM7, and EL3. C- and N-terminal residues point 

towards the extracellular side. The binding mode of the peptide is 

determined mainly by the interactions shown in Figure 11b and 

summarized in Table 6. 
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Figure 11. (a) Stereoview of h-MC4Ra model complexed with MTII. MTII heavy 
atoms are shown with different colours (carbon, green; nitrogen, blue; oxygen, 
red). Hydrogen atoms are not shown for clarity. Receptor backbones are 
represented in gray and labeled. (b) Stereoview of MTII within the binding pocket 
of h-MC4Ra. Hydrogen bonds are represented with dashed lines. 
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In particular, (i) a tight charge-reinforced hydrogen-bonding 

network involving the carboxylate groups of Glu100 and Asp126 with 

the protonated guanidinium group of Arg8 of MTII are established. 

The guanidinium group of Arg8 is also involved in an electrostatic 

interaction with the carboxylate group of Asp122. Such interactions, 

which we assume to be anchoring points of the ligand to the h-

MC4Ra, remained stable during the entire MD simulation (Figure S18, 

Supporting Information). The oxygen atoms of the carboxylate of 

Asp126 form a charge-reinforced hydrogen bond with the protonated 

imidazole group of His6, which was not stable during the MD 

simulation (Figure S18). (ii) Two hydrophobic pockets, delineated by 

residues listed in Table 6, host the side chains of DPhe7, and Trp9 of 

MTII. Particularly, the side chain of DPhe7 occupies the hydrophobic 

pocket involving residues Ile129, Leu133, Phe184, Phe261, Phe284, 

while the indole system of Trp9 is surrounded by Phe280, Pro272, 

Phe267, Phe284 and appears to be optimally oriented for a -stacking 

interaction with the imidazolic system of His264. iii) Terminal groups 

also contribute to the complex stabilization. The Nle4 side chain is 

close to Val193 and Tyr268. The acetyl group CO of Nle4 (N-

terminal) engages hydrogen bonds with imidazole NH of His264. 

Amide group NH2 of Lys10 (C-terminal) established a hydrogen bond 

with the phenolic OH of Tyr276. These H-bonds are not stable during 
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the MD production run (data not shown). 

The NMR-derived SHU9119 structure was placed within the 

trans-membrane domains of the h-MC4Ri model, following the same 

criteria used for MTII (see above) to achieve meaningful binding 

interactions. Energy minimization and MD simulations (1 ns) were 

run to assess the stability of the SHU9119/h-MC4Ri complex and to 

analyze the potential ligand/receptor interactions. The mean structure 

of the last 0.5 ns of MD was extensively minimized and used for 

subsequent analysis. SHU9119 backbone atoms turned out to be stable 

throughout all of the MD simulations (0 < rmsd < 0.9 Å), indicating 

that the peptide settles into the receptor-binding site in a stable 

conformation. Also the side chain orientations are those described by 

NMR. In particular, Trp9 prefers a trans orientation about the 1 angle 

(1 ≈ 175°). Finally, the DNal(2’)7 side chain adopts a gauche+ 

conformation (1 ≈ 80°). 
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Figure 12. (a) Stereoview of h-MC4Ri model complexed with SHU9119. 
SHU9119 heavy atoms are shown with different colours (carbon, orange; 
nitrogen, blue; oxygen, red). Hydrogen atoms are not shown for clarity. Receptor 
backbones are represented in cyan and labeled. (b) Stereoview of SHU9119 
within the binding pocket of h-MC4Ri. Hydrogen bonds are represented with 
dashed lines. 
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Table 7. SHU9119/h-MC4Ri Interactions 

Residuea Surrounding residue 
Nle4 His264b (TM6), Leu265 (TM6), Tyr268 (TM6), 

Tyr276(EL3) 
Asp5 Phe184 (TM4) 
His6 Thr118 (EL1), Asp122 (TM3), Asn123 (TM3), Asp126 

(TM3), Phe184 (TM4) 
DNal7 Leu133 (TM3), Phe184 (TM4), Cys196 (TM5), Leu197 

(TM5), Met200 (TM5), Phe261 (TM6), Phe262 (TM6), 
Leu265 (TM6) 

Arg8 Glu100 (TM2), Asp122 (TM3), Ile125 (TM3), Asp126 
(TM3),  

Trp9 His264 (TM6), Leu265 (TM6), Tyr268 (TM6), Phe267 
(TM6), Phe280 (EL3), Met281 (EL3), Phe284 (TM7) 

Lys10 Thr112 (EL1), Asp113 (EL1), Ser116 (EL1), Thr118 
(EL1), Tyr268 (TM6), Tyr276 (EL3), Val278 (EL3), 
Met281 (EL3) 

a For sake of clarity, the residue numbers of the ligands are reported as superscript 
while those of the receptor are not. b Receptor residues involved in mutagenesis 
studies are evidenced in bold. 

 

As shown in Figure 12a, the hypothetical binding site of 

SHU9119 is located among TM2-TM7, and EL3. C- and N-terminal 

residues point towards the extracellular side. The binding mode of the 

peptide is determined mainly by the interactions showed in Figure 12b 

and Table 7. In particular, (i) considering Arg8 and His6, the same 

interactions observed in the MTII/h-MC4Ra complex are observed 

also for SHU9119. Again, Hbonds involving the Arg8 guanidinium 

group remained stable during the whole MD production run (Figure 

S19, Supporting Information), while those of His6 were not. (ii) Two 

hydrophobic pockets, involving the residues listed in Table 7, host the 

aromatic side chains of DNal(2’)7, and Trp9 of SHU9119. These 
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pockets only partially overlap with those hosting the aromatic side 

chains of MTII. Particularly, the side chain of DNal(2’)7 occupy the 

hydrophobic pockets involving residues Leu133, Phe184, Cys196, 

Leu197, Met200, Phe261, Phe262, Leu265, while the indole group of 

Trp9 is surrounded by His264, Phe267, Met281, Phe284 and appears 

to be optimally oriented for a -stacking interaction with the aromatic 

group of Tyr268. This is different from MTII, because Trp9 in MTII 

makes -stacking with His264. The Nle4 side chain is close to Leu265, 

Tyr268, and Tyr276. The acetyl group CO of Nle4 (N-terminal) in 

SHU9119 isn’t involved in hydrogen-bonding. Finally, the amide 

group NH2 and the oxygen atom of the terminal carboxamide group of 

Lys10 (C-terminal) established two hydrogen bonds: with the OH of 

Ser116 and with the phenolic OH of Tyr268. These Hbonds are not 

stable during the MD production run (data not shown). 
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1.2.3 Discussion 

We investigated the conformational preferences of the cyclic 

melanocortin ligands MTII and SHU9119 by solution NMR 

spectroscopy in different environmental situations: water, 

water/DMSO (8:2) and an aqueous solution of DPC 

(dodecylphosphocholine). In water and water/DMSO cryoscopic 

mixture, NMR parameters were very similar for both peptides and 

indicate structural flexibility. A few NOEs, however, point to a 

tendency of the peptides to form a turn-helical conformation at the N-

terminus (residue 4-8). The data could be indicative of a nascent helix 

in solution.[126] The nascent helix consists of a population of 

different conformations, in which a significant proportion contains 

backbone conformations in the -region of (, ) space in the 

Ramachandran plot, rather than of any single defined solution 

conformation. 

In DPC micelle solution, the peptides exhibited a higher 

conformational stability. The use of micelles to study the 

conformational properties of peptides has been described in section 

1.1.3.[50-55]  

Two consecutive -turns that involved Nle4 to DPhe7/DNal(2’)7 

(distorted type I) and Asp5 to Arg8 (distorted type II) and a short 

extended segment along residues Trp9 and Lys10 were observed in the 
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calculated structures of MTII and SHU9119 (Figure 9 and Table S16). 

It is noteworthy that an amphiphilic molecular surface was obtained 

for the message sequence residues in both peptides. The main 

conformational difference observed in the structures of the two 

ligands was established in a different orientation of the DPhe7 and 

DNal(2’)7 side chains. DPhe7 of MTII preferred the trans rotamer, 

while the DNal(2’)7 side chain of SHU9119 was more flexible.  

A type II -turn structure encompassing residues 5-8 was already 

found by NMR analysis of MTII and SHU9119 in water solution.[108, 

109] This -turn led to stacking between the aromatic rings of His6 

and DPhe7 in MTII while no aromatic stacking between His6 and 

DNal(2’)7 was found in SHU9119. This stacking was not observed in 

the structures obtained in DPC micelles. Considering the -turn 

encompassing residues 4-7, it has never been observed in the structure 

of MTII or SHU9119. Interestingly, the presence of this turn is in 

accordance with the results of N-methylation of MTII backbone amide 

bonds. In fact, N-methylation of DPhe7, which should destabilize this 

-turn, caused a total loss of binding as well as adenylate cyclase 

activity at the h-MC4R (h-MC1R, h-MC3R and h-MC5R).[127] N-

Methylation of Arg8 caused a dramatic reduction of the binding (about 

500-fold at the h-MC4R) but yielded a compound that retained full 

agonist activity toward all subtypes of melanocortin receptors. 
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To gain insight into the interaction mode of these ligands with 

the h-MC4R, we first undertook a docking study between MTII and h-

MC4R model. Since the crystal structure of a GPCR in the active 

conformation has not yet been obtained, we used a h-MC4R model in 

the “active state” proposed by Mosberg et al. (h-MC4Ra).[114] 

According to these authors, upon activation, the receptor experiences 

a rearrangement which involves mainly the TM6 helix. The TM6 

helix shifts outward and rotates counterclockwise (viewed from the 

extracellular side) during activation, moving its intracellular end away 

from TM3 and toward TM5. As a result of this and other changes, the 

receptor structure tightens near its extracellular surface but opens up at 

the cytoplasmic side, providing a cavity for binding of the Gs subunit. 

In the active state model, several side chains change their orientation 

among which Trp258, in accordance with earlier spectroscopic 

results.[128] Similar conformational changes upon activation of the 

MC4R were subsequently proposed also by Hogan et al.[121] During 

the manuscript preparation another model of the h-MC4Ra has been 

published.[129] This model was based on recent crystal structures of 

the GPCR opsin in the ligand-free and in the G-protein-interacting 

conformations.[130, 131] Interestingly, our h-MC4Ra model and that 

built by Chapman et al. are quite similar showing an rmsd of the TM’s 

backbone heavy atoms of 2.0 Å (Figure S20, Supporting Information).  
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For the MTII/h-MC4Ra complex, docking and the MD 

simulations (Figure 11) indicated that: (i) the structure adequately fits 

the binding site and is stable during the MD trajectory; (ii) the binding 

site, situated in the entrance of the TM bundle on the extracellular 

side, is formed by TM2-TM7, and EL3 (Figure 11a); (iii) the 

pharmacophore residues DPhe7, the Arg8 and Trp9 side chains 

establish the highest number of interactions with the receptor. In 

particular, Arg8 residue is involved in a charge-reinforced hydrogen 

bonding network with carboxylate groups of Glu100, Asp122, and 

Asp126 which was stable during the MD simulations (Figure S18). In 

contrast, the His6 imidazole group participates only in an unstable 

hydrogen bond with Asp126 (Figure S18). Two wide hydrophobic 

pockets host the side chains of DPhe7, and Trp9 of MTII (Figure 11b). 

The N- and C-terminal groups point towards the extracellular side and 

are involved only in limited interactions with the receptor consistent 

with the observation that these termini can be substituted with 

retention of potent binding affinity.  

The proposed binding mode is in qualitative accordance with the 

known structure-activity relationships of MTII. In fact, substitution of 

DPhe7 or Trp9, which show a large number of receptor interactions, 

with alanine resulted in compounds with very low affinities for h-

MC4R (h-MC3R and h-MC5R).[132] The Arg8 involved in stable 
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interactions with the receptor, its replacement with the neutral residue, 

alanine, led to an active analogue but with more than a 1000-fold 

reduced affinity at h-MC4R compared to the parent compound, in 

accordance with the stable interactions exhibited by this residue. In 

contrast, the substitution of His6 with alanine yielded a peptide with 

activation and binding affinity similar to MTII towards the h-MC4R 

(h-MC3R and h-MC5R). Therefore, the imidazole group was shown 

not to be essential to binding of MTII with the h-MC4R (h-MC3R and 

h-MC5R). A similar result was reported for the ‘core’ peptide Ac-

His6-DPhe7-Arg8-Trp9-amide in which the omission of histidine 

resulted in the tripeptide that was only 2-fold less potent at h-MC4R 

than the tetrapeptide.[124] Considering N-terminal acetyl group, an 

analogue of MTII without the acetyl group was as potent as MTII at 

the h-MC4R (h-MC3R and h-MC5R).[133] Replacement of Ac-Nle4 

with Ala or Ac-Ala yielded compounds with agonist potencies at h-

MC4R similar to that of MTII. The analogue without both acetyl 

group and norleucine was 200-fold less active at h-MC4R. Also 

replacement of MTII residues with proline (Pro-scan) gave similar 

results. Proline replacement was acceptable only at Nle4 and His6 

positions yielding compounds with agonist potencies at the h-MC4R 

similar to that of MTII.[133] 
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Interestingly, many residues of the receptor involved in the 

interaction with MTII were identified as molecular determinants of 

ligand binding by mutagenesis studies (Table 6).[107, 115, 118-124] 

In particular, His264 has been demonstrated to be essential for 

melanocortin peptide activation of the MC4R.[134] -stacking 

interaction of imidazolic nucleus of His264 and indole system of Trp9 

can trigger the MC4R activation. Interestingly, this -stacking 

interaction is not observed in the SHU9119/h-MC4Ri complex 

described below.  

A docking study between SHU9119 and h-MC4Ri also was 

performed. The h-MC4Ri model, built by Mosberg et al. and based on 

the rhodopsine crystal structure, was used.[115] The main differences 

between inactive and active models of h-MC4R were discussed above. 

The obtained complex (Figure 12) and the MD simulations indicated 

that SHU9119 positioning within the h-MC4Ri is similar to that 

observed for MTII/h-MC4Ra (Figure 12 and Figure 13). In particular, 

backbone atoms of MTII and SHU9119 are almost superimposable 

lying inside the TM2-TM7 bundle. Also the side chains of the 

positively charged residues His6 and the Arg8 show the same 

orientation and the Arg8 residue is involved in a charge-reinforced 

hydrogen bonding network with carboxylate groups of Glu100, 



Chapter 1 

- 80 -	
 

Asp122, and Asp126 which was stable during the MD simulations 

period (Figure S19). 

 

Figure 13. Stereoview of h-MC4R models in the active (gray) and inactive (cyan) 
conformations complexed with MTII (carbon, green; nitrogen, blue; oxygen, red) 
and SHU9119 (carbon, orange; nitrogen, blue; oxygen, red), respectively. The h-
MC4R models are superimposed using the backbone heavy atoms of TM residues 
apart from TM6. Hydrogen atoms are not shown for clarity. 
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In contrast, the DNal(2’)7 and Trp9 binding pockets are quite 

different compared to those of the corresponding residues of MTII. 

These differences depend on the different orientations of the 

DNal(2’)7 and Trp9 side chains and on the movement of TM6 during 

activation.[115] In the SHU9119/h-MC4Ri complex the DNal(2’)7 

prefers a gauche+ orientation due to steric interaction with Leu133, 

while in the MTII/h-MC4Ra complex the DPhe7 side chain could 

adopt a trans orientation. Furthermore, the χ2 torsion angle of Trp9 

rotates from 9,7° in the MTII/h-MC4Ra to -56,0° in SHU9119/h-

MC4Ri. Interestingly, the 2’-naphthalene and indole moieties of 

SHU9119 show many van der Waals interactions with hydrophobic 

residues of the TM6 helix which could stabilize the inactive state of 

the h-MC4R (Table 7). As a matter of fact, different groups have 

proposed that large aromatic side chain substitutions at the Phe7 

position of -MSH analogues can interfere with MC4R activation by 

interacting with receptor residues within TM6, physically hindering 

the conformational changes necessary to elicit full efficacy.[120, 125] 

Our model is also supported by the observation that the DNal(2’)7 

naphthalene external ring fills the same cleft as the Phe113 benzene 

ring of AGRP (Agouti related protein, an endogenous antagonist) in a 

model of AGRP/h-MC4Ri complex (Figure 14).[115] It can be 

observed in the same Figure 14 that also the Arg8 guanidinium group 
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of SHU9119 is perfectly overlapped with the same groups of Arg111 of 

AGRP.  

 

Figure 14. Stereoview of SHU9119/h-MC4Ri (orange-cyan) and AGRP/h-MC4Ri 
(gold-purple) models in the inactive conformations. On the left side, AGRP’s 
labels are shown; on the right side, SHU9119’s labels are shown. The h-MC4R 
models are superimposed using the backbone heavy atoms of TM residues. 
Hydrogen atoms are not shown for clarity. 
 

 

Similar conformation and positioning of MTII and SHU9119 

within the MC4R are not surprising since it was shown that the single 

substitution of Leu133 with a methionine residue in the receptor 

converted SHU9119 from an antagonist into an agonist at the h-

MC4R.[118] Probably, according to our model, when Leu133 was 

replaced with methionine, which is more flexible than leucine, the 

hindering amino acid was removed and the DNal(2’)7 bulky aromatic 
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side chain could be accommodated in the same cleft occupied by 

DPhe7 of the agonist MTII. An analogous point mutation in the h-

MC3R had the same effect on SHU9119 activity.[135] Interestingly, 

SHU9119 behaves as an agonist at the h-MC1R and h-MC5R where a 

methionine or a (smaller) valine residue, respectively, occupies the 

position corresponding to Leu133 according to the sequence 

alignment reported in the reference.[115]  

Other groups have suggested modeled docked conformations of 

melanotropin peptides with the MC4R for both agonist and antagonist 

ligands. In particular concerning the agonists, a few models of the 

NDP-MSH,[114, 129, 136] a model of -MSH-ND (the open 

analogue of MTII),[137] and a model of the tetrapeptide His-DPhe-

Arg-Trp [121] complexed with h-MC4R have been proposed. It is 

noteworthy that different ligand conformations were employed for the 

peptide agonist/MC4R models proposed (Table 8). As a consequence 

of the lack of an accepted melanocortin peptide active conformation, 

all the models proposed in literature, included the MTII/h-MC4R 

presented here, were only partially superposable. 
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Table 8. 

Peptide Conformation Central Residues Reference 
NDP-MSH type II (hairpin) 6-7 [112]  
NDP-MSH type I’ 6-7 [135]  
NDP-MSH type II’ 7-8 [127]  
α-MSH-ND type I 6-7 [136]  
Corea type II’ 7-8 [118]  
a His-DPhe-Arg-Trp tetrapeptide core sequence. 

 

For example, considering the NDP-MSH/h-MC4R complex 

proposed by Mosberg et al.,[114] it is quite different from our 

MTII/h-MC4R model described above (Figure 15). NDP-MSH [87] 

and MTII [88] differ by cyclization at Asp5-Lys10 residues (in MTII), 

but share the same pharmacophoric sequence His6-DPhe7-Arg8-Trp9.  
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Figure 15. (a) Stereoview of MTII/h-MC4Ra (green-gray) and NDP-MSH/h-
MC4Ra (gold-purple) models in the active conformations. (b) Bottom stereoview 
of MTII and NDP-MSH within the binding pocket of h-MC4Ra. Only 
pharmacophoric side chains of ligands (His6-Arg9) are showed for clarity. 
Important residues of receptors are represented. The h-MC4R models are 
superimposed using the backbone heavy atoms of TM residues. Hydrogen atoms 
are not shown for clarity. 

 

The receptor coordinates of the two complexes are very similar; 

indeed, we started from the Mosberg’s h-MC4Ra coordinates, and 
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only marginal changes of the extracellular loops could be observed 

after the MTII/h-MC4Ra complex optimization (Figure 15). In 

contrast, ligand conformations are different considering the common 

tetrapeptide fragment. A -hairpin-like structure with a distorted type 

II -turn spanning His6-DPhe7 was proposed for Mosberg’s NDP-

MSH, while our NMR-derived MTII structure shows two consecutive 

-turns spanning residues Asp5-His6 and His6-DPhe7 (see above). Also 

side chain orientation of Trp9 was different in the two peptides being 

trans in MTII and gauche- in NDP-MSH. Hence, even if both 

peptides are located within the TM2-TM7 bundle at the extracellular 

side, their interactions with h-MC4Ra appear to be different. In 

particular, in the MTII/h-MC4Ra model His6 and Arg8 are swapped 

compared to NDP-MSH/h-MC4Ra in Mosberg’s model. In Mosberg’s 

model, His6 forms the most stable interactions with the Glu100, 

Asp122, and Asp126 negatively charged side chains, while Arg8 is 

more solvent exposed. Furthermore, in the NDP-MSH/h-MC4Ra 

model, the indole group of Trp9 roughly occupies the same position as 

DNal(2’)7 or Phe113 of the antagonists SHU9119 and AGRP, 

respectively. Finally, the DPhe7 residues are located in similar 

positions within the receptor.  

Some differences in the SAR data of NPD-MSH and MTII were 

observed both in terms of binding affinity: alanine substitutions were 
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generally better tolerated in linear NDP-MSH than in cyclic MTII 

[119, 125, 132]; and in terms of efficacy: the D-(4-Cl)Phe7 

substitution in NDP-MSH substantially reduces Emax but does not 

appreciably affect MC4R activation by the cyclic MTII.[106, 125] 

Different SARs could indicate different orientations of MTII and 

NDP-MSH (or other linear peptides) within the binding pocket thus 

justifying the different interactions found in the complex models. 

Finally, Mosberg et al. also proposed a MTII/h-MC4Ra complex 

model.[138] In this complex, the receptor model was the same as 

previously developed by the authors while the MTII structure was 

modeled from that of NDP-MSH. The lack of details about the 

interactions within this complex model does not allow any comparison 

with our model. 

Considering the peptide antagonists, a SHU9119/h-MC4R 

complex model has been very recently proposed.[139] Apart from 

Arg8 which was close to Glu100, Asp122, and Asp126 also in this 

model, other side chain interactions were different from those 

observed in our model. Again, a different backbone conformation of 

the bound peptide, a type-I -turn in that case, can explain these 

differences. A few AGRP derived peptides were also docked within 

MC4R models. The triplet peptide Arg-Phe-Phe, the smallest 

conserved motif of AGRP which mediates the key interactions with 
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MC4R, was docked into the h-MC4R.[140] A bicyclic hAGRP 

derivative was docked into the mouse MC4R (m-MC4R).[141] The 

refined averaged NMR structure of hAGRP(87-132) was docked both 

into a h-MC4R [115] and a m-MC4R [142] model. When considered 

the Arg111-Phe112-Phe113 triad, the docked structures of AGRP 

derivatives all maintain similar putative ligand-receptor locations, 

which are illustrated in Figure 14. 
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1.2.4 Conclusions 

In conclusion, NMR-derived MTII and SHU9119 structures 

show two consecutive -turns spanning residues Asp5-His6 and His6-

DPhe7 (or DNal(2’)7) with some differences in the Phe/Nal7 side chain 

orientation. Computational docking experiments of these structures, 

using three-dimensional homology molecular model of the h-MC4R, 

identified the main interactions between MC4 receptor and its peptide 

ligands. These findings may be crucial to increase our knowledge of 

structure-function relationships focused on the design of new potent 

MC4 receptor ligands. 

  



Chapter 1 

- 90 -	
 

1.2.5 Experimental Section 

Synthesis. N-Fmoc-protected amino acids, HBTU and HOBt 

were purchased from Inbios (Naples, Italy). Wang resin was 

purchased from Advanced ChemTech (Louisville, KY). Synthesis of 

MT-II and SHU-9119 were performed by standard FMOC 

Strategy.[35] 

NMR Sample Preparation. 99.9% 2H2O were obtained from 

Aldrich (Milwaukee, USA), 98% SDS-d25 was obtained from 

Cambridge Isotope Laboratories, Inc. (Andover, USA), [(2,2,3,3-

tetradeuterio-3-(trimethylsilanyl)]propionic acid (TSP) from MSD 

Isotopes (Montreal, Canada). 

NMR Spectroscopy. The samples for NMR spectroscopy were 

prepared by dissolving the appropriate amount of peptide to obtain a 

concentration 1-2 mM in 0.55 ml of 1H2O (pH 5.5), 0.05 ml of 2H2O 

for water samples, 0.48 mL of 1H2O (pH 5.5), 0.12 mL of DMSOd6 for 

cryoscopic solution,  200 mM of SDS-d25 or DPC-d38 for micelle 

samples. NMR spectra were recorded on a Varian INOVA 700 MHz 

spectrometer equipped with a z-gradient 5 mm triple-resonance probe 

head. All the spectra were recorded at a temperature of 25 °C. The 

spectra were calibrated relative to TSP (0.00 ppm) as internal 

standard. One-dimensional (1D) NMR spectra were recorded in the 

Fourier mode with quadrature detection. Water suppression was 
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achieved by using the double-pulsed field gradient spin-echo 

(DPFGSE) scheme [68]. 2D DQF-COSY [37, 38], TOCSY [39], 

NOESY [40], and PE-COSY [69] spectra were recorded in the phase-

sensitive mode using the method of States.[70] Data block sizes were 

2048 addresses in t2 and 512 equidistant t1 values. Before Fourier 

transformation, the time domain data matrices were multiplied by 

shifted sin2 functions in both dimensions. A mixing time of 70 ms was 

used for the TOCSY experiments. NOESY experiments were run with 

mixing times in the range of 150-300 ms. The qualitative and 

quantitative analyses of DQF-COSY, TOCSY, and NOESY spectra, 

were obtained using the interactive program package XEASY.[41].  

3JHN-H coupling constants were obtained from 1D 1H NMR and 2D 

DQF-COSY spectra. The temperature coefficients of the amide proton 

chemical shifts were calculated from 1D 1H NMR and 2D TOCSY 

experiments performed at different temperatures by means of linear 

regression.  

Structural Determinations. The NOE-based distance restraints 

were obtained from NOESY spectra collected with a mixing time of 

200 ms. The NOE cross peaks were integrated with the XEASY 

program and were converted into upper distance bounds using the 

CALIBA program incorporated into the program package 

DYANA.[71] Cross peaks which overlapped more than 50% were 
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treated as weak restraints in the DYANA calculation. For each 

examined peptide, an ensemble of 200 structures was generated with 

the simulated annealing of the program DYANA. An error-tolerant 

target function (tf-type=3) was used to account for the peptide 

intrinsic flexibility of the peptide. The annealing procedure produced 

200 conformations from which 50 structures were chosen, whose 

interprotonic distances best fitted NOE derived distances, and then 

refined through successive steps of restrained and unrestrained EM 

calculations using the Discover algorithm (Accelrys, San Diego, CA) 

and the consistent valence force field (CVFF) [73] as previously 

described. Coupling constants were not used in the constrained 

simulated annealing calculation, however, backbone and side chain 

conformations are in accordance with the experimental 3JHH and 

3JHH coupling constants, respectively. The PROMOTIF program, 

was used to extract details on the location and types of structural 

secondary motifs.[143] Graphical representation were carried out with 

the InsightII program (Accelrys, San Diego, CA). RMS deviation 

analysis between energy minimized structures were carried out with 

the program MOLMOL.[72] 

Docking Procedures. The peptides MTII and SHU91119 were 

manually docked in the proposed binding site of the h-MC4Ra and h-

MC4Ri, respectively. Employing the criteria described in the Results 
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section, we generated 10 structures for both MTII/h-MC4Ra and 

SHU9119/h-MC4Ri complexes. Refinement of each structure was 

achieved by in vacuo energy minimization with the Discover 

algorithm (50 000 steps;  = 1). The backbone atoms of the TM and IL 

domains of the h-MC4R were held in their position; the ligand and 

EL’s were free to relax. Minimization was followed by a brief MD 

simulation period (200 ps). After this period, many poses (7 and 8 out 

of the 10 poses for MTII and SHU9119, respectively) were discarded 

since the ligand was driven away from its starting position and lost the 

salt-bridge with the conserved Asp residues. The other structures (3 

for MTII and 2 for SHU9119) converged to a very similar 

conformation (rmsd of the backbone atoms < 1 Å) and the lowest 

energy complex for each ligand was chosen as the starting point for 

subsequent 1 ns MD simulations (time step = 1 fs, T = 300 K). The 

backbone coordinates of the TM helices were fixed during the MD 

simulations because, without environmental constraints (i.e. lipid 

bilayer and water solution), they can move away from each other and 

can lose their helical structure. Fixing TM helices should still allows 

for sufficient spatial/conformational sampling of the docked 

complexes since the ligand, in the discarded poses (see above), 

significantly changed both the initial position and conformation, after 

the MD simulations. An average structure was calculated from the last 
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0.5 ns trajectory and energy-minimized using the steepest descent and 

conjugate gradient methods until a rmsd of 0.05 Kcal/mol per Å was 

reached. All the MD trajectories were analyzed by means of the 

Analysis module of the InsightII package. Molecular graphics images 

of the complexes were produced using the UCSF Chimera 

package.[76] Rescoring of the ligand/receptor models according to the 

AutoDock4 (AD4) [45-47] scoring function was attained using a 

script provided within the MGLTools software package 

(http://mgltools.scripps.edu/). 
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1.3 Novel Octreotide Dicarba-Analogues with High Affinity and 

Different Selectivity for Somatostatin Receptors. 

 

A limited set of novel octreotide dicarba-analogues with non-

native aromatic side-chains in positions 7 and/or 10 were synthesized. 

Their affinity towards the ssts1-5 was determined. Derivative 4 

exhibited a pan-somatostatin activity, except sst4, and derivative 8 

exhibited high affinity and selectivity towards sst5. Actually, 

compound 8 has similar sst5 affinity (IC50 4.9 nM) to SRIF-28 and 

octreotide. Structure-activity relationships suggest that the Z geometry 

of the double bond bridge is that preferred by the receptors. The NMR 

study on the conformations of these compounds in SDS-d25 micelles 

solution shows that all these analogues have the pharmacophore -

turn spanning Xaa7-d-Trp8-Lys9-Yaa10 residues. Notably, the 

correlation between conformation families and affinity data strongly 

indicates that the sst5 selectivity is favored by a helical conformation 

involving the C-terminus triad, while a pan-SRIF mimic activity is 

based mainly on a conformational equilibrium between extended and 

folded conformational states. 

 



Chapter 1 

- 96 -	
 

1.3.1 Introduction 

The cyclic tetradecapeptide somatostatin (H–Ala1–Gly2-c[Cys3–

Lys4–Asn5–Phe6–Phe7–Trp8–Lys9–Thr10–Phe11–Thr12–Ser13–Cys14]–

OH, SRIF-14) was first isolated from mammalian hypothalamus. 

[144] This hormone is widely distributed in the human body and is 

found in the gut, pancreas, nervous system and in some exocrine and 

endocrine glands. By interactions with a family of five SRIF receptors 

(ssts), the native peptide exerts a great number of regulatory effects, 

especially those related to GH release. Different receptor subtypes 

mediate various functions but only sst2 and sst5 activities have been 

precisely related to specific physiological activities.[145] SRIF 

receptors are strongly expressed in various types of malignant cells, 

particularly in some neuroendocrine or neuroendocrine-like tumors. 

Over the last three decades, this has prompted researchers to prepare a 

huge number of new cyclic and acyclic analogues, which are more 

stable than SRIF in physiological conditions. Amongst these, a large 

number of reduced-size cyclic analogues, with or without the disulfide 

bridge, were synthesized and tested for their affinity towards the ssts. 

Furthermore, their pharmacological behaviour was studied and several 

NMR investigations on their affinity/conformations relationships were 

carried out. J. E. Rivier’s group, at the Salk Institute of La Jolla, 

carried out a careful structure/affinity study on SRIF analogues, 
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introducing non natural aminoacids in the sequence and preparing 

variably sized S-S bridged cyclopeptides. These authors related the 

structure/conformation of the cyclopeptides to the sst1-4 specific 

affinity by means of NMR studies.[146-149] 

Octreotide [150] (compound 1, Figure 16), a cyclic octapeptide 

analogue of somatostatin, containing a disulfide tether, and showing 

high affinity and selectivity for sst2, was the first analogue to be used 

in clinical protocols. Following the enormous growth in preparation 

and application of radiolabelled peptides for tumor imaging and 

therapy, the somatostatin analogues thus far obtained were designed 

mainly for the targeting of malignant cells with - or -emitting 

radionuclides.[147, 151, 152] As a matter of fact, octreotide 

derivatives [111In-DTPA]octreotide (OctreoScan) and [90Y-DOTA-

Tyr3]octreotide (OctreoTher) are both quite successfully used in the 

clinical diagnosis and therapy of neuroendocrine tumors, 

respectively.[153] Nevertheless, the vulnerability of the S-S bridge to 

endogenous and exogenous oxidating and reducing agents, such as 

those employed in the experimental conditions of labelling with the 

radioisotopes 99mTc or 188Re,[154] prompted us to synthesize dicarba-

analogues of similar ring size, by the RCM reaction on two 

allylglycines, substituting the relevant Cys3,14 residues in the linear 

peptide. Compound 2, reported in Figure 16 as an example, is the first 
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octreotide dicarba-tethered analogue synthesised by us and has the 

same aminoacid sequence of the corresponding, S-S bridged, 

molecule.[155, 156]  

 

Figure 16. Structure of Octreotide (SMS201-995) (1) and of the first dicarba 
SRIF mimetic (2).[155] (Note: numbering of the residues follows that of the 
native SRIF). 

 

The resulting unsaturated dicarba bridge proved to be insensitive 

to the conditions used for 99mTc or 188Re labelling (unpublished 

results) and the molecules obtained were very stable in human 

serum.[155, 156] Recently, the stability of these compounds was 

exploited in the successful conjugation of cytotoxic dichloroplatinum 

complexes to analogue 2 as well as to the double bond hydrogenated 

derivative.[157] The same reaction, attempted with the octreotide 

molecule, failed. When the affinities of these analogues towards the 

five ssts were determined, we ascertained that some of them showed 

unexpected specific affinity for the sst5 subtype, which led us to define 

a novel pharmacophore model for this receptor.[156]  
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This study reports the synthesis of new cyclooctapeptide dicarba-

analogues, that have structures similar to those depicted in Figure 16, 

but are designed to carry different aromatic residues in positions 7 

and/or 10 (Table 9). In the following, ssts subtypes affinities found for 

the new compounds 4-8 are correlated with the C=C bridge geometry 

and with the conformational behaviour in SDS-d25 micelles solution, 

investigated by NMR experiments. Characteristic structure/affinity 

relationships of this class of somatostatin analogues are widely 

discussed. 

 

Table 9. Peptide Sequences; General Formula: d-Phe2-c[dhDSA-N3-
Xaa7-d-Trp8-Lys9-Yaa10-dhDSA-C14]-Thr(ol)15-OH. 

a These compounds were previously reported.[156]  

  

Peptide Xaa7 Yaa10 Double bond geometry 
2a Phe Thr Z 
3a Phe Tyr(Bzl) E 
4 Phe Tyr(Bzl) Z 
5 1-Nal Thr Z 
6 Phe Tyr E 
7 Phe Tyr Z 
8 1-Nal Tyr(Bzl) Z 
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1.3.2 Results 

Peptide Synthesis and Purification. The synthesis of dicarba-

analogues followed the procedure described in our previous articles. 

[155, 156] Starting from H–L-Thr(tBu)–ol–2-chlorotrityl resin (0.5 

mmol/g) already containing [Thr(ol)15], the elongation of the peptide 

sequence was stopped after the coupling of Hag3 residue, with the aim 

of removing any possible interference of the aromatic ring of D-Phe in 

the correct orientation of the allylglycine side chains. After the Fmoc-

Hag3 coupling, the resin loading (0.5 mmol/g) already met the 

requirements of the pseudo-dilution effect, minimizing the risk of the 

formation of intermolecular bonds. The linear heptapeptides were then 

converted by RCM by the 2nd generation Grubbs catalyst (9) (Figure 

17) to the corresponding cyclic analogues.  

 

 

Figure 17.  2nd Generation Grubbs Catalyst. 

 

The D-Phe2 terminal residue was added only after ring-closing, 

thus facilitating the cyclization step. Cleavage of the crude peptides 
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from the resin was obtained using the standard cleavage mixture 

TFA/H2O/EDT/Phenol (94:2:2:2, 3 h) for compounds 5, 6 and 7 and 

with the new percentage mixture (70:26:2:2, 2,30 h) for compounds 4 

and 8, in order to overcome the loss of the benzyl group of the 

Tyr(Bzl) residue by hydrolysis, as described in our previous 

article.[156] All compounds obtained by RCM with 9 were pre-

purified by SPE. The concentrated compound adsorbed on the SPE 

was eluted with an increased percentage of CH3CN in H2O (from 0% 

to 100%). The fractions enriched with each desired compound were 

then purified by semi-preparative RP-HPLC and characterized by ESI-

MS. For each peptide, with the exception of 5 and 8, the HPLC 

chromatogram showed two peaks with the same MW, corresponding 

to the geometric isomers (Z/E ratio  90:10). In particular, the E 

structure of the C-C=C-C tether of the sample eluted at lower Rt and 

the Z structure one of the second, more intense, peak, was ascertained 

by 1H NMR inspection. The HPLC purity of each compound studied 

was > 97% and the isolated compounds showed unique E or Z 

configuration, confirmed by NMR analysis. No oligomer by-products 

were observed. 

Binding Affinity to sst1-5 Receptors. All compounds were tested 

for their ability to bind to the five human sst1-5 receptors subtypes in 

complete displacement experiments using the universal somatostatin 
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radioligand [125I]-[Leu8,D-Trp22,Tyr25]-somatostatin-28. SRIF-28 was 

run in parallel as control. IC50 values were calculated after 

quantification of the data using a computer-assisted image processing 

system. Binding data indicate that all compounds show sub-M 

binding affinities towards the sst5 (Table 10). Compounds 2 and 3 

have already been described [156] and are reported for comparison. 

While peptide 3 was a potent and selective sst5 ligand, its Z-isomer, 

peptide 4, exhibited a pan-somatostatin affinity, apart from sst4. In 

fact, the analogue 4 doubled the affinity toward sst5 but completely 

lost the selectivity of 3.  

Peptide 5 is the 1-Nal7 analogue of 2 (Table 9). This peptide 

exhibited a low nanomolar sst2,5 affinity. Actually, it is the most potent 

sst2 ligand among the dicarba analogues prepared to date. The double-

bond isomer analogues 6 (E) and 7 (Z), in which the phenolic group of 

Tyr10 replaces the Tyr(Bzl) residue of 3 and 4, respectively, did not 

show any significant affinity toward sst1-5 subtypes apart from a slight 

affinity of 7 to sst2.  

Finally, analogue 8 shared Tyr(Bzl)10 residue with peptide 4 and 

1-Nal7 residue with peptide 5. Like compound 4, it showed affinity for 

all the receptor subtypes except sst4. However, the significant 

enhancement of the sst5 affinity (nearly 3-fold compared to compound 

4) and the simultaneous reduction of affinity towards sst1-4 make 
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compound 8 a strong and selective sst5 ligand. Indeed, compound 8 is 

the most potent sst5 dicarba-analogue synthesized so far, showing an 

affinity close to the value found for the reference compound SRIF-28 

(Table 10). 

 

Table 10. Receptor affinities of the somatostatin analogues. 

IC50 (nM)a 

No. sst1 sst2 sst3 sst4 sst5 

SRIF-28 2.3 ± 0.4 (7) 3.0 ± 0.2 (7) 3.6 ± 0.5 (7) 1.6 ± 0.3 (7) 2.4 ± 0.2 (6) 

2b > 1000 (2) 44 ± 1 (2) > 1000 (2) 412 ± 68 (2) 28 ± 2 (2) 

3b > 1000 (2) > 1000 (2) 892 ± 245 (2) > 1000 (2) 29 ± 1 (2) 

4 25 ± 1 (3) 46 ± 3 (3) 25 ± 4 (3) 346 ± 23 (3) 12.3 ± 0.3 (3) 

5 > 1000 (3) 9.6 ± 0.9 (3) > 1000 (3) 249 ± 51 (3) 16.5 ± 4.5 (3) 

6 1000 (3) 355.5 ± 45.5 (3) 1000 (3) 1000 (3) 418 ± 56 (3) 

7 > 1000 (3) 87 ± 18 (3) > 1000 (3) > 1000 (3) 161 ± 27 (3) 

8 57.5 ± 12.5 (3) 101 ± 9 (3) 92.5 ± 0.5 (3) > 1000 (3) 4.9 ± 1.0 (4) 

a The number of independent repetitions to obtain the mean values  SEM are 
indicated between brackets. SRIF-28 is used as internal control. b Corresponds to 
data published previously.[155]  

 

NMR Analysis. NMR analysis of the analogues 3-8 was 

performed by means of 1D and 2D proton homonuclear experiments. 

NMR experiments were recorded on a Varian Inova-Unity 700 MHz 

spectrometer. Spectra were collected in SDS-d25 (200 mM) micelles 

solution. All samples (about 2 mM) were kept at 308 K and at pH  5. 
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Complete 1H NMR chemical shift assignments were effectively 

achieved for all the analyzed molecules according to the Wüthrich 

procedure,[36] via the usual systematic application of TOCSY [39] 

and NOESY [40] experiments with the support of the XEASY 

software package (Tables S19-S24, Supporting Information).[41] 

NMR-derived constraints obtained for all compounds were used as the 

input data for a simulated annealing structure calculation, as 

implemented within the standard protocol of the DYANA 

program.[71]  

Compound 3. The analogue 3 bears Tyr(Bzl) in position 10. We 

have already analyzed this peptide in our previous work in 

water/DMSO-d6 solution.[156] The geometry of the double bond was 

confirmed as trans (E) from the coupling constant (3JCH=CH = 15.1 Hz) 

between the two olefinic protons of the bridge and NOE contacts 

between the same olefinic and the Hβs of residue 14 (3). A qualitative 

analysis of short- and medium-range NOEs, 3JNH-H coupling 

constants, and temperature coefficients for exchanging NH was used 

to characterize the secondary structure of 3. Spectra analysis pointed 

to the presence of a -turn about residues 7–10. Interestingly, the 

upfield shift observed for Hγs of Lys9 (δ = 0.52, 0.43 ppm) has been 

used for decades as diagnostic for biological activity.[158] NOE-

derived constraints obtained for 3 were used as the input data for a 
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simulated annealing structure calculation (Table S25, Supporting 

Information). The backbone arrangement of 3 was well-defined, 

possessing an average root mean square deviation (rmsd) of the heavy 

atoms equal to 0.15 Å. No violation higher than 0.1 Å was observed 

again indicating conformational stability (Table S25). Main backbone 

features were a type II’ β-turn spanning residues D-Trp8-Lys9, 

followed by a short 310-helix along residues Tyr(Bzl)10-dhDsa-C14-

Thr(ol)15 (Figure 18) The turn structure is stabilized by hydrogen 

bonds between Phe7-CO and Tyr(Bzl)10-NH. The helical structure is 

stabilized by H-bonds between D-Trp8-CO and dhDsa-C14-NH and 

between Lys9-CO and Thr(ol)15-NH. These bonds are typical of 310-

helix structure (i, i+3). The side chains of dhDsa-N3, D-Trp8, Lys9, 

Tyr(Bzl)10, and dhDsa-C14 showed well-defined 1 values (i.e., trans, 

trans, gauche-, gauche-, and gauche+ orientations, respectively). These 

orientations allowed a close spatial proximity between D-Trp8/Lys9 

side chains; moreover, the tyrosyl group of the residue 10 points 

toward the Lys9 side chain. In contrast, D-Phe2 and Phe7 side chain 

showed almost free rotation about the 1 torsion angle. Also, the Bzl 

group of residue 10 was highly flexible.  
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Figure 18. Stereoview of the lowest energy conformer of compound 3. Backbone 
is evidenced as a ribbon. Side chains of the ten lowest energy conformers are also 
shown as mesh surface. Surfaces are distinguished with different colors. N-Term, 
N-terminus; C-Term, C-terminus. 

 

Compound 4. The analogue 4 is the geometric (Z) isomer of 3 as 

established by the coupling constant (3JCH=CH = 8.1 Hz) between the 

two olefinic protons of the bridge and the relative strong NOE 

between the same olefinic Hγs. This analogue shows spectral features 

similar to those found in 3 but with a greater tendency to 

conformational heterogeneity. In fact, NOESY spectra of 4 showed, 

simultaneously, both diagnostic connectivities consistent with folded 

structures: dN(i, i+2) between H-8/NH-10, H-9/NH-14, H-10/NH-

15 and dN(i, i+3) between H-9/NH-15; and NOE contacts 

characteristic of extended regions: strong dN(i, i+1) between H-

9/NH-10, H-10/NH-14, and H-14/NH-15 (Table S26, Supporting 
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Information). The apparently contradictory NOEs are indicative of the 

presence of at least two conformations in solution. The impossibility 

of resuming all the data in a single structure prompted us to consider 

incompatible NOEs separately in different calculation cycles 

(Experimental Section). Hence, we obtained two families of 

conformations. The first calculation cycle gave an ensemble of 

structures (family I) showing a similar conformation to compound 3, 

with a type II’ β-turn spanning residues D-Trp8-Lys9, followed by a 

short 310-helix along residues Tyr(Bzl)10-dhDsa-C14-Thr(ol)15 (Figure 

19a). Moreover, side chain orientations were the same as those 

described for 3. The main difference was a better definition of the 

Phe7 side chain which preferred the trans rotamer. For this set of 

structures, a number of consistent violations were observed (Table 

S26). In a second MD cycle, the violated upper limit constraints were 

upweighted for the contribution to the target function. Thus, a second 

conformational family (family II) was obtained which differed from 

the first mainly in that C-terminal residues were in extended 

conformations (Figure 19b). Furthermore, the side chain orientation of 

Tyr(Bzl)10 was trans. Hence, the tyrosyl nucleus was further from the 

Lys9 side chain. This is in accordance with the down-field shifts of the 

H resonances of Lys9 compared to the corresponding shifts of 

compound 3. Interestingly, the complete ensemble of structures (helix 
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and extended) fulfilled the NOE restraints, with no violations 

exceeding 0.5 Å (Table S26). 

 

Figure 19. Stereoview of the lowest energy conformer of compound 4: family I 
(a), family II (b). Backbone is evidenced as a ribbon. Side chains of the ten lowest 
energy conformers are also shown as mesh surface. Surfaces are distinguished 
with different colors. N-Term, N-terminus; C-Term, C-terminus. 

 

Compound 5. Compound 5 maintains the same octreotide 

scaffold, but position 7, which bears 1-Nal. Apart from the dicarba 

bridge, it has the same peptide sequence of the analogue NOC, 
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formerly prepared and studied as DOTA-conjugate by Maecke, Reubi 

and co-workers.[159] The coupling constant (3JCH=CH = 8.1 Hz) 

between the two olefinic protons of the bridge and the relative strong 

NOE between the same olefinic Hγs established (Z) configuration for 

compound 5. Only one isomer is obtained from RCM.  

NMR-based structure calculations gave two conformational 

families, like compound 4. Family I, obtained by a first run of MD 

calculation, showed a type II’ β-turn spanning residues D-Trp8-Lys9, 

followed by a short 310-helix along residues Thr10-dhDsa-C14-Thr(ol)15 

(Figure 20a). As found with compound 4, a number of consistent 

violations were observed (Table S27, Supporting Information). In a 

second MD run, we obtained a second conformational family (II), 

which differed from the first mainly because the C-terminal residues 

were in extended conformations (Figure 20b). In both the families, 

residue 7 showed a defined trans orientation which forces 1-Nal7 

naphthyl moiety close to D-Trp8 residue. This orientation is in 

accordance with the intense up-field shift observed for many D-Trp8 

proton resonances. 
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Figure 20. Stereoview of the lowest energy conformer of compound 5: family I 
(a), family II (b). Backbone is evidenced as a ribbon. Side chains of the ten lowest 
energy conformers are also shown as mesh surface. Surfaces are distinguished 
with different colors. N-Term, N-terminus; C-Term, C-terminus. 
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Compounds 6 and 7. The analogues 6 and 7 differ from 

compounds 3 and 4 in that the Tyr(Bzl)10 residue was replaced by a 

Tyr (i.e. without the Bzl group). Following the same arguments given 

for 3 and 4, an E configuration was assigned to compound 6 and a Z 

configuration to the compound 7 at the double bond.  

Many potential diagnostic NOEs could not be observed in the 

NOESY spectra of these analogues due to signal overlapping and this 

precluded structure calculations. For instance, H protons of Lys9 and 

Thr-ol15 resonated at the same chemical shift for both peptides. 

Actually, the NMR parameters of 6 (H shifts, coupling constants, and 

temperature coefficients) are very similar to those of compound 3, and 

this was also true for 4 and 7. Therefore, it could be hypothesized that 

3D structures should be similar too.  
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Figure 21. Stereoview of the lowest energy conformer of compound 8: family I 
(a), family II (b). Backbone is evidenced as a ribbon. Side chains of the ten lowest 
energy conformers are also shown as mesh surface. Surfaces are distinguished 
with different colors. N-Term, N-terminus; C-Term, C-terminus. 

 

Compound 8. The analogue 8 structure was rationalized starting 

from the peptide sequence of the previous compounds 4 and 5. In fact, 

it bears both 1-Nal7 and Tyr(Bzl)10. For compound 8, a Z configuration 

was established from the NOEs and coupling constant (3JCH=CH = 8.1 

Hz) between the two olefinic protons. NMR-based structure 

calculation (Table S28, Supporting Information), gave two 
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conformational families, as it did for compounds 4 and 5, the first 

(family I) showing a short 310-helix along the Thr10-dhDsa-C14-

Thr(ol)15 residues (Figure 21a), and the second (family II) an extended 

conformation along the same residues (Figure 21b). In both families, 

the D-Trp8, Lys9 and Tyr(Bzl)10 side chains were spatially closed in 

accordance with the increased up-field shift of the H and H 

resonances of Lys9. Differently from compound 5, 1-Nal7 residue 

could not adopt a trans conformation, probably due to steric hindrance 

with Tyr(Bzl)10. In fact, 1-Nal7 side chain was preferentially in a 

gauche- conformation.  
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1.3.3 Discussion 

In our ongoing efforts to develop new somatostatin ligands with 

improved stability and affinity towards sst receptors, we have 

rationally designed and analyzed a limited set of peptides (Table 9). In 

these peptides the labile disulfide bridge was replaced by a dicarba-

bridge, through the RCM reaction. As can be seen from Table 10, 

variation of the residues 7 and 10  results in analogues having a low 

sub-molar potency and a range of sst receptor subtype selectivities.  

Recently, we have investigated some octreotide analogues, 

including compound 3, in a water/DMSO-d6 8:2 solution.[156] Here, 

an NMR study was performed on the developed analogues of 

octreotide in SDS micelles solution (see section 1.1.3).  

Some apparently contradictory NOEs were indicative of the 

presence of at least two conformations in solution for analogues 4, 5, 

and 8. To deal with this incongruence we used a practical approach. 

Incompatible NOEs were considered separately in different 

calculation cycles. Hence, two families of conformations were 

obtained which differed mainly in that C-terminal residues were in 

310-helix (family I) or extended (family II) conformation. Eventually, 

the experimental restraints were fulfilled over the entire ensemble. It 

is noteworthy that the NMR data of the cognate molecule octreotide, 

using a single average conformation reveal several important 
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inconsistencies, including severe violations of mutually exclusive 

backbone-to-backbone NOEs.[160]  

On the basis of the NMR results, some general conformation-

affinity relationships concerning the binding to the sst receptors can be 

outlined. Similar to most of the bioactive analogues of SRIF reported 

so far,[161] the structures of the peptidomimetics presented here have 

a -turn of type II′ spanning residues D-Trp8 and Lys9. The side chain 

of D-Trp8 is in the trans conformer, and the side chain of Lys9 is in the 

gauche- conformer, bringing the two side chains adjacent to each other 

in close proximity. Analogues with the Z configuration at the double 

bond can adopt both helical and extended structures at the C-terminus, 

showing a conformational equilibrium (Figures 19-21). As a 

consequence of this conformational behavior, Z analogues show 

greater potency compared to the corresponding E isomers (4 vs 3 and 

7 vs 6) although it can go to the detriment of the selectivity, as in the 

case of compound 4 compared to 3. It could be argued, from the data 

of Table 10, that Z-geometry of the double bond is a better mimic of 

the S-S bridge which, in turn, was hypothesized to be directly 

involved in the interaction with the sst receptors.[162, 163]  

Analogues 3 and 4 bear a Tyr(Bzl) residue in position 10. The 

side chain of Tyr(Bzl)10 was designed to replace Phe6, Phe7, and Phe11 

of SRIF14.[164] Compound 3 (E-isomer) selectively binds sst5 while 
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its Z-isomer, 4, showed a pan-SRIF-activity, apart from sst4. In 

compound 3, the -turn motif is followed by a short 310-helix along 

residues Tyr(Bzl)10- dhDsa-C14-Thr(ol)15. The side chain of Tyr(Bzl)10 

is in the gauche- conformer and is located in close proximity to the D-

Trp8-Lys9 pair (Figure 18). This is in accordance with our recent 

results which correlates sst5 selectivity to conformationally restricted 

helical structure at the C-terminus.[156] The conformational 

properties of 3 in SDS micelles are similar to those observed in 

water/DMSO solution (data not shown). Only N-terminal residue D-

Phe2 is more flexible in the SDS solution compared to DMSO. 

In addition to high-affinity binding to sst2,3,5 like octreotide (1), 

compound 4 also exhibited a low nanomolar binding to sst1, hence its 

affinity pattern resembles that of the hexa-cyclic peptide SOM230 

(pasireotide) which also bears a Tyr(bzl)10 residue.[164] Since 

compound 4 fits 4/5 receptor binding sites, it was expected to display 

a high degree of flexibility. In fact, a dynamical equilibrium between 

extended and helical conformations was observed. Moreover, 

Tyr(Bzl)10 side chain orientation was different in the two 

conformations (Figure 19). Notably, NMR [160] and X-ray 

crystallography analyses have already suggested an equilibrium 

between extended and folded conformational states for the parent 

peptide 1.[165] Furthermore, SOM230 exhibited similar backbone 
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conformational equilibrium in a theoretical MD study; the side chain 

of Tyr(Bzl) of SOM230 underwent great flexibility which was 

associated with low selectivity.[166] Although sst2 is probably the 

most abundantly expressed SRIF receptor in human cancer,[167] 

recent literature data indicates that also sst1 and sst3-5 may also be 

present in some human tumors.[168] Hence, peptides with an 

improved receptor binding profile are desirable in order to extend the 

spectrum of tumors accessible to diagnosis and internal radiotherapy. 

As a matter of fact, SOM230 is being investigated in clinical trials as a 

potential treatment for acromegaly, neuroendocrine tumors and 

Cushing’s disease.[169, 170] 

Among the tested compounds, peptide 5 showed the highest 

affinity towards sst2 and also a good affinity towards sst5. The 

sequence of this cyclopeptide is the same as the S-S bridged 

NOC,[159] whose DOTA derivative, DOTA-NOC, exhibited high 

affinity towards sst2,3,5. The loss of sst3 affinity in 5 is probably due to 

the absence of the D-Phe2-bonded DOTA chelating group. Insertion of 

different arms at the N-terminus may, in fact have, a dramatic effect 

particularly on sst3 affinity.[171] Compound 5 is also closely related 

to the previously described compound 2, sharing its configuration at 

the double bond and the amino acid sequence but with Nal7 in 

replacing Phe7.[155] The activity profile of analogues 2 and 5 is 
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similar, showing an increase in the sst2 (~4-fold) and sst5 affinity (~2-

fold) of 5 compared to 2 (Table 10). Since 2 showed similar 

conformational properties as 5 (data not shown), the improved affinity 

towards sst2 and sst5 is probably attributable to the 1-Nal7 aromatic 

side chain which, oriented in a trans conformation, adequately fits the 

binding pocket of both receptors. 

Compounds 6 and 7 are analogues to 3 and 4, respectively, with 

the Tyr(Bzl)10 residue replaced by a tyrosine. This change renders 

compounds 6 and 7 strictly related to U-II. Analogue 6 showed a 

marked reduction of affinity towards sst5 compared to the correlated 

compound 3. Analogously, compound 7 showed a marked reduction 

of affinity towards sst1,3,5 and a 2-fold reduction towards sst2 

compared to 4. NMR data of the analogue couples pointed to similar 

conformational behavior, hence it can be argued that the Tyr10 phenol 

group is detrimental for binding to the sst receptors. This is in 

accordance with the low affinity of U-II to the sst2A receptor.[172] On 

the other hand, residual affinity of compound 7 towards sst2 and sst5 

(Table 10) parallels the capability of U-II to activate these two 

receptors at high doses.[173] 

By combining 1-Nal7 and Tyr(Bzl)10 residue replacements, we 

obtained compound 8 as a pure Z-isomer. Compound 8 showed the 

highest affinity towards sst5 (Table 10) with at least a 10-fold 



Chapter 1 

- 119 -	
 

selectivity compared to the other ssts. Compound 8 is closely related 

to compound 4, sharing its configuration at the double bond and the 

amino acid sequence but with 1-Nal7 replacing Phe7. Actually, the 

activity profile of the two analogues is similar (pan-SRIF-activity, 

apart from sst4) with a decrease of the sst1-3 affinity (2- to 4-fold) and 

increase of the sst5 activity (~3-fold) of 8 compared to 4. The 

conformational behavior of 8 also resembles that of 4, in accordance 

to the activity similarity (Figure 19 and Figure 21). Since the helical-

extended conformational equilibrium is also observable in the case of 

analogue 8, the affinity changes could be tentatively attributed to the 

orientation of the 1-Nal7 side chain which was differently oriented in 

the two peptides. In particular, it passed from a trans conformation 

observed in 4, to a gauche- conformation in 8. Such gauche orientation 

of the naphthyl group is likely still suitable (or preferred) for sst5 but 

not for sst1-3 binding.  

Based on the results reported above, we updated the previously 

proposed pharmacophore model for sst5-selective analogues.[156] The 

model involves the classical four side chains of the sst2/3/5 

pharmacophore,[162] namely, those of residues D-Phe2, Phe7 (Nal7), 

D-Trp8 and Lys9, plus the Tyr(Bzl)10 side chain. The distances 

between the Cγ atoms of these side chains, observed in the potent sst5 

ligands 3-5, 8 are reported in Table 11. The Cγ-Cγ distances found by 
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Melacini et al. for the sst2/3/5-selective SRIF analogues are also 

reported in the same table.[162] It can be observed that the distances 

found in our derivatives agree with the sst2/3/5 pharmacophore. 

 

Table 11. C-C distances (Å) between putative pharmacophoric 
residues.a 

Compd 3 4 5 8 sst2/3/5
b 

Ar2-Ar7 8.5±0.8c 9.0±1.2 9.5±0.5 8.4±1.0 5-11 
Ar2-Ar8 14.3±0.6 14.0±0.5 14.3±0.6 13.4±0.5 11-15 
Ar2-Lys9 14.8±0.9 14.4±1.0 13.9±1.0 14.5±1.0 12-15 
Ar2-Ar10 8.1±1.1 7.8±1.2 - 13.4±1.0 - 
Ar7-Ar8 7.8±0.8 7.6±0.3 6.8±0.2 8.2±0.5 7-9 
Ar7-Lys9 10.9±0.6 9.8±0.7 9.7±0.3 11.0±0.6 9-11 
Ar8-Lys9 5.5±0.2 5.6±0.2 4.7±0.3 5.2±0.4 5 
Ar8-Ar10 8.8±0.2 8.9±0.2 - 8.1±0.1 - 
Lys9-Ar10 7.2±0.2 7.2±0.1 - 5.9±0.2 - 
a Only the family I of peptides 4, 5, 8 were considered. bPharmacophore for the 
sst2, sst3, sst5 selective SRIF analogues [162] cAverage distance and standard 
deviation calculated from the ensemble of ten structures. 
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1.3.4 Conclusions 

A limited set of compounds of biostable SRIF analogues with 

dicarba bridge replacing the disulfide bridge of the parent octreotide 

(1) were prepared. Compounds were obtained by on-resin RCM by 

second generation Grubbs catalyst. All the analogues were tested for 

their affinity toward the sst1-5 receptor subtypes. Among the 

synthesized compounds, derivative 4 exhibited a pan-somatostatin 

activity (except sst4) and derivative 8 exhibited high affinity and 

selectivity towards sst5. Actually, compound 8 had a similar sst5 

affinity (IC50 4.9 nM) to SRIF-28 and octreotide. Conformation-

affinity relationships confirmed that helical propensity correlates with 

the peptide sst5-affinity while a pan-SRIF activity is obtained by 

conformational equilibria. Both pan- and selective-SRIF analogues are 

potentially useful for the diagnosis and internal radiotherapy of 

tumors. 
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1.3.5 Experimental Section 

General Procedures. Fmoc protected  amino acids were 

purchased from Calbiochem-Novabiochem (Laufelfingen. 

Switzerland). 2nd generation Grubbs catalyst was obtained from 

Aldrich. Fmoc-Hag, FmocObenzyl-L-tyrosine and H–l-Thr(tBu)–

ol–2–chlorotrityl resin were purchased from Iris Biotech 

(Marktredwitz, Germany). HATU was obtained from Chempep 

(Miami, USA). Peptide grade DMF was from Scharlau (Barcelona, 

Spain). All the other solvents and reagents used for SPPS were of 

analytical quality and used without further purification. Analytical 

RP-HPLCs were performed on a Waters instrument equipped with a 

UV detector on a Phenomenex Juppiter C18 column (5 m, 250 x 4.6 

mm) using a flow rate of 1 ml/min, with the following solvent system: 

0.1% TFA in H2O (A), 0.1% TFA in MeCN (B)). Semi-preparative 

RP-HPLC analyses were performed on the same instrument using a 

flow rate of 4 ml/min with the same solvent system, on a Phenomenex 

Juppiter C18 column (10 μm, 250 x 10 mm). Mass spectra were 

registered on an ESI LCQ Advantage mass spectrometer (Thermo-

Finnigan). LC-ESI-MS analyses were performed on a Phenomenex 

Juppiter C18 column (5 μm, 150 x 2.0 mm) using a flow rate of 500 

μL/min on a ThermoFinnigan Surveyor HPLC system coupled to ESI-

MS, using the solvent system: H2O (A), MeCN (B), 1% TFA in H2O 
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(C). Routine NMR spectra were acquired on a Varian Inova 700 

apparatus. TSP was purchased from MSD Isotopes (Montreal, 

Canada). 2H2O was obtained from Aldrich. SDS-d25 was obtained 

from Cambridge Isotope Laboratories, Inc. (Andover, MA). SPPS was 

performed in Teflon reactor on a manual synthesizer PLS 4x4 

(AdvancedChemTech). Receptor autoradiography was performed on 

20-m thick cryostat (Microm HM 500, Walldorf, Germany). 

Synthesis and Purification of Compounds 3-8. Peptides were 

synthesized following the method reported in the preceding 

work.[156] Briefly, the peptides were prepared using the general 

Fmoc-SPPS strategy on pre-swelled H–L-Thr(tBu)–ol–2–chlorotrityl 

resin. Couplings were performed by adding two equivalents of 

protected amino acid activated by HATU and four equivalents of 

NMM in DMF. Each coupling was monitored by the qualitative 

ninhydrin (Kaiser) test.[35] At the end of the linear peptides synthesis, 

a microscale cleavage was performed. RP-HPLC analysis of the crude 

products revealed the presence of the linear peptides in approximately 

95% purity, without traces of isomers due to amino acid racemization. 

The cyclization was performed on-resin by 2nd generation Grubbs 

catalyst (0.5 mole equiv. calculated on the basis of 0.5 mmol/g of 

peptide). After swelling, NH2 terminal Fmoc–Hag was deprotected  

and coupled with Fmoc–D-Phe affording the on-resin peptides 4-8 
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which were deprotected and cleaved [5, 6 and 7 with 

TFA/H2O/EDT/phenol (94:2:2:2, 3 h) while  4 and 8 with 

TFA/H2O/EDT/phenol (70:26:2:2, 2.30 h)]. The aqueous solutions of 

the peptides 4-8 were pre-purified by SPE, and after subjected to the 

purification by semi-preparative RP-HPLC and subsequently 

characterized by ESI-MS. Analytical RP-HPLC and ESI-MS analysis 

of the crude compounds revealed two chromatographic peaks with the 

same MW for compounds  4, - 7, corresponding to the geometric 

isomers (Z/E ratio  90:10). Compounds were then purified by semi-

preparative RP-HPLC and the most abundant chromatographic peaks 

were collected. For all the products HPLC purity was  97%.. Further 

experimental data are reported in the Supporting Information. 

NMR Spectroscopy. The samples for NMR spectroscopy were 

prepared by dissolving the appropriate amount of peptide in 0.55 ml of 

1H2O (pH 5), 0.05 ml of 2H2O to obtain a concentration 1-2 mM of 

peptides and 200 mM of SDS-d25. TSP was used as internal chemical 

shift standard. The water signal was suppressed by gradient echo.[68] 

NMR experiments were recorded on a Varian Inova-Unity 700 MHz 

at 308.1 K. Complete 1H NMR chemical shift assignments were 

effectively achieved for all the analyzed peptides (Supporting 

Information, Tables S19-S24) according to the Wüthrich procedure 

[36] via the usual systematic application of TOCSY [39] and NOESY 
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[40] experiments recorded in the phase-sensitive mode using the 

method from States.[70]  

Typical data block sizes were 2048 addresses in t2 and 512 

equidistant t1 values. Before Fourier transformation, the time domain 

data matrices were multiplied by shifted sin2 functions in both 

dimensions. A mixing time of 70 ms were used for the TOCSY 

experiments. NOESY experiments were run with mixing times of 100 

and 200 ms. The qualitative and quantitative analyses of TOCSY and 

NOESY spectra were obtained with the support of the XEASY 

software package.[41]  

Structural Determinations and Computational Modeling. The 

NOE-based distance restraints were obtained from NOESY spectra 

collected with the mixing time of 100 ms. The NOE cross peaks were 

integrated with the XEASY program and were converted into upper 

distance bounds using the CALIBA program incorporated into the 

program package DYANA.[71] Only NOE derived constraints 

(Supporting Information, Tables S25-S28) were considered in the 

annealing procedures. In a first calculation run, all the upper distance 

bounds were used, generating an ensemble of 100 structures with the 

simulated annealing standard protocol of the program DYANA. For 

peptides 4, 5, and 8, a number of consistent (i.e. in all calculated 

structures) violated upper limit constraints (> 0.1 Å) were observed 
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(Supporting Information, Tables S25-S28). These violations were 

discarded in a subsequent MD run. This step was repeated till no 

violation was observed (two runs were enough for all peptides). Thus, 

we obtained a first family of structures (family I). In a second MD 

cycle, the violated upper limit constraints of the first cycle were 

upweighted (10-fold) for the contribution to the target energy function 

of DYANA. Hence, we obtained a new set of violated constraints 

which were discarded in the subsequent MD runs. After two MD runs, 

no violations were observed. In the final calculation run, we applied 

the same weight to the undiscarded constraints and obtained a second 

family of structures (family II). Since, the two sets of violations had 

no common member we did not repeat further the described 

procedure.  

Finally, 20 structures for peptide 3, and 20 structures for each 

family of peptides 4, 5 and 8 were chosen, whose interprotonic 

distances best fitted NOE derived distances, and then refined through 

successive steps of restrained and unrestrained energy minimization 

calculations using the Discover algorithm (Accelrys, San Diego, CA) 

and the consistent valence force field (CVFF).[73] 

The minimization lowered the total energy of the structures. The 

final structures were analyzed using the InsightII program (Accelrys, 

San Diego, CA). Graphical representation were carried out with the 
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UCSF Chimera package.[76] The root-mean-squared-deviation 

analysis between energy-minimized structures were carried out with 

the program MOLMOL.[72]  

Determination of Somatostatin Receptor Affinity Profiles. Cell 

membrane pellets were prepared from human sst1-expressing CHO 

cells, sst2-, sst3-, sst4-expressing CCL39 cells and sst5-expressing 

HEK293 cells and stored at -80C. Receptor autoradiography was 

performed on 20-m thick cryostat (Microm HM 500, Walldorf, 

Germany) sections of the membrane pellets, mounted on microscope 

slides, and then stored at -20C as previously described.[174, 175] For 

each of the tested compounds, complete displacement experiments 

with the universal SRIF radioligand [Leu8, D-Trp22, 125I-Tyr25]-SRIF-

28 (125I-[LTT]-SRIF-28) (2,000 Ci/mmol; Anawa, Wangen, 

Switzerland) using 15,000 cpm/100 L and increasing concentrations 

of the unlabelled peptide ranging from 0.1 – 1000 nM were 

performed. As control, unlabelled SRIF-28 was run in parallel using 

the same increasing concentrations. The sections were incubated with 

125I-[LTT]-SRIF-28 for 2 hours at room temperature in 170 mmol/L 

Tris-HCl buffer (pH 8.2), containing 1% BSA, 40 mg/L bacitracin, 

and 10 mmol/L MgCl2 to inhibit endogenous proteases. The incubated 

sections were washed twice for 5 min in cold 170 mmol/L Tris-HCl 

(pH 8.2) containing 0.25% BSA. After a brief dip in 170 mmol/L Tris-
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HCl (pH 8.2), the sections were dried quickly and exposed for 1 week 

to Kodak BioMax MR film. IC50 values were calculated after 

quantification of the data using a computer-assisted image processing 

system as described previously.[175] Tissue standards 

(Autoradiographic [125I] and/or [14C] microscales, GE Healthcare; 

Little Chalfont, UK) that contain known amounts of isotope, cross-

calibrated to tissue-equivalent ligand concentrations were used for 

quantification.[146]  
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2.1 Design, Synthesis, and Cytotoxic Evaluation of Acyl 

Derivatives of 3-Aminonaphtho[2,3-b]thiophene-4,9-dione, a 

Quinone-Based System 

 

A series of 3-acyl derivatives of dihydronaphtho[2,3-b]thiophen-

4,9-dione system were studied with respect to cytotoxicity and 

topoisomerase II inhibitory activity. These analogues were designed 

as electron-deficient anthraquinone analogues with potential 

intercalation ability. Derivatives 3-(diethylamino)-N-(4,9-dioxo-4,9-

dihydronaphtho[2,3-b]thiophen-3-yl)propanamide (11m) and 3-(2-

(dimethylamino)ethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-

b]thiophen-3-yl) propanamide (11p) showed a high efficacy in cell 

lines that were highly resistant to treatment with doxorubicin, such as 

MDA-MB435 (melanoma), IGROV (ovarian), SF-295 (glioblastoma) 

human cell lines. Both compounds inhibit topoisomerase II mediated 

relaxation of DNA, while only 11p incites arrest at S phase in Caco-2 

cells, inducing a delay of cell cycle progression and an increase of cell 

differentiation. The ability of these derivatives of  modulate small heat 

shock proteins and the cardiotoxicy effects were also explored. In 

addition, DNA-binding properties of these compounds were 

investigated and discussed.  
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2.1.1 Introduction 

Anthracyclines are among the most effective and useful anti-

cancer agents developed, and they are used to treat more types of 

cancer than any other chemotherapy agent.[176, 177] Their clinical 

importance has stimulated wide research [178-181] directed to the 

development of new structurally related compounds with the goal of 

bypassing significant problems that limit their utility, such as their 

failure in resistant tumors expressing the ABCB1 (MDR1) gene [182-

184] and the emergence of severe short- and long-term side effects 

associated with bone marrow and myocardial cell toxicity.[185, 186] 

With this aim, our research group has developed different series of 

quinone-based compounds containing the 3-amino-3-

(ethoxycarbonyl)-2,3-dihydrothieno[2,3-b]naphtho-4,9-dione system 

(4, DTNQ) as chromophore (Figure 22).[187] The effected 

modifications on this template and the analysis of the structure-

activity relationship (SAR) on the different synthesized series showed 

that the incorporation of a distal protonated alkyl amine linked to 

chromophore DTNQ system through a five- or six-membered 

heterocycle or the presence of a cycloalkyl as the fifth ring were 

effective approaches to identify new compounds endowed with potent 

cytotoxic activity, and able to overcome multidrug resistance of tumor 

cells. Thus, the 3-glycyl-amino-3-(ethoxycarbonyl)-2,3-
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dihydrothieno[2,3-b]naphtho-4,9-dione (5),[188] the spirohydantoin 

derivatives 3-[2-(N,N-dimethylamino)ethyl or propyl]-

spiro[(dihydroimidazo-2,4-dione)-5,3′-(2′,3′-dihydrothieno[2,3-

b]naphtho-4′,9′-dione)] (6a,b) [189] as well as the 

spirodiketopiperazine derivatives 4-[(2-N,N-

dimethyl)amino]ethylspiro[(dihydropirazin-2,5-dione)-6,3′-(2′,3′-

dihydrothieno[2,3-b]naphtho-4′,9′-dione) (7) [190] and spiro 

[(hexahydropyrrolo[1,2-a]pyrazine-1,4-dione)-6,3′-(2′,3′-

dihydrothieno[2,3-b]naphtho-4′,9′-dione)] (8) [191] showed 

remarkable cytotoxic activity against several solid tumors and 

doxorubicin- and cis-platinum-resistant human cell lines. 

 

Figure 22. Structure of some DTNQ derivatives and the new TNQ system. 
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In addition, STD-NMR spectroscopy investigation performed on 

compounds 7 and 8 demonstrated that these derivatives interact with 

DNA with a dual binding mode: intercalative for the 

dihydrothieno[2,3-b]naphtho-4,9-dionetricyclic core and external 

considering the side-chain moiety.[190, 191] However, even though 

these derivatives had many of the structural characteristics of classical 

quinone-based DNA intercalating agents, they were not able to inhibit 

topoisomerase II (topo II) at equicytotoxic concentrations, indicating 

that other factors such as differences in cellular uptake, distribution 

within the cell, and additional targets within the cell might also affect 

the cytotoxicity of these derivatives.[192] 

Now we have considered the possibility of using a new DTNQ 

derivative, the 3-aminonaphtho[2,3-b]thiophene-4,9-dione (9, TNQ) 

recently synthesized in our laboratories,[193] as a more planar 

chromophore. This quinone-based amine system showed interesting 

cytotoxic activity toward the MCF-7 human breast carcinoma (IC50 = 

3.2 M) and SW 620 human colon carcinoma cell lines (IC50 = 4.0 

M) indicating its potential as a template in the development of 

efficient cytotoxic agents. The new system presents a more “planar 

core” compared to initial DTNQ structure and an amine group able to 

be functionalized with appropriate side chain in a defined orientation 

with respect to the chromophore, thus guaranteeing two of the main 
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structural requisites for the antineoplastic activity of intercalating 

agents. According to literature data, among heterocyclic quinones 

endowed with cytotoxic activity, those containing a thiophene nucleus 

fused to a quinone system have received little attention, despite the 

antitumoral activity of thiophene analogues of daunomycin and 

mitoxantrone described by the work groups of Kita [194] and 

Krapcho,[195] respectively. 

Thus, we developed a series of 3-substituted-aminonaphtho[2,3-

b]thiophene-4,9-dione derivatives in which the amine group of the 

planar chromophore (TNQ) was linked to several amino acids (Gly, 

Ala, Phe, Lys, Pro, -Ala), substituted-alkylcarbonyl chains 

(hydroxyacetyl, hydroxypropionyl, (N,N-diethyl)aminoacetyl, (N,N-

diethyl)aminopropionyl, 2-morpholinacetyl, 3-morpholinpropionyl, 

(N’,N’-methyl)(N-aminoethyl)-aminopropionyl, thioacetyl, 

thiopropionyl) and carbamoyl chains (propyl, aminoethyl), which 

represent the side chain functionalities of the more active compounds 

of the precedent series. The objectives of this investigation are: a) 

validation of TNQ system as template in the development of new 

quinone-based antitumoral agents exploring so new chemical spaces; 

b) identification of the structural parameters which are important for 

the cytotoxic activity, through a comparative study of the structure 

activity relationships (SARs) of TNQ derivatives; and c) exploration 
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of the basic biochemical events correlated to cytotoxic activity of new 

derivatives. The present work deals with the preliminary studies 

concerning the synthesis of novel TNQ derivatives, the cytotoxic 

activity, the interaction with topo II and DNA, and their influence on 

cell cycle progression. 
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2.1.2 Results and Discussion  

Chemistry. The synthetic approach to new 3-substituted-

aminonaphtho[2,3-b]thiophene-4,9-dione derivatives was based on the 

capacity of DTNQ system and its 3-N-acyl derivatives to undergo 

oxidative decarboxylation in hydrolytic basic way, as we recently 

described.[193] Condensation of 3-amino-3-ethoxycarbonyl-2,3-

dihydrothieno[2,3-b]naphtho-4,9-dione (4, DTNQ) with different Boc-

amino acids (a = Gly, b= Ala, c = Phe, d = Lys, e = Pro, f = -Ala,) 

using HBTU, HOBt, and DIPEA in DMF afforded, with high yields 

(50-65%), the appropriate pseudodipeptide intermediates 10’a-f, as 

shown in Figure 23. Treatment with DBU in MeOH/H2O medium 

gave directly the corresponding decarboxylated intermediates 11’ a-f 

in 76-82% yields. Finally, after removal of the Boc protecting group 

using 20% TFA in dichloromethane and triethylsilane as scavanger, 

the final compounds 11a-f were obtained as trifluoroacetate salts in 

40-48 % overall yields. 
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Figure 23. Reagents and conditions: i) Boc-Aaa-OH HBTU, HOBt, DIPEA in 
DMF, room temperature ii) DBU in MeOH/H20, room temperature, iii) 
TFA/DCM, TES. 

 

Two homologue series of compounds containing a linear 

substituted-alkyl chain were synthesized from 3-(2′-chloro)acetamide-

3-ethoxycarbonyl-2,3-dihydrothieno[2,3-b]naphtho-4,9-dione (12) and 

3-(acrylamido)-3-ethoxycarbonyl-2,3-dihydrothieno[2,3-b]naphtho-

4,9-dione (13) respectively, followed a similar methodology (Figure 

24). 
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Figure 24. Reagents and conditions: i) chloroacetyl chloride, TEA in THF; ii) 
bromopropionyl chloride, TEA in THF, iii) DBU in MeOH/H2O, room 
temperature; iv) Nucleophilic reagents in THF, TEA, reflux temperature; v) then, 
for 11i and 11n 20% TFA in dichloromethane; vi) then, for 11j and 11k, 11m, 
11o, and 11p HCl (g)/diethyl ether solution. 

 

Condensation of 4 with chloroacethyl chloride in THF, using 

triethylamine as base, afforded the (2′-chloro)acetamide derivative 12 

with 92% yield. Under these conditions, the reaction of 4 with 

bromopropionyl chloride gave the 3-bromopropionamide intermediate 
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(90% yield), which partially evolved to -elimination product 3-

(acrylamido)-3-ethoxycarbonyl-2,3-dihydrothieno[2,3-b] naphtho-4,9-

dione (13), during work-up of reaction. Decarboxylation performed on 

12 and 13 intermediates gave directly the 2-hydroxyacetamide (11g) 

and 3-hydroxypropyonamide (11l) as final compound, respectively. 

Nucleophilic displacement of the chlorine atom (12) or Michael-type 

addiction to acrylamido moiety (13) using diethylamine, 

triphenylmethanethiol, morpholine or N,N-diethylethylendiamine, in 

THF and triethylamine at reflux, readily provided the corresponding 

acetamide (12’h-k) or propionamide (13’m-p) analogues. Basic 

hydrolysis of these derivatives afforded the corresponding 

decarboxylated compounds (11h-j and 11m-p), except in the case of 

12’k (R = HNCH2CH2N(CH3)2). In fact, under the cited conditions, 

this intermediate gave the cyclic derivative 4-[(2-N,N-

dimethyl)amino]ethylspiro[(dihydropirazin-2,5-dione)-6,3′-(2′,3′-

dihydrothieno[2,3-b]naphtho-4′,9′-dione)] (7) previously 

described.[190] Then, final compounds presenting an amine 

functionality 11j, 11k, 11m, 11o, and 11p, were treated with a 

solution of gaseous hydrochloric acid in diethyl ether to provide 

corresponding hydrochloride salts. This was found to both aid 

purification, and provide an improved solubility profile for the 

biological assays. The final thioacetamide 11i and thiopropyonamide 
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11n derivatives were obtained after S-Trt deprotection using 20% 

TFA in dichloromethane in quantitative yields. 

For the synthesis of compound 11k and the urea-based 

derivatives 11q and 11r we chose an alternative route which implied 

the use of 3-amino-naptho[2,3-b]thiophene-4.9-dione (TNQ, 9) as 

starting material (Figure 25). The condensation of 9, obtained after 

deprotection of corresponding N-Boc TNQ (14) using 50% TFA in 

dichloromethane,[193] with chloroacethyl chloride afforded the (2′-

chloro)acetamide intermediate 15 (88% yield). Reaction of 15 with 

diethylamine in THF and triethylamine at reflux, afforded the final 

derivative 11k. Compounds 11q and 11r were obtained by treatment 

of 9 with triphosgene and TEA in THF followed by addiction of 

propylamine or N,N-dimethylethylendiamine. Also in this case, the 

use of 9 as starting material was necessary since the corresponding N-

carbamoyl derivatives of DTNQ (compounds 6’) evolved rapidly to 

spirohydantoin derivatives 6 under hydrolitic conditions.[189] 
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Figure 25. Reagents and conditions: i) (Boc)2O, ii) DBU in MeOH/H2O, room 
temperature; iii) 50% TFA/dichloromethane; iv) chloroacetyl chloride, TEA in 
THF; v) (N,N-dimethyl) ethylenediamine in THF, TEA, reflux temperature; vi) 
triphosgen, TEA, THF, room temperature, 10 min, then R-NH2. 

 

In Vitro Cytotoxicity. TNQ derivatives were first examined for 

antiproliferative activity against the MDA231 human breast 

carcinoma, SW 620 human colon carcinoma, and U937 human 

leukemic monocyte lymphoma cell lines, and the obtained IC50 values 

are summarized in Table 12. For comparative purposes, the template 9 

and doxorubicin were also included in the assay.  

Results in Table 12 confirmed the compound 9 as potential 

scaffold of new antitumoral agents with a cytotoxic activity into the 

micromolar range on three cell lines used in the assay. The improved 

antitumor activity and spectra of some of the newly synthesized 
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compounds, compared to 9, demonstrated that chemical modification 

at C-3 was an effective approach to optimize the activity profiles of 

TNQ moiety. The wide activity range observed for compounds 11a-

11r (IC50 from 0.6 to >40 M) indicated that the nature of substituents 

on amine group at C-3 position markedly affects the activity profile of 

these compounds. Incorporation through the 3-amino group of 

different amino acids was well tolerated in the case of linear amino 

acids such as glycine (11a). The presence of amino acids containing 

alkyl (Ala, 11b) or benzyl (Phe, 11c) side chain, relatively more rigid 

and more electron rich when compared to non substituted side chain, 

led to significant loss of activity, especially in the MDA231 cell line. 

This negative effect was more noteworthy with the introduction of an 

alkyl amino side chain (Lys, 11d). The incorporation of Pro gave the 

derivative 11e, which turned out to be the most active in the leukemic 

cell line (IC50 = 0.9 M).  
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Table 12. Cytotoxic activities of 3-(amino)naphtho[2,3-b]thiophene-
4,9-dione (9) and 3-[(acyl)amino]naphtho[2,3-b]thiophene-4,9-dione 
derivatives (11 a-f). 

 

compd R 
IC50 (�M) ±SDa TopoII-activitye

5M      10M MDA231b SW620c U937d 
9  11.3±0.4 4.0±0.3 10.1±0.4   
11a CH2NH2

f 6.2±4.6 2.3±0.4 7.0±0.07  
11b CH(CH3)NH2

 f >40 12.4 ±1.5 9.1±0.2  
11c CH[CH2(C6H5)]NH2

 f >40 30.50±6.4 >40 + +  
11d CH[(CH2)4NH2]NH2

 f >40 >40 20±0.01   
11e 2-pyrrolidinyl f 6.7±2.5 5.4 ±0.1 0.9±0.06  
11f CH2CH2NH2

 f 3.7±0.9 0.8±0.27 1.7±0.01  
11g CH2OH 10.1±0.2 18.5 ±0.7 15.1±0.06  
11h CH2N(CH2CH3)2

g 8.5±0.12 4.0 ±0.14 5.1±0.07  
11i CH2SH 13.6±0.15 20.9 ±0.16 30.1±0.04  
11j CH2-morpholine g 7.1±0.2 10.8 ±0.12 4.3±0.02  
11k CH2NH(CH2)2N(CH3)2

 g 4.9±0.4 2.1±0.3 4.0±0.03  
11l (CH2)2OH 9.2±0.6 20.3± 0.8 15±0.06   
11m (CH2)2N(CH2CH3)2

 g 2.5±0.1 1.5 ±0.2 1.1±0.01 + +++  
11n (CH2)2SH 15.2±0.1 20.7 ±0.8 23.9±0.34   
11o (CH2)2-morpholine g 10.1±1.3 20.1 ±0.3 7.2±0.07  
11p (CH2)2NH(CH2)2N(CH3)2

g 2.0±0.1 0.6 ± 0.08 1.3±0.03 ++ +++  
11q NH(CH2)2CH3

 g 9.5±0.52 6.5 ±1.20 10.1±0.50   
11r NH(CH2)2N(CH3)2

 g 8.7± 0.30 5.9 ±0.20 9.8±0.20  
 Doxorubicin 1.13±0.01 0.12±0.01 0.93±0.01 0 0  
a Data represent mean values (SD) for three independent determinations. b Human 
melanoma cell line. c Human colon carcinoma cell line. d Human leukemic 
monocyte lymphoma cell line. e The semiquantitative evaluation of TopoII-
mediated DNA relaxation activity was as follows: +++, high; ++, intermediate; +, 
low; 0, absent. All the rest compounds were not tested. f Evaluated as TFA salts. g 
Evaluated as HCl salts.  
 

Other interesting results were obtained with the incorporation of 

a primary or tertiary amine to the end of the ethyl side chains. 

Compounds 11f, 11m, and 11p retained cytotoxic levels similar to 

those of doxorubicin on the SW 620 cell line, with IC50 values of 0.8, 

1.5, and 0.6 M respectively, and maintained the activity on the 
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MDA231 and U937 cell lines within the micromolar range (2.0-3.7 

M and 1.1-1.7 M, respectively). These derivatives were 2-5 fold 

more potent than their methylene homologues (11a, 11h, and 11k, 

respectively) on all the cell lines. Congeners with a hydroxyl 

(compounds 11g and 11l), thiol (compounds 11i and 11n) or 

morpholin (compounds 11j and 11o) groups were remarkably less 

potent compared to their primary and tertiary amine analogues. 

Finally, the incorporation of an alkyl or alkylamino side chain 

through an ureide group led to a decrease of the activity in the 

resultant analogues 11q and 11r, respectively. These results imply a 

minor tolerance to structural modifications in this series compared to 

precedent series. 

To further determine the antitumor spectra, the most potent 

compounds 11f, 11m, and 11p were selected and screened against a 

panel of human tumor cell lines, including MDA-MB435 and SK-

MEL 28 (melanoma), IGROV (ovarian), SF-295 and SNB-19 

(glioblastoma), and Colo205, HT-29, and undifferentiated Caco-2 

(colon). Differentiated Caco-2, a well accepted model of normal cell 

line due to its ability to acquire the phenotype of mature small-

intestinal cell,[196, 197] was utilized to characterize a safety profile of 

the compounds at least in terms of “cell-selectivity”.[198, 199] 
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As observed in Table 13, selected compounds were more potent 

than doxorubicin on the melanoma, colon and CNS human tumor cell 

lines, with IC50 values in the range 0.1–1.0 μM. Compounds 11m and 

11p turned out to be the most active derivatives against SK-MEL 28 

human melanoma cell line (IC50 = 0.6 and 0.3 M, respectively) and 

were equipotent to doxorubicin (IC50 = 0.4 M). Analogously to that 

observed in the previously described series,[189-191] these 

compounds showed a remarkable activity against tumoral cell lines 

generally highly resistant to treatment with doxorubicin. Compounds 

11m and 11p presented a cytotoxic activity in the micromolar range 

against undifferentiated Caco-2 tumoral colon cell lines (IC50 = 0.8-

1.0 M), while showed to be 4-fold less active (IC50 = 3.8-4.1 M) on 

differentiated Caco-2 cell line. These data indicated a good profile of 

cell-selectivity for our derivatives (Selectivity Index (SI) ~ 0.22) 

especially if they are compared with the high toxicity data obtained 

with doxorubicin (SI = 11.1). 
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Table 13. Inhibition of multiple human tumor cell lines by selected 
compound. 

Origin of tumor Cell line 
IC50 (M) ±SDa 

11f 11m 11p Doxorubicin 
Melanoma MDA-MB435 0.4±0.10 0.5±0.08 0.5±0.09 1.3±0.21 
 SK-MEL 28 1.5±0.08 0.6±0.08 0.3±0.07 0.6±0.09 
Ovarian IGROV 1.2±0.30 2.5±0.10 2.0±0.20 1.3±0.30 
Glioblastoma SF-295 2.8±0.20 0.6±0.06 0.6±0.09 4.4±0.50 
 SNB-19 1.6±0.60 0.7±0.04 0.9±0.10 0.8±0.05 
Colon Colo205 0.4±0.04 0.9±0.05 1.1±0.05 1.5±0.30 
 HT-29 0.6±0.08 0.8±0.05 0.5±0.10 1.1±0.20 
 Caco-2b 2.6±0.2 1.0±0.6 0.8±0.03 6.7±0.80 
 Caco-2c 6.1 ±0.32 4.1±0.10 3.8 ±0.09 0.6±0.05 
 SId 0.43 0.25 0.21 11.1 

a Data represent mean values (SD) for three independent determinations. b Pre 
confluent Caco-2 cell line. c Post confluent Caco-2 cell line. d SI = selectivity 
index (IC50 on undifferentiated Caco-2 cell line/IC50 on differentiated Caco-2 cell 
line ratio) 
 

Subcellular distribution of TNQ derivatives in MCF-7 cell line. 

Distribution of the labelled forms of our derivatives within the cell 

was investigated by confocal microscopy in MCF-7 cell line, using 50 

nM of 11m (IC50= 0.5 M) and 11p (IC50 = 0.6 M). As showed in 

Figure 26, these TNQ derivatives are clearly localized in the nuclei 

indicating a site of cytotoxic action similar to classic quinone-based 

intercalators.[200]  
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Figure 26. Distribution of labeled 11m and 11p in MCF-7 cells by confocal 
microscopy. 

 

Topoisomerase inhibition. A number of quinone antitumor drugs 

are thought to be cytotoxic by virtue of their ability to stabilize a 

covalent topo II-DNA intermediate, the cleavable complex.[201] Topo 

II is an essential enzyme that plays an important role in DNA 

replication, repair, transcription, and chromosome segregation.[202] 

Topo II alters the topological state of nucleic acids by passing an 

intact DNA helix through a transient break which generates a separate 

DNA helix.[203, 204] We analyzed the possibility that compounds 

11m and 11p could inhibit the activity of topo II. The effect of 

cytotoxic compounds 11m and 11p and of the inactive compound 11c 

on the strand passage activity of topo II was determined by the 

enzyme-mediated negatively supercoiled pBR322 relaxation.[205]  
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Figure 27. Effects of compounds 11p, 11m and 11c on the topo II-mediated DNA 
cleavage. Supercoiled plasmid pBR 322 (0.5 pmol) was incubated with 1 unit of 
purified human topo II in the presence or absence of the tested agents: (lane 1), 
supercoiled DNA;  (lane 2) relaxated DNA enzyme control; (lanes 3 and 4) 5 and 
10 μM of compound 11p; (lanes 5 and 6) 5 and 10 μM of compound 11m; (lanes 
7 and 8) 5 and 10 μM of compound 11c. 

 

As indicated in Figure 27, compounds 11m and 11p displayed 

significant inhibition of topo II mediated relaxation in a concentration-

dependent mode, while 11c does not inhibit this activity at the 

concentrations tested. These results, showed also in Table 12 as semi-

quantitative form,  parallel the cytotoxicity data enumerated in the 

same table, thus suggesting a behavior similar to classical 

intercalators. Moreover, at the assay concentrations, the doxorubicin 

showed a lack of activity (see Supporting Information) which agrees 

with the results described in different studies.[206, 207] These works 

show as the doxorubicin inhibits topo II only at the concentration 

range of 0.04 to 0.92 M while at higher concentration the inhibition 

is either diminished or totally abolished.  
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DNA Binding Properties by NMR. Representative compounds, 

11c, 11m and 11p, were tested to see if they interact with DNA, using 

both saturation transfer difference (STD) [208] and water-ligand 

observed via gradient spectroscopy (WaterLOGSY) NMR 

techniques.[209] STD NMR and WaterLOGSY are techniques that 

can be used to characterize and identify binding. These techniques 

have become increasingly important as a tool in the investigation of 

biomolecular recognition phenomena.[210] In the STD NMR, 

resonances of the macromolecule are selectively saturated, and in a 

binding ligand, enhancements are observed in the difference (STD 

NMR) spectrum resulting from subtraction of this spectrum from a 

reference spectrum in which the macromolecule is not saturated. All 

the proton resonances of 11m and 11p were observed in the STD 

spectra acquired in the presence of poly(dG-dC)·poly(dG-dC) 

copolymer as DNA target (Figure 28), demonstrating that 11m/ and 

11p/DNA interactions did occur. In contrast, the absence of the proton 

resonances of 11c in its STD spectra (Figure 28) demonstrates that 

11c does not interact with DNA. The same results were obtained using 

the WaterLOGSY experiment. In this experiment, the large bulk water 

magnetization is partially transferred via the macromolecule-ligand 

complex to the free ligand. Due to the very different tumbling times of 

the free ligand and of the macromolecule-ligand complex, LOGSY 
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signals are typically negative for free ligands in solution, and 

relatively less negative or positive for binders in the presence of the 

macromolecule. Figure 29 shows the WaterLOGSY spectra of 11c, 

11m and 11p with and without the poly(dG-dC)·poly(dG-dC) 

copolymer. As observed, 11m and 11p signals became positive in the 

presence of DNA while 11c signals remain negative demonstrating 

that 11m and 11p but not 11c interact with the DNA polymer.  

Furthermore, we applied the so-called DF-STD (differential 

frequency STD) spectroscopy,[211] to study the binding modes of 

11m and 11p with the DNA. The method allows the discrimination of 

base-pair intercalators, minor-groove, and external binders. The 

approach is based on the comparison of two parallel sets of STD 

experiments performed under the same experimental conditions, in 

which saturation is centered either in the aromatic or in the low-field 

aliphatic spectral regions.  
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Figure 28. 1D proton spectra (a, d, g) and the corresponding STD NMR spectra 
recorded upon saturation at 10 ppm (b, e, h) and -1 ppm (c, f, i) of 11c/, 11m/, and 
11p/DNA complexes, respectively. The STD NMR spectra were plotted with the 
same noise level. 
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Figure 29. Water LOGSY spectra of 11c, 11m, and 11p in the absence (b, d, e) or 
in the presence (a, c, e) of poly(dG-dC)•poly(dG-dC) copolymer.* DMSO 
residual signal. 

 



Chapter 2 

- 153 -	
 

A ligand making proximate contacts with aromatic base protons, 

such as an intercalator sandwiched by consecutive base pairs, would 

receive more saturation upon irradiation of DNA aromatic protons 

rather than irradiation of deoxyribose protons. The converse would be 

true for an external ligand. The “binding mode index” (BMI), a 

numerical parameter that expresses the relative sensitivity of ligand 

protons to the perturbation arising from base versus sugar/backbone 

saturation was used.[211] Three BMI ranges were defined in the 

original contribution:[211] 0 < BMI < 0.50 for external (nonspecific) 

electrostatic backbone binding; 0.90 < BMI < 1.10 for minor groove 

binding; and 1.20 (0.90) < BMI < 1.50 for base-pair intercalation. DF-

STD analysis of compound 11m gave different BMI values: BMI = 

0.86, for the aliphatic signals; and BMI = 1.35 for the aromatic 

signals. This result can be explained assuming two different DNA 

binding modes for 11m. An intercalative mode of binding is sustained 

by its tricyclic planar core, and an external backbone binding can be 

attributed to its side chain. This is similar to that observed for 

doxorubicin [211] and for compounds 7 and 8 in our previous 

works.[190, 191] Considering 11p, BMI = 1.01 was measured for the 

aromatic protons and BMI = 0.90 for the aliphatics. These BMI values 

are compatible with both intercalative and minor groove binders. 
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Cell Cycle Effects. To investigate the cytotoxic effects of these 

derivatives in more detail, we examined the effects on cell cycle 

progression in CaCo-2 cell line. The percentage of these cells in G1, 

S, and G2/M phases was analyzed after 48 h of treatment with 1 M 

of 11m, 11p, and 11c (Figure 30). Under these conditions, the control 

cells were in the G1 phase 42%, G2/M phase 21%, and S phase 36%. 

The treatment with 11p resulted in a significant accumulation of cells 

in the S phase while concomitantly the G1 populations decreased. 

About 53% of the CaCo-2 cells treated with this compound were 

arrested at the S phase. Under the same conditions, treatment with 

11m induces an weak increased of cell in both G2 and S phases and 

with compound 11c tempts a less significant response.  
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Figure 30. Effects of 11m, 11p, and 11c on the distribution of Caco-2 cell 
populations data represent the percentage of cells in each cell cellular cycle 
phases. For 11m: G1, 29%; G2/M, 28%; S, 41%; 11p: G1, 20%; G2/M, 26%, S, 
53%; 11c: G1, 37%; G2/M , 18%, S, 44%. 
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Accordingly, treatment of Caco-2 cells with 1 M of our 

derivatives for 48h induced an increase of cyclin A expression [212] 

only in the case of 11p (43%, see Supporting Information) indicating 

that the cell cycle progression of cells in the S phase was prompted. 

The expression of cyclin A was not upset in treated Caco-2 cells with 

11m and 11c. 

Since cell division arrest is one of the prerequisites for cell 

differentiation,[213] we determined the effect of our molecules on 

Caco-2 differentiation. In Figure 31 we report alkaline phosphatase 

(ALP) activity, a marker of enterocytic differentiation correlated to 

post-confluent phase.[214]  

 

 

Figure 31. Differentiation of Caco-2 cells assessed by measurement of alkaline 
phosphatase activity after 48h of culture in the presence of 0, 1, 5, and 10 M of 
11p, 11m and 11c. 

 

Treatment of pre-confluent Caco-2 with 1M 11p increased ALP 

activity of 35% (p value< 0.005). A more significant increase of the 
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differentiation, with ALP augment of >180%, was only obtained by 

treatment of Caco-2 cells with 5 M 11p or 10 M 11m for 48 h. All 

these preliminary results suggested that, for this series, the cell growth 

inhibition was not related to cell cycle perturbation.  

Modulation of heat shock protein (hsp) expression. Small heat 

shock proteins are involved in a variety of cellular processes including 

cell growth and differentiation.[215, 216] We previously reported the 

ability of a DTNQ analogue, compound 8, to modulate the heat shock 

protein expression on Caco-2 cells.[192] In order to evaluate the 

behavior of the  new synthesized derivatives, we carried out a study 

preliminary of the effect of  11m and 11p at 1 and 5M on Hsp27 

expression in Caco-2 cells for 48h. Hsp27 is weakly expressed in 

Caco-2 (Figure 32), and treatment of this cell line with 11p led to 

significant dose-dependent increase of  its expression. 11m  produced 

a weak enhanced of hsp27 expression at 1M, which was not 

observed at 5M.  
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Figure 32. Effects of Caco-2 cells treatment with 1 and 5 M  of compounds 11p 
and 11m on hsp27 expression. 

 

Cardiomyocyte cell viability. It is well known that the clinical 

use of anthracyclines, specially doxorubicin, in the treatment of many 

neoplastic diseases is limited by cumulative cardiotoxicty.[186] One 

of the cause of this effect has been attributed to the redox process 

involving the quinone system which results in the formation of 

reactive oxygen species and ultimately in myocyte death. In order to 

evaluate the potential toxicity of our quinone ring we examined the 

cell viability in cardiac derived H9C2 myocytes exposed to 1M 11m 

11p and doxorubicin for 24, 48, 72, 96 and 120 h. Previous studies 

reported in the literature used this cell line as a model system to 

evaluate the  cardiotoxicity caused by doxorubicin.[217, 218] As show 

in Figure 33, treatment with doxorubicin induced cardiotoxicity in a 

time-dependent manner [186] while compounds 11m and 11p 
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maintained an good cell viability after 120 h (74 and 76%, 

respectively)  

 

Figure 33. Results of cell viability assay of compounds 11m, 11p , and 
doxorubicin on H9C2 cells at concentration of 1M. 

 

The possible correlation [219] between these data and the 

preliminary results obtained with our products on the modulation of 

hsp27, will  be  object of more in-depth studies. 
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2.1.3  Conclusions 

We report the synthesis and biological evaluation of a series of 

quinone-based derivatives, designed as conjugated structures linking 

a planar naphtho[2,3-b]thiophenedione core with different acyl-

substituted groups. Among the designed molecules, compounds 

containing an 3-(diethylamino)propanamide (11m) or 3-(2-

(dimethylamino)ethylamino)propanamide (11p) protonable side chain, 

showed a greater cytotoxic potency than doxorubicin against cell lines 

which were highly resistant to treatment with this drug, such as the 

melanoma (MDA-MB435), glioblastoma (SF-295) and colon (SW 

620, Col205, and HT-29) human tumor cell lines,  

Preliminary results about the mechanism of action indicate that 

these derivatives had a significant effect on topoisomerase II activity 

targeting the nuclear DNA, which is generally considered as an 

attractive target for anticancer therapy. The NMR results suggested 

that DNA interactions do occur for highly active compounds 11m and 

11p but not for inactive compound 11c. Experimental data indicate 

that 11m and 11p intercalate the DNA through their aromatic portion. 

Furthermore, a non intercalative mode of binding to DNA can also 

hold for 11p. These data revealed significant similarities in the 

cytotoxic behavior and the site of action of these compounds 

compared to classical intercalators. However, tested compounds 
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showed a minor influence on the regulation of the cellular cycle and 

only derivative 11p prolonged the S phase of the Caco-2 cell cycle 

inducing both delay of cell cycle progression in responsive cells and 

moderate cellular differentiation. This last compound showed also a 

high ability of increase hsp27 expression. Finally, the compounds 

under study affect the viability of H9C2 cells after chronic treatment 

at less extend compared to doxorubicin. Further development and 

more in-depth studies on mechanism of action of this series are in 

progress. 
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2.1.4  Experimental Section 

General: Reagents, starting materials, and solvents were 

purchased from commercial suppliers and used as received. Analytical 

TLC was performed on plates coated with a 0.25 mm layer of silica 

gel 60 F254 Merck and preparative TLC on 20×20 cm glass plates 

coated with a 0.5 mm layer of silica gel PF254 Merck. Flash and 

gravity chromatographic purification were performed using 230-400 

mesh silica gel unless otherwise noted. Melting points were taken on a 

Kofler apparatus and are uncorrected. 1H NMR and 13C NMR spectra 

were recorded with a Varian-400 spectrometer, operating at 400 and 

100 MHz, respectively. Chemical shifts are reported in δ values (ppm) 

relative to internal Me4Si, and J values are reported in Hertz (Hz). 

ESI-MS experiments were performed on an Applied Biosystem API 

2000 triple-quadrupole spectrometer. Combustion microanalyses were 

performed on a Carlo Erba CNH 1106 analyzer and all reported values 

are within 0.4% of calculated values. These elemental analyses 

confirmed ≥ 95% purity. 

General procedure for the synthesis of 3-

[(Acyl)amino]naphtho[2,3-b]thiophene-4,9-dione trifluoroacetate 

salts (11 a-f). The 3-amino-3-ethoxycarbonyl-2,3-dihydrothieno[2,3-

b]naphtho-4,9-dione system (DTNQ) (1), the 3-(N-tert-

butyloxyaminoacyl)amino-3-ethoxycarbonyl-2,3-dihydrothieno[2,3-
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b]naphtho-4,9-dione (10’ a-f), and the 3-(N-tert-

butyloxyaminoacyl)aminonaphtho [2,3-b]thiophene-4,9-dione (11’ a-

f) derivatives were synthesized according to the references 12, 13, and 

17 respectively. Then, TFA was added to a solution of decarboxylated 

Boc-protected derivatives (11’ a-f) (0.1 mmol) in DCM (10 mL), 

using triethylsilane as scavenger. Stirring was continued for 3–4 h at 

room temperature, the reaction mixture was concentrated to half 

volume and ether was added. The title compounds as the 

trifluoroacetate salt, were collected by filtration as yellow solids. 

3-[(Glycyl)amino]naphtho[2,3-b]thiophene-4,9-dione 

trifluoroacetate (11a). 45%, mp 207-208 C. 1H NMR (400 MHz, 

CD3OD) 4.10 (s, 2H, CH2,); 7.85–7.87 (m, 2H, H-6and H-7); 8.20-

8.23 (m, 2H, H-5 and H-8); 8.50 (s, 1H, H-2). 13C NMR (100 MHz, 

CD3OD) 45.7(CH2), 119.2 (C-2); 127.5 (C-6 and C-7); 129.4 (C-3); 

132.9 (C-8a); 134.2 (C-4a); 134.7 (C-5 and C-8); 135.9 (C-3a); 147.1 

(C-9a); 171.8, 180.7 and 182.7 (C=O). ESI-MS m/z calcd for 

C16H11F3N2O5S, 400.03; found, 400.11. 

3-[(L-phenylyl)amino]naphtho[2,3-b]thiophene-4,9-dione 

trifluoroacetate (11c). 41%, mp 195-196 C. 1H NMR (400 MHz, 

CD3OD) 2.96-3.07 (2 H, m, CH2), 4.44-4.47 (1 H, m, CH), 7.12-

7.22 (5 H, m, aryl), 7.87–7.89 (2 H, m, H-6 and H 7), 8.22–8.25 (2 H, 

m, H-5 and H 8), 8.47 (1H, s, H-2). 13C NMR (100 MHz, 
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CD3OD)37.9 (CH2), 50.6 (CH), 118.8 (C-2); 127.9 (C-6 and C-

7); 125.9, 127.6, 128.3, 128.9 and 137.9 (aryl),131.4 (C-3); 133.6 (C-

8a); 134.2 (C-4a); 134.9 (C-5 and C-8); 139.0 (C-3a); 142.5 (C-9a); 

172.7 179.8 and 181.9 (C=O). ESI-MS m/z calcd for C23H17F3N2O5S, 

490.08; found, 490.01. 

General procedure for the synthesis of N-(4,9-dioxo-4,9-

dihydronaphtho[2,3-b]thiophen-3-yl)-3-(substituted)propanamide 

(11 m-p). To a solution of 13 (0.1-0.3 mmol) in THF (20 mL) were 

added N,N-diethylamine, or triphenylmethanethiol, or morpholine, or 

N,N-dimethylethylendiamine (1.1 equiv) and DIPEA (2 equiv). After 

stirring at reflux temperature for 12–24 h, the solvent was evaporated. 

Then, the residues (13’ m-p) were dissolved into methanol–water (9:1, 

20 mL) and DBU (5 equiv) was added dropwise to these solutions. 

The reaction mixtures were stirred for 0.5-1 h, then the solvents were 

evaporated and the reaction residues were dissolved in chloroform and 

washed with water and dried with Na2SO4. The corresponding free 

bases of compounds 11m, 11n, and 11p were first purified by FC 

using DCM/Methanol 9/1 as eluent system. Then, the treatment with a 

HCl (g)/diethyl ether solution give the final compounds as 

hydrochloride saltsand yellow solids. Compound protected 11o was 

purified by FC using n-hexane/ethylacetate 3/2 as eluent. Then, the 
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final compound was obtained after Trt removal with a 50% 

TFA/DCM solution. 

3-(diethylamino)-N-(4,9-dioxo-4,9-dihydronaphtho[2,3-

b]thiophen-3-yl)propanamide hydrochloride (11m). 43%, mp 201-

202C. 1H NMR (400 MHz, CD3OD) 1.36–1.40 (t, 6H, CH3); 3.10-

3.13 (m, 2H, CH2); 3.30-3.34 (q, 4H, CH2); 3.56-3.59 (m, 2H, CH2); 

7.85–7.87 (m, 2H, H-6and H-7); 8.20-8.24 (m, 2H, H-5 and H-8); 

8.48 (s, 1H, H-2). 13C NMR (100 MHz, CD3OD)15.8 (CH3), 35.8 

(CH2), 47.9 (CH2CH3), 51.5 (CH2), 118.6 (C-2); 126.9 (C-6 and C-

7); 129.2 (C-3); 132.7 (C-8a); 133.1 (C-4a); 134.8 (C-5 and C-8); 

138.9 (C-3a); 145.0 (C-9a); 172.5, 178.9 and 182.6 (C=O). ESI-MS 

m/z calcd for C19H21ClN2O3S, 392.10; found, 390.17. 

3-(2-(dimethylamino)ethylamino)-N-(4,9-dioxo-4,9-

dihydronaphtho[2,3-b]thiophen-3-yl) propanamide dihydrochloride 

(11p). 45%, mp 227-228 C. 1H NMR (400 MHz, CD3OD) 2.98 (s, 

6H, CH3), 3.09-3.12 (t, 2H, CH2); 3.29-3.31 (m, 2H, CH2N(Me)2); 

3.47-3.50(m, 2H, CH2) 3.50-3.53 (m, 2H, NHCH2), 7.85-7.87 (m, 

2H, H-6  and H-7); 8.20-8.25 (m, 2H, H-5 and H-8); 8.49 (s, 1H, H-2). 

13C NMR (100 MHz, CD3OD)32.1 (CH2), 42.4 (NHCH2), 42.8 

(CH3),43.9 (CH2) 53.1 (CH2N(Me)2), 119.5 (C-2); 126.8 and 127.0 

(C-6 and C-7); 129.0 (C-3); 132.9 (C-8a); 133.5 (C-4a); 134.2 and 
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134.3 (C-5 and C-8); 137.5 (C-3a); 144.0 (C-9a); 171.9, 178.9 and 

182.5 (C=O). ESI-MS m/z calcd for C19H23Cl2N3O3S, 443.08; found, 

443.18. 

Biology. Dulbecco’s modified Eagle’s medium (DMEM), fetal 

bovine serum (FBS), trypsin-EDTA solution (1 x) penicillin and 

streptomycin, phosphate-buffered saline (PBS) were from Cambrex 

Biosciences. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT), propidium iodide (PI), Triton X-100, sodium citrate, 

formamide, mouse monoclonal anti-tubulin were purchased from 

Sigma (Milan, Italy). Rabbit polyclonal anti-cyclin A primary 

antibody were from Cell Signaling Technology (Celbio; Milan, Italy). 

ECL reagent was obtained from Amersham Pharmacia Biotech, UK. 

Cell culture. Human breast MDA231, human colon carcinoma 

SW620, Colo205, HT-29, and Caco-2, human monocytic leukemia 

U937, human melanoma MDA-MB435 and SK-MEL28 human 

ovarian cancer IGROV, and human glioblastoma SF-295 and SNB-19 

cell lines, were grown at 37 °C in Dulbecco’s modified Eagle’s 

medium containing 10 mM glucose (DMEM-HG) supplemented with 

10% fetal calf serum and 100 units/ml each of penicillin and 

streptomycin and 2 mmol/L glutamine. In each experiment, cells were 

placed in fresh medium, cultured in the presence of synthesized 

compounds (from 0.1 to 25 mM) and followed for further analyses. 
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Cell Viability Assay. Cell viability for all cell lines was 

determined using the 3-[4,5-demethylthiazol-2,5-diphenyl-2H-

tetrazolium bromide (MTT) colorimetric assay. The test is based on 

the ability of mitochondrial dehydrogenase to convert, in viable cells, 

the yellow MTT reagent (Sigma Chemical Co., St Louis, MO.) into a 

soluble blue formazan dye. Cells were seeded into 96-well plates to a 

density of 105 cells/100 μL well. After 24 h of growth to allow 

attachment to the wells, compounds were added at various 

concentrations (from 0.1 to 25 mM). After 24 or 48 h of growth and 

after removal of the culture medium, 100 μL/well of medium 

containing 1 mg/mL of MTT was added. Cell cultures were further 

incubated at 37 °C for 2 hrs in the dark. The solution was then gently 

aspirated from each well, and the formazan crystals within the cells 

were dissolved with 100 µL of DMSO. Optical densities were read at 

550 nm using a Multiskan Spectrum Thermo Electron Corporation 

reader. Results were expressed as percentage relative to vehicle-

treated control (0.5% DMSO was added to untreated cells ) IC50 

(concentration eliciting 50% inhibition) value were determined by 

linear and polynomial regression. Experiments were performed in 

triplicate. 

Topo II-mediated supercoiled pBR322 relaxation. DNA 

relaxation assays were based on the procedure of Osheroff et al.[204] 
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Reaction buffer contained 10 mM Tris.HCl (pH 7.9), 50 mM KCl, 50 

mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, and 15 μg/mL of bovine 

serum albumin (BSA), 0.15 μg supercoiled pBR322, 4 units of topo II 

in a total of 20 μL. Relaxation was employed at 37 °C for 6 min and 

stopped by the addition of 3 μL of stop solution (100 mM EDTA, 

0.5% SDS, 50% glycerol, 0.05% bromophenol blue). Electrophoresis 

was carried out in a 1% agarose gel in 0.5 × TBE (89 mM Tris base, 

89 mM boric acid and 2 mM EDTA) at 4 V/cm for 1 h. DNA bands 

were stained with 0.5 μg/mL of ethidium bromide (E.B.) solution and 

photographed through a Gel Document System GDS8000 (UVP). The 

amount of DNA bands was quantified by Gel 1D Intermediate 

software. 

Confocal microscopy. For immunocytochemistry, cells were 

fixed in 0.04 g/liter paraformaldehyde for 30 min at 4 °C and 

permeabilized with 0.01 g/liter Triton X-100 for 30 min at 4 C. Cells 

were then washed and stained with Hoechst 33342 (Vector, 

Burlingame, CA). Images were acquired with a LSM510 inverted 

confocal microscope (Zeiss, Oberkochen, Germany) using 63X oil 

objective and processed using LSM software (Zeiss). 

Flow Cytometry. Analysis of Cell Cycle. CaCo-2 cells were 

seeded in six multiwell plates at the density of 25 × 105 cells/plate. 

After 48 h of incubation with 11m, and 11p derivatives and 
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doxorubicin in DMEM without serum at 37 °C, cells were washed in 

PBS, pelleted in centrifuged, and directly stained in a propidium 

iodide (PI) solution (50 mg PI in 0.1% sodium citrate, 0.1% NP40, pH 

7.4) for 30 min at 4 °C in the dark. Flow cytometric analysis was 

performed using a FACScan flow cytometer (Becton Dickinson, San 

Jose, CA). To evaluate cell cycle PI fluorescence was collected as FL2 

(linear scale) by the ModFIT software (Becton Dickinson). For the 

evaluation of intracellular DNA content, at least 20000 events for each 

point were analyzed in at least three different experiments giving a 

s.d. less than 5%. 

Western Blot Assay. The effects of 11m, 11p and 11c on 

expression of Ciclyn A and of 11m and 11p on HSP27, were 

determined by Western blots. Compounds stimulated and 

unstimulated (control) cell lysates were prepared using an ice cold 

lysis buffer (50 mMTris, 150 mM NaCl, 10 mM EDTA, 1% Triton) 

supplemented with a mixture of protease inhibitors containing 

antipain, bestatin, chymostatin, leupeptin, pepstatin, phosphoramidon, 

Pefabloc, EDTA, and aprotinin (Boehringer, Mannheim, Germany). 

Equivalent protein samples were resolved on 8–12% sodium dodecyl 

sulfate (SDS)-polyacrylamide gels and transferred to nitrocellulose 

membranes (Bio-Rad, Germany). For immunodetection, membranes 

were incubated overnight with specific antibody at the concentrations 
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indicated in manufacter’s protocol (Santa Cruz Biotechnology). The 

two antibodies were diluted in Tris-buffered saline/Tween 20-1% milk 

powder. This step was followed by incubation with the corresponding 

horseradish peroxidase conjugated antibody (antirabbit-IgG 1:6000; 

Biosource, Germany). Bands were read by enhanced 

chemiluminescence (ECL-kit, Amersham, Germany). 

Alkaline phosphatase activity. Alkaline phosphatase (ALP) 

activity was used as marker of the degree of cells differentiation. 

Attached and floating cells were washed and lysed with 0.25% sodium 

deoxycholate, essentially as described by Herz et al.[220] ALP 

activity was determined using Sigma Diagnostics ALP reagent (No. 

245). Total cellular protein content of the samples was determined in a 

microassay procedure as described by Bradford [221] using the 

Coomassie Protein Assay Reagent Kit (Pierce). ALP activity was 

calculated as units of activity per mg of protein. 

H9C2 cell viability. Cardiomyoblasts H9C2 were cultured in 

Dulbecco’s minimal essential medium (DMEM, GIBCO) 

supplemented with 0.1 g/L fetal bovine serum (FBS, GIBCO) 200 

mg/mL L-glutamine, 100 units/mL penicillin, and 10  mg/mL 

streptomycin (Sigma-Aldrich), at 37°C in 0.95 g/L air-0.05 g/L CO2. 

The H9C2 were studied between passages 4 and 10. The MTT-

colorimetric assay (Invitrogen, San Diego, CA), was used to evaluate 
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cell proliferation in presence or absence  of   inhibitors. Briefly, H9C2 

cells were plated into 96 multiwell at a density of 2000 cells/well in 

quadruplicate.  Inhibitors (11m, 11p, and Doxorubicin) were added to 

each well at a concentration of 1 M  for the indicated time points.. 

Then 10 l of MTT reagent were added to each well, the plate was 

returned to cell culture incubator for 2 hours. The absorbance in each 

well, including the blanks, was measured at 570 nm in a microplate 

plate reader.  

Statistical analysis. Data were expressed as mean ± standard 

deviation (SD). Statistical significance was assessed by Student-t test. 

P value adjustment for multiple comparisons was done by the Holm 

(sequential Bonferonni correction method). P<0.05 was considered 

statistically significant. 

STD-NMR and WaterLOGSY Spectroscopy. STD-NMR  [208] 

and WaterLOGSY  [209] experiments were performed on a Varian 

Inova 700 MHz spectrometer at 25 °C. NMR samples were prepared 

by dissolving the ligand and the poly(dGdC)·poly(dG-dC) copolymer 

(Pharmacia Biochemicals) in H2O/D2O 9:1 (final volume 600 μL; D2O 

99.996%, CIL Laboratories) containing phosphate-buffered saline 

(100 mM) at pH 7.1. A high ligand–receptor molar excess (20:1) was 

used. In particular, the concentration of 11c, 11m, and 11p was 1.0 

mM, whereas that of the DNA was 50 μM, expressed as molarity of 
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phosphate groups. Water suppression was achieved by using the 

double-pulsed field gradient spin-echo (DPFGSE) scheme.[68] The 

STD effects of the individual protons were calculated for each 

compound relative to a reference spectrum with off-resonance 

saturation at δ = -16 ppm. Typically, 512 scans were recorded for each 

DF-STD spectrum (saturation time = 2 s). The relative STD effect was 

calculated for each signal as the difference between the intensity 

(expressed as S/N ratio) of one signal in the on-resonance STD 

spectrum and that of the same signal in the off-resonance NMR 

spectrum divided by the intensity of the same signal in the off-

resonance spectrum. BMI values were obtained as ratio of the relative 

STD effects upon irradiation at 10.0 and -1.0 ppm.[210] The absence 

of STD effects in samples in which the DNA was not added ensured a 

selective macromolecule saturation. WaterLOGSY NMR experiments 

employed a 20 ms selective Gaussian 180° pulse at the water signal 

frequency and an NOE mixing time of 1.5 s.  
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Figure S1. Chemical structures of the non-coded amino acids cited throughout the 
manuscript. 
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Table S1. Analytical Data for the P5U and Urantide Analogues 

Peptide Structure 
HPLCa MS (M+H) 

k’ Found Calcd 

1 H-Ala-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.22 1045.80 1045.30 

2 H-Ala-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.16 1031.90 1031.27 

3 H-Phe-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.31 1121.90 1121.40 

4 H-Phe-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.26 1108.10 1107.37 

5 H-Cpa-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.33 1156.44 1155.85 

6 H-Cpa-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.30 1142.32 1141.82 

7 H-Nal(1)-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.35 1171.98 1171.46 

8 H-Nal(1)-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.32 1158.10 1157.43 

9 H-Nal(2)-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.35 1171.96 1171.46 

10 H-Nal(2)-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.31 1158.15 1157.43 

11 H-(pNO2)Phe-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-
OH 

8.31 1167.01 1166.40 

12 H-(pNO2)Phe-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-
OH 

8.27 1152.97 1152.38 

13 H-Tic-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.34 1134.03 1133.41 

14 H-Tic-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.31 1120.10 1119.38 

15 H-Lys-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH 8.12 1103.12 1102.39 

16 H-Lys-c[Pen-Phe-DTrp-Orn-Tyr-Cys]-Val-OH 8.09 1089.11 1088.37 

ak’ = [(peptide retention time – solvent retention time)/solvent retention time]. 
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Table S2. Amino Acid Analysis of the P5U and Urantide Analogues a 

R-c[Pen-Phe-Xaa-Yaa-Tyr-Cys]-Val-OH 

Peptide R Pen Phe Xaab Yaac Tyr Cys Val

1 0.97 N.D. 1.0 - 0.91 0.92 1.02 0.98 

2 0.98 0.98 0.97 - 0.92 0.98 1.00 0.99 

3 0.89 N.D. 0.98 - 1.00 1.00 0.98 0.97 

4 0.92 0.98 0.93 - 0.92 0.93 0.97 1.02 

5 0.96 N.D. 0.96 - 0.88 0.97 0.99 0.93 

6 0.98 0.91 0.91 - 0.89 0.91 0.94 0.92 

7 0.87 N.D. 0.96 - 0.97 0.95 0.91 0.89 

8 0.91 N.D. 0.90 - 0.89 0.91 1.00 0.93 

9 0.89 0.91 0.98 - 0.91 0.96 0.97 0.96 

10 0.91 0.89 0.97 - 0.90 0.97 0.89 0.99 

11 0.98 0.93 0.95 - 0.90 0.93 0.95 0.92 

12 N.D. 0.92 0.93 - 0.94 0.91 0.93 0.94 

13 0.93 N.D. 0.99 - 0.93 0.97 0.95 0.96 

14 0.96 0.90 1.01 - 0.99 0.98 0.96 0.93 

15 0.98 0.95 0.97 - 0.98 0.95 0.99 0.91 

16 0.99 0.94 0.97 - 0.98 0.99 1.00 0.93 
a The analyses were performed using an Applied Biosystems Model 420A amino 
acid analyzer with automatic hydrolysis (Vapor Phase at 160 ºC for 1 h 40 min 
using 6 N HCl) and a precolumn phenylthiocarbamyl-amino acid (PTC-AA) 
analysis. No correction is made for amino acid decomposition. bTrp was not well  
determined due to decomposition under these conditions. Other notations: "ND" 
(not determined) refers to the amino acid that could not be estimated due to 
unavailability of a standard sample. cYaa = Lys (1,3,5,7,9,11,13,15), Orn 
(2,4,6,8,10,12,14,16);  
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Table S3. NMR Resonance Assignmentsa of Peptide 14 in SDS-d25 
200mM Solution. 
residue NH (3JN, exc, -/T)b CH (3J)

b CH Others 

Tic  4   4.57 (5.5, 9.5) 3.22, 2.93 6.97(); 7.23(); 

Pen  5 8.50 (8.8, f, 6.9) 5.14  1.32,1.13() 

Phe  6 9.05 (8.5, ms, 3.2) 4.71 (overl.) 2.98 7.08();  

D-Trp  7 8.18 (4.5, f, 6.3) 4.58 (9.0, 7.3) 3.19, 3.00 7.14(); 9.92, 7.67(); 
7.51, 7.11(); 7.20() 

Orn  8 7.47 (5.9, f, 4.7) 4.09 (3.2, 7.3) 1.44, 1.13 0.97, 0.65(); 2.71,2.67(); 
7.22() 

Tyr  9 8.07 (8.4, s, 2.7) 4.69 (5.3, 10.0) 2.99, 2.90 7.11(); 6.76() 

Cys 10 8.30 (8.7, f, 6.8) 5.38 (overl.) 2.89  

Val 11 8.14 (8.6, ms, 3.4) 4.40 2.05 0.88, 0.80() 

aObtained at 25°C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm.  
b  3JN, and 3J coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, 
moderately slow; s, slow;). -/T = temperature coefficients (ppb/K). 
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Table S4. NMR Resonance Assignmentsa of Peptide 16 in SDS-d25 
200mM Solution. 
residue NH (3JN, exc, -/T)b CH (3J)

b CH Others 

     

Lys  4   4.05 (8.7, 7.3) 1.71, 1.61 1.40, 1.26(); 1.68(); 
2.96, 2.90(); 7.48() 

Pen  5 8.26 (8.8, f, 6.7) 5.06  1.26, 1.06() 

Phe  6 9.21 (8.5, ms, 3.2) 4.69 (9.0, 6.0) 3.05, 2.90 7.13()  

D-Trp  7 8.55 (4.5, f, 6.3) 4.62 (9.1, 7.2) 3.24, 3.07 7.16(); 9.99, 7.66(); 
7.51, 7.10(); 7.18() 

Orn  8 7.30 (5.9, f, 4.8) 4.11 (3.4, 7.1) 1.42, 1.01 0.87, 0.50(); 2.69,2.63() 

Tyr  9 8.09 (8.4, s, 2.7) 4.73 (5.5, 9.9) 3.05, 2.97 7.13(); 6.75() 

Cys 10 8.50 (8.7, f, 6.8) 5.44 (overl.) 2.87  

Val 11 8.39 (8.6, ms, 3.1) 4.46 2.27 1.01() 

aObtained at 25°C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm.  
b  3JN and 3J coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, 
moderately slow; s, slow;). -/T = temperature coefficients (ppb/K). 
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NOE derived Upper Limit Constraints. 

 
  Peptide 14 
 
  4 TIC  HA      5 PEN  HN      2.83                 
  5 PEN  HN      5 PEN  QG1     3.71                 
  5 PEN  HN     10 CYSS HA      5.50                 
  5 PEN  HA      6 PHE  HN      2.71                 
  5 PEN  HA     10 CYSS HA      2.65                 
  5 PEN  HA     10 CYSS QB      5.35                 
  5 PEN  HA     11 VAL  HN      3.55                 
  5 PEN  QG1    10 CYSS HA      6.53                 
  5 PEN  QG1    10 CYSS QB      6.51                 
  5 PEN  QG2     6 PHE  HN      5.85                 
  5 PEN  QG2     7 DTRP HN      6.50                 
  5 PEN  QG2    10 CYSS HA      6.40                 
  5 PEN  QG2    10 CYSS QB      7.03                 
  6 PHE  HN      9 TYR  HN      4.26                 
  6 PHE  HN     10 CYSS HA      4.11                 
  6 PHE  HA      7 DTRP HN      2.71                 
  7 DTRP HN      7 DTRP HB2     2.86                 
  7 DTRP HN      7 DTRP HB3     3.02                 
  7 DTRP HN      7 DTRP HD1     5.31                 
  7 DTRP HA      7 DTRP HB2     2.83                 
  7 DTRP HA      7 DTRP HB3     2.80                 
  7 DTRP HA      7 DTRP HD1     4.01                 
  7 DTRP HA      7 DTRP HE3     4.24                 
  7 DTRP HA      8 ORN  HN      2.59                 
  7 DTRP HA      9 TYR  HN      3.42                 
  7 DTRP HB2     7 DTRP HD1     3.14                 
  7 DTRP HB2     7 DTRP HE3     4.07                 
  7 DTRP HB2     8 ORN  HN      3.76                 
  7 DTRP HB3     7 DTRP HD1     3.70                 
  7 DTRP HB3     7 DTRP HE3     3.86                 
  7 DTRP HB3     8 ORN  HN      4.07                 
  8 ORN  HN      8 ORN  HB2     3.52                 
  8 ORN  HN      8 ORN  HB3     3.52                 
  8 ORN  HN      8 ORN  QB      3.28                 
  8 ORN  HN      8 ORN  HG2     4.35                 
  8 ORN  HN      8 ORN  HG3     4.35                 
  8 ORN  HN      8 ORN  QG      4.18                 
  8 ORN  HN      8 ORN  HD2     5.50                 
  8 ORN  HN      8 ORN  HD3     5.50                 
  8 ORN  HN      9 TYR  HN      2.86                 
  8 ORN  HA      8 ORN  HB2     3.05                 
  8 ORN  HA      8 ORN  HB3     3.05                 
  8 ORN  HA      8 ORN  QG      4.05                 
  8 ORN  HA      9 TYR  HN      3.36                 
  8 ORN  HA      9 TYR  QD      7.64                 
  8 ORN  HB2     8 ORN  HE1     5.50                 
  8 ORN  HB2     9 TYR  HN      4.51                 
  8 ORN  HB2     9 TYR  QD      7.64                 
  8 ORN  HB2     9 TYR  QE      7.63                 
  8 ORN  HB3     8 ORN  HE1     5.50                 
  8 ORN  HB3     9 TYR  HN      4.51                 
  8 ORN  HB3     9 TYR  QD      7.64                 
  8 ORN  HB3     9 TYR  QE      7.63                 
  8 ORN  QB      9 TYR  HN      3.91                 
  8 ORN  HG2     9 TYR  HN      5.50                 
  8 ORN  HG2     9 TYR  QD      7.64                 
  8 ORN  HG2     9 TYR  QE      7.63                 
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  8 ORN  HG3     9 TYR  HN      5.50                 
  8 ORN  HG3     9 TYR  QD      7.64                 
  8 ORN  HG3     9 TYR  QE      7.63                 
  8 ORN  HD2     9 TYR  QE      7.63                 
  8 ORN  HD3     9 TYR  QE      7.63                 
  9 TYR  HN      9 TYR  HB2     2.90                 
  9 TYR  HN      9 TYR  HB3     2.90                 
  9 TYR  HN      9 TYR  QE      7.63                 
  9 TYR  HA      9 TYR  HB2     3.08                 
  9 TYR  HA      9 TYR  HB3     3.08                 
  9 TYR  HA     10 CYSS HN      3.11                 
 10 CYSS HA     11 VAL  HN      2.74                 
 10 CYSS HA     11 VAL  QQG     8.09                 
 10 CYSS QB     11 VAL  HN      4.08                 
 10 CYSS QB     11 VAL  QG1     7.40                 
 10 CYSS QB     11 VAL  QG2     7.40                 
 11 VAL  HN     11 VAL  HB      3.95                 
 11 VAL  HA     11 VAL  HB      2.86                 
 
 
  Peptide 16 
 
  4 LYS  HA      4 LYS  HG2     3.70                 
  4 LYS  HA      4 LYS  HG3     3.70                 
  4 LYS  HA      4 LYS  QG      3.52                 
  4 LYS  HA      5 PEN  HN      2.80                 
  4 LYS  HB2     5 PEN  HN      3.58                 
  4 LYS  HB3     5 PEN  HN      3.58                 
  4 LYS  QB      5 PEN  HN      3.39                 
  4 LYS  HG2     4 LYS  HE2     4.29                 
  4 LYS  HG2     4 LYS  HE3     4.29                 
  4 LYS  HG2     4 LYS  QZ      6.44                 
  4 LYS  HG3     4 LYS  HE2     4.29                 
  4 LYS  HG3     4 LYS  HE3     4.29                 
  4 LYS  HG3     4 LYS  QZ      6.44                 
  4 LYS  QG      5 PEN  HN      6.38                 
  5 PEN  HN      5 PEN  QG1     3.90                 
  5 PEN  HA      6 PHE  HN      3.58                 
  5 PEN  HA     10 CYSS HA      3.02                 
  5 PEN  HA     10 CYSS QB      5.54                 
  5 PEN  HA     11 VAL  HN      3.70                 
  5 PEN  QG2     6 PHE  HN      4.73                 
  5 PEN  QG2     7 DTRP HN      5.69                 
  5 PEN  QG2     9 TYR  HN      5.16                 
  5 PEN  QG2    10 CYSS HN      6.53                 
  5 PEN  QG2    10 CYSS HA      5.16                 
  6 PHE  HN      6 PHE  HB2     3.73                 
  6 PHE  HN      6 PHE  HB3     3.73                 
  6 PHE  HN      6 PHE  QB      3.50                 
  6 PHE  HN      9 TYR  HN      5.50                 
  6 PHE  HN     10 CYSS HA      3.89                 
  6 PHE  HA      6 PHE  HB2     2.96                 
  6 PHE  HA      6 PHE  HB3     2.96                 
  6 PHE  HA      6 PHE  QB      2.76                 
  6 PHE  HA      7 DTRP HN      2.99                 
  7 DTRP HN      7 DTRP HB2     3.08                 
  7 DTRP HN      7 DTRP HB3     3.48                 
  7 DTRP HN      7 DTRP HE3     5.50                 
  7 DTRP HA      7 DTRP HB2     3.02                 
  7 DTRP HA      7 DTRP HE3     3.39                 
  7 DTRP HA      8 ORN  HN      2.90                 
  7 DTRP HA      9 TYR  HN      3.55                 
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  7 DTRP HB2     7 DTRP HD1     3.17                 
  7 DTRP HB2     8 ORN  HN      3.89                 
  7 DTRP HB3     7 DTRP HD1     3.42                 
  7 DTRP HB3     8 ORN  HN      4.32                 
  7 DTRP HE3     8 ORN  HN      4.57                 
  8 ORN  HN      8 ORN  HB2     3.55                 
  8 ORN  HN      8 ORN  HB3     3.55                 
  8 ORN  HN      8 ORN  QB      3.30                 
  8 ORN  HN      8 ORN  HG2     5.04                 
  8 ORN  HN      8 ORN  HG3     5.04                 
  8 ORN  HN      8 ORN  QG      4.73                 
  8 ORN  HN      9 TYR  HN      3.21                 
  8 ORN  HA      8 ORN  QG      3.97                 
  8 ORN  HA      9 TYR  HN      3.58                 
  8 ORN  HB2     9 TYR  QE      7.63                 
  8 ORN  HB3     9 TYR  QE      7.63                 
  8 ORN  QB      9 TYR  QE      7.30                 
  8 ORN  HG2     9 TYR  HN      5.50                 
  8 ORN  HG2     9 TYR  QE      7.63                 
  8 ORN  HG3     9 TYR  HN      5.50                 
  8 ORN  HG3     9 TYR  QE      7.63                 
  8 ORN  QG      9 TYR  QD      8.52                 
  8 ORN  HD2     9 TYR  QE      7.63                 
  8 ORN  HD3     9 TYR  QE      7.63                 
  9 TYR  HN      9 TYR  HB2     3.08                 
  9 TYR  HN      9 TYR  HB3     3.08                 
  9 TYR  HN      9 TYR  QE      7.63                 
  9 TYR  HN     10 CYSS HN      5.28                 
  9 TYR  HA     10 CYSS HN      3.08                 
 10 CYSS HA     11 VAL  HN      3.08                 
 10 CYSS QB     11 VAL  HN      4.30                 
 10 CYSS QB     11 VAL  HA      5.20                 
 11 VAL  HA     11 VAL  HB      2.86                 
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Figure S2. Results of MD simulations of h-UTR complexed with Urantide. 
Graphic shows plot of the monitored distance, in the complex, between the 
protonated N of Orn8 in Urantide and the O of Asp130 in h-UTR. 

 

 

 

 

Figure S3. Distance between the OH oxygen of Tyr9 in Urantide and the side 
chain CO oxygen of Asn297 in h-UTR. 
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Figure S4. Distance between the OH oxygen of Tyr9 in Urantide and the OH 
hydrogen of Thr301 in h-UTR. 

 

 

 

 

Figure S5. Distance between the the O of Asp4 in Urantide and the guanidinium 
group N of Arg206 in h-UTR. 
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Figure S6. Distance between the protonated backbone NH3 nitrogen of Asp4 in 
Urantide and the backbone CO oxygen of Ala187 in h-UTR. 

 

 

 

 

Figure S7. Distance between the protonated backbone NH3 nitrogen of Asp4 in 
Urantide and the backbone CO oxygen of Cys199 in h-UTR. 
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Figure S8. Distance between the protonated backbone NH3 nitrogen of Asp4 in 
Urantide and the backbone CO oxygen of Met188 in h-UTR. 

 

 

 

 

Figure S9. Distance between the negatively charged carboxyl  group of Val11 in 
Urantide and the backbone NH hydrogen of Cys123 in h-UTR. 
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Figure S10. Distance between the negatively charged carboxyl  group of Val11 in 
Urantide and the backbone NH hydrogen of Cys199 in h-UTR. 

 

 

 

 

Figure S11. Distance between the negatively charged carboxyl  group of Val11 in 
Urantide and the backbone NH hydrogen of Arg189 in h-UTR. 
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Figure S12. Distance between the protonated N of Lys8 in P5U and the O of 
Asp130 in h-UTR. 

 

 

 

 

Figure S13. Distance between the the O of Asp4 in P5U and the side chain NH2
 

hydrogen of Gln285 in h-UTR. 
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Figure S14. (a) Stereoview of Urantide/h-UTRa (a) and P5U/ h-UTRi (b) model 
complex. Urantide and P5U heavy atoms are colour coded (carbon, green; 
nitrogen, blue; oxygen, red; sulfur, yellow). Receptor backbones are represented 
in azure. 
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Figure S15. Pairwise alignment of h-UTR and r-UTR. The conserved key 
residues used to align the sequences are shown in bold. In all sequence alignment 
figures, an asterisk (*) indicates an identical amino acid; punctuations indicate a 
“conserved” amino acid, which meets the criteria for either highly conservative 
substitutions (:) or semiconservative substitutions (.), as defined by CLUSTALW.  

 

 

Figure S16. Stereoview of the TM domains of the h-UTRi model (azure) 
superimposed to 2AR crystal structure (gold, PDB code 2RH1). Backbone heavy 
atoms of TM-II÷TM-VII were used for the superimposition. Bound urantide is 
shown as green surface.  
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Figure S17. Chemical shift deviations from the random coil shift values 
(reference [110] of the manuscript) for H resonances at 25 °C. 
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Figure S18. Results of MD simulations of h-MC4Ra complexed with MTII. 
Graphic shows plot of the monitored distances, in the complex, between the 
protonated guanidinium N of Arg8 in MTII and the O of Glu100 (a), O of 
Asp122 (b), Asp126 (c), and between N of His6 and the O of Glu100 (d). 
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. 

Figure S19. Results of MD simulations of h-MC4Ri complexed with SHU9119. 
Graphic shows plot of the monitored distances, in the complex, between the 
protonated guanidinium N of Arg8 in SHU9119 and the O of Glu100 (a), O of 
Asp122 (b), Asp126 (c), and between N of His6 and the O of Glu100 (d). 

 

 

 

 
  



Chapter 3 

- 192 -	
 

 
 

Figure S20. Stereoview of h-MC4R models in the “active” state proposed by 
Chapman et al. (violet ribbon; reference [129] of the manuscript) and that 
proposed by Mosberg et al. (grey ribbon; reference  [114] of the manuscript). The 
h-MC4R models were superimposed using the backbone heavy atoms of TM 
residues.  
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Table S5. Analytical data of synthesized peptides MTII and 
SHU9119. 
 
 
 
 
 
 
 
 
 
aHPLC column, Vydac 218TP1010, 1.0 x 25 cm, using a gradient of CH3CN in 
0.1% aqueous TFA (from 10 to 90% in 30 min) at a flow rate of 1.0 mL/min..  
 bk’ = [(peptide retention time – solvent retention time)/solvent retention time]. 

 
  

Code M.W. MS HPLCa,b 

MT-II 1024.22 1024.87 4.15 

SHU9119 1074.28 1075.12 4.31 
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Table S6. NMR Resonance Assignmentsa of Peptide MTII in H2O 
Solution at 25 °C. 
residue NH (3JN, exc, -/T)b CH CH Others 

     

Nleu4 8.22 (6.6, f, 9.1) 4.20 1.65 1.26(); 0.85() 

Asp5 8.52 (7.5, f, 8.3) 4.63 2.89, 2.68  

His6 8.46 (7.0, f, 6.5) 4.40 3.16, 3.01 7.03(); 8.33() 

DPhe7 8.39 (7.1, f, 8.3) 4.57 3.15, 2.88 7.22(); 7.35() 

Arg8 7.89 (7.2, f, 6.3) 4.27 1.61, 1.57 1.32(); 3.08(); 7.10() 

Trp9 8.44 (6.7, f, 8.7) 4.65 3.31 7.27(); 10.15, 7.69(); 7.50, 7.33(); 

7.18() 

Lys10 

 

8.06 (8.1, f, 7.3) 4.22 1.75, 1.60 1.31, 1.23(); 1.51, 1.41(); 3.22, 

3.17(); 7.91() 

a Obtained at pH = 5, with TSP ( 0.00 ppm) as reference shift. Chemical shifts 
are accurate to ±0.02 ppm.  
b  3JN coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, moderately 
slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated in the range 
25-40 °C. Further signals: CH3CO, 2.01; CONH2, 6.65, 6.84. 
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Table S7. NMR Resonance Assignmentsa of Peptide SHU9119 in 
H2O Solution at 25 °C. 
 
residue NH (3JN, exc, -/T)b CH CH Others 

     

Nleu4 8.18 (5.7, f, 8.3) 4.15 1.60 1.22(); 0.83() 

Asp5 8.46 (7.3, f, 8.1) 4.61 2.82, 2.63  

His6 8.41 (7.2, f, 6.0) 4.45 3.14, 2.96 6.95(); 8.04() 

DNal7 8.53 (7.0, f, 8.3) 4.70 3.29, 3.06 7.65, 7.38(); 7.87() 

Arg8 7.93 (7.1, f, 6.8) 4.18 1.48, 1.39 1.05, 1.01(); 2.83(); 6.90() 

Trp9 8.39 (6.1, f, 9.1) 4.64 3.31, 3.27 7.26(); 10.13, 7.26(); 7.49, 7.33(); 7.19()

Lys10 7.99 (8.8, f, 6.3) 4.21 1.74, 1.59 1.49(); 1.29, 1.19(); 3.18(); 7.91() 

a Obtained at pH = 5, with TSP ( 0.00 ppm) as reference shift. Chemical shifts 
are accurate to ±0.02 ppm.  
b  3JN coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, moderately 
slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated in the range 
25-40 °C. Further signals: CH3CO, 1.96; CONH2, 6.65, 6.84.  
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Table S8. NMR Resonance Assignmentsa of Peptide MTII in H2O 
Solution at 5 °C. 
residue NH (3JN, exc, -/T)b CH CH Others 

     

Nleu4 8.41 (6.0, f, 9.0) 4.18 1.64 1.23(); 0.83() 

Asp5 8.70 (7.5, f, 8.4) 4.63 2.90, 2.68  

His6 8.57 (6.4, f, 6.2) 4.38 3.16, 3.04 7.02(); 8.32() 

DPhe7 8.58 (6.8, f, 6.3) 4.13 3.16, 2.87 7.21(); 7.34() 

Arg8 8.00 (7.3, f, 6.2) 4.28 1.62, 1.56 1.29(); 3.07(); 7.17() 

Trp9 8.63 (6.4, f, 8.8) 4.65 3.30 7.27(); 10.24, 7.67(); 7.49, 7.33 (); 

7.17() 

Lys10 

 

8.17 (8.1, f, 7.4) 4.19 1.72, 1.58 1.31, 1.21(); 1.51, 1.39(); 3.23, 

3.15(); 8.10() 

a Obtained at pH = 5, with TSP ( 0.00 ppm) as reference shift. Chemical shifts 
are accurate to ±0.02 ppm.  
b  3JN coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, moderately 
slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated in the range 
5-15 °C. Further signals: CH3CO, 1.99; CONH2, 6.52, 6.94.  

 



Chapter 3 

- 197 -	
 

Table S9. NMR Resonance Assignmentsa of Peptide SHU9119 in 
H2O Solution at 5 °C. 
residue NH (3JN, exc, -/T)b CH CH Others 

     

Nleu4 8.34 (5.7, f, 8.3) 4.14 1.59 1.23(); 0.82(); 

Asp5 8.61 (7.2, f, 8.1) 4.60 2.83, 2.63  

His6 8.53 (6.5, f, 6.0) 4.44 3.14, 2.95 6.93(); 8.04() 

DNal7 8.73 (6.7, f, 6.5) 4.70 3.29, 3.04 7.66, 7.40(); 7.85() 

Arg8 8.10 (7.1, f, 6.7) 4.16 1.48, 1.39 1.05, 0.97(); 2.82(); 6.95() 

Trp9 8.55 (6.2, f, 9.1) 4.63 3.29, 3.27 7.25(); 10.21(); 7.47, 7.33 (); 7.16() 

Lys10 8.09 (8.2, f, 6.3) 4.19 1.74, 1.59 1.49(); 1.29, 1.19(); 3.15(); 8.09() 

a Obtained at pH = 5, with TSP ( 0.00 ppm) as reference shift. Chemical shifts 
are accurate to ±0.02 ppm.  
b  3JN coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, moderately 
slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated in the range 
5-15 °C. Further signals: CH3CO, 1.96; CONH2, 6.73, 6.96.  
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Table S10. NMR Resonance Assignmentsa of Peptide MTII in 
H2O/DMSO Solution at -10 °C. 
residue NH (3JN, exc, -/T)b CH CH Others 

     

Nleu4 8.43 (6.4, f, 9.0) 4.18 1.60 1.21(); 0.83() 

Asp5 8.71 (6.8, f, 8.2) 4.60 2.90, 2.66  

His6 8.59 (6.4, f, 6.2) 4.33 3.17, 3.01 7.01(); 8.38() 

DPhe7 8.56 (7.0, f, 6.3) 4.52 3.16, 2.86 7.22(); 7.33() 

Arg8 7.99 (7.0, f, 6.6) 4.30 1.64, 1.58 1.33(); 3.08(); 7.25() 

Trp9 8.64 (6.0, f, 8.7) 4.63 3.30, 3.26 7.27(); 10.35, 7.68(); 7.47, 7.16(); 7.23()

Lys10 8.25 (8.1, f, 7.3) 4.18 1.74, 1.58 1.32, 1.22(); 1.49, 1.37(); 3.19(); 8.11() 

a Obtained at -10 °C, with TSP ( 0.00 ppm) as reference shift. Chemical shifts are 
accurate to ±0.02 ppm.  
b  3JN coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, moderately 
slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated in the range 
-10 to 0 °C. Further signals: CH3CO, 1.97; CONH2, 6.59, 7.01.  

 

. 
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Table S11. NMR Resonance Assignmentsa of Peptide SHU9119 in 
H2O/DMSO Solution. 
residue NH (3JN, exc, -/T)b CH CH Others 

     

Nleu4 8.38 (5.8, f, 8.4) 4.14 1.56 1.18(); 0.79(); 

Asp5 8.65 (6.7, f, 8.1) 4.58 2.85, 2.62  

His6 8.57 (6.4, f, 6.0) 4.36 3.15, 2.96 6.93(); 8.07() 

DNal7 8.70 (6.7, f, 6.5) 4.67 3.30, 3.04 7.66, 7.39(); 7.86() 

Arg8 8.07 (7.0, f, 6.7) 4.21 1.53, 1.48 1.11, 1.08(); 2.90(); 7.09() 

Trp9 8.60 (6.1, f, 9.1) 4.63 3.29, 3.24 7.23(); 10.33, 7.26(); 7.46, 7.15(); 7.23()

Lys10 8.17 (8.3, f, 6.3) 4.19 1.73, 1.58 1.24(); 1.48, 1.37(); 3.17(); 8.10() 

a Obtained at -10 °C,with TSP ( 0.00 ppm) as reference shift. Chemical shifts are 
accurate to ±0.02 ppm.  
b  3JN coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, moderately 
slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated in the range 
-10 to 0 °C. Further signals: CH3CO, 1.94; CONH2, 6.66, 7.02.  
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Table S12. NMR Resonance Assignmentsa of Peptide MTII in DPC 
200mM Solution. 
residue NH (3JN, exc, -/T)b CH(J(l),J(h)) CH Others 

     

Nleu4 8.23 (5.8, f, 7.6) 4.22 (8.6, 7.3) 1.69, 1.63 1.23(); 1.30(); 0.82(); 

Asp5 8.70 (5.5, f, 5.0) 4.40 (6.1, 8.5) 3.13, 2.47   

His6 8.84 (6.0, f, 4.7) 4.14 (6.3, 7.2) 3.29, 3.15 7.12(); 8.51() 

DPhe7 8.21 (7.0, ms, 3.2) 4.46 (9.5, 5.2) 3.16, 2.92  7.19(); 7.22(); 7.16() 

Arg8 7.49 (8.2, s, 1.4) 4.54 (ov.) 1.73, 1.70 1.52, 1.47(); 3.15(); 

7.23() 

Trp9 8.72 (7.0, f, 8.9) 4.75 (9.0, 5.8) 3.33, 3.14 7.21(); 10.63, 7.61(); 7.46, 

6.99(); 7.07() 

Lys10 

 

8.19 (8.1, f, 5.3) 4.16 (5.2, 9.1) 1.73, 1.53 1.35, 1.28(); 1.42(); 3.20, 

3.06(); 7.95() 

a Obtained at 25°C, pH = 5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm.  
b  3JN and 3J coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, 
moderately slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated 
in the range 25 – 40 °C. The subscripts (l) and (h) denote the coupling constant of 
the low- and high-field H signal, respectively. Further signals: CH3CO, 1.93; 
CONH2, 6.37, 7.08.  
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Table S13. NMR Resonance Assignmentsa of Peptide SHU9119 in 
DPC 200mM Solution  
residue NH (3JN, exc, -/T)b CH(J(l),J(h)) CH Others 

     

Nleu4 8.18 (5.6, f, 7.8) 4.26 (8.6, 7.4) 1.69, 1.63 1.26(); 1.18(); 0.78(); 

Asp5 8.73 (5.4, f, 5.7) 4.42 (6.0, 8.5) 3.13, 2.49  

His6 8.87 (6.1, f, 4.5) 4.16 (6.5, 7.3) 3.30, 3.16 7.12(); 8.39() 

DNal7 8.38 (6.9, ms, 3.2) 4.57 (8.5, 7.2) 3.31, 3.11 7.65, 7.35(); 7.75(); 7.80(); 

7.80, 7.79(); 7.43(θ) 

Arg8 7.53 (8.2, s, 1.5) 4.55 (6.8, 8.0) 1.76, 1.69 1.52, 1.47(); 3.12(); 7.23() 

Trp9 8.74 (7.1, f, 8.5) 4.77 (9.0, 5.8) 3.35, 3.15 7.23(); 10.65, 7.63(); 7.47, 

7.01(); 7.08() 

Lys10 

 

8.22 (8.1, f, 5.8) 4.18 (5.2, 9.0) 1.74, 1.55 1.31(); 1.44, 1.37(); 3.22, 

3.07(); 7.97() 

a Obtained at 25°C, pH = 5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm.  
b  3JN and 3J coupling constants in Hz.  exc = NH exchange rate (f, fast; ms, 
moderately slow; s, slow;). -/T = temperature coefficients (ppb/K) calculated 
in the range 25 - 40 °C. The subscripts (l) and (h) denote the coupling constant of 
the low- and high-field H signal, respectively. Further signals: CH3CO, 1.90; 
CONH2, 6.40, 7.10.  
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Table S14. NOE Derived Upper Limit Constraints of MTII in DPC 
solution 
  3 ACE  QH      5 ASP  HN      6.19                 
  4 NLE  HN      4 NLE  HA      2.93                 
  4 NLE  HN      4 NLE  HB2     3.92                 
  4 NLE  HN      4 NLE  HB3     3.92                 
  4 NLE  HN      4 NLE  QB      2.84                 
  4 NLE  HN      4 NLE  QG      5.27                 
  4 NLE  HN      4 NLE  QD      6.38                 
  4 NLE  HN      5 ASP  HN      2.99                 
  4 NLE  HA      4 NLE  HB2     2.96                 
  4 NLE  HA      4 NLE  HB3     2.96                 
  4 NLE  HA      4 NLE  QD      5.02                 
  4 NLE  HA      4 NLE  QE      6.53                 
  4 NLE  HA      5 ASP  HN      3.50                 
  4 NLE  HA      6 HIS  HN      4.76                 
  4 NLE  HB2     4 NLE  QE      6.53                 
  4 NLE  HB2     5 ASP  HN      3.48                 
  4 NLE  HB2     6 HIS  HN      4.72                 
  4 NLE  HB3     4 NLE  QE      6.53                 
  4 NLE  HB3     5 ASP  HN      3.48                 
  4 NLE  HB3     6 HIS  HN      4.72                 
  4 NLE  QB      4 NLE  QE      6.41                 
  4 NLE  QB      5 ASP  HN      3.26                 
  4 NLE  QB      6 HIS  HN      4.50                 
  4 NLE  QG      5 ASP  HN      6.32                 
  4 NLE  QG      6 HIS  HN      6.38                 
  4 NLE  QG      7 DPHE QD      8.50                 
  4 NLE  QG      9 TRP  HE3     6.38                 
  4 NLE  QG      9 TRP  HZ3     6.38                 
  4 NLE  QD      5 ASP  HN      6.38                 
  4 NLE  QD      9 TRP  HE3     6.38                 
  4 NLE  QE      7 DPHE QD      8.65                 
  4 NLE  QE      9 TRP  HE3     6.53                 
  5 ASP  HN      5 ASP  HA      2.55                 
  5 ASP  HN      6 HIS  HN      3.17                 
  5 ASP  HN     10 LYS  HZ1     5.50                 
  5 ASP  HA      5 ASP  HB2     2.99                 
  5 ASP  HA      5 ASP  HB3     2.99                 
  5 ASP  HA      6 HIS  HN      3.60                 
  5 ASP  HA      7 DPHE HN      5.00                 
  5 ASP  HA     10 LYS  HZ1     5.13                 
  5 ASP  HB2    10 LYS  HE2     6.85                 
  5 ASP  HB2    10 LYS  HE3     6.85                 
  5 ASP  HB2    10 LYS  HZ1     3.11                 
  5 ASP  HB3    10 LYS  HE2     6.85                 
  5 ASP  HB3    10 LYS  HE3     6.85                 
  5 ASP  HB3    10 LYS  HZ1     3.11                 
  5 ASP  QB      8 ARG  HN      5.50                 
  5 ASP  QB     10 LYS  QB      7.25                 
  5 ASP  QB     10 LYS  QE      5.90                 
  5 ASP  QB     10 LYS  HZ1     2.88                 
  6 HIS  HN      6 HIS  HA      2.68                 
  6 HIS  HN      6 HIS  HB2     3.42                 
  6 HIS  HN      6 HIS  HB3     3.42                 
  6 HIS  HN      6 HIS  HD2     5.25                 
  6 HIS  HN      7 DPHE HN      3.21                 
  6 HIS  HN      8 ARG  HN      4.63                 
  6 HIS  HA      6 HIS  HB2     2.77                 
  6 HIS  HA      6 HIS  HB3     2.77                 
  6 HIS  HA      6 HIS  HD2     4.60                 
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  6 HIS  HA      7 DPHE HN      2.86                 
  6 HIS  HA      7 DPHE QD      7.62                 
  6 HIS  HA      8 ARG  HN      4.88                 
  6 HIS  QB      7 DPHE HN      4.86                 
  7 DPHE HN      7 DPHE HB2     2.83                 
  7 DPHE HN      7 DPHE HB3     2.83                 
  7 DPHE HN      7 DPHE QB      2.63                 
  7 DPHE HN      8 ARG  HN      3.50                 
  7 DPHE HA      8 ARG  HN      3.14                 
  8 ARG  HN      9 TRP  HN      4.58                 
  8 ARG  HA      8 ARG  QB      2.76                 
  8 ARG  HA      8 ARG  HG2     4.04                 
  8 ARG  HA      8 ARG  HG3     4.04                 
  8 ARG  HA      9 TRP  HN      2.55                 
  8 ARG  HB2     9 TRP  HN      3.24                 
  8 ARG  HB3     9 TRP  HN      3.24                 
  8 ARG  HG2     9 TRP  HN      5.25                 
  8 ARG  HG3     9 TRP  HN      5.25                 
  8 ARG  QG      9 TRP  HN      5.10                 
  9 TRP  HN      9 TRP  HB2     2.90                 
  9 TRP  HN      9 TRP  HB3     2.90                 
  9 TRP  HN      9 TRP  QB      2.68                 
  9 TRP  HN      9 TRP  HD1     5.20                 
  9 TRP  HN     10 LYS  HN      4.61                 
  9 TRP  HA      9 TRP  HD1     5.07                 
  9 TRP  HA      9 TRP  HE3     4.67                 
  9 TRP  HA     10 LYS  HN      2.93                 
  9 TRP  HB2     9 TRP  HE3     3.64                 
  9 TRP  HB2    10 LYS  HN      3.83                 
  9 TRP  HB3     9 TRP  HE3     3.64                 
  9 TRP  HB3    10 LYS  HN      3.83                 
  9 TRP  QB      9 TRP  HD1     3.49                 
  9 TRP  QB      9 TRP  HE3     3.42                 
  9 TRP  QB     10 LYS  HN      3.63                 
  9 TRP  HD1    10 LYS  HN      4.72                 
  9 TRP  HD1    10 LYS  HA      5.50                 
  9 TRP  HD1    11 CNH2 HN1     5.16                 
  9 TRP  HE1    11 CNH2 HN1     5.50                 
 10 LYS  HN     10 LYS  HA      2.90                 
 10 LYS  HN     10 LYS  HB2     3.08                 
 10 LYS  HN     10 LYS  HB3     3.08                 
 10 LYS  HN     11 CNH2 HN1     4.35                 
 10 LYS  HA     10 LYS  HB2     2.83                 
 10 LYS  HA     10 LYS  HB3     2.83                 
 10 LYS  HA     10 LYS  QB      2.63                 
 10 LYS  HA     10 LYS  HG2     3.30                 
 10 LYS  HA     10 LYS  HG3     3.30                 
 10 LYS  HA     10 LYS  QG      2.95                 
 10 LYS  HB2    11 CNH2 HN1     5.50                 
 10 LYS  HB3    11 CNH2 HN1     5.50                 
 10 LYS  HG2    10 LYS  HE2     4.04                 
 10 LYS  HG2    10 LYS  HE3     4.04                 
 10 LYS  HG2    10 LYS  HZ1     3.76                 
 10 LYS  HG3    10 LYS  HE2     4.04                 
 10 LYS  HG3    10 LYS  HE3     4.04                 
 10 LYS  HG3    10 LYS  HZ1     3.76                 
 10 LYS  QG     10 LYS  QE      3.23                 
 10 LYS  QG     10 LYS  HZ1     3.41                 
 
ACE QH is the methyl group of the N-terminal acetyl funtion. CNH2 
HN1 is one of the amide protons of the C-terminal carboxamide 
function.  
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Table S15. NOE Derived Upper Limit Constraints of SHU9119 in 
DPC solution 
  3 ACE  QH      5 ASP  HN      6.09                 
  4 NLE  HN      4 NLE  HA      2.86                 
  4 NLE  HN      4 NLE  HB2     3.90                 
  4 NLE  HN      4 NLE  HB3     3.90                 
  4 NLE  HN      4 NLE  QB      2.80                 
  4 NLE  HN      4 NLE  QG      5.39                 
  4 NLE  HN      4 NLE  QD      5.92                 
  4 NLE  HN      5 ASP  HN      2.97                 
  4 NLE  HA      4 NLE  HB2     2.96                 
  4 NLE  HA      4 NLE  HB3     2.96                 
  4 NLE  HA      4 NLE  QD      4.62                 
  4 NLE  HA      5 ASP  HN      3.52                 
  4 NLE  HA      6 HIS  HN      4.88                 
  4 NLE  HB2     4 NLE  QE      6.25                 
  4 NLE  HB2     5 ASP  HN      3.52                 
  4 NLE  HB3     4 NLE  QE      6.25                 
  4 NLE  HB3     5 ASP  HN      3.52                 
  4 NLE  QB      4 NLE  QE      6.03                 
  4 NLE  QB      5 ASP  HN      3.22                 
  4 NLE  QB      6 HIS  HN      5.82 
  4 NLE  QB      7 DNAL HN      5.67                 
  4 NLE  QB      7 DNAL QB      5.50                 
  4 NLE  QG      5 ASP  HN      6.38                 
  4 NLE  QG      9 TRP  HE3     6.38                 
  4 NLE  QD      5 ASP  HN      6.38                 
  4 NLE  QD      9 TRP  HE3     6.38                 
  4 NLE  QE      5 ASP  HN      6.53                 
  4 NLE  QE      9 TRP  HE3     6.53                 
  5 ASP  HN      5 ASP  HA      2.55                 
  5 ASP  HN      6 HIS  HN      3.08                 
  5 ASP  HN      7 DNAL HN      4.30                 
  5 ASP  HN     10 LYS  HZ1     5.50                 
  5 ASP  HA      5 ASP  HB2     2.90                 
  5 ASP  HA      5 ASP  HB3     2.90                 
  5 ASP  HA      5 ASP  QB      2.68               
  5 ASP  HA      6 HIS  HN      3.64                 
  5 ASP  HA      7 DNAL HN      4.98                 
  5 ASP  HA     10 LYS  HZ1     5.07                 
  5 ASP  HB2    10 LYS  HZ1     3.05                 
  5 ASP  HB3    10 LYS  HZ1     3.05                 
  5 ASP  QB      8 ARG  HN      5.50                 
  5 ASP  QB     10 LYS  HZ1     2.85                 
  6 HIS  HN      6 HIS  HA      2.71                 
  6 HIS  HN      6 HIS  HB2     3.48                 
  6 HIS  HN      6 HIS  HB3     3.48                 
  6 HIS  HN      6 HIS  QB      3.20                
  6 HIS  HN      7 DNAL HN      3.33                 
  6 HIS  HN      8 ARG  HN      4.66                 
  6 HIS  HA      6 HIS  HB2     2.72                 
  6 HIS  HA      6 HIS  HB3     2.72                 
  6 HIS  HA      6 HIS  HD2     4.51                 
  6 HIS  HA      7 DNAL HN      3.02                 
  6 HIS  HA      8 ARG  HN      4.83                 
  6 HIS  QB      7 DNAL HN      4.80                 
  7 DNAL HN      7 DNAL HB2     2.90                 
  7 DNAL HN      7 DNAL HB3     2.90                 
  7 DNAL HN      7 DNAL QB      2.66                 
  7 DNAL HN      8 ARG  HN      3.52                 
  7 DNAL HA      8 ARG  HN      3.24                 
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  8 ARG  HN      9 TRP  HN      4.52                 
  8 ARG  HA      8 ARG  QB      2.78                 
  8 ARG  HA      9 TRP  HN      2.59                 
  8 ARG  HB2     9 TRP  HN      3.24                 
  8 ARG  HB3     9 TRP  HN      3.24                 
  9 TRP  HN      9 TRP  HB2     2.93                 
  9 TRP  HN      9 TRP  HB3     2.93                 
  9 TRP  HN      9 TRP  QB      2.69                 
  9 TRP  HN      9 TRP  HD1     5.22                 
  9 TRP  HN     10 LYS  HN      4.64                 
  9 TRP  HA      9 TRP  HD1     5.04                 
  9 TRP  HA      9 TRP  HE3     4.74                 
  9 TRP  HA     10 LYS  HN      2.68                 
  9 TRP  HB2     9 TRP  HE3     3.79                 
  9 TRP  HB2    10 LYS  HN      3.84                 
  9 TRP  HB3     9 TRP  HE3     3.79                 
  9 TRP  HB3    10 LYS  HN      3.84                 
  9 TRP  QB      9 TRP  HD1     3.49                 
  9 TRP  QB      9 TRP  HE3     3.53                 
  9 TRP  QB     10 LYS  HN      3.63                 
  9 TRP  HD1    10 LYS  HN      5.04                 
  9 TRP  HD1    10 LYS  HA      5.50                 
  9 TRP  HD1    11 CNH2 HN1     5.18                 
  9 TRP  HE1    11 CNH2 HN1     5.46                 
 10 LYS  HN     10 LYS  HA      2.96                 
 10 LYS  HN     10 LYS  HB2     3.14                 
 10 LYS  HN     10 LYS  HB3     3.14                 
 10 LYS  HN     11 CNH2 HN1     4.36                 
 10 LYS  HA     10 LYS  HB2     2.86                 
 10 LYS  HA     10 LYS  HB3     2.86                 
 10 LYS  HA     10 LYS  QB      2.64                 
 10 LYS  HB2    11 CNH2 HN1     5.50                 
 10 LYS  HB3    11 CNH2 HN1     5.50                 
 10 LYS  HG2    10 LYS  HE2     3.98                 
 10 LYS  HG2    10 LYS  HE3     3.98                 
 10 LYS  HG2    10 LYS  HZ1     3.73                 
 10 LYS  HG3    10 LYS  HE2     4.08                 
 10 LYS  HG3    10 LYS  HE3     4.08                 
 10 LYS  HG3    10 LYS  HZ1     3.76                 
 10 LYS  QG     10 LYS  HZ1     4.64                 
 
ACE QH is the methyl group of the N-terminal acetyl funtion. CNH2 
HN1 is one of the amide protons of the C-terminal carboxamide 
function. 
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Table S16. Dihedral angles of the NMR structures of MTII and 
SHU9119  
 
   MTII     SHU9119 
 4 NLE  OMEGA  -178.8 +/-   6.4        4 NLE  OMEGA   169.1 +/-    2.4  
 4 NLE  PHI     -90.2 +/-  22.8        4 NLE  PHI     -78.6 +/-   24.4  
 4 NLE  CHI1   -125.6 +/-  44.7        4 NLE  CHI1   -134.5 +/-   32.7  
 4 NLE  CHI2     63.0 +/-  52.3        4 NLE  CHI2    119.8 +/-   54.9  
 4 NLE  CHI3     54.1 +/-  68.6        4 NLE  CHI3     98.8 +/-  111.5 
 4 NLE  PSI     -72.4 +/-  29.2        4 NLE  PSI     -57.9 +/-   27.6 
 5 ASP  OMEGA  -175.6 +/-   5.5        5 ASP  OMEGA   176.7 +/-    4.6  
 5 ASP  PHI    -118.0 +/-  25.6        5 ASP  PHI    -135.4 +/-   24.5  
 5 ASP  CHI1   -167.9 +/-  23.9        5 ASP  CHI1   -170.6 +/-   15.3  
 5 ASP  CHI2     -0.1 +/-  24.3        5 ASP  CHI2     10.1 +/-   29.5  
 5 ASP  PSI     -51.6 +/-  10.3        5 ASP  PSI     -63.8 +/-    7.9  
 6 HIS  OMEGA   173.0 +/-   5.6        6 HIS  OMEGA  -178.1 +/-    2.9  
 6 HIS  PHI    -164.6 +/-   4.0        6 HIS  PHI    -143.8 +/-    7.9  
 6 HIS  CHI1   -128.3 +/-  48.3        6 HIS  CHI1    -67.6 +/-   83.8  
 6 HIS  CHI2    -77.7 +/-  64.1        6 HIS  CHI2    -85.0 +/-   78.3  
 6 HIS  PSI      42.1 +/-  13.1        6 HIS  PSI      53.4 +/-   14.7  
 7 DPHE OMEGA  -174.8 +/-   6.8        7 DNAL OMEGA  -173.7 +/-    2.5  
 7 DPHE PHI      87.7 +/-  24.4        7 DNAL PHI      64.0 +/-   18.3  
 7 DPHE CHI1    157.3 +/-   4.4        7 DNAL CHI1    112.0 +/-   48.0  
 7 DPHE CHI2   -118.5 +/-  84.2        7 DNAL CHI2    101.6 +/-   36.4  
 7 DPHE PSI     -55.4 +/-  23.0        7 DNAL PSI       5.0 +/-   21.1  
 8 ARG  OMEGA  -179.2 +/-   6.5        8 ARG  OMEGA  -178.9 +/-    2.0  
 8 ARG  PHI     -79.4 +/-   6.0        8 ARG  PHI    -132.9 +/-   18.1  
 8 ARG  CHI1    -74.3 +/-  12.6        8 ARG  CHI1    -71.6 +/-   13.1  
 8 ARG  CHI2   -123.0 +/-  38.8        8 ARG  CHI2   -166.3 +/-   33.6  
 8 ARG  CHI3   -112.5 +/- 113.2        8 ARG  CHI3    174.0 +/-   56.6  
 8 ARG  CHI4   -168.3 +/-  45.0        8 ARG  CHI4    172.5 +/-   49.7  
 8 ARG  PSI     159.6 +/-   7.1        8 ARG  PSI     157.7 +/-    4.3  
 9 TRP  OMEGA  -175.4 +/-   7.7        9 TRP  OMEGA   179.9 +/-    2.7  
 9 TRP  PHI     -90.6 +/-  18.4        9 TRP  PHI     -68.2 +/-   25.0  
 9 TRP  CHI1    179.4 +/-   4.6        9 TRP  CHI1   -174.7 +/-    3.1  
 9 TRP  CHI2    -99.9 +/-  23.7        9 TRP  CHI2   -104.7 +/-   11.7  
 9 TRP  PSI     155.0 +/-   3.9        9 TRP  PSI     149.1 +/-    3.6  
10 LYS  OMEGA  -172.8 +/-   4.1       10 LYS  OMEGA  -168.8 +/-    1.3  
10 LYS  PHI     -92.1 +/-  11.5       10 LYS  PHI     -92.8 +/-   14.0  
10 LYS  CHI1    -73.6 +/-   5.5       10 LYS  CHI1    -84.1 +/-   10.0  
10 LYS  CHI2    173.0 +/-  43.8       10 LYS  CHI2    166.0 +/-   27.5  
10 LYS  CHI3    172.6 +/-   4.2       10 LYS  CHI3   -175.0 +/-    6.9  
10 LYS  CHI4     44.8 +/-  44.3       10 LYS  CHI4     59.7 +/-   68.3  
10 LYS  PSI      88.3 +/-  26.1       10 LYS  PSI      97.2 +/-    8.8 
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  I)  Y= L-Phe      Z= L-Tyr(Bzl)
 II)  Y= L-1-Nal   Z= L-Thr
 III) Y= L-Phe      Z= L-Tyr  
 IV) Y= L-1-Nal   Z= L-Tyr(Bzl)

a

 

Scheme 1. Synthesis of linear peptides on H–l-Thr(t-Bu)–ol–2-chlorotrityl resin.  
a) (i) Fmoc- L- Hag, HATU/NMM, 40 min r.t.; (ii) 20% piperidine in DMF (2 x 15 
min); (iii) coupling with the amino acids. 
 

The resin aliquots containing the linear peptides were swollen for 2 h in 
anhydrous DCM. After two hours, the vessels were heated to 45 °C and a DCM 
solution of catalyst 9 (0.5 mole equiv. calculated on the basis of 0.5 mmol/g of 
peptide) was added. The suspension was then stirred for 48 h at 45 °C. The resin 
aliquots were washed with DCM, DMF, and MeOH, then swelled for 45 min at 
room temperature in DMF. Fmoc–Hag was deprotected (2.5 mL of 20% 
piperidine in DMF for 5 min, 4 time repeated) and coupled with Fmoc–D-Phe 
affording the on-resin peptides 4-8 which were deprotected and cleaved as 
previously described (Scheme 2). 
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V)  Y= L-Phe      Z= L-Tyr(Bzl)
VI)  Y= L-1-Nal   Z= L-Thr
VII)   Y= L-Phe      Z= L-Tyr
VIII)   Y= L-1-Nal   Z= L-Tyr(Bzl)

4)  Y= L-Phe      Z= L-Tyr(Bzl)
5)  Y= L-1-Nal   Z= L-Thr
6)  Y= L-Phe      Z= L-Tyr
7)  Y= L-Phe      Z= L-Tyr
8)  Y= L-1-Nal    Z= L-Tyr(Bzl)

I-IV

Z-isomer
Z-isomer
E-isomer

Z-isomer

H

A

Z-isomer

  
Scheme 2. Synthesis of ciclic octapeptides. b) (i) Catalyst, 45 °C, 48 h; (ii) 20% 
piperidine in DMF, Fmoc-D-Phe/HATU/NMM 40 min, r.t.  
c) i) 20% piperidine in DMF; ii) Cleavage of 5-7 by TFA/DCM/EDT/Phenol 
(94:2:2:2); 4 and 8 by TFA/DCM/EDT/Phenol (70:26:2:2). 
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Table S17. RP-HPLC data of the purified analogues. 

Compound HPLC method a Retention times (min.)b 

4 45%-55% B in 20 min. 9.64 

5 20%-60% B in 20 min. 13.26 

6 32% B in 20 min. 13.03 

7 30%-40% B in 20 min. 15.08 

8 50%-60% B in 10 min. 7.02 

a A: H2O 0.1% TFA;B: CH3CN 0.1% TFA. b Rt of the pure compounds. 

 

Table S18. Mass Spectral data of the purified analogues. 

Compound [M]+ calcd. [M+H]+ found [M+2H]2+ [M+Na]+ 

4 1132.57 1133.53 567.6 1156.66 

5 1030.53 1032.0 514.46 1054.98 

6 1042.53 1043.55 (20%) 523,53 (100%) 1066.67 

7 1042.53 1043.63 (20%) 522,35 (100%) 1066.67 

8 1182.59 1184,04 (10%) 592,51  (100 %) 1206.94 
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Figure S21. RP-HPLC trace of pure (4) 
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Figure S22. RP-HPLC trace of pure (5) 
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Figure S23. RP-HPLC trace of pure (6)-E isomer 
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Figure S24. RP-HPLC trace of pure (7) Z-isomer 
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Figure S25. RP-HPLC trace of pure (8) 
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Table S19. NMR Resonance Assignmentsa of Peptide 3 in SDS-d25 
200mM Solution. 
residue NH (3JN, -/T)b CH CH Others 

     

D-Phe2  4.23 3.23, 3.10 7.26 (); 7.31(); 

dhDsa-Nc 8.02 (6.8, 6.7) 3.81 2.22 5.16() 

Phe7 7.00 (8.2, 6.2) 4.74 2.98 7.03(); 7.16() 

D-Trp8 8.09 (5.5, 6.5) 4.38 3.21, 3.09 
7.21();10.05, 
7.68();7.49, 7.14(); 
7.14() 

Lys9 7.36 (5.9, 3.7) 4.09 1.44, 1.25 0.52, 0.43(); 1.39(); 
2.76() 

Tyr(Bzl)10 7.67 (5.4, 2.6) 4.25 3.13, 2.87 7.09(); 6.89();d 

dhDsa-Cc 7.15 (6.7, 3.0) 4.39 2.52, 2.23 5.27() 

Thr(ol)15 7.28 (6.9, 3.4) 3.80 3.95 1.15(); 3.68, 3.61 ( 

aObtained at 35 °C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm. b 3JN coupling constants in Hz.  -/T = 
temperature coefficients (ppb/K). c dh-DSA-N: N-terminal portion of 
dehydrodiaminosuberic acid. dh-DSA-C: C-terminal portion of 
dehydrodiaminosuberic acid. d Other signals: CH2: 5.09, 5.04, Arom: 7.44, 7.40, 
7.30. 
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Table S20. NMR Resonance Assignmentsa of Peptide 4 in SDS-d25 
200mM Solution. 
residue NH (3JN, -/T)b CH CH Others 

     

D-Phe2   4.21 3.08; 3.29 7.25(); 7.32() 

dhDsa-Nc 8.12 (8.2, 6.9) 3.79 2.32, 2.13 5.11() 

Phe7 6.94 (8.5, 5.3) 4.73 2.95, 2.90 6.84(); 7.02() 

D-Trp8 8.24 (4.7, 6.3) 4.61 3.34, 3.04 7.28(); 10.03, 7.89(); 
7.50, 7.16(); 7.15() 

Lys9 7.51 (5.9, 4.7) 4.07 1.51, 1.37 0.68, 0.63(); 1.45 (); 
2.82(); 7.37() 

Tyr(Bzl)10 7.92 (6.5, 2.7) 4.41 3.09, 2.96 7.14(); 6.89();d 

dhDsa-Cc 7.61 (7.1, 5.8) 4.27 2.44, 2.12 5.20() 

Thr(ol)15 7.40 (7.6, 5.4) 3.84 3.95 1.14(); 3.71, 3.63 ( 

aObtained at 35 °C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm. b 3JN coupling constants in Hz.  -/T = 
temperature coefficients (ppb/K). c dh-DSA-N: N-terminal portion of 
dehydrodiaminosuberic acid. dh-DSA-C: C-terminal portion of 
dehydrodiaminosuberic acid. d Other signals: CH2: 5.03; Arom: 7.43, 7.39, 7.32. 
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Table S21. NMR Resonance Assignmentsa of Peptide 5 in SDS-d25 
200mM Solution. 
residue NH (3JN, -/T)b CH CH Others 

     

D-Phe2   4.24 3.24, 3.14 7.31() 

dhDsa- 7.96 (8.1, 7.9) 4.23 2.45, 2.29 5.29() 

1-Nal7 8.13 (7.5, 6.3) 4.73 3.54, 3.42 7.69(); 8.18, 7.42(); 
7.45()

D-Trp8 7.31 (4.8, 6.3) 4.04 2.59, 2.28 6.88();9.86, 7.07();7.43, 
6.98(); 7.11() 

Lys9 7.90 (6.2, 4.6) 3.88 1.50, 1.25 0.58, 0.32(); 1.33(); 2.69, 
2.65(); 7.24() 

Thr10 8.04 (6.1, 2.7) 4.04 4.22 1.25(γ) 

dhDsa- 7.76 (7.5, 6.0) 4.36 2.41, 2.22 5.39() 

Thr(ol)15 7.26 (8.0, 6.4) 3.77 3.83 1.05(); 3.63, 3.53 ( 

aObtained at 35 °C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm. b 3JN coupling constants in Hz.  -/T = 
temperature coefficients (ppb/K). c dh-DSA-N: N-terminal portion of 
dehydrodiaminosuberic acid. dh-DSA-C: C-terminal portion of 
dehydrodiaminosuberic acid. 
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Table S22. NMR Resonance Assignmentsa of Peptide 6 in SDS-d25 
200mM Solution. 
residue NH (3JN, -/T)b CH CH Others 

     

D-Phe2   4.21 3.24, 3.07 7.26(); 7.31() 

dhDsa- 7.87 (6.7, 7.7) 3.96 2.18 5.21() 

Phe7 7.27 (8.3, 6.7) 4.67 2.92 6.98(); 7.16() 

D-Trp8 7.81 (5.3, 6.6) 4.43 3.07, 2.97 7.11(); 10.01, 7.58(); 
7.44, 7.08(); 7.15() 

Lys9 7.66 (6.0, 3.8) 3.95 1.31, 1.24 0.54, 0.36(); 1.34(); 
2.71(); 7.31() 

Tyr10 7.98 (5.3, 2.8) 4.22 3.04, 2.86 6.77(); 7.03(γ) 

dhDsa- 7.27 (6.8, 3.1) 4.31 2.49, 2.30 5.33() 

Thr(ol)15 7.31 (6.9, 3.8) 3.78 3.94 1.14(); 3.66, 3.59 ( 

aObtained at 35 °C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm. b 3JN coupling constants in Hz.  -/T = 
temperature coefficients (ppb/K). c dh-DSA-N: N-terminal portion of 
dehydrodiaminosuberic acid. dh-DSA-C: C-terminal portion of 
dehydrodiaminosuberic acid. 
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Table S23. NMR Resonance Assignmentsa of Peptide 7 in SDS-d25 
200mM Solution. 
residue NH (3JN, -/T)b CH CH Others 

     

D-Phe2   4.23 3.29, 3.10 7.28(); 7.34() 

dhDsa- 8.12 (8.2, 6.9) 3.80 2.42, 2.11 5.29() 

Phe7 6.97 (8.1, 6.6) 4.73 2.89, 2.76 6.67(); 6.95(); 7.03() 

D-Trp8 8.16 (4.8, 6.8) 4.74 3.34, 3.00 7.29(); 9.99, 7.89(); 7.45, 
7.18(); 7.21() 

Lys9 7.83 (6.9, 4.3) 3.94 1.41 
0.74, 0.61(); 1.46(); 
2.81(); 7.33() 

Tyr10 8.36 (6.4, 2.6) 4.41 3.14, 2.88  7.12(); 6.79() 

dhDsa- 7.53 (7.2, 5.9) 4.28 2.49, 1.93  5.43() 

Thr(ol)15 7.44 (7.5, 5.5) 3.83 3.96 1.15(); 3.70, 3.61 ( 

aObtained at 35 °C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm. b 3JN coupling constants in Hz.  -/T = 
temperature coefficients (ppb/K). c dh-DSA-N: N-terminal portion of 
dehydrodiaminosuberic acid. dh-DSA-C: C-terminal portion of 
dehydrodiaminosuberic acid. 
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Table S24. NMR Resonance Assignmentsa of Peptide 8 in SDS-d25 
200mM Solution. 
residue NH (3JN, -/T)b CH CH Others 

     

D-Phe2   4.26 3.30, 3.17 7.31(); 7.37() 

dhDsa-Nc 8.12 (8.1, 6.8) 4.20 2.34 5.19() 

1-Nal7 7.60 (8.4, 5.4) 4.93 3.64, 3.53 7.67(); 8.22, 7.31(); 7.80()

D-Trp8 8.22 (4.8, 6.3) 4.10 3.03, 2.72 7.12(); 10.00, 7.46(); 7.51, 
7.15(); 7.14() 

Lys9 6.64 (6.9, 4.6) 4.00 1.29, 0.93 0.22, 0.08(); 1.27(); 2.69() 

Tyr(Bzl)10 7.83 (6.5, 2.6) 4.43 3.06, 2.91 7.09(); 6.87();d 

dhDsa-Cc 7.95 (7.1, 5.7) 4.44 2.45, 2.35 5.37() 

Thr(ol)15 7.51 (7.6, 5.9) 3.85 3.97 1.15(); 3.71, 3.62 ( 

aObtained at 35 °C, pH = 5.5, with TSP ( 0.00 ppm) as reference shift. Chemical 
shifts are accurate to ±0.02 ppm. b 3JN coupling constants in Hz.  -/T = 
temperature coefficients (ppb/K). c dh-DSA-N: N-terminal portion of 
dehydrodiaminosuberic acid. dh-DSA-C: C-terminal portion of 
dehydrodiaminosuberic acid. d Other signals: CH2: 5.05, 5.02, Arom: 7.47, 7.42, 
7.35. 
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Table S25. NOE Derived Upper Limit Constraints of Compound 3 

Atom1  Atom2  Upper Limit Violation 

2 DPHE HA 3 DHS HN 2.52    
2 DPHE HB2 3 DHS HN 5.31    
2 DPHE HB3 3 DHS HN 5.31    
2 DPHE QB 3 DHS HN 4.49    
3 DHS HN 3 DHS QB 3.84    
3 DHS HA 14 DHS HG 4.60    
3 DHS HA 7 PHE HN 2.40    
3 DHS HG 14 DHS HA 3.58    
3 DHS HG 14 DHS QB 3.21    
7 PHE HN 10 TBZ HB2 2.99    
7 PHE HA 8 DTRP HN 2.83    
7 PHE QB 8 DTRP HN 3.93    
7 PHE QD 8 DTRP HN 6.69    
8 DTRP HN 8 DTRP HB2 2.86    
8 DTRP HN 8 DTRP HB3 2.86    
8 DTRP HN 8 DTRP QB 2.64    
8 DTRP HN 8 DTRP HD1 5.50    
8 DTRP HA 8 DTRP HD1 4.97    
8 DTRP HA 8 DTRP HE3 2.70    
8 DTRP HA 9 LYS HN 2.40    
8 DTRP HB2 8 DTRP HD1 3.70    
8 DTRP HB2 8 DTRP HE3 4.19    
8 DTRP HB2 9 LYS HN 4.60    
8 DTRP HB3 8 DTRP HD1 3.70    
8 DTRP HB3 8 DTRP HE3 4.19    
8 DTRP HB3 9 LYS HN 4.60    
8 DTRP QB 8 DTRP HD1 3.13    
8 DTRP QB 8 DTRP HE3 3.70    
8 DTRP QB 9 LYS HN 4.18    
8 DTRP HD1 9 LYS QG 6.38    
8 DTRP HE1 9 LYS QG 6.38    
8 DTRP HE1 9 LYS QD 6.38    
8 DTRP HE1 9 LYS QE 6.38    
8 DTRP HE1 15 THO HA 5.50    
8 DTRP HZ2 9 LYS QE 6.38    
9 LYS HN 9 LYS HA 2.91    
9 LYS HN 9 LYS HB2 2.60    
9 LYS HN 9 LYS HB3 3.74    
9 LYS HN 9 LYS HG2 3.45    
9 LYS HN 9 LYS HG3 3.45    
9 LYS HN 9 LYS QG 3.21    
9 LYS HN 10 TBZ HN 3.03    
9 LYS HA 9 LYS HG2 3.76    
9 LYS HA 9 LYS HG3 3.76    
9 LYS HA 9 LYS QG 3.35    
9 LYS HA 9 LYS QD 6.38    
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9 LYS HA 10 TBZ HN 3.56    
9 LYS HA 15 THO HN 4.80    
9 LYS HA 15 THO QG2 6.53    
9 LYS HB2 10 TBZ HN 3.54    
9 LYS HB2 10 TBZ QD 7.64    
9 LYS HB3 10 TBZ HN 3.69    
9 LYS HB3 10 TBZ QD 7.64    
9 LYS HG2 10 TBZ HN 5.50    
9 LYS HG3 10 TBZ HN 5.50    
9 LYS QG 10 TBZ QE 8.51    
10 TBZ HN 10 TBZ HB2 2.63    
10 TBZ HN 10 TBZ HB3 3.60    
10 TBZ HN 10 TBZ QE 6.83    
10 TBZ HN 14 DHS HN 2.60    
10 TBZ HN 15 THO HN 4.83    
10 TBZ HA 14 DHS HN 3.35  0.10  
14 DHS HN 14 DHS HA 2.91    
14 DHS HN 14 DHS HB2 3.02    
14 DHS HN 14 DHS HB3 3.90    
14 DHS HN 14 DHS HG 5.07    
14 DHS HA 14 DHS HG 4.04    
14 DHS HA 15 THO HN 3.50    
14 DHS HB2 15 THO HN 3.72    
14 DHS HB3 15 THO HN 4.49    
15 THO HN 15 THO HA 2.85    
15 THO HN 15 THO HB 3.05    
15 THO HA 15 THO HB 2.40    
3 DHS: N-terminal portion of dehydrodiaminosuberic acid. 14 DHS: C-terminal 
portion of dehydrodiaminosuberic acid. 
TBZ: Tyr(Bzl). THO: Threoninol. b Violations (Å) observed for the mean 
structure of the ensemble. 
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Table S26. NOE derived Upper Limit Constraints. Compound 4 

Atom1a Atom2 Upper Limit
V i o l a t i o n b  

Helix Extend Ensemble
2 DPHE HA 3 DHS HN 2.59    
2 DPHE QD 3 DHS HA 7.62    
3 DHS HN 3 DHS HB2 3.24    
3 DHS HN 3 DHS HB3 3.24    
3 DHS HN 3 DHS QB 3.02    
3 DHS HA 3 DHS HB2 2.74    
3 DHS HA 3 DHS HB3 2.74    
3 DHS HA 3 DHS QB 2.48    
3 DHS HA 3 DHS HG 3.75  0.40  
3 DHS HA 14 DHS HG 5.10    
3 DHS HA 7 PHE HN 2.40    
3 DHS HA 7 PHE QD 7.62    
3 DHS HA 14 DHS HA 3.30 1.20  0.28 
3 DHS QB 3 DHS HG 2.75    
3 DHS HG 14 DHS HA 4.72    
7 PHE HN 7 PHE HB2 3.73    
7 PHE HN 7 PHE HB3 3.73    
7 PHE HN 7 PHE QB 3.35    
7 PHE HN 14 DHS HA 4.01 1.38  0.39 
7 PHE HA 8 DTRP HN 2.49    
7 PHE QB 8 DTRP HN 3.93    
7 PHE QD 8 DTRP HN 7.28    
8 DTRP HN 8 DTRP HB2 2.68    
8 DTRP HN 8 DTRP HB3 2.68    
8 DTRP HN 8 DTRP QB 2.42    
8 DTRP HN 8 DTRP HD1 5.28    
8 DTRP HA 8 DTRP HE3 2.83    
8 DTRP HA 9 LYS HN 2.40    
8 DTRP HA 10 TBZ HN 3.83    
8 DTRP HB2 8 DTRP HD1 3.70    
8 DTRP HB2 8 DTRP HE3 4.22    
8 DTRP HB2 9 LYS HN 4.40    
8 DTRP HB3 8 DTRP HD1 3.70    
8 DTRP HB3 8 DTRP HE3 4.22    
8 DTRP HB3 9 LYS HN 4.40    
8 DTRP QB 8 DTRP HD1 3.16    
8 DTRP QB 9 LYS HN 4.20    
8 DTRP QB 8 DTRP HE3 3.60    
8 DTRP HD1 9 LYS QG 6.38    
8 DTRP HE3 9 LYS HN 4.01    
9 LYS HN 9 LYS HB2 2.50    
9 LYS HN 9 LYS HB3 3.70    
9 LYS HN 9 LYS QG 3.49    
9 LYS HN 10 TBZ HN 3.00    
9 LYS HA 9 LYS HG2 3.83    
9 LYS HA 9 LYS HG3 3.83    
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9 LYS HA 9 LYS QG 3.32    
9 LYS HA 10 TBZ HN 3.46    
9 LYS HA 15 THO HN 5.44  2.80 0.46 
9 LYS HA 15 THO QG2 6.53  2.10 0.33 
9 LYS HB2 10 TBZ HN 3.60 0.74   
9 LYS HB3 10 TBZ HN 4.10 0.20   
9 LYS QG 10 TBZ HN 6.38    
9 LYS QG 10 TBZ QD 7.52  1.02  
10 TBZ HN 10 TBZ HB2 2.83    
10 TBZ HN 10 TBZ HB3 3.14    
10 TBZ HN 14 DHS HN 2.95  0.36  
10 TBZ HA 14 DHS HN 2.62 0.82  0.27 
10 TBZ HA 15 THO HN 5.31    
10 TBZ HB2 14 DHS HN 4.01  0.40  
10 TBZ HB3 14 DHS HN 3.86  0.58  
10 TBZ QD 14 DHS HN 6.68    
10 TBZ QD 14 DHS HA 6.05 0.74   
10 TBZ QD 15 THO QG2 7.27 0.52   
14 DHS HN 14 DHS HB2 2.52    
14 DHS HN 14 DHS HB3 3.29 0.43   
14 DHS HN 14 DHS HG 5.01    
14 DHS HN 15 THO HN 3.16  1.16 0.12 
14 DHS HA 14 DHS HG 3.76    
14 DHS HA 15 THO HN 2.65 0.59   
14 DHS HB2 15 THO HN 3.83  0.77  
14 DHS HB3 15 THO HN 4.41    
15 THO HN 15 THO HB 3.70    
15 THO HN 15 THO QG2 4.61    
15 THO HA 15 THO HB 2.54    
a 3 DHS: N-terminal portion of dehydrodiaminosuberic acid. 14 DHS: C-terminal 
portion of dehydrodiaminosuberic acid. TBZ: Tyr(Bzl). THO: Threoninol.   
b Violations (Å) observed for the mean structure of the family I (helix), family II 
(extended) and an ensemble of 20 structures of both families (ensemble). 
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Table S27. NOE Derived Upper Limit Constraints of Compound 5 

Atom1a Atom2 Upper Limit
V i o l a t i o n  

Helix Extend Ensemble
2 DPHE HA 3 DHS HN 2.40    
2 DPHE HB2 3 DHS HN 3.86    
2 DPHE HB3 3 DHS HN 3.86    
2 DPHE QB 3 DHS HN 3.62    
2 DPHE QD 3 DHS HN 7.62    
3 DHS HN 3 DHS HB2 3.24    
3 DHS HN 3 DHS HB3 3.24    
3 DHS HN 3 DHS QB 3.24    
3 DHS HN 3 DHS HG 4.35    
3 DHS HN 7 NAL HN 3.79    
3 DHS HA 3 DHS HG 3.48  0.66  
3 DHS HA 14 DHS HG 4.38    
3 DHS HA 7 NAL HN 2.43    
3 DHS HA 14 DHS HA 3.25 1.25  0.32 
3 DHS QB 14 DHS HN 5.77    
3 DHS HG 7 NAL HN 5.50    
3 DHS HG 14 DHS HA 4.88    
3 DHS HG 14 DHS QB 4.31    
7 NAL HN 7 NAL HB2 2.71    
7 NAL HN 7 NAL HB3 2.74    
7 NAL HN 7 NAL HD1 5.50    
7 NAL HN 8 DTRP HN 4.48    
7 NAL HN 14 DHS HA 3.82 1.57  0.46 
7 NAL HN 14 DHS QB 5.00    
7 NAL HA 8 DTRP HN 2.40    
7 NAL HB2 7 NAL HD1 2.74    
7 NAL HB2 7 NAL HD3 2.49    
7 NAL HB2 8 DTRP HN 4.11    
7 NAL HB3 7 NAL HD1 2.86    
7 NAL HB3 7 NAL HD3 2.52    
7 NAL HB3 8 DTRP HN 3.92    
7 NAL HZ 8 DTRP HE3 5.50    
7 NAL HE3 8 DTRP HE3 5.50    
7 NAL HD3 8 DTRP HN 4.82    
8 DTRP HN 8 DTRP HB2 2.83    
8 DTRP HN 8 DTRP HB3 2.83    
8 DTRP HN 8 DTRP QB 2.53    
8 DTRP HN 8 DTRP HD1 5.50    
8 DTRP HA 8 DTRP HD1 4.82    
8 DTRP HA 8 DTRP HE3 3.02    
8 DTRP HA 9 LYS HN 2.43    
8 DTRP HB2 9 LYS HN 4.32    
8 DTRP HB3 9 LYS HN 4.32    
8 DTRP QB 8 DTRP HE3 4.38    
8 DTRP QB 9 LYS HN 3.80    
8 DTRP HD1 9 LYS HN 5.50    
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8 DTRP HE3 9 LYS HN 5.16    
8 DTRP HE3 9 LYS HA 5.37    
8 DTRP HE1 9 LYS QG 6.38    
8 DTRP HE1 9 LYS QD 6.38    
8 DTRP HZ2 9 LYS QD 6.38    
9 LYS HN 9 LYS HB2 2.60    
9 LYS HN 9 LYS HB3 3.71    
9 LYS HN 9 LYS HG2 4.14    
9 LYS HN 9 LYS HG3 4.14    
9 LYS HN 9 LYS QG 3.71    
9 LYS HN 10 THR HN 2.77    
9 LYS HA 9 LYS QG 3.91    
9 LYS HA 9 LYS QD 6.38    
9 LYS HA 10 THR HN 3.33    
9 LYS HA 14 DHS HN 5.50    
9 LYS HA 15 THO HN 5.35  2.90 0.41 
9 LYS QB 10 THR HN 5.51    
10 THR HN 10 THR HA 2.90    
10 THR HN 10 THR HB 3.21    
10 THR HN 14 DHS HN 2.89  0.42  
10 THR HA 10 THR HB 2.83    
10 THR HA 14 DHS HN 2.57 0.88  0.31 
10 THR HA 15 THO HN 5.34    
10 THR HB 14 DHS HN 3.61    
10 THR QG2 14 DHS HN 6.53    
14 DHS HN 14 DHS HB2 2.86    
14 DHS HN 14 DHS HB3 3.39 0.33   
14 DHS HN 14 DHS HG 4.85    
14 DHS HN 15 THO HN 3.22  1.20 0.14 
14 DHS HA 14 DHS HG 3.86    
14 DHS HA 15 THO HN 2.55 0.68   
14 DHS HB2 15 THO HN 3.80  0.80  
14 DHS HB3 15 THO HN 4.39    
15 THO HN 15 THO HB 3.58    
15 THO HA 15 THO HB 2.40    
a 3 DHS: N-terminal portion of dehydrodiaminosuberic acid. 14 DHS: C-terminal 
portion of dehydrodiaminosuberic acid. NAL: 1-naphtylalanine. THO: 
Threoninol.  b Violations (Å) observed for the mean structure of the family I 
(helix), family II (extended) and an ensemble of 20 structures of both families 
(ensemble). 
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Table S28. NOE Derived Upper Limit Constraints of Compound 8 

Atom1a Atom2 Upper Limit
V i o l a t i o n  

Helix Extend Ensemble
2 DPHE HA 3 DHS HN 2.52    
3 DHS HA 3 DHS HG 3.64  0.53  
3 DHS HA 7 NAL HN 2.71    
3 DHS HA 14 DHS HA 3.31 1.19  0.30 
3 DHS HG 7 NAL HN 5.50    
3 DHS HG 14 DHS HB2 4.42    
7 NAL HN 7 NAL HB2 3.39    
7 NAL HN 7 NAL HB3 3.45    
7 NAL HN 14 DHS HA 3.87 1.52  0.19 
7 NAL HA 7 NAL HD1 3.95    
7 NAL HA 8 DTRP HN 2.46    
7 NAL HB2 7 NAL HD1 3.08    
7 NAL HB3 7 NAL HD1 3.05    
8 DTRP HN 8 DTRP HB2 2.83    
8 DTRP HN 8 DTRP HB3 2.83    
8 DTRP HN 8 DTRP QB 2.53    
8 DTRP HN 8 DTRP HD1 5.06    
8 DTRP HA 8 DTRP HD1 4.98    
8 DTRP HA 8 DTRP HE3 2.71    
8 DTRP HA 9 LYS HN 2.59    
8 DTRP HA 10 TBZ HN 3.76    
8 DTRP HA 10 TBZ QD 7.64    
8 DTRP HA 10 TBZ QE 7.63    
8 DTRP HB2 8 DTRP HD1 3.45    
8 DTRP HB2 8 DTRP HE3 4.04    
8 DTRP HB2 9 LYS HN 4.11    
8 DTRP HB3 8 DTRP HD1 3.45    
8 DTRP HB3 8 DTRP HE3 4.04    
8 DTRP HB3 9 LYS HN 4.11    
8 DTRP QB 8 DTRP HD1 3.26    
8 DTRP QB 9 LYS HN 3.93    
8 DTRP HD1 9 LYS HG2 5.22    
8 DTRP HD1 9 LYS HG3 5.22    
8 DTRP HD1 9 LYS QG 4.92    
8 DTRP HE3 9 LYS HN 4.11    
8 DTRP HE3 9 LYS QG 6.38    
8 DTRP HE3 10 TBZ QE 7.51 0.38   
8 DTRP HE1 9 LYS QD 6.38    
8 DTRP HE1 9 LYS QE 6.38    
8 DTRP HZ2 9 LYS QE 6.38    
9 LYS HN 9 LYS HB2 2.61    
9 LYS HN 9 LYS HB3 3.69    
9 LYS HN 9 LYS HG2 4.11    
9 LYS HN 9 LYS HG3 4.11    
9 LYS HN 9 LYS QG 3.84    
9 LYS HN 10 TBZ HN 2.93    
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9 LYS HN 10 TBZ QD 7.64    
9 LYS HA 9 LYS QG 3.88    
9 LYS HA 9 LYS QD 5.45    
9 LYS HA 10 TBZ HN 3.45    
9 LYS HA 14 DHS HN 5.00    
9 LYS HA 15 THO HN 5.50  2.76 0.48 
9 LYS HA 15 THO QG2 6.51  2.10 0.35 
9 LYS HB2 10 TBZ HN 3.66 0.68   
9 LYS HB3 10 TBZ HN 4.16 0.20   
9 LYS QB 10 TBZ QD 8.52    
9 LYS QG 10 TBZ HN 5.50    
9 LYS QG 10 TBZ QE 7.63    
10 TBZ HN 10 TBZ HB2 2.90    
10 TBZ HN 10 TBZ HB3 3.57    
10 TBZ HN 10 TBZ QE 7.63    
10 TBZ HN 14 DHS HN 2.98  0.34  
10 TBZ HA 10 TBZ HB2 2.93    
10 TBZ HA 10 TBZ HB3 2.74    
10 TBZ HA 14 DHS HN 2.64 0.82  0.23 
10 TBZ HB2 14 DHS HN 3.95  0.46  
10 TBZ HB3 14 DHS HN 3.82  0.63  
14 DHS HN 14 DHS HB2 2.96    
14 DHS HN 14 DHS HB3 3.39 0.33   
14 DHS HN 14 DHS HG 4.51    
14 DHS HN 15 THO HN 3.21  1.21 0.13 
14 DHS HA 14 DHS HB2 2.93    
14 DHS HA 14 DHS HB3 2.83    
14 DHS HA 14 DHS HG 3.81    
14 DHS HA 15 THO HN 2.66 0.58   
14 DHS HB2 15 THO HN 3.86  0.75  
14 DHS HB3 15 THO HN 4.43    
15 THO HN 15 THO HB 3.58    
15 THO HN 15 THO QG2 4.88    
15 THO HA 15 THO HB 2.40    
a 3 DHS: N-terminal portion of dehydrodiaminosuberic acid. 14 DHS: C-terminal 
portion of dehydrodiaminosuberic acid. NAL: 1-naphtylalanine. TBZ: Tyr(Bzl). 
THO: Threoninol.  b Violations (Å) observed for the mean structure of the family 
I (helix), family II (extended) and an ensemble of 20 structures of both families 
(ensemble). 
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Table S29. Microanalysis data for the all final products 

  Found (%) Calculated (%) 
Comp. Formula C H N S C H N S 
11a C16H11F3N2O5S 48.00 2.77 7.00 8.01 48.15 2.89 7.05 8.08 

11b C17H13F3N2O5S 49.28 3.16 6.76 7.74 49.39 3.03 6.66 7.63 

11c C23H17F3N2O5S 56.32 3.49 5.71 6.54 56.24 3.59 5.74 6.63 

11d C22H21F6N3O7S 45.13 3.62 7.18 5.48 45.01 3.70 7.21 5.51 

11e C19H15F3N2O5S 51.82 3.43 6.36 7.28 51.68 3.47 6.27 7.41 

11f C17H13F3N2O5S 49.28 3.16 6.76 7.74 49.13 3.12 6.84 7.87 

11g C14H9NO4S 58.53 3.16 4.88 11.16 58.42 3.25 4.97 10.98

11h C18H19ClN2O3S 57.06 5.05 7.39 8.46 56.96 5.14 7.30 8.59 

11i C18H17ClN2O4S 55.03 4.36 7.13 8.16 55.00 4.40 7.16 8.24 

11j C14H9NO3S2 55.43 2.99 4.62 21.14 55.35 2.95 4.69 21.26

11k C18H21Cl2N3O3S 50.24 4.92 9.76 7.45 50.12 5.01 9.69 7.58 

11l C15H11NO4S 59.79 3.68 4.65 10.64 59.68 3.63 4.72 10.71
11m C19H21ClN2O3S 58.08 5.39 7.13 8.16 57.98 5.44 7.02 8.29 
11n C19H19ClN2O4S 56.09 4.71 6.88 7.88 56.00 4.76 6.78 8.01 
11o C15H11NO3S2 56.76 3.49 4.41 20.21 56.64 3.55 4.30 20.34
11p C19H23Cl2N3O3S 51.35 5.22 9.46 7.22 51.42 5.24 9.39 7.36 
11q C16H14N2O3S 61.13 4.49 8.91 10.20 61.18 4.53 8.82 10.31
11r C17H18ClN3O3S 53.75 4.78 11.06 8.44 53.83 4.68 11.11 8.38 
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Figure S26. Expression of cyclin A in control cells and upon treatment with 11p, 
11m, and 11c (1 µM) for 48h 

 

 

 

Figure S27. Effects of doxorubicin on the topo II-mediated DNA cleavage 

 

 
 



References 

- 231 -	
 

References 
[1] D. Pearson, J.E. Shively, B.R. Clark, I.I. Geschwind, M. Barkley, R.S. 
Nishioka, H.A. Bern, Urotensin II: a Somatostain-like Peptide in the Caudal 
Neurosecretory System of Fishes, Proc Natl Acad Sci U S A, 77 (1980) 5021-
5024. 
[2] J.M. Conlon, F. O'Harte, D.D. Smith, M.C. Tonon, H. Vaudry, Isolation and 
primary structure of urotensin II from the brain of a tetrapod, the frog Rana 
ridibunda, Biochem Biophys Res Commun, 188 (1992) 578-583. 
[3] Y. Coulouarn, I. Lihrmann, S. Jegou, Y. Anouar, H. Tostivint, J.C. 
Beauvillain, J.M. Conlon, H.A. Bern, H. Vaudry, Cloning of the cDNA encoding 
the urotensin II precursor in frog and human reveals intense expression of the 
urotensin II gene in motoneurons of the spinal cord, Proc Natl Acad Sci U S A, 95 
(1998) 15803-15808. 
[4] Y. Coulouarn, S. Jegou, H. Tostivint, H. Vaudry, I. Lihrmann, Cloning, 
sequence analysis and tissue distribution of the mouse and rat urotensin II 
precursors, FEBS Lett, 457 (1999) 28-32. 
[5] M. Mori, T. Sugo, M. Abe, Y. Shimomura, M. Kurihara, C. Kitada, K. 
Kikuchi, Y. Shintani, T. Kurokawa, H. Onda, O. Nishimura, M. Fujino, Urotensin 
II is the Endogenous Ligand of a G-protein Coupled Orphan Receptor, SENR 
(GPR14), Biochem Biophys Res Commun, 265 (1999) 123-129. 
[6] N.A. Elshourbagy, S.A. Douglas, U. Shabon, S. Harrison, G. Duddy, J.L. 
Sechler, Z. Ao, B.E. Maleeff, D. Naselsky, J. Disa, N.V. Aiyar, Molecular and 
pharmacological characterization of genes encoding urotensin-II peptides and 
their cognate G-protein-coupled receptors from the mouse and monkey, Br J 
Pharmacol, 136 (2002) 9-22. 
[7] R.S. Ames, H.M. Sarau, J.K. Chambers, R.N. Willette, N.V. Aiyar, A.M. 
Romanic, C.S. Louden, J.J. Foley, C.F. Sauermelch, R.W. Coatney, Z. Ao, J. 
Disa, S.D. Holmes, J.M. Stadel, J.D. Martin, W.S. Liu, G.I. Glover, S. Wilson, 
D.E. McNulty, C.E. Ellis, N.A. Elshourbagy, U. Shabon, J.J. Trill, D.W. Hay, 
E.H. Ohlstein, D.J. Bergsma, S.A. Douglas, Human urotensin-II is a potent 
vasoconstrictor and agonist for the orphan receptor GPR14, Nature, 401 (1999) 
282-286. 
[8] T. Sugo, Y. Murakami, Y. Shimomura, M. Harada, M. Abe, Y. Ishibashi, C. 
Kitada, N. Miyajima, N. Suzuki, M. Mori, M. Fujino, Identification of urotensin 
II-related peptide as the urotensin II-immunoreactive molecule in the rat brain, 
Biochem Biophys Res Commun, 310 (2003) 860-868. 
[9] D. Chatenet, C. Dubessy, J. Leprince, C. Boularan, L. Carlier, I. Segalas-
Milazzo, L. Guilhaudis, H. Oulyadi, D. Davoust, E. Scalbert, B. Pfeiffer, P. 
Renard, M.C. Tonon, I. Lihrmann, P. Pacaud, H. Vaudry, Structure-activity 
relationships and structural conformation of a novel urotensin II-related peptide, 
Peptides, 25 (2004) 1819-1830. 
[10] N. Chartrel, J.M. Conlon, F. Collin, B. Braun, D. Waugh, M. Vallarino, S.L. 
Lahrichi, J.E. Rivier, H. Vaudry, Urotensin II in the central nervous system of the 
frog Rana ridibunda: immunohistochemical localization and biochemical 
characterization, J Comp Neurol, 364 (1996) 324-339. 
[11] Y. Coulouarn, C. Fernex, S. Jegou, C.E. Henderson, H. Vaudry, I. Lihrmann, 
Specific expression of the urotensin II gene in sacral motoneurons of developing 
rat spinal cord, Mech Dev, 101 (2001) 187-190. 
[12] G. Pelletier, I. Lihrmann, H. Vaudry, Role of androgens in the regulation of 
urotensin II precursor mRNA expression in the rat brainstem and spinal cord, 
Neuroscience, 115 (2002) 525-532. 



References 

- 232 -	
 

[13] G. Pelletier, I. Lihrmann, C. Dubessy, V. Luu-The, H. Vaudry, F. Labrie, 
Androgenic down-regulation of urotensin II precursor, urotensin II-related peptide 
precursor and androgen receptor mRNA in the mouse spinal cord, Neuroscience, 
132 (2005) 689-696. 
[14] E. Novellino, P. Grieco, M. Caraglia, A. Budillon, R. Franco, S.R. Addeo, 
Peptidic and non Peptidic Ligands for Immunodetection of Urotensin-II 
Receptor., PCT Int. Appl., (2008) 21pp WO 2008095995. 
[15] J.J. Maguire, A.P. Davenport, Is Urotensin-II the New Endothelin? , Br J 
Pharmacol, 137 (2002) 579-588. 
[16] S.A. Douglas, E.H. Ohlstein, Human Urotensin-II, the Most Potent 
Mammalian Vasoconstrictor Identified to Date, as a Therapeutic Target for the 
Management of Cardivascular Diseases, Trends Cardiovasc Med 10 (2000) 229-
237. 
[17] S.A. Douglas, Human Urotensin-II as a Novel Cardiovascular Target: 
“Heart” of the Matter or Simply a Fish “Tail?”, Curr Opin Pharmacol, 3 (2003) 
159-167. 
[18] R.A. Silvestre, E.M. Egido, R. Hernandez, J. Leprince, D. Chatenet, H. 
Tollemer, N. Chartrel, H. Vaudry, J. Marco, Urotensin-II is present in pancreatic 
extracts and inhibits insulin release in the perfused rat pancreas, Eur J Endocrinol, 
151 (2004) 803-809. 
[19] T. Djordjevic, R.S. BelAiba, S. Bonello, J. Pfeilschifter, J. Hess, A. Gorlach, 
Human urotensin II is a novel activator of NADPH oxidase in human pulmonary 
artery smooth muscle cells, Arterioscler Thromb Vasc Biol, 25 (2005) 519-525. 
[20] Y. Matsumoto, M. Abe, T. Watanabe, Y. Adachi, T. Yano, H. Takahashi, T. 
Sugo, M. Mori, C. Kitada, T. Kurokawa, M. Fujino, Intracerebroventricular 
administration of urotensin II promotes anxiogenic-like behaviors in rodents, 
Neurosci Lett, 358 (2004) 99-102. 
[21] H. Itoh, D. McMaster, K. Lederis, Functional receptors for fish neuropeptide 
urotensin II in major rat arteries, Eur J Pharmacol, 149 (1988) 61-66. 
[22] S. Flohr, M. Kurz, E. Kostenis, A. Brkovich, A. Fournier, T. Klabunde, 
Identification of nonpeptidic urotensin II receptor antagonists by virtual screening 
based on a pharmacophore model derived from structure-activity relationships and 
nuclear magnetic resonance studies on urotensin II, J Med Chem, 45 (2002) 1799-
1805. 
[23] W.A. Kinney, H.R. Almond Jr, J. Qi, C.E. Smith, R.J. Santulli, L. de 
Garavilla, P. Andrade-Gordon, D.S. Cho, A.M. Everson, M.A. Feinstein, P.A. 
Leung, B.E. Maryanoff, Structure-function analysis of urotensin II and its use in 
the construction of a ligand-receptor working model, Angew Chem Int Ed Engl, 
41 (2002) 2940-2944. 
[24] A. Brkovic, A. Hattenberger, E. Kostenis, T. Klabunde, S. Flohr, M. Kurz, S. 
Bourgault, A. Fournier, Functional and binding characterizations of urotensin II-
related peptides in human and rat urotensin II-receptor assay, J Pharmacol Exp 
Ther, 306 (2003) 1200-1209. 
[25] P. Labarrere, D. Chatenet, J. Leprince, C. Marionneau, G. Loirand, M.C. 
Tonon, C. Dubessy, E. Scalbert, B. Pfeiffer, P. Renard, B. Calas, P. Pacaud, H. 
Vaudry, Structure-activity relationships of human urotensin II and related 
analogues on rat aortic ring contraction, J Enzyme Inhib Med Chem, 18 (2003) 
77-88. 
[26] D.H. Coy, W.J. Rossowski, B.L. Cheng, J.E. Taylor, Structural requirements 
at the N-terminus of urotensin II octapeptides, Peptides, 23 (2002) 2259-2264. 



References 

- 233 -	
 

[27] E. Lescot, R. Bureau, S. Rault, Nonpeptide Urotensin-II receptor agonists 
and antagonists: review and structure-activity relationships, Peptides, 29 (2008) 
680-690. 
[28] V.J. Hruby, Designing Peptide Receptors Agonists and Antagonists, Nature 
Review Drug Discovery, 1 (2002) 847-858. 
[29] A. Carotenuto, P. Grieco, P. Rovero, E. Novellino, Urotensin-II receptor 
antagonists, Curr Med Chem, 13 (2006) 267-275. 
[30] P. Grieco, A. Carotenuto, P. Campiglia, E. Zampelli, R. Patacchini, C.A. 
Maggi, E. Novellino, P. Rovero, A new, potent urotensin II receptor peptide 
agonist containing a Pen residue at the disulfide bridge, J Med Chem, 45 (2002) 
4391-4394. 
[31] R. Patacchini, P. Santicioli, S. Giuliani, P. Grieco, E. Novellino, P. Rovero, 
C.A. Maggi, Urantide: an ultrapotent urotensin II antagonist peptide in the rat 
aorta, Br J Pharmacol, 140 (2003) 1155-1158. 
[32] V. Camarda, W. Song, E. Marzola, M. Spagnol, R. Guerrini, S. Salvadori, D. 
Regoli, J.P. Thompson, D.J. Rowbotham, D.J. Behm, S.A. Douglas, G. Calo, D.G. 
Lambert, Urantide mimics urotensin-II induced calcium release in cells expressing 
recombinant UT receptors, Eur J Pharmacol, 498 (2004) 83-86. 
[33] P. Grieco, A. Carotenuto, P. Campiglia, L. Marinelli, T. Lama, R. Patacchini, 
P. Santicioli, C.A. Maggi, P. Rovero, E. Novellino, Urotensin-II receptor ligands. 
From agonist to antagonist activity, J Med Chem, 48 (2005) 7290-7297. 
[34] A. Carotenuto, P. Grieco, P. Campiglia, E. Novellino, P. Rovero, Unraveling 
the active conformation of urotensin II, J Med Chem, 47 (2004) 1652-1661. 
[35] J.M. Stewart, J.D. Yang, Solid Phase Peptide Synthesis, Pierce Chemical, 
Rockford, IL, 1984. 
[36] K. Wüthrich, NMR of Proteins and Nucleic Acids, John Wiley & Sons, Inc, 
New York, 1986. 
[37] U. Piantini, O.W. Sorensen, R.R. Ernst, Multiple quantum filters for 
elucidating NMR coupling network, J Am Chem Soc, 104 (1982) 6800-68001. 
[38] D. Marion, K. Wuthrich, Application of phase sensitive two-dimensional 
correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling 
constants in proteins, Biochem Biophys Res Commun, 113 (1983) 967-974. 
[39] L. Braunschweiler, R.R. Ernst, Coherence transfer by isotropic mixing: 
application to proton correlation spectroscopy, J Magn Reson, 53 (1983) 521-528. 
[40] J. Jenner, B.H. Meyer, P. Bachman, R.R. Ernst, Investigation of exchange 
processes by two-dimensional NMR spectroscopy, J Chem Phys, 71 (1979) 4546-
4553. 
[41] C. Bartels, T.H. Xia, M. Billeter, P. Guntert, K. Wuthrich, The Program 
Xeasy for Computer-Supported Nmr Spectral-Analysis of Biological 
Macromolecules, J Biomol Nmr, 6 (1995) 1-10. 
[42] K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. 
Fox, I. Le Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto, M. 
Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 
289 (2000) 739-745. 
[43] A. Lavecchia, S. Cosconati, E. Novellino, Architecture of the human 
urotensin II receptor: comparison of the binding domains of peptide and non-
peptide urotensin II agonists, J Med Chem, 48 (2005) 2480-2492. 
[44] B.J. Holleran, M.E. Beaulieu, C.D. Proulx, P. Lavigne, E. Escher, R. Leduc, 
Photolabelling the urotensin II receptor reveals distinct agonist- and partial-
agonist-binding sites, Biochem J, 402 (2007) 51-61. 



References 

- 234 -	
 

[45] D.S. Goodsell, G.M. Morris, A.J. Olson, Automated docking of flexible 
ligands: applications of AutoDock, J Mol Recognit, 9 (1996) 1-5. 
[46] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, 
A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an 
empirical binding free energy function, J Comput Chem, 19 (1998) 1639-1662. 
[47] R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, A semiempirical free 
energy force field with charge-based desolvation, J Comput Chem, 28 (2007) 
1145-1152. 
[48] C.B. Fowler, I.D. Pogozheva, A.L. Lomize, H. LeVine, 3rd, H.I. Mosberg, 
Complex of an active mu-opioid receptor with a cyclic peptide agonist modeled 
from experimental constraints, Biochemistry, 43 (2004) 15796-15810. 
[49] E. Marzola, V. Camarda, M. Batuwangala, D.G. Lambert, G. Calo, R. 
Guerrini, C. Trapella, D. Regoli, R. Tomatis, S. Salvadori, Structure-activity 
relationship study of position 4 in the urotensin-II receptor ligand U-II(4-11), 
Peptides, 29 (2008) 674-679. 
[50] L. Moroder, R. Romano, W. Guba, D.F. Mierke, H. Kessler, C. Delporte, J. 
Winand, J. Christophe, New evidence for a membrane-bound pathway in hormone 
receptor binding, Biochemistry, 32 (1993) 13551-13559. 
[51] D.F. Sargent, R. Schwyzer, Membrane Lipid Phase as Catalyst for Peptide-
Receptor Interactions. , Proc Natl Acad Sci U S A, 83 (1986). 
[52] B. Gysin, R. Schwyzer, Head group and structure specific interactions of 
enkephalins and dynorphin with liposomes: investigation by hydrophobic 
photolabeling, Arch Biochem Biophys, 225 (1983) 467-474. 
[53] M. Dhanasekaran, M.M. Palian, I. Alves, L. Yeomans, C.M. Keyari, P. 
Davis, E.J. Bilsky, R.D. Egleton, H.I. Yamamura, N.E. Jacobsen, G. Tollin, V.J. 
Hruby, F. Porreca, R. Polt, Glycopeptides related to beta-endorphin adopt helical 
amphipathic conformations in the presence of lipid bilayers, J Am Chem Soc, 127 
(2005) 5435-5448. 
[54] R.D. Egleton, E.J. Bilsky, G. Tollin, M. Dhanaseharan, J. Lowery, I. Alves, 
P. Davis, F. Porreca, Y.H. I., L. Yeomans, C.M. Keyari, R. Polt, Biousian 
glycopeptides penetrate the blood-brain-barrier, Tetrahedron Asymmetry 16 
(2005) 65-75. 
[55] T. Yamamoto, P. Nair, N.E. Jacobsen, P. Davis, S.W. Ma, E. Navratilova, S. 
Moye, J. Lai, H.I. Yamamura, T.W. Vanderah, F. Porreca, V.J. Hruby, The 
importance of micelle-bound states for the bioactivities of bifunctional peptide 
derivatives for delta/mu opioid receptor agonists and neurokinin 1 receptor 
antagonists, J Med Chem, 51 (2008) 6334-6347. 
[56] E. Lescot, J. Sopkova-de Oliveira Santos, N. Colloc'h, J. Rodrigo, I. Milazzo-
Segalas, R. Bureau, S. Rault, Three-dimensional model of the human urotensin-II 
receptor: docking of human urotensin-II and nonpeptide antagonists in the binding 
site and comparison with an antagonist pharmacophore model, Proteins, 73 (2008) 
173-184. 
[57] V. Cherezov, D.M. Rosenbaum, M.A. Hanson, S.G. Rasmussen, F.S. Thian, 
T.S. Kobilka, H.J. Choi, P. Kuhn, W.I. Weis, B.K. Kobilka, R.C. Stevens, High-
resolution crystal structure of an engineered human beta2-adrenergic G protein-
coupled receptor, Science, 318 (2007) 1258-1265. 
[58] T. Warne, M.J. Serrano-Vega, J.G. Baker, R. Moukhametzianov, P.C. 
Edwards, R. Henderson, A.G. Leslie, C.G. Tate, G.F. Schertler, Structure of a 
beta1-adrenergic G-protein-coupled receptor, Nature, 454 (2008) 486-491. 



References 

- 235 -	
 

[59] V.P. Jaakola, M.T. Griffith, M.A. Hanson, V. Cherezov, E.Y. Chien, J.R. 
Lane, A.P. Ijzerman, R.C. Stevens, The 2.6 angstrom crystal structure of a human 
A2A adenosine receptor bound to an antagonist, Science, 322 (2008) 1211-1217. 
[60] S. Boivin, L. Guilhaudis, I. Milazzo, H. Oulyadi, D. Davoust, A. Fournier, 
Characterization of urotensin-II receptor structural domains involved in the 
recognition of U-II, URP, and urantide, Biochemistry, 45 (2006) 5993-6002. 
[61] S. Boivin, I. Segalas-Milazzo, L. Guilhaudis, H. Oulyadi, A. Fournier, D. 
Davoust, Solution structure of urotensin-II receptor extracellular loop III and 
characterization of its interaction with urotensin-II, Peptides, 29 (2008) 700-710. 
[62] A.A. Boucard, S.S. Sauve, G. Guillemette, E. Escher, R. Leduc, 
Photolabelling the rat urotensin II/GPR14 receptor identifies a ligand-binding site 
in the fourth transmembrane domain, Biochem J, 370 (2003) 829-838. 
[63] R. Guerrini, V. Camarda, E. Marzola, M. Arduin, G. Calo, M. Spagnol, A. 
Rizzi, S. Salvadori, D. Regoli, Structure-activity relationship study on human 
urotensin II, J Pept Sci, 11 (2005) 85-90. 
[64] V. Camarda, M. Spagnol, W. Song, R. Vergura, A.L. Roth, J.P. Thompson, 
D.J. Rowbotham, R. Guerrini, E. Marzola, S. Salvadori, P. Cavanni, D. Regoli, 
S.A. Douglas, D.G. Lambert, G. Calo, In vitro and in vivo pharmacological 
characterization of the novel UT receptor ligand [Pen5,DTrp7,Dab8]urotensin 
II(4-11) (UFP-803), Br J Pharmacol, 147 (2006) 92-100. 
[65] A. Misika, V.J. Hruby, Optimization of Disulfide Bond Formation, Pol J 
Chem, 68 (1994) 893-899. 
[66] T.P. Kenakin, Competitive antagonism, 3rd ed. Lippincott-Raven Press, 
Philadelphia, 1997. 
[67] Y. Cheng, W.H. Prusoff, Relationship Between the Inhibition Constant (Ki) 
and the Concentration of Inhibitor which Causes 50 per Cent Inhibition (I50) of 
an Enzymatic Reaction, Biochem Pharmacol, 22 (1973) 3099-3108 

 
[68] T.L. Hwang, A.J. Shaka, Water suppression that works. Excitation sculpting 
using arbitrary wave-forms and pulsed-field gradients, J Magn Reson, 112 (1995) 
275-279. 
[69] L. Mueller, P. E: COSY, a simple alternative to E. COSY, J Magn Reson, 72 
(1987) 191-196. 
[70] D.J. States, R.A. Haberkorn, D.J. Ruben, A two-dimensional nuclear 
overhauser experiment with pure absorption phase in four quadrants, J Magn 
Reson, 48 (1982) 286-292. 
[71] P. Guntert, C. Mumenthaler, K. Wuthrich, Torsion angle dynamics for NMR 
structure calculation with the new program DYANA, J Mol Biol, 273 (1997) 283-
298. 
[72] R. Koradi, M. Billeter, K. Wuthrich, MOLMOL: a program for display and 
analysis of macromolecular structures, J Mol Graph, 14 (1996) 51-55, 29-32. 
[73] J.R. Maple, U. Dinur, A.T. Hagler, Derivation of force fields for molecular 
mechanics and dynamics from ab initio energy surfaces, Proc Natl Acad Sci U S 
A, 85 (1988) 5350-5354. 
[74] R.A. Laskowski, M.W. MacArthur, D.S. Moss, T.J. M., PROCHECK: A 
Program to Check the Stereochemical Quality of Protein Structures. , J Appl 
Crystallogr, 26 (1993) 283-291. 
[75] A.L. Morris, M.W. MacArthur, E.G. Hutchinson, J.M. Thornton, 
Stereochemical quality of protein structure coordinates, Proteins, 12 (1992) 345-
364. 



References 

- 236 -	
 

[76] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, 
E.C. Meng, T.E. Ferrin, UCSF Chimera--a visualization system for exploratory 
research and analysis, J Comput Chem, (2004) 1605-1612. 
[77] V. Chhajlani, J.E. Wikberg, Molecular cloning and expression of the human 
melanocyte stimulating hormone receptor cDNA, FEBS Lett, 309 (1992) 417-420. 
[78] K.G. Mountjoy, L.S. Robbins, M.T. Mortrud, R.D. Cone, The cloning of a 
family of genes that encode the melanocortin receptors, Science, 257 (1992) 
1248-1251. 
[79] L. Roselli-Rehfuss, K.G. Mountjoy, L.S. Robbins, M.T. Mortrud, M.J. Low, 
J.B. Tatro, M.L. Entwistle, R.B. Simerly, R.D. Cone, Identification of a receptor 
for gamma melanotropin and other proopiomelanocortin peptides in the 
hypothalamus and limbic system, Proc Natl Acad Sci U S A, 90 (1993) 8856-
8860. 
[80] K.G. Mountjoy, M.T. Mortrud, M.J. Low, R.B. Simerly, R.D. Cone, 
Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and 
autonomic control circuits in the brain, Mol Endocrinol, 8 (1994) 1298-1308. 
[81] I. Gantz, Y. Konda, T. Tashiro, Y. Shimoto, H. Miwa, G. Munzert, S.J. 
Watson, J. DelValle, T. Yamada, Molecular cloning of a novel melanocortin 
receptor, J Biol Chem, 268 (1993) 8246-8250. 
[82] I. Gantz, H. Miwa, Y. Konda, Y. Shimoto, T. Tashiro, S.J. Watson, J. 
DelValle, T. Yamada, Molecular cloning, expression, and gene localization of a 
fourth melanocortin receptor, J Biol Chem, 268 (1993) 15174-15179. 
[83] I. Gantz, Y. Shimoto, Y. Konda, H. Miwa, C.J. Dickinson, T. Yamada, 
Molecular cloning, expression, and characterization of a fifth melanocortin 
receptor, Biochem Biophys Res Commun, 200 (1994) 1214-1220. 
[84] R.D. Cone, The Melanocortin Receptors, Human Press, Totowa NJ, 2000. 
[85] L.E. Pritchard, A.V. Turnbull, A. White, Pro-opiomelanocortin processing in 
the hypothalamus: impact on melanocortin signalling and obesity, J Endocrinol, 
172 (2002) 411-421. 
[86] H.B. Schioth, V. Chhajlani, R. Muceniece, V. Klusa, J.E. Wikberg, Major 
pharmacological distinction of the ACTH receptor from other melanocortin 
receptors, Life Sci, 59 (1996) 797-801. 
[87] T.K. Sawyer, P.J. Sanfilippo, V.J. Hruby, M.H. Engel, C.B. Heward, J.B. 
Burnett, M.E. Hadley, 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-
stimulating hormone: a highly potent alpha-melanotropin with ultralong biological 
activity, Proc Natl Acad Sci U S A, 77 (1980) 5754-5758. 
[88] F. Al-Obeidi, V.J. Hruby, A.M. Castrucci, M.E. Hadley, Design of potent 
linear alpha-melanotropin 4-10 analogues modified in positions 5 and 10, J Med 
Chem, 32 (1989) 174-179. 
[89] C. Haskell-Luevano, G. Nikiforovich, S.D. Sharma, Y.K. Yang, C. 
Dickinson, V.J. Hruby, I. Gantz, Biological and conformational examination of 
stereochemical modifications using the template melanotropin peptide, Ac-Nle-
c[Asp-His-Phe-Arg-Trp-Ala-Lys]-NH2, on human melanocortin receptors, J Med 
Chem, 40 (1997) 1738-1748. 
[90] D. Lu, D. Willard, I.R. Patel, S. Kadwell, L. Overton, T. Kost, M. Luther, W. 
Chen, R.P. Woychik, W.O. Wilkison, et al., Agouti protein is an antagonist of the 
melanocyte-stimulating-hormone receptor, Nature, 371 (1994) 799-802. 
[91] M.M. Ollmann, B.D. Wilson, Y.K. Yang, J.A. Kerns, Y. Chen, I. Gantz, G.S. 
Barsh, Antagonism of central melanocortin receptors in vitro and in vivo by 
agouti-related protein, Science, 278 (1997) 135-138. 



References 

- 237 -	
 

[92] J.E. Wikberg, Melanocortin receptors: perspectives for novel drugs, Eur J 
Pharmacol, 375 (1999) 295-310. 
[93] H. Wessells, K. Fuciarelli, J. Hansen, M.E. Hadley, V.J. Hruby, R. Dorr, N. 
Levine, Synthetic melanotropic peptide initiates erections in men with 
psychogenic erectile dysfunction: double-blind, placebo controlled crossover 
study, J Urol, 160 (1998) 389-393. 
[94] S. Chaki, S. Okuyama, Involvement of melanocortin-4 receptor in anxiety 
and depression, Peptides, 26 (2005) 1952-1964. 
[95] S.C. Benoit, M.W. Schwartz, J.L. Lachey, M.M. Hagan, P.A. Rushing, K.A. 
Blake, K.A. Yagaloff, G. Kurylko, L. Franco, W. Danhoo, R.J. Seeley, A novel 
selective melanocortin-4 receptor agonist reduces food intake in rats and mice 
without producing aversive consequences, J Neurosci, 20 (2000) 3442-3448. 
[96] N. Xi, The MC4 Receptor as a drug discovery target, Drugs Future, 31 
(2006) 163-173. 
[97] W. Fan, B.A. Boston, R.A. Kesterson, V.J. Hruby, R.D. Cone, Role of 
melanocortinergic neurons in feeding and the agouti obesity syndrome, Nature, 
385 (1997) 165-168. 
[98] H. Wessells, D. Gralnek, R. Dorr, V.J. Hruby, M.E. Hadley, N. Levine, 
Effect of an alpha-melanocyte stimulating hormone analog on penile erection and 
sexual desire in men with organic erectile dysfunction, Urology, 56 (2000) 641-
646. 
[99] A.V. Vergoni, A. Bertolini, Role of melanocortins in the central control of 
feeding, Eur J Pharmacol, 405 (2000) 25-32. 
[100] L.H. Van der Ploeg, W.J. Martin, A.D. Howard, R.P. Nargund, C.P. Austin, 
X. Guan, J. Drisko, D. Cashen, I. Sebhat, A.A. Patchett, D.J. Figueroa, A.G. 
DiLella, B.M. Connolly, D.H. Weinberg, C.P. Tan, O.C. Palyha, S.S. Pong, T. 
MacNeil, C. Rosenblum, A. Vongs, R. Tang, H. Yu, A.W. Sailer, T.M. Fong, C. 
Huang, M.R. Tota, R.S. Chang, R. Stearns, C. Tamvakopoulos, G. Christ, D.L. 
Drazen, B.D. Spar, R.J. Nelson, D.E. MacIntyre, A role for the melanocortin 4 
receptor in sexual function, Proc Natl Acad Sci U S A, 99 (2002) 11381-11386. 
[101] C. Lubrano-Berthelier, M. Cavazos, B. Dubern, A. Shapiro, C.L. Stunff, S. 
Zhang, F. Picart, C. Govaerts, P. Froguel, P. Bougneres, K. Clement, C. Vaisse, 
Molecular genetics of human obesity-associated MC4R mutations, Ann N Y Acad 
Sci, 994 (2003) 49-57. 
[102] G.S. Yeo, E.J. Lank, I.S. Farooqi, J. Keogh, B.G. Challis, S. O'Rahilly, 
Mutations in the human melanocortin-4 receptor gene associated with severe 
familial obesity disrupts receptor function through multiple molecular 
mechanisms, Hum Mol Genet, 12 (2003) 561-574. 
[103] Y.X. Tao, D.L. Segaloff, Functional characterization of melanocortin-4 
receptor mutations associated with childhood obesity, Endocrinology, 144 (2003) 
4544-4551. 
[104] Q. Hong, R.K. Bakshi, J. Dellureficio, S. He, Z. Ye, P.H. Dobbelaar, I.K. 
Sebhat, L. Guo, J. Liu, T. Jian, R. Tang, R.N. Kalyani, T. Macneil, A. Vongs, C.I. 
Rosenblum, D.H. Weinberg, Q. Peng, C. Tamvakopoulos, R.R. Miller, R.A. 
Stearns, D. Cashen, W.J. Martin, A.S. Chen, J.M. Metzger, H.Y. Chen, A.M. 
Strack, T.M. Fong, E. Maclntyre, L.H. Van der Ploeg, M.J. Wyvratt, R.P. 
Nargund, Optimization of privileged structures for selective and potent 
melanocortin subtype-4 receptor ligands, Bioorg Med Chem Lett, 20 (2010) 4483-
4486. 
[105] B.E. Wisse, M.W. Schwartz, D.E. Cummings, Melanocortin signaling and 
anorexia in chronic disease states, Ann N Y Acad Sci, 994 (2003) 275-281. 



References 

- 238 -	
 

[106] V.J. Hruby, D. Lu, S.D. Sharma, A.L. Castrucci, R.A. Kesterson, F.A. al-
Obeidi, M.E. Hadley, R.D. Cone, Cyclic lactam alpha-melanotropin analogues of 
Ac-Nle4-cyclo[Asp5, D-Phe7,Lys10] alpha-melanocyte-stimulating hormone-(4-
10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist 
potency and selectivity at specific melanocortin receptors, J Med Chem, 38 (1995) 
3454-3461. 
[107] M. Chen, M. Cai, D. McPherson, V. Hruby, C.M. Harmon, Y. Yang, 
Contribution of the transmembrane domain 6 of melanocortin-4 receptor to 
peptide [Pro5, DNal (2')8]-gamma-MSH selectivity, Biochem Pharmacol, 77 
(2009) 114-124. 
[108] F. Al-Obeidi, S.D. O'Connor, C. Job, V.J. Hruby, B.M. Pettitt, NMR and 
quenched molecular dynamics studies of superpotent linear and cyclic alpha-
melanotropins, Journal of Peptide Research, 51 (1998) 420-431. 
[109] J. Ying, K.E. Kover, X. Gu, G. Han, D.B. Trivedi, M.J. Kavarana, V.J. 
Hruby, Solution structures of cyclic melanocortin agonists and antagonists by 
NMR, Biopolymers, 71 (2003) 696-716. 
[110] D.S. Wishart, B.D. Sykes, F.M. Richards, The chemical shift index: a fast 
and simple method for the assignment of protein secondary structure through 
NMR spectroscopy, Biochemistry, 31 (1992) 1647-1651. 
[111] A.L. Fink, Protein folding in cryosolvents and at subzero temperatures, 
Methods Enzymol, 131 (1986) 173-185. 
[112] K.G.R. Pachler, Nuclear magnetic resonance study of some alpha-amino 
acids–II. Rotational isomerism, Spectrochim Acta, 20 (1964) 581-587. 
[113] M.T. Cung, M. Marraud, Conformational dependence of the vicinal proton 
coupling constant for the Calpha-Cbeta bond in peptides, Biopolymers, 21 (1982) 
953-967. 
[114] I.D. Pogozheva, B.X. Chai, A.L. Lomize, T.M. Fong, D.H. Weinberg, R.P. 
Nargund, M.W. Mulholland, I. Gantz, H.I. Mosberg, Interactions of human 
melanocortin 4 receptor with nonpeptide and peptide agonists, Biochemistry, 44 
(2005) 11329-11341. 
[115] B.X. Chai, I.D. Pogozheva, Y.M. Lai, J.Y. Li, R.R. Neubig, H.I. Mosberg, I. 
Gantz, Receptor-antagonist interactions in the complexes of agouti and agouti-
related protein with human melanocortin 1 and 4 receptors, Biochemistry, 44 
(2005) 3418-3431. 
[116] K. Konvicka, F. Campagne, H. Weinstein, Interactive construction of 
residue-based diagrams of proteins: the RbDe web service, Protein Eng, 13 (2000) 
395-396. 
[117] S.F. Sousa, P.A. Fernandes, M.J. Ramos, Protein-ligand docking: current 
status and future challenges, Proteins, 65 (2006) 15-26. 
[118] Y. Yang, M. Chen, Y. Lai, I. Gantz, K.E. Georgeson, C.M. Harmon, 
Molecular determinants of human melanocortin-4 receptor responsible for 
antagonist SHU9119 selective activity, J Biol Chem, 277 (2002) 20328-20335. 
[119] Y.K. Yang, T.M. Fong, C.J. Dickinson, C. Mao, J.Y. Li, M.R. Tota, R. 
Mosley, L.H. Van Der Ploeg, I. Gantz, Molecular determinants of ligand binding 
to the human melanocortin-4 receptor, Biochemistry, 39 (2000) 14900-14911. 
[120] C. Haskell-Luevano, R.D. Cone, E.K. Monck, Y.P. Wan, Structure activity 
studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of 
agouti-related protein (AGRP), melanocortin agonist and synthetic peptide 
antagonist interaction determinants, Biochemistry, 40 (2001) 6164-6179. 
[121] K. Hogan, S. Peluso, S. Gould, I. Parsons, D. Ryan, L. Wu, I. Visiers, 
Mapping the binding site of melanocortin 4 receptor agonists: a hydrophobic 



References 

- 239 -	
 

pocket formed by I3.28(125), I3.32(129), and I7.42(291) is critical for receptor 
activation, J Med Chem, 49 (2006) 911-922. 
[122] M. Chen, M. Cai, C.J. Aprahamian, K.E. Georgeson, V. Hruby, C.M. 
Harmon, Y. Yang, Contribution of the conserved amino acids of the 
melanocortin-4 receptor in [corrected] [Nle4,D-Phe7]-alpha-melanocyte-
stimulating [corrected] hormone binding and signaling, J Biol Chem, 282 (2007) 
21712-21719. 
[123] J. Oosterom, W.A. Nijenhuis, W.M. Schaaper, J. Slootstra, R.H. Meloen, 
W.H. Gispen, J.P. Burbach, R.A. Adan, Conformation of the core sequence in 
melanocortin peptides directs selectivity for the melanocortin MC3 and MC4 
receptors, J Biol Chem, 274 (1999) 16853-16860. 
[124] C. Haskell-Luevano, S. Hendrata, C. North, T.K. Sawyer, M.E. Hadley, V.J. 
Hruby, C. Dickinson, I. Gantz, Discovery of prototype peptidomimetic agonists at 
the human melanocortin receptors MC1R and MC4R, J Med Chem, 40 (1997) 
2133-2139. 
[125] B.A. Fleck, N. Ling, C. Chen, Substituted NDP-MSH peptides paired with 
mutant melanocortin-4 receptors demonstrate the role of transmembrane 6 in 
receptor activation, Biochemistry, 46 (2007) 10473-10483. 
[126] H.J. Dyson, M. Rance, R.A. Houghten, P.E. Wright, R.A. Lerner, Folding 
of immunogenic peptide fragments of proteins in water solution. II. The nascent 
helix, J Mol Biol, 201 (1988) 201-217. 
[127] L. Doedens, F. Opperer, M. Cai, J.G. Beck, M. Dedek, E. Palmer, V.J. 
Hruby, H. Kessler, Multiple N-methylation of MT-II backbone amide bonds leads 
to melanocortin receptor subtype hMC1R selectivity: pharmacological and 
conformational studies, J Am Chem Soc, 132 (2010) 8115-8128. 
[128] S.W. Lin, T.P. Sakmar, Specific tryptophan UV-absorbance changes are 
probes of the transition of rhodopsin to its active state, Biochemistry, 35 (1996) 
11149-11159. 
[129] K.L. Chapman, G.K. Kinsella, A. Cox, D. Donnelly, J.B. Findlay, 
Interactions of the melanocortin-4 receptor with the peptide agonist NDP-MSH, J 
Mol Biol, 401 (2010) 433-450. 
[130] J.H. Park, P. Scheerer, K.P. Hofmann, H.W. Choe, O.P. Ernst, Crystal 
structure of the ligand-free G-protein-coupled receptor opsin, Nature, 454 (2008) 
183-187. 
[131] P. Scheerer, J.H. Park, P.W. Hildebrand, Y.J. Kim, N. Krauss, H.W. Choe, 
K.P. Hofmann, O.P. Ernst, Crystal structure of opsin in its G-protein-interacting 
conformation, Nature, 455 (2008) 497-502. 
[132] M.A. Bednarek, M.V. Silva, B. Arison, T. MacNeil, R.N. Kalyani, R.R. 
Huang, D.H. Weinberg, Structure-function studies on the cyclic peptide MT-II, 
lactam derivative of alpha-melanotropin, Peptides, 20 (1999) 401-409. 
[133] M.A. Bednarek, T. Macneil, R.N. Kalyani, R. Tang, L.H. Van der Ploeg, 
D.H. Weinberg, Analogs of MTII, lactam derivatives of alpha-melanotropin, 
modified at the N-terminus, and their selectivity at human melanocortin receptors 
3, 4, and 5, Biochem Biophys Res Commun, 261 (1999) 209-213. 
[134] R.A. Adan, J. Oosterom, R.F. Toonen, M.V. Kraan, J.P. Burbach, W.H. 
Gispen, Molecular pharmacology of neural melanocortin receptors, Receptors 
Channels, 5 (1997) 215-223. 
[135] M. Chen, C.J. Aprahamian, A. Celik, K.E. Georgeson, W.T. Garvey, C.M. 
Harmon, Y. Yang, Molecular characterization of human melanocortin-3 receptor 
ligand-receptor interaction, Biochemistry, 45 (2006) 1128-1137. 



References 

- 240 -	
 

[136] M.K. Cho, C.J. Lee, C.H. Lee, S.Z. Li, S.K. Lim, J.H. Baik, W. Lee, 
Structure and function of the potent cyclic and linear melanocortin analogues, J 
Struct Biol, 150 (2005) 300-308. 
[137] S. Lim, S. Li, C. Lee, C. Yoon, J. Baik, W. Lee, Minimization of MC1R 
selectivity by modification of the core structure of alpha-MSH-ND, Chem Biol, 8 
(2001) 857-870. 
[138] Z. Xiang, I.D. Pogozheva, N.B. Sorenson, A.M. Wilczynski, J.R. Holder, 
S.A. Litherland, W.J. Millard, H.I. Mosberg, C. Haskell-Luevano, Peptide and 
small molecules rescue the functional activity and agonist potency of 
dysfunctional human melanocortin-4 receptor polymorphisms, Biochemistry, 46 
(2007) 8273-8287. 
[139] C.J. Lee, J.H. Yun, S.K. Lim, W. Lee, Solution structures and molecular 
interactions of selective melanocortin receptor antagonists, Mol Cells, 30 (2010) 
551-556. 
[140] X. Yang, Z. Wang, W. Dong, L. Ling, H. Yang, R. Chen, Modeling and 
docking of the three-dimensional structure of the human melanocortin 4 receptor, 
J Protein Chem, 22 (2003) 335-344. 
[141] A. Wilczynski, X.S. Wang, R.M. Bauzo, Z. Xiang, A.M. Shaw, W.J. 
Millard, N.G. Richards, A.S. Edison, C. Haskell-Luevano, Structural 
characterization and pharmacology of a potent (Cys101-Cys119, Cys110-Cys117) 
bicyclic agouti-related protein (AGRP) melanocortin receptor antagonist, J Med 
Chem, 47 (2004) 5662-5673. 
[142] A. Wilczynski, X.S. Wang, C.G. Joseph, Z. Xiang, R.M. Bauzo, J.W. Scott, 
N.B. Sorensen, A.M. Shaw, W.J. Millard, N.G. Richards, C. Haskell-Luevano, 
Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor 
interactions by homology molecular modeling and validation using chimeric 
peptide ligands, J Med Chem, 47 (2004) 2194-2207. 
[143] E.G. Hutchinson, J.M. Thornton, PROMOTIF--a program to identify and 
analyze structural motifs in proteins, Protein Sci, 5 (1996) 212-220. 
[144] R. Burgus, P. Brazeau, W.W. Vale, Isolation and determination of the 
primary structure of somatostatin (a somatotropin release inhibiting factor) of 
bovin hypothalamic origin, Advances in Human Growth Hormone Research, U. S. 
Government Printing Office, DHEW, Publ No. (NIH), 74-612 (1973) 144-158. 
[145] G. Weckbecker, I. Lewis, R. Albert, H.A. Schmid, D. Hoyer, C. Bruns, 
Opportunities in somatostatin research: biological, chemical and therapeutic 
aspects, Nat Rev Drug Discov, 2 (2003) 999-1017. 
[146] J. Erchegyi, R. Cescato, C.R. Grace, B. Waser, V. Piccand, D. Hoyer, R. 
Riek, J.E. Rivier, J.C. Reubi, Novel, potent, and radio-iodinatable somatostatin 
receptor 1 (sst1) selective analogues, J Med Chem, 52 (2009) 2733-2746. 
[147] C.R. Grace, J. Erchegyi, S.C. Koerber, J.C. Reubi, J. Rivier, R. Riek, Novel 
sst2-selective somatostatin agonists. Three-dimensional consensus structure by 
NMR, J Med Chem, 49 (2006) 4487-4496. 
[148] M. Gairi, P. Saiz, S. Madurga, X. Roig, J. Erchegyi, S.C. Koerber, J.C. 
Reubi, J.E. Rivier, E. Giralt, Conformational analysis of a potent SSTR3-selective 
somatostatin analogue by NMR in water solution, J Pept Sci, 12 (2006) 82-91. 
[149] C.R. Grace, S.C. Koerber, J. Erchegyi, J.C. Reubi, J. Rivier, R. Riek, Novel 
sst(4)-selective somatostatin (SRIF) agonists. 4. Three-dimensional consensus 
structure by NMR, J Med Chem, 46 (2003) 5606-5618. 
[150] W. Bauer, U. Briner, W. Dopfener, R. Haller, R. Huguenin, P. Marbach, 
T.J. Petcher, J. Pless, SMS 201-995: a very potent and selective analogue of 
somatostatin with prolonged action, Life Sci, 31 (1982) 1133-1140. 



References 

- 241 -	
 

[151] M. Ginj, J.S. Schmitt, J. Chen, B. Waser, J.C. Reubi, M. de Jong, S. Schulz, 
H.R. Maecke, Design, synthesis, and biological evaluation of somatostatin-based 
radiopeptides, Chem Biol, 13 (2006) 1081-1090. 
[152] M. Ginj, H. Zhang, B. Waser, R. Cescato, D. Wild, X. Wang, J. Erchegyi, J. 
Rivier, H.R. Macke, J.C. Reubi, Radiolabeled somatostatin receptor antagonists 
are preferable to agonists for in vivo peptide receptor targeting of tumors, Proc 
Natl Acad Sci U S A, 103 (2006) 16436-16441. 
[153] M. de Jong, W.A. Breeman, D.J. Kwekkeboom, R. Valkema, E.P. 
Krenning, Tumor imaging and therapy using radiolabeled somatostatin analogues, 
Acc Chem Res, 42 (2009) 873-880. 
[154] J. Fichna, A. Janecka, Synthesis of target-specific radiolabeled peptides for 
diagnostic imaging, Bioconjug Chem, 14 (2003) 3-17. 
[155] A. Carotenuto, D. D’Addona, E. Rivalta, M. Chelli, A.M. Papini, P. Rovero, 
M. Ginanneschi, Synthesis of a dicarba-analogue of octreotide keeping the type 
II’ beta-turn of the farmacophore in water solution, Lett Org Chem, 2 (2005) 274-
279. 
[156] D. D'Addona, A. Carotenuto, E. Novellino, V. Piccand, J.C. Reubi, A. Di 
Cianni, F. Gori, A.M. Papini, M. Ginanneschi, Novel sst5-selective somatostatin 
dicarba-analogues: synthesis and conformation-affinity relationships, J Med 
Chem, 51 (2008) 512-520. 
[157] F. Barragan, V. Moreno, V. Marchan, Solid-phase synthesis and DNA 
binding studies of dichloroplatinum(ii) conjugates of dicarba analogues of 
octreotide as new anticancer drugs, Chem Commun (Camb), (2009) 4705-4707. 
[158] B.H. Arison, R. Hirschmann, D.F. Veber, Inferences about the conformation 
of somatostatin at a biologic receptor based on NMR studies, Bioorg Chem, 7 
(1978) 447-451. 
[159] D. Wild, J.S. Schmitt, M. Ginj, H.R. Macke, B.F. Bernard, E. Krenning, M. 
De Jong, S. Wenger, J.C. Reubi, DOTA-NOC, a high-affinity ligand of 
somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals, 
Eur J Nucl Med Mol Imaging, 30 (2003) 1338-1347. 
[160] G. Melacini, Q. Zhu, M. Goodman, Multiconformational NMR analysis of 
sandostatin (octreotide): equilibrium between beta-sheet and partially helical 
structures, Biochemistry, 36 (1997) 1233-1241. 
[161] J.D. Tyndall, B. Pfeiffer, G. Abbenante, D.P. Fairlie, Over one hundred 
peptide-activated G protein-coupled receptors recognize ligands with turn 
structure, Chem Rev, 105 (2005) 793-826. 
[162] G. Melacini, Q. Zhu, G. Osapay, M. Goodman, A refined model for the 
somatostatin pharmacophore: conformational analysis of lanthionine-sandostatin 
analogs, J Med Chem, 40 (1997) 2252-2258. 
[163] S.F. Brady, W.J. Paleveda, B.H. Arison, R. Saperstein, E.J. Brady, K. 
Raynor, T. Reisine, D.F. Veber, R.M. Freidinger, Approaches to peptidomimetics 
which serve as surrogates for the cis amide bond: novel disulfide-constrained 
bicyclic hexapeptide analogs of somatostatin, Tetrahedron, 49  3449-3466. 
[164] I. Lewis, W. Bauer, R. Albert, N. Chandramouli, J. Pless, G. Weckbecker, 
C. Bruns, A novel somatostatin mimic with broad somatotropin release inhibitory 
factor receptor binding and superior therapeutic potential, J Med Chem, 46 (2003) 
2334-2344. 
[165] E. Pohl, A. Heine, G.M. Sheldrick, Z. Dauter, K.S. Wilson, J. Kallen, W. 
Huber, P.J. Pfaffli, Structure of octreotide, a somatostatin analogue, Acta 
Crystallogr D Biol Crystallogr, 51 (1995) 48-59. 



References 

- 242 -	
 

[166] G. Interlandi, Backbone conformations and side chain flexibility of two 
somatostatin mimics investigated by molecular dynamics simulations, Proteins, 75 
(2009) 659-670. 
[167] J.C. Reubi, B. Waser, J.C. Schaer, J.A. Laissue, Somatostatin receptor sst1-
sst5 expression in normal and neoplastic human tissues using receptor 
autoradiography with subtype-selective ligands, Eur J Nucl Med, 28 (2001) 836-
846. 
[168] M.C. Zatelli, E. degli Umberti, The significance of new somatostatin 
analogs as therapeutic agents Curr Opin Investig Drugs, 10 (2009) 1025-1031. 
[169] A. Ben-Shlomo, S. Melmed, Pasireotide--a somatostatin analog for the 
potential treatment of acromegaly, neuroendocrine tumors and Cushing's disease, 
IDrugs, 10 (2007) 885-895. 
[170] R. Cescato, K.A. Loesch, B. Waser, H.R. Macke, J.E. Rivier, J.C. Reubi, A. 
Schonbrunn, Agonist-biased signaling at the sst2A receptor: the multi-
somatostatin analogs KE108 and SOM230 activate and antagonize distinct 
signaling pathways, Mol Endocrinol, 24 (2010) 240-249. 
[171] P. Antunes, M. Ginj, M.A. Walter, J. Chen, J.C. Reubi, H.R. Maecke, 
Influence of different spacers on the biological profile of a DOTA-somatostatin 
analogue, Bioconjug Chem, 18 (2007) 84-92. 
[172] H.P. Nothacker, Z. Wang, A.M. McNeill, Y. Saito, S. Merten, B. O'Dowd, 
S.P. Duckles, O. Civelli, Identification of the natural ligand of an orphan G-
protein-coupled receptor involved in the regulation of vasoconstriction, Nat Cell 
Biol, 1 (1999) 383-385. 
[173] M.M. Malagon, M. Molina, M.D. Gahete, M. Duran-Prado, A.J. Martinez-
Fuentes, F.J. Alcain, M.C. Tonon, J. Leprince, H. Vaudry, J.P. Castano, R. 
Vazquez-Martinez, Urotensin II and urotensin II-related peptide activate 
somatostatin receptor subtypes 2 and 5, Peptides, 29 (2008) 711-720. 
[174] J.C. Reubi, J.C. Schar, B. Waser, S. Wenger, A. Heppeler, J.S. Schmitt, 
H.R. Macke, Affinity profiles for human somatostatin receptor subtypes SST1-
SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic 
use, Eur J Nucl Med, 27 (2000) 273-282. 
[175] R. Cescato, J. Erchegyi, B. Waser, V. Piccand, H.R. Maecke, J.E. Rivier, 
J.C. Reubi, Design and in vitro characterization of highly sst2-selective 
somatostatin antagonists suitable for radiotargeting, J Med Chem, 51 (2008) 4030-
4037. 
[176] V.T. De Vita, S. Hellman, S.A. Rosenberg, Cancer: Principles and Practice 
of Oncology, 6th ed., Lippincott, Williams and Wilkins, Philadelphia, PA, 2001. 
[177] J.H. Doroshow, Anthracyclines and anthracenediones. In. Cancer 
chemotherapy and biotherapy: principles and practice, Lippincott, Williams and 
Wilkins, Philadelphia, PA, 2001. 
[178] J.W. Lown, Anthracycline and anthraquinone anticancer agents: current 
status and recent developments, Pharmacol Ther, 60 (1993) 185-214. 
[179] M. Binaschi, M. Bigioni, A. Cipollone, C. Rossi, C. Goso, C.A. Maggi, G. 
Capranico, F. Animati, Anthracyclines: selected new developments, Curr Med 
Chem Anticancer Agents, 1 (2001) 113-130. 
[180] J.T. Thigpen, Innovations in anthracycline therapy: overview, Community 
Oncol., 2 (2005) 3-7. 
[181] R. Martinez, L. Chacon-Garcia, The search of DNA-intercalators as 
antitumoral drugs: what it worked and what did not work, Curr Med Chem, 12 
(2005) 127-151. 



References 

- 243 -	
 

[182] R.D. Baird, S.B. Kaye, Drug resistance reversal--are we getting closer?, Eur 
J Cancer, 39 (2003) 2450-2461. 
[183] R. Krishna, L.D. Mayer, Multidrug resistance (MDR) in cancer. 
Mechanisms, reversal using modulators of MDR and the role of MDR modulators 
in influencing the pharmacokinetics of anticancer drugs, Eur J Pharm Sci, 11 
(2000) 265-283. 
[184] E.M. Leslie, R.G. Deeley, S.P. Cole, Multidrug resistance proteins: role of 
P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense, Toxicol 
Appl Pharmacol, 204 (2005) 216-237. 
[185] J. Serrano, C.M. Palmeira, D.W. Kuehl, K.B. Wallace, Cardioselective and 
cumulative oxidation of mitochondrial DNA following subchronic doxorubicin 
administration, Biochim Biophys Acta, 1411 (1999) 201-205. 
[186] G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, L. Gianni, Anthracyclines: 
molecular advances and pharmacologic developments in antitumor activity and 
cardiotoxicity, Pharmacol Rev, 56 (2004) 185-229. 
[187] I. Gomez-Monterrey, P. Campiglia, O. Mazzoni, E. Novellino, M.V. 
Diurno, Cycloaddition reactions of thiazolidine derivatives. An approach to the 
synthesis of new functionalized heterocyclic systems, Tetrahedron Lett, 42 (2001) 
5755-5757. 
[188] I. Gomez-Monterrey, P. Campiglia, P. Grieco, M.V. Diurno, A. Bolognese, 
P. La Colla, E. Novellino, New benzo[g]isoquinoline-5,10-diones and 
dihydrothieno [2,3-b]naphtho-4,9-dione derivatives: Synthesis and biological 
evaluation as potential antitumoral agents, Bioorgan Med Chem, 11 (2003) 3769-
3775. 
[189] I. Gomez-Monterrey, G. Santelli, P. Campiglia, D. Califano, F. Falasconi, 
C. Pisano, L. Vesci, T. Lama, P. Grieco, E. Novellino, Synthesis and cytotoxic 
evaluation of novel spirohydantoin derivatives of the dihydrothieno[2,3-
b]naphtho-4,9-dione system, J Med Chem, 48 (2005) 1152-1157. 
[190] I. Gomez-Monterrey, P. Campiglia, A. Carotenuto, P. Stiuso, A. Bertamino, 
M. Sala, C. Aquino, P. Grieco, S. Morello, A. Pinto, P. Ianelli, E. Novellino, 
Spiro[(dihydropyrazin-2,5-dione)-6,3 '-(2 ',3 '-dihydrothieno[2,3-b]naphtho-4 ',9 '-
dione)]-based cytotoxic agents: Structure-activity relationship studies on the 
substituent at N4-position of the diketopiperazine domain, Journal of Medicinal 
Chemistry, 51 (2008) 2924-2932. 
[191] I. Gomez-Monterrey, P. Campiglia, A. Carotenuto, D. Califano, C. Pisano, 
L. Vesci, T. Lama, A. Bertamino, M. Sala, A.M. di Bosco, P. Grieco, E. 
Novellino, Design, synthesis, and cytotoxic evaluation of a new series of 3-
substituted spiro[(dihydropyrazine-2,5-dione)-6,3'-(2',3'-dihydrothieno[2,3-
b]naphtho- 4',9'-dione)] derivatives, J Med Chem, 50 (2007) 1787-1798. 
[192] I. Gomez-Monterrey, P. Campiglia, A. Bertamino, C. Aquino, M. Sala, P. 
Grieco, A. Dicitore, D. Vanacore, A. Porta, B. Maresca, E. Novellino, P. Stiuso, A 
novel quinone-based derivative (DTNQ-Pro) induces apoptotic death via 
modulation of heat shock protein expression in Caco-2 cells, Br J Pharmacol, 160 
(2010) 931-940. 
[193] P. Campiglia, C. Aquino, A. Bertamino, N. De Simone, M. Sala, S. 
Castellano, M. Santoriello, P. Grieco, E. Novellino, I.M. Gomez-Monterrey, 
Unprecedented synthesis of a novel amino quinone ring system via oxidative 
decarboxylation of quinone-based alpha,alpha-amino esters, Org Biomol Chem, 8 
(2010) 622-627. 
[194] Y. Kita, M. Kirihara, J. Sekihachi, R. Okunaka, M. Sasho, S. Mohri, T. 
Honda, S. Akai, Y. Tamura, K. Shimooka, Synthetic anthracyclines: regiospecific 



References 

- 244 -	
 

total synthesis of D-ring thiophene analogues of daunomycin, Chem Pharm Bull 
(Tokyo), 38 (1990) 1836-1843. 
[195] A.P. Krapcho, M.E. Petry, M.P. Hacker, Heterosubstituted anthracene-9,10-
dione analogues. The synthesis and antitumor evaluation of 5,8-
bis[(aminoalkyl)amino]naphtho[2,3-b] thiophene-4,9-diones, J Med Chem, 33 
(1990) 2651-2655. 
[196] M. Rousset, The human colon carcinoma cell lines HT-29 and Caco-2: two 
in vitro models for the study of intestinal differentiation, Biochimie, 68 (1986) 
1035-1040. 
[197] R. Stierum, M. Gaspari, Y. Dommels, T. Ouatas, H. Pluk, S. Jespersen, J. 
Vogels, K. Verhoeckx, J. Groten, B. van Ommen, Proteome analysis reveals novel 
proteins associated with proliferation and differentiation of the colorectal cancer 
cell line Caco-2, Biochim Biophys Acta, 1650 (2003) 73-91. 
[198] A.V. Kamath, J.M. Darling, M.E. Movis, Choline uptake in human 
intestinal Caco2 cells is carrier mediated, J Nutr, 133 (2003) 2607-2611. 
[199] A.A. Cotter, C. Jewell, K.D. Cashman, The effect of oestrogen and dietary 
phyto-oestrogens on transepithelial calcium transport in human intestinal-like 
Caco-2 cells, Br J Nutr, 89 (2003) 755-765. 
[200] D.A. Gewirtz, A critical evaluation of the mechanisms of action proposed 
for the antitumor effects of the anthracycline antibiotics adriamycin and 
daunorubicin, Biochem Pharmacol, 57 (1999) 727-741. 
[201] K.R. Hande, Topoisomerase II inhibitors, Update Cancer Ther, 3 (2008) 13-
26. 
[202] J.C. Wang, DNA topoisomerases, Annu Rev Biochem, 65 (1996) 635-692. 
[203] L. Bjergbaek, P. Kingma, I.S. Nielsen, Y. Wang, O. Westergaard, N. 
Osheroff, A.H. Andersen, Communication between the ATPase and 
cleavage/religation domains of human topoisomerase IIalpha, J Biol Chem, 275 
(2000) 13041-13048. 
[204] K.D. Bromberg, C. Hendricks, A.B. Burgin, N. Osheroff, Human 
topoisomerase IIalpha possesses an intrinsic nucleic acid specificity for DNA 
ligation. Use of 5' covalently activated oligonucleotide substrates to study enzyme 
mechanism, J Biol Chem, 277 (2002) 31201-31206. 
[205] N. Osheroff, E.R. Shelton, D.L. Brutlag, DNA topoisomerase II from 
Drosophila melanogaster. Relaxation of supercoiled DNA, J Biol Chem, 258 
(1983) 9536-9543. 
[206] K.M. Tewey, T.C. Rowe, L. Yang, B.D. Halligan, L.F. Liu, Adriamycin-
induced DNA damage mediated by mammalian DNA topoisomerase II, Science, 
226 (1984) 466-468. 
[207] A. Bodley, L.F. Liu, M. Israel, R. Seshadri, Y. Koseki, F.C. Giuliani, S. 
Kirschenbaum, R. Silber, M. Potmesil, DNA Topoisomerase II-mediated 
Interaction of Doxorubicin and Daunorubicin Congeners with DNA, Cancer Res, 
49  5969-5978. 
[208] M. Mayer, B. Meyer, Characterization of ligand binding by saturation 
transfer difference NMR spectroscopy, Angew Chem Int Ed Engl, 38 (1999) 
1784-1788. 
[209] C. Dalvit, P. Pevarello, M. Tato, M. Veronesi, A. Vulpetti, M. Sundstrom, 
Identification of compounds with binding affinity to proteins via magnetization 
transfer from bulk water, J Biomol Nmr, 18 (2000) 65-68. 
[210] M. Pellecchia, I. Bertini, D. Cowburn, C. Dalvit, E. Giralt, W. Jahnke, T.L. 
James, S.W. Homans, H. Kessler, C. Luchinat, B. Meyer, H. Oschkinat, J. Peng, 



References 

- 245 -	
 

H. Schwalbe, G. Siegal, Perspectives on NMR in drug discovery: a technique 
comes of age, Nat Rev Drug Discov, 7 (2008) 738-745. 
[211] S. Di Micco, C. Bassarello, G. Bifulco, R. Riccio, L. Gomez-Paloma, 
Differential-frequency saturation transfer difference NMR spectroscopy allows 
the detection of different ligand-DNA binding modes, Angew Chem Int Ed Engl, 
45 (2005) 224-228. 
[212] C.H. Yam, T.K. Fung, R.Y. Poon, Cyclin A in cell cycle control and cancer, 
Cell Mol Life Sci, 59 (2002) 1317-1326. 
[213] Q.M. Ding, T.C. Ko, B.M. Evers, Caco-2 intestinal cell differentiation is 
associated with G1 arrest and suppression of CDK2 and CDK4, Am J Physiol, 
275 (1998) 1193-1200. 
[214] H. Matsumoto, R.H. Erickson, J.R. Gum, M. Yoshioka, E. Gum, Y.S. Kim, 
Biosynthesis of alkaline phosphatase during differentiation of the human colon 
cancer cell line Caco-2, Gastroenterology, 98 (1990) 1199-1207. 
[215] S.W. Carper, J.J. Duffy, E.W. Gerner, Heat shock proteins in 
thermotolerance and other cellular processes, Cancer Res, 47 (1987) 5249-5255. 
[216] S.M. Davidson, M.T. Loones, O. Duverger, M. Morange, The 
developmental expression of small HSP, Prog Mol Subcell Biol, 28 (2002) 103-
128. 
[217] T. L'Ecuyer, Z. Allebban, R. Thomas, R. Vander Heide, Glutathione S-
transferase overexpression protects against anthracycline-induced H9C2 cell 
death, Am J Physiol Heart Circ Physiol, 286 (2004) H2057-2064. 
[218] G. Corna, P. Santambrogio, G. Minotti, G. Cairo, Doxorubicin 
paradoxically protects cardiomyocytes against iron-mediated toxicity: role of 
reactive oxygen species and ferritin, J Biol Chem, 279 (2004) 13738-13745. 
[219] S. Turakhia, C.D. Venkatakrishnan, K. Dunsmore, H. Wong, P. 
Kuppusamy, J.L. Zweier, G. Ilangovan, Doxorubicin-induced cardiotoxicity: 
direct correlation of cardiac fibroblast and H9c2 cell survival and aconitase 
activity with heat shock protein 27, Am J Physiol Heart Circ Physiol, 293 (2007) 
H3111-3121. 
[220] F. Herz, A. Schermer, M. Halwer, L.H. Bogart, Alkaline phosphatase in 
HT-29, a human colon cancer cell line: influence of sodium butyrate and 
hyperosmolality, Arch Biochem Biophys, 210 (1981) 581-591. 
[221] M.M. Bradford, A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye binding, 
Anal Biochem, 72 (1976) 248-254. 

 

 


