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To understand this for sense  
it is not required that a man should be a geometrician or a logician, 

 but that he should be mad. 
(Per comprendere il significato di ciò,  

non si chiede che un uomo sia un geometra o un logico,  
ma che sia matto.) 

Thomas Hobbes  (1588-1679) 
 

 

Ai miei quattro AMORI, 

con tanto AMORE
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Abstract 

 

 

Current research activities are worked out to develop fully 
autonomous unmanned platform systems, provided with Sense and 
Avoid technologies in order to achieve the access to the 
National Airspace System (NAS), flying with manned airplanes. 
The TECVOl project is set in this framework, aiming at 
developing an autonomous prototypal Unmanned Aerial Vehicle 
which performs Detect Sense and Avoid functionalities, by 
means of an integrated sensors package, composed by a pulsed 
radar and four electro-optical cameras, two visible and two 
Infra-Red. This project is carried out by the Italian 
Aerospace Research Center in collaboration with the Department 
of Aerospace Engineering of the University of Naples “Federico 
II”, which has been involved in the developing of the Obstacle 
Detection and IDentification system.  

Thus, this thesis concerns the image processing technique 
customized for the Sense and Avoid applications in the TECVOL 
project, where the EO system has an auxiliary role to radar, 
which is the main sensor. In particular, the panchromatic 
camera performs the aiding function of object detection, in 
order to increase accuracy and data rate performance of radar 
system. Therefore, the thesis describes the implemented steps 
to evaluate the most suitable panchromatic camera image 
processing technique for our applications, the test strategies 
adopted to study its performance and the analysis conducted to 
optimize it in terms of false alarms, missed detections and 
detection range. Finally, results from the tests will be 
explained, and they will demonstrate that the Electro-Optical 
sensor is beneficial to the overall Detect Sense and Avoid 
system; in fact it is able to improve upon it, in terms of 
object detection and tracking performance. 

 

Keywords: Unmanned Aerial Systems, Collision Avoidance, 
Electro-Optical Systems, Image Processing Algorithm, 
Multisensor Tracking. 
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Introduction 

 

In the last decades many autonomous and tele-operated vehicles 

for field robotics have been developed, including wheeled, 

tracked and legged vehicles. However, in many cases, ground 

vehicles have significant inherent limitations to access to 

the desired locations due to the characteristics of the 

terrain and the presence of obstacles that cannot be avoided. 

In these cases aerial vehicles are the natural way to approach 

the objective to get information or even to perform some 

actions such as the deployment of instrumentation. Then, 

aerial robotics seems a useful approach to perform tasks such 

as data and image acquisition of targets and affected areas, 

localization of targets, tracking, map building and others. 

In this framework, Unmanned Aerial Vehicles (UAVs) represent 

an important solution as in the military as in the civil 

fields, concerning a wide scenario of scientific applications, 

such as terrain and utilities inspection, disaster monitoring, 

environmental surveillance, search and rescue, law 

enforcement, aerial mapping, traffic surveillance, and 

cinematography. Moreover, in the last years UAVs improved 

their autonomy both in energy and information processing. 
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However, the development of autonomous aerial robotic vehicles 

involves many problems related to limited payload, safety 

requirements, flight endurance and others [1]. 

In particular, the most common challenges for the full 

autonomy UAVs development can be synthesized in the following 

points: 

 Decisional autonomy; 

 Guidance, Navigation and Control (GNC) system and payload 

integration; 

 Operational safety and security; 

 Certification; 

 All-weather all time operational capability; 

 Obstacles Sense And Avoid (SAA); 

 Data processing. 

Many projects, related to the development of autonomous 

aerospace systems, are carried out all over the world, 

involving research centers and universities of USA, Europe, 

Japan and Australia; all of them present different objectives 

and fields of application that are schematized in figure 1.  

 

Figure I.1    Autonomous Aerospace Systems Applications: common challenges and comparison 
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However, the UAV support in hostile environment is a great 

advantage for the human life, as in surveillance as in rescue 

missions [2]. Indeed, the University of Madrid is carrying on 

a project concerning a strategy to track and describe the 

boundary of an 

environment by means of 

images came from an UAV 

with a visible camera 

installed onboard [3]; 

moreover the problem of 

extinguishing forest 

fires is being analyzed 

by the college of Engineering of Chennai which proposes a 

quadrant of nodes for detecting and extinguishing forest fires 

using UAV Networks [4]. 

As regards the search and rescue support, it’s important to 

mention the Massachusetts Institute of Technology (MIT) 

contribution with its Collaborative Mission Planning, Autonomy 

and Control Technology (COMPACT) project which is 

characterized by unmanned surface and aerial systems 

cooperation that share information of failure detection and 

position in order to have the immediate support and supplying 

human intervention [5]. In parallel the Georgia Institute of 

Technology is developing a Disaster Relief and Emergency 

Response (DRER) services based on UAVs network as in the 

military as in the civil sector [6]. 

Figure I.2    Boundary Identification by UAV 
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Figure I.3    Cooperation between Unmanned and Manned Vehicles for improving fire behavior forecasts and predicting 

smoke and fume impingement  

UAVs are often used in agricultural mapping applications, such 

as by the Unmanned Aircraft Systems Engineering (UASE) team of 

the University of Dakota which is developing a precision 

agriculture imaging payload flown in a Unmanned Aerospace 

System (UAS), in order to have a prescription map for an 

agricultural field and to provide cost effective information 

about a large geographic region [7]. 

 

Figure I.4   Geo‐referenced mosaic of relative crop health (final product) 

However, most current research activities concern the 

developing of autonomous function for aerial vehicles due to 
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their strong support to human missions; indeed UAV platforms 

can operate in a wide range of environmental scenarios, even 

those very dangerous for human life.  

The last step to be gained for the full unmanned aircraft 

autonomy is to allow them to operate in the National Airspace 

System (NAS), mixed with manned aircraft. The Federal Aviation 

Administration (FAA) is investigating ways to regulate their 

integration in the civil airspace in order to accommodate 

their growth in numbers and applications [8].  

A major issue in accepting UAS in manned airspace is the 

ability to avoid collision with obstacles, most importantly, 

manned aircrafts. Thus, many research experiments are 

attempting to develop SAA solutions for airborne unmanned 

platforms, all of them are based on the FAA Regulation 7610.4 

[9], which states that remotely operated aircraft must provide 

“… an equivalent level of safety, comparable to see-and-avoid 

requirements for manned aircrafts” in order to operate like 

manned aircrafts in the NAS. The capability must be effective 

against all air traffic, with or without active, transponder-

based collision avoidance systems. Currently no Remotely 

Operated Aircraft (ROA) “sense and avoid” capability exists, 

but already many airborne platforms, manned and unmanned, are 

being customized to integrate and to test the SAA technology. 

I.1 Why the Sense and Avoid Technology? 
The research based on the SAA technology is intentionally 

focused on small UAS missions as the driver, with a payload 

limitation of ounces to pounds. There is a reasonable 

expectation that a solution maybe scalable to larger UAS; 

though differing missions and conditions may affect the 

scalability. Rather than scaling up, many approaches today are 

looking at large UAS and the possible sensor solutions and 

hoping to scale the solution down. The operating environment 

for these UAS is expected to be civil, uncontrolled, Visual 
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Flight Rules (VFR) airspace. UAS operation in this airspace 

could encounter a variety of airborne targets such as small 

manned aircraft without transponders. Therefore this research 

examines the sensor-based non-cooperative solutions, not the 

transponder-based cooperative methods. However, in order to 

realize a collision avoidance system (CAS), a variety of 

sensors have to be taken into account, such as the Traffic 

alert and Collision Avoidance System (TCAS), Automatic 

Dependent Surveillance-Broadcast (ADS-B), electro-optical (EO) 

and Infra-Red (IR) systems, and radar. TCAS and ADS-B provide 

a satisfactory means of sensing transponder-equipped aircraft 

but they lack the ability to detect aircrafts that are not 

equipped with a transponder; on the other hand, EO, IR and 

radar sensors are appealing solutions for detecting traffic 

because they do not require that intruders have special 

equipage [10]. 

Figure 5, from AeroSafety World Magazine [11], clarifies the 

meaning of SAA in the overall Air Traffic Control (ATC) 

scenario and illustrates that the Detect Sense & Avoid (DS&A) 

technology is the last obstacle before the aerial collision.  
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Figure I.5     UAS Safety Layers Under Study for Collision Avoidance 

Because of the limitations of platforms and sensors, it is 

expected that the UASs must deal with very short timeframes to 

react, for sensing and avoiding fixed and moving obstacles. 

The following flow diagram shows the basic operations of a 

reactive Sense and Avoid solution. 
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Figure I.6       Flow Diagram for Reactive Sense and Avoid 

 

 

I.2 UAV platforms for Sense and Avoid technologies 
To support the SAA testing many airborne platforms have been 

experimented, both fixed and rotary wing, which are 

representative of typical UAS expected to see increased use in 

the NAS. Additionally, each has unique advantages suited to 

conducting experimentation. Rotary wing platforms have the 

option of full three dimensional control of velocity; fixed 

wing platforms allow easily repeatable encounter geometries 

and typically longer loiter times for extended data collection  

However, as regards fixed wing aircrafts, Northrop Grumman and 

the US government have launched the Broad Area Maritime 

Surveillance (BAMS) program (2008), which involves the 

developing of a Sense and Avoid system composed by Radar as 

primary sensor and EO system as auxiliary ones, in order to 

meet requirements still being developed by the Federal 

Aviation Administration and to be integrated on the Global 

Hawk RQ-4N [12]. The latter is a High Altitude Long Endurance 

(HALE) UAV which reaches 65000 ft of altitude, 35 hours of 

flight and can bear up to 1900 lbs. 

Another UAV, considered suitable for installing SAA system 

onboard, is the General Atomics’ Predator [13], which is 

another HALE platform able to fly for 30 - 40 hours at 27000 

ft with 450 lbs of payload. The prototype technology is being 

developed by the US Air Force Research Laboratory’s [AFRL] 

sensors directorate and will be based on only optical sensors 
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and processing systems jointly developed by AFRL and Defence 

Research Associates.  

At last, another aircraft thought to be ideal for SAA 

technology is the Tactical UAV Pioneer that flies at 15000 ft 

for 5-6- hours with 25 kg payload. 

                   

Figure I.7    Northrop Grumman’s Global Hawk                       Figure I.8       General Atomics’ Predator 

 

Figure I.9     AAI Pioneer 

Furthermore, there are many rotary wing Vertical Take-off and 

Landing (VTOL) platforms selected for integrating SAA 

technologies. The MITRE Corporation has chosen two medium-size 

helicopters manufactured by Miniature Aircraft – the GasXcell 

and the SpectraG [10]. The first is equipped with a visible 

camera and a laser range finder; whilst the second has only 

electro-optical sensors. Their advantage is the capability of 

carrying substantial payloads and of stopping and hovering 

when confronting a target.  
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                               Figure I.10  GasXcell                  Figure I.11     SpectraG 

  

 

Moreover, the Yamaha R50 and Rmax are solutions commonly 

adopted in current SAA research activities, due to their 

ability to maintain the aerial vehicle in hovering and to 

attain long flight endurance and increased payload 

requirements (1 hour of flight with 24 kg of payload). In 

particular, the Robotics Institute at Carnegie Mellon 

University (CMU) has conducted since the early nineties an 

autonomous helicopter project based on the Yamaha R50 platform 

[14], as well as the University of Linkoping, Europe, whose 

WITAS project uses the Yamaha Rmax helicopter as experimental 

platform [15]; in both cases the UAV is equipped with electro-

optical sensors. Furthermore, the “Office National d'Etudes et 

de Recherches Aéronautiques” (ONERA) is carrying on the 

“Recherche Et Sauvetage par Système Autonome Coopérant” 

(ReSSAC) project which involves the Yamaha Rmax for testing 

several UAV autonomous capabilities other than sense and 

avoid, basing on data acquired from visible images (take-off, 

landing, mission control, intruder vehicles detection and 

tracking) [16]. 
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Figure I.12      Yamaha Rmax 

	

I.3 Thesis objectives and outline 
This thesis has been developed in the framework of a SAA 

research project, carried out by the Italian Aerospace 

Research Center (CIRA) in collaboration with the Department of 

Aerospace Engineering (DIAS) of the University of Naples 

“Federico II”. In particular, it concerns the implementing and 

testing of image processing techniques for the visible 

cameras, which provide the “sense” function of the overall 

DSAA system, installed onboard a Very Light Aircraft (VLA), 

customized for our research studies.  

However, all these aspects will be treated in detail in the 

thesis, on the basis of the following outline.  

Chapter 1 is dedicated more in detail to the sense and avoid 

problem, focusing on the collision avoidance requirements and 

the description of several possible sensor choices and 

architectures, pointing out their advantages, disadvantages, 

in terms of power, accuracy, data rate and payload 

performance. 

Chapter 2 aims at describing the designed anti-collision 

system for the CIRA project. In particular, the experimental 
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VLA platform and its overall DS&A system are presented. The 

setup will be explained as from the architectural as from the 

hardware point of view. 

The detailed illustration of the selected EO units for the 

CIRA project is provided by chapter 3; moreover a section is 

dedicated to the description of the alignment of the electro-

optical sensors with the inertial unit of the aerial 

experimental platform. Furthermore the main image processing 

algorithm topics for implementing the obstacle detection 

function are pointed out. 

In chapter 5, the most common image processing techniques for 

object detection applications are presented and compared, in 

terms of computation time and accuracy; however, several 

foreign research experiences are deepened, because reference 

applications for our research field.  

Chapter 8 is dedicated to the description of the Hardware-in-

The-Loop (HWIL) system, realized to support the flying 

experimental platform. It has been set up in the DIAS 

laboratory in order to test the detection by sensors, data 

fusion and tracking performance of the real DS&A system, 

installed onboard the VLA. However it is characterized by 

simulator and real components, such as the visible camera. 

Furthermore, chapter 7 focuses on the selected image 

processing technique performance. In particular its 

implementation on several images acquired during flight tests 

is illustrated, together with some image processing critical 

issues, such as sun light and horizon line presence. At last 

the managing of those issues is explained and the assessed 

algorithm performance is schematically presented. 

Finally, conclusions and further research activities are 

pointed out in the last chapter. 
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Chapter 1 

Requirements for Sense & Avoid Systems 
 

In order to fulfill the requirement of “equivalent levels of 

safety” [9], the design of a SAA system for UAV systems 

operating in non-segregated space has to verify some 

functional requirements, provided by North Atlantic Treaty 

Organization (NATO) in ref. 17. and by FAA in ref. 9.  

However, these documents aim at providing specific 

requirements intended to be applied to the airborne SAA 

function, in order to achieve a “target level safety” 

comparable to that for manned aircrafts. Thus, the most 

stringent requirement facing unmanned aviation can be derived 

from the need for operations with Commercial Air Transport, 

which commands that the probability of a Mid-Air-Collision 

(PMAC) must be equivalent to, or better than 5 x 10-9 per 

aircraft flight hour [17]. 

Indeed, for any Mid-Air-Collision (MAC) the following sequence 

of events have to happen: 

 Two aircrafts are on a collision course; 

 A failure in separation provision occurs; 
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 Simultaneously, there are both collision avoidance 

functions failures, UAV’s and the other aircraft’s. 

Because of each event has a discrete probability of happening, 

the total PMAC is the product of the probabilities of the above 

events and it is expressed by the relation (1): 

ெܲ஺஼ ൌ 		 ஼ܲ௢௟௟௜௦௜௢௡	஼௢௨௥௦௘ 			ൈ 				 ௌܲ௘௣௔௥௔௧௜௢௡	௙௔௜௟௨௥௘ 		ൈ 		 ௎ܲ஺௏	஼௢௟௟௜௦௜௢௡	஺௩௢௜ௗ௔௡௖௘	௙௔௜௟௨௥௘ 		

ൈ 			 ஼ܲ௢௡௙௟௜௖௧௜௡௚	஺௜௥௖௥௔௙௧	஼௢௟௟௜௦௜௢௡	஺௩௢௜ௗ௔௡௖௘	௙௔௜௟௨௥௘ 

(1) 

where Pcollision course is the probability of collision dependant on 

air traffic density; Pseparation failure is the probability of loss 

of separation (by either ATC or Designed UAV Operator (DUO)); 

PUAV Collision Avoidance failure and Pconflicting aircraft Collision Avoidance failure 

are the probabilities of the failure of the collision 

avoidance function of UAV and conflicting aircraft 

respectively. 

Despite of the high number of events which have to coexist to 

cause a MAC, many aerial accidents have been reported in 

literature due to the occurring of some failures above 

mentioned. However, the U.S. National Transportation Safety 

Board (NTSB) Public Forum on UAS has described some UAS 

accident, such as the crash of a Predator B UAS operated by 

U.S. Customs and Border Protection near Nogales, Arizona [18]. 

Concerning that event, the NTSB stated that several factors 

related to pilot training and proficiency in dealing with 

emergency situations contributed to the accident”. 

Furthermore, the NTSB reported the crash of a Raytheon Cobra, 

a small UAS, in Whetstone, Arizona, defining the main cause of 

the accident a student pilot’s failure to follow proper 

procedures; consequently it resulted in loss of aircraft 

control [19].  
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1.1 Sense & Avoid Systems Functions 
As already stated, the main goal of any SAA system is to 

provide sufficient information to maintain aircraft separation 

and collision avoidance functions. 

However, the separation provision is the routine act of 

keeping aircraft apart, in order to mitigate the risk of 

collision, and its responsibility lies either the ATC 

controller or the DUO; on the other hand, collision avoidance 

reacts when the separation provision has failed and imminent 

risk of collision exists. It is applicable at all times, in 

any class of airspace under any flight rules. 

In order to satisfy those functionalities, an Obstacle 

Detection and Tracking System, designed for Autonomous 

Collision Avoidance, has to fulfill some specifications, such 

as the minimum range of initial detection, size and shape of 

the Field Of Regard (FOR), error detection of intruder 

position, measurements rates and latencies. 

This anti-collision sensor system performance is summarized on 

a quantity level in table 1, where also the intruder position 

resolution is indicated. 

Table 1.1    Requirements for Collision Avoidance System 

PARAMETER VALUE 

FOR in azimuth -110° - +110° 

FOR in elevation -15° - +15° 

Range resolution 20 m 

Azimuth resolution 0.27° 

Elevation resolution 0.27° 

Minimum allowed time-to-

collision 
19 s 

Data Rate 10 Hz 
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Thus, the minimum range of initial detection is calculable 

from the minimum-time-to-collision. In fact, it is a linear 

function of both the minimum time to collision that still 

permits a collision avoidance maneuver to be completed, and of 

the maximum frontal approaching speed VMAX. However, 

considering two aircrafts in frontal collision trajectory 

flying at the maximum allowed speed, that is 463 m/h [9], this 

leads to a VMAX of about 926 km/h (500 kts). Consequently, the 

minimum range for a safe initial detection in mid-air 

conditions is calculated by: 

RMIN,AVOID= VMAX x TMIN,AVOID                    (2) 

From which, it results RMIN,AVOID= 4.9 km. 

As regards the FOR, it must be similar to the one of manned 

aircraft. It is shaped as a rectangular spherical sector with 

a depth that is equal to the sphere radius and two angular 

spans given by azimuth α and elevation β angles. Indeed, the 

depth must be sized so that it is equal to RMIN,AVOID. Azimuth 

and elevation angular spans must be the same of manned 

aircraft in order to keep the same safety level, as mentioned 

in ref. 17, i.e. the recommended size is a minimum of ± 110° 

horizontally with respect to the longitudinal axis of the UAV, 

a minimum of ± 15° vertically with respect to the flight path 

at normal cruise speed, and provides sufficient coverage to 

enable separation of conflicting air traffic during expected 

maneuvers. Nonetheless, smaller intervals can be assumed as a 

near term compromise, as stated in ref. 21, where α ϵ[-90°, 

+90°] and β ϵ[-10°, +10°] are proposed. 

Moreover, the error in the determination of intruder position 

and speed with respect to own aircraft must be limited so that 

false alarms and missed detections of collisions are 

restricted within a desired level. A collision threat is 

defined when two aircrafts fly closer than a safety distance S 
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that is stated by aeronautical regulations (500 ft) [9]. As a 

consequence, a collision in the near future can be predicted 

when the relative speed vector between own aircraft and 

intruder crosses the “safety bubble”, i.e. a sphere that is 

centered on the current relative position of the intruder 

aircraft and it has a radius equal to S. Thus, the performance 

of obstacle detection and tracking system can be synthetically 

measured evaluating the accuracy in estimating the distance at 

Closest Point of Approach (CPA).  

1.2 	Sensors suit for SAA technologies 

Any sensor technology for sense-and-avoid application is 

characterized by the following parameters: 

 Maximum operational range and range resolution (accuracy 

of measurement); 

 Maximum angular Field Of View (FOV) (azimuth and 

elevation) and angular resolution; 

 Frame rate corresponding to the time interval at which 

the measurements are updated. 

The first sensor technologies distinction consists in their 

classification into active and passive sensing. Their main 

difference consists in their employing of energy, in order to 

sense objects of the environment. In particular, the active 

sensors are based on acoustic and electromagnetic radiations 

to provide direct measurement of range, by measuring time-of-

flight delays of back scattered reflection and they are 

characterized by a radar-like configuration. On the other 

hand, the passive sensing receives energy from the 

environment, including the object, by devices such as standard 

cameras, and consequently a 2D map of the 3D environment can 

be constructed. Moreover, range of objects can then be 

calculated by using multiple images, applying the stereoscopic 

technique, or by comparing sequencing images taken by the same 
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camera and processed by some particular image processing 

methods, such as the corner detection, the optical flow [22 - 

25].  

The choice of the best sensor system suitable for a SAA 

technology is complex, because it takes into account many 

aspects, such as weight and power requirements, computational 

load, UAS capabilities and payload constraints. Table 2 

synthesized the sensor comparison and attributes.  

Table 1.2    Active and Passive Sensors: Comparison and Characteristics 

 ACTIVE PASSIVE 

POWER High Low 

Field Of Regard Little Extended 

RESOLUTION Low High 

COMPUTATIONAL LOAD Light Heavy 

SYSTEMS OF EXAMPLE 
Radar, 

Ladar 

EO, Thermal 

systems 

 

However, let us observe that the main advantages guaranteed by 

active sensors are their capability of providing range 

measurement directly and that the post-processing efforts are 

minimal, but, on the other hand, they require high power 

supply, because they employ scanning mechanism to perform 

angular measurements, adding complexity to the platform. 

Moreover, the angular resolution is determined by the size of 

the antenna in relation to the wavelength of radiation, 

therefore shorter wavelengths (IR) are preferable in order to 

reduce the size of the antenna and the weight platform. 

Whereas, shorter wavelengths are more sensitive to fog and 

dust, limiting operation in good visibility conditions.  

The interplay between sensor system complexity and post-

processing requirements is reverse for passive, indirect 

sensor technologies. A traditional camera operating in visible 
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or IR frequencies is compact, provides angular information 

directly (no scanning) and has low power requirement. On the 

other hand, the ability to estimate range information is often 

limited and requires sophisticated computation, sometimes 

difficult to run in real-time applications.  

In conclusion, the best approach to sensing may very well be a 

combination of sensing technologies. It will be particularly 

useful if the sensor payloads that are already onboard the UAS 

can be leveraged to provide part of the sense-and-avoid 

functionality. 

1.3 Sensing Solutions: international experience 
Many sensor combinations have been experienced all over the 

world. They range from standalone electro-optical systems [26-

32] to standalone radars or integrated radars and EO [20,33-

35], and EO systems and/or radars integrated with 

collaborative systems such as TCAS or ADS-B [36,37]. 

In particular, as regards the first type of approach, the 

Defense Research Associates, Inc. (DRA) and the Air Force 

Research Laboratory (AFRL/SNJT) have developed a SAA 

technology based on silicon charge couple device (CCD) and 

passive moving target detection algorithms [26]. They used an 

Aerostar UAV as demonstration platform and a Beech Bonanza as 

intruder aircraft; after flight test sessions, they learned 

that image processing algorithms was strongly sensitive to 

environmental conditions, producing thousands of false tracks; 

however they need intense improvements, so that standalone EO 

systems could become more reliable air traffic detection 

sensors.  
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Figure 1. 13   Air Traffic Detection Sensor System Hardware of DRA and AFRL/SNJT 

 

 

Better results have been obtained by the Australian Research 

Centre for Aerospace Automation (ARCAA) aerial robotics [30]. 

They mounted the camera system on-board a Cessna 172 aircraft, 

and experimented good detection performance in terms of 

correct detections and false alarms, even if the detection 

range is less than 1 km. 
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(a)                                                                             (b) 

Figure 1.14    (a) ARCAA Airborne Systems Laboratory Cessna 172 aircraft; (b) Dual camera system showing forward and 

downward pointing cameras 

An example of the second type of approach has been tested by 

the Thales Airborne Systems [35] which has simulated the joint 

Radar/EO tracking, demonstrating that is more accurate than 

the radar-only solution. 

A solution based on collaborative systems has been examined by 

MITRE [37]. In particular its work studies the potential 

sensitivities and shortcomings of the TCAS collision avoidance 

system for unmanned aircraft. Results derived from a Monte 

Carlo safety simulations demonstrated that to evaluate TCAS 

performance, various aspects of the SAA system have to be 

taken into account, such as sensor performance, human 

performance, vehicle maneuver dynamics, and encounter 

characteristics. This last model will depend strongly upon the 

type of mission profiles to be flown, and the airspace traffic 

characteristics. 
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Chapter 2 

CIRA TECVOL Project 
 

Another Sense & Avoid project has been carrying out by the 

CIRA and the DIAS of the University of Naples “Federico II”. 

In particular, they are developing a fully autonomous multi-

sensor anti-collision system for UAVs, in the Technologies for 

Autonomous Flight (TECVOL) project. More in detail, TECVOL is 

set within the P.R.O.R.A. UAV program, which aims at 

developing a HALE UAV for civil application. Thus, TECVOL was 

born in order to realize the technologies needed to support 

the HALE UAV flight autonomy, being able to integrate the 

following functions: 

 Autonomous Flight Path Execution 

 Autonomous Approach and Landing 

 Obstacle DS&A 

 Autonomous Runway Search and Lock 

 Enhanced Remote Piloting 

However, in the TECVOL preliminary studies [38], a multi-

sensor configuration was selected between the several sensing 

solution, already explained in the chapter before, in order to 

perform the obstacle detection and tacking function, 

constituted by either EO or radar systems, able to fulfill all 

SAA requirements, stated before. 
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2.1 Overall System Description 
The overall DS&A TECVOL hardware is installed onboard an 

experimental flying platform, which is a customized version of 

TECNAM P92 Very Light Aircraft (VLA), named Flying Laboratory 

for Aeronautical REsearch (FLARE)(figure 2.1). 

 

Figure 2.15   FLARE platform 

It is constituted by two main units: the Obstacle Detection 

and Identification (ODID) and the Flight Control Computer 

(FCC). The first one is the obstacle sensing part of the 

overall system, which comprises a pulsed Ka-band radar, four 

EO sensors, a CPU devoted to image processing (IP-CPU), a CPU 

devoted to real-time tracking (RTT-CPU) by sensor data fusion. 

Thus, the second unit provides autonomous navigation and 

flight control by a set of navigation sensors (Attitude and 

Heading Reference System (AHRS), Laser Altimeter, Standalone 

GPS, Air Data Sensors). Moreover it comprises a Guidance 

Navigation and Control (GNC) Computer capable of processing 

obstacle dynamics and UAV navigation data in real-time to 

generate escape trajectories and the relevant commands for 

servos.  
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Figure 2.16   S&A system hardware architecture (OS: Operating System; ACA: Autonomous Collision Avoidance; AIR: AIR 

data sensors; ALT: laser ALTimeter). 

Figure 2.2 illustrates more in detail each module 

characteristics and their connections. However, it’s worth 

noticing that the RTT-CPU represents the interface between the 

two main units, by means of a deterministic Controller Area 

Network (CAN) bus. Therefore, the Autonomous Collision 

Avoidance (ACA) logic is based on two core algorithms [33]. 

Firstly, ODID runs the multi-sensor tracking software (SW), 

ensuring that the intruder’s dynamics is properly followed and 

estimated. Secondly, the FCC performs the ACA decision making 

logic, on the basis of the ODID and GNC data, in order to 

handle collision conditions in real time and perform adequate 

evasive maneuvers. 

The following figure is a scheme of the ACA functionalities, 

within the closed-loop control system. However, the reader can 

observe that the ODID outputs and the navigation data are the 

inputs to the ACA decision making algorithm; in particular, 

ODID module sends the intruder position and speed vectors, 

whilst the GNC unit provides the own aircraft position and 

speed. At last, the decision making algorithm are reference 

signals to the autopilot, in terms of demanded speed module, 

slope angle and track angle. 
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Figure 2.17   ACA system functional architecture within the closed‐loop control system 

 

2.2 DS&A System 

2.2.1 SENSOR FUSION ARCHITECTURE 
The logical architecture of the complete sensor fusion 

algorithm for flying obstacles detection and tracking is 

outlined in figure 2.4. and described in detail in ref. 33. 

 

Figure 2.18   Logical architecture of obstacle detection and tracking system 

The multi-sensor tracking algorithm is a key element of the 

DS&A system. In fact, the system is completely autonomous, and 

thus it is mandatory to have reliable estimates not only of 

intruder’s positions, but also of its motion, as the latter 

information is needed by the collision avoidance logic to 

decide whether or not it is necessary to perform an evasive 

maneuver. 
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However, the extended Kalman filter (EKF) has been selected as 

filter of EO and radar data fusion because it resulted the 

best compromise between accuracy and reliability at very short 

range, during simplified quasi-collision scenarios ,and it 

allows  for simple track update also with angular measures 

only (EO sensors). Thus, the Kalman filter output is the GNC 

function input, and it is characterized by nine components, 

which are the obstacle coordinates in NED (North-East-Down 

reference frame with origin in the aircraft center of mass) 

with their first and second time derivatives.  

System components communicate at 10 Hz data rate, which is 

consistent with the obstacle detection requirements 

illustrated in a previous section. Moreover, navigation data 

are used by the algorithm at the same frequency so that UAV 

dynamics is properly followed during tracking phase without an 

excessive computational load. 

As mentioned earlier, tracking algorithm operates in NED 

reference frame. This refers not only to the 

filtering/prediction phase but also to gating and 

track/measurement correlation. Sensor measurements (both radar 

and EO) must be converted to NED before being used; therefore 

they are corrupted by the error in the attitude angles 

evaluation. As a consequence, tracking performance is closely 

correlated to the navigation system, and measurement 

covariance matrix in the Kalman filter must be corrected to 

account for this additional noise to keep its consistency. 

It is worth noting that performing tracking directly in the 

Body Reference Frame (BRF) with origin in the aircraft center 

of mass and axes along longitudinal, lateral and vertical 

aircraft axes, attitude angles’ errors are avoided but 

acceleration and angular velocity measurements (with their 

errors) must be used in any case. Moreover, the relative 
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motion in the BRF includes attitude dynamics, unlike its 

projection in NED, which makes it more difficult to track. 

At last, the reader can observe from figure 2.4 that “central-

level fusion” for the tracking module is mentioned. It regards 

the sensor data, which are organized on the basis of a 

hierarchical structure. In particular, radar is the main 

sensor, whilst EO system plays a secondary role, auxiliary to 

radar. However, when radar detects a possible intruder (firm 

track), it sends its position, in terms of range, azimuth and 

elevation, to the EO system by means of the RTT-CPU. Thus, the 

latter performs the second intruder detection and, if it is 

again positive, the new estimate is sent back to the RTT-CPU, 

which provides the data fusion and intruder tracking. 

Therefore, EO cameras do not operate if not solicited by radar 

question; on the other hand, their outputs provide the 

increasing of the overall DS&A system for the intruder 

detection and tracking, in terms of accuracy and data rate.   

2.2.2 HARDWARE ARCHITECTURE 
The selected radar for autonomous collision avoidance is the 

AI-130TM OASysTM (Obstacle Awareness System) model produced by 

AmphitechTM. It is a pulsed radar operating with a carrier at 

35 GHz and it has been already used for UAV anti-collision 

flight test by the following centers: 1) NASA in the project 

ERAST by means of the Proteus aircraft [20]; 2) Northrop 

Grumman in the DS&AFT project that was sponsored by Air Force 

Research Labs [29]; 3) German Aerospace Research Centre (DLR) 

with the experimental Fokker aircraft named ATTAS [34]. The 

selected frequency provides a good compromise between antenna 

dimensions, angular accuracy and sensitivity to rain and fog. 

In the assigned hierarchical sensors architecture, radar is 

the main sensor, as already stated before. That role depends 

on its capability of working all-time all-weather and of 

providing a direct range-to-obstacle measure. It has been 
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installed on the top of the aircraft behind the wing, central 

position (figure 2.5). 

 

 

(a) 

 

 (b) 

Figure 2.19  (a)  Sensors system set on the top of FLARE wing; (b) Zoom of Radar and EO cameras  

EO sensors provide auxiliary function to radar, in order to 

increase accuracy and data rate. They are two visible and two 

thermal Infrared (IR) cameras located parallel to the 

aircraft, longitudinal axis to capture simultaneous 

panchromatic and color high resolution images of the same 

region. Basically, panchromatic camera outputs provide 

information of obstacle position, therefore they are processed 
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for data fusion; whilst, color camera data are devoted to the 

obstacle identification. Sensors are two MarlinTM cameras 

produced by Allied Vision TechnologiesTM. Their field of view 

(FOV) is 49.8° x 38.9°, and they work at the maximum 

resolution of 1280 x 960 pixels. 

The IR cameras are two FLIRTM thermal cameras with a maximum 

resolution of 320 x 240 pixels and 24° x 18° of FOV. Due their 

limited angular aperture, they are pointed slightly eccentric 

to get an azimuth FOV comparable to the visible cameras’. 

The obstacle detection and tracking functions are provided by 

two different processing units, already defined: the RTT-CPU 

and the IP-CPU. The first one is based on a deterministic 

Operative System (OS) and it is directly connected to the 

radar via Ethernet link, through the TCP/IP protocol. It runs 

the tracking algorithm and performs data exchange with the GNC 

system, by the CAN bus. The second computer is connected to EO 

sensors via a Firewire link. It based on a conventional OS and 

it is dedicated to visible and IR images processing to 

increase the accuracy of intruder position estimated by radar. 

Thus, each time radar performs the target detection in the 

entire FOV, its output is sent to EO sensors which process a 

part of the whole images; indeed they consider a search window 

centered on the predicted obstacle position. Moreover only 

firm tracks are sent to IP-CPU and elaborated by cameras, in 

order to reduce false alarms. 

Additionally, the two processing units communicate by an 

Ethernet link, on the basis of the UDP protocol. If tracks are 

generated, they are transmitted from the RTT-CPU to the IP-

CPU. Subsequently, the more accurate target position estimates 

are back sent from the IP-CPU to the RTT-CPU. Their hardware 

separation allows to reduce the computational load of both 

computers and to have an improvement of the overall system 

performance. 
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The following table synthesizes the exchanged data 

characteristics between RTT-CPU and IP-CPU, while figures 2.6 

and 2.7 show the ODID system installation onboard FLARE and 

its hardware architecture, respectively. 

Table 2.3     Data exchanged between RTT‐CPU and IP‐CPU 

From RTT-CPU 
to IP-CPU  

Predicted 
range, azimuth 

(BRF) and 
elevation (BRF) 
for firm tracks 

From IP-CPU 
to RTT-CPU  

Azimuth (BRF) 
and elevation 

(BRF) estimated 
by the EO 
sensors, 

computational 
time  

Data rate 2-10 Hz 

Maximum 
latency 

5 ms 

 

 

 

 

Figure 2.20      ODID onboard FLARE 
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Figure 2.21   ODID hardware architecture 
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Chapter 3 

DETAILS OF EO UNITS 
 

 

EO system installed onboard FLARE platform is characterized 

by four cameras: two visible and two IR. Resolution and FOV 

details have been already presented in the previous section. 

However, hereinafter we provide more EO sensors details, 

described by their data sheet, we will describe the process 

of their calibration onboard the aircraft, with respect to 

the radar and AHRS systems, and, finally, we will focus more 

deeply on the image processing algorithm requirements, in 

particular for the panchromatic camera. 

3.1. Camera Data Sheet 
Visible cameras are from the same production, one color and 

one panchromatic. Figure 3.2 is the technical sheet either 

for the black and white (b/w) model (MARLIN F-145B2) or for 

the color (MARLIN F-145C2). They are from ALLIED VISION 

TECHNOLOGIES GMBH [39]. 
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(a)                                                                                             (b) 

Figure 3.22  (a) Visible camera lateral view; (b) visible camera backward view 

 

 

 

Figure 3.23   Visible Cameras data sheet 

 

 



39 
 

IR system is composed by two cameras of FLIR production, whose 

technical information are synthesized in the following. 

 

 

(a) 

 

 (b) 

Figure 3.24   (a) IR camera frontal view; (b) IR camera backward view 
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Figure 3.25   IR camera data sheet 

 

3.2. Cameras Calibration 

3.2.1 INTRINSIC CALIBRATION 
Intrinsic calibration has been performed for visible 

cameras by imaging a sample pattern from different points 

of view, in order to evaluate the effects of distortion 

of lens on the acquired images. That technique is based 

on a MatlabTM Toolbox accurately described in ref. 45.  
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As regards the IR cameras, optical distortions have been 

considered negligible because of their little FOV, so 

that a linear law of association between target and pixel 

is applicable. 

However, the intrinsic calibration of visible cameras has 

allowed us to estimate their optical parameters, such as 

the focal length, the principal point and the distortion 

coefficients, which we present synthetically hereinafter. 

Table 3.4  Panchromatic camera Intrinsic Parameters 

 

Table 3.5   Visible camera Intrinsic Parameters 

 

The reader can observe that a 4th order “plump bob” model 

has been assumed to describe the optical distortions of 

lens for both visible cameras. However, for standard 

field of views (non wide-angle cameras), it is often not 

necessary (and not recommended) to push the radial 

component of distortion model beyond the 4th order. In 

addition, the tangential component have been discarded 

(justified by the fact that most lenses currently 

manufactured do not have imperfection in centering). The 

4th order symmetric radial distortion with no tangential 

component is actually the distortion model used by Zhang 

[46]. 

Finally, the following figure represents the estimated 

distortion model of the panchromatic camera. 
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Figura 3.26  Panchromatic camera Optical Distotion Model 

 

3.2.2 EXTRINSIC CALIBRATION 
EO sensors have been accurately aligned onboard the FLARE 

aircraft, on the basis of a assessed procedure, described in 

detail in ref. 40. In particular, that calibration technique 

is very valid to align EO cameras in strapdown and forward 

looking installation; indeed, the technical term used to 

identify that operation of calibration is “boresighting” 

[41]. 

However, the adopted technique has allowed us to align all 

the EO sensors set simultaneously, taking into account the 

attitude measurements provided by the onboard AHRS and the 

Carrier phase Differential GPS (CDGPS) measurements. Thus, 

the aim of the considered boresighting method is to 

determine the rotation matrices between sensors’ reference 

frame and aircraft Body Reference Frame (BRF) (X-nose, Y-

right wing, Z-down), basing on the least square technique 

(q-method), which estimates the transformation matrix for 
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each camera by a series of vector observations of the same 

in two reference frames [42]. 

 

Figure 3.27   BRF convention 

Hereinafter, GPS and AHRS systems details are illustrated. 

However, the central unit is the AHRS400CCTM manufactured by 

CrossbowTM. It is a high performance solid-state attitude 

and heading reference system. In static mode, by averaging 

sensors output for some seconds (data rate is 100 Hz), it is 

possible to reach an accuracy of the order of 0.1°.  

The ground GPS antenna is the LegAntTM manufactured by 

TopconTM, whereas other two GPS antennas are located on the 

aircraft wings. The measurement technique is the Real Time 

Kinematic (RTK) carrier-phase differential mode which is a 

process where GPS signal corrections are transmitted in real 

time from a reference receiver at a known location to 

another receiver. The use of an RTK capable GPS system can 

compensate atmospheric delay, orbital errors and other 

variables in GPS geometry, increasing positioning accuracy. 

Using the code phase of GPS signals, as well as the carrier 

phase, which delivers the most accurate GPS information, RTK 

provides differential corrections to produce the most 

precise GPS positioning. 
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Figure 3.28          AHRS and GPS antenna installed onboard FLARE 

 

3.2.3 THE CALIBRATION PROCEDURE 
In order to determine a target position as in the sensors’ 

reference frame as in the BRF, more operations have to be 

performed at the same time: at least two images of the 

target have to be acquired by all the cameras, target 

position has to be provided by the CDGPS, aircraft attitude 

is measured by AHRS. At the end of the acquisitions, 

cameras’ positions must be measured by CDGPS with the same 

level of accuracy. For the sake of clarification, in this 

section BRF will be considered as a synonym of AHRS-defined 

reference frame. 

Figure 3.8 shows part of the hardware set-up during a 

calibration session. 
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Figure 3.29   Calibration session: target and cameras’ relative position 

From a statistical point of view, a large number N of target 

positions allows the pointing estimation accuracy to be 

improved of a N-0.5 factor. Therefore fewer measurements, but 

very accurate, produce a better pointing accuracy.  

In order to establish how many targets positions are to be 

measured, and at what distance the target must be placed, 

both CDGPS accuracy and sensors IFOV must be taken into 

account. In fact, in theory the best solution would be to 

place the target as far as possible from the sensor, so that 

the GPS error falls below single pixel angular dimensions. 

However, this makes target positioning harder to realize. In 

fact, in order to have a globally accurate alignment, the 

test points should be selected uniformly in the cameras 

field of view. In the considered case, the relevant 

accuracies are shown in table 3.3. 

Table 3.6   Sensors accuracies 

GPS accuracy in carrier-phase mode 3 mm + 1 ppm

VIS cameras Instantaneous Field Of View (IFOV) 0.041° 

IR cameras IFOV 0.074° 

 

By a simple geometric relationship, it is possible to 

determine at what distance the GPS precision equals the 
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linear dimension which corresponds to the cameras IFOV. Some 

numerical data for the considered case are shown in table 

3.4. 

Table 3.7   Linear dimensions of FOV and IFOV for several distances 

Distance (m) 2 4 5 10 20 

Width FOV VIS 1.805 3.610 4.513 9.025 18.050 

Height FOV VIS 1.361 2.722 3.402 6.805 13.610 

Width FOV IR 0.850 1.700 2.124 4.249 8.498 

Height FOV IR 0.633 1.266 1.583 3.166 6.332 

Length IFOV VIS 0.001 0.003 0.004 0.007 0.014 

Length IFOV IR 0.003 0.005 0.006 0.013 0.026 

 

From table 3.4, the reader can easily conclude that the 

procedure can be implemented by locating the target at a 

distance of about 4 meters from the focal plane of the 

sensors and moving it in a rectangle of about 4 m X 3 m. 

Thus, that was the distance selected in the performed 

calibration tests. 

The basic assumption of q-method is that the main component 

of the error of the single observations is random, thus it 

is supposed that the camera is perfectly calibrated. This 

means that optical distortion is neglected either in the IR 

or in the visible cases. It can be stated that this 

assumption can be considered consistent with the scopes of 

this application, also because of the narrow field of view 

of the cameras. On the other hand, the validity of this 

assumption has been verified by several tests and reported 

in ref. 40. 

During tests, EO sensors acquire images simultaneously, and 

for each of them target centre pixel is easily detectable, 

then its coordinates can be translated into angular 

information by exploiting the camera intrinsic parameters. 
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Thus, given the target and the camera position in the Earth-

Centered Earth-Fixed (ECEF) reference frame, it is possible 

to evaluate the target position in the North East Down (NED) 

reference frame with origin in the camera, trough an exact 

transformation [43]. Subsequently, the target position riNED 

can be transformed in the BRF on the basis of the attitude 

AHRS measurements, by the following relation: 

௜஻ோிݎ ൌ ,ߛଷଶଵሺܯ ,ߚ  ௜ோ஽                  (3.1)ݎ		ሻߙ

Where γ, β, α are, respectively, the heading, pitch and roll 

angles, and the matrix M321 is obtained as follows: 

M321 = ൥
cos ߛݏ݋ܿ	ߚ ߛ݊݅ݏ	ߚݏ݋ܿ െߚ݊݅ݏ

െܿߙݏ݋	ߛ݊݅ݏ ൅ ߛݏ݋ܿ	ߚ݊݅ݏ	ߙ݊݅ݏ ߛݏ݋ܿ	ߙݏ݋ܿ ൅ ߛ݊݅ݏ	ߚ݊݅ݏ	ߙ݊݅ݏ ߚݏ݋ܿ	ߙ݊݅ݏ
ߛ݊݅ݏ	ߙ݊݅ݏ ൅ ߛݏ݋ܿ	ߚ݊݅ݏ	ߙݏ݋ܿ െߙ݊݅ݏ	ߛݏ݋ܿ ൅ ߛ݊݅ݏ	ߚ݊݅ݏ	ߙݏ݋ܿ ߚݏ݋ܿ	ߙݏ݋ܿ

൩ 

(3.3) 

It is worth noticing that AHRS systems measure heading angle 

with respect to the magnetic North, while the transformation 

from ECEF to NED refers to geographic North. Thus, AHRS 

heading measurements must be summed to magnetic declination, 

in order to not introduce a systematic error in alignment. 

Furthermore, the cosine directors of the line-of-sight to 

the target, characteristic of the considered camera and the 

i-th image, are calculated by dividing the riBRF to its 

module. However, let us call ݎ^ iBRF and ݎ^ iSENS the computed 

unit vector and the unit vector of the target direction in 

the Camera Reference Frame (CRF), as extracted by the i-th 

image. Assuming that CRF axis have the same convention of 

the BRF axes, it now possible to define the loss function: 

஼஺ெሻܯሺܬ ൌ 		∑ ௜ௌாேௌݎ௜หݓ
^ െ	ܯ஼஺ெ		ݎ௜஻ோி

^ ห
ଶ௡

ଵୀଵ            (3.2)  

Where n is the number of collected images/positions, wi is 

the weight of the i-th measurement (in this case, all of 
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them have the same value) and MCAM is the attitude matrix of 

the considered camera with respect to the aircraft. Thus, we 

select MCAM as the matrix which minimizes J; so, it can be 

computed by means of the q-method algorithm which calculates 

attitude in terms of optimal least-square quaternion [42]. 

At last, for the sake of clarification, the following figure 

illustrates the CRF applied at an acquired panchromatic 

image where the target is present. It is based on the 

classical pinhole model [44], where the image is in front of 

the projection centre, and demonstrates that there is the 

same axes convention of the BRF.  

 

 

Figure 3.30  CRF applied at a panchromatic image 
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3.3. Processing 
 

As already stated before, EO system provides an auxiliary role 

to radar, in order to increase the accuracy and data rate of 

its measurements. However, IP-CPU works subsequently to RTT-

CPU, as soon as a detected target becomes firm track (an 

obstacle is defined “firm track” when radar associates its 

presence to, at least, three on five detected obstacles). 

In particular, different auxiliary functions are assigned to 

the EO system: panchromatic camera is used for obstacle 

detection and its output is fused with radar estimate in the 

Kalman filter [33]; the color camera aims at obstacle 

identification; IR cameras perform the obstacle detection in 

dark luminosity conditions, in order to replace panchromatic 

camera where it is not able to work. 

At the moment, only processing by panchromatic camera has been 

analyzed and tested, because it plays the most important 

auxiliary role to radar in order to realize a reliable DS&A 

system, which can substitute human’s eyes. 

In particular, the hierarchical obstacle detection process for 

the panchromatic camera is structured in the following way: 

intruder range, azimuth and elevation as estimated by the 

radar-based tracking algorithm are sent from RTT-CPU to IP-CPU 

and constitute the input data to the image processing 

algorithm, which converts them from the aircraft Body 

Reference Frame (BRF) to the Camera Reference Frame (CRF) 

(based on the camera alignment matrices estimated by the 

procedure explained before [40]), and compares them to the 

camera FOV. If the intruder position is within the FOV, the 

image processing routine starts and the panchromatic camera 

analyzes only the image portion enclosed in the search window 
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centered on the intruder position detected by radar, with 

width and height depending on intruder range. In this way, the 

object detection algorithm can generate an accurate estimate 

of intruder angular position in the CRF. In case of detection, 

this estimate is converted back to the BRF and transmitted to 

the RTT-CPU. Since only a portion of the whole image is 

analyzed, the object detection algorithm runs very fast thus 

minimizing the latency in providing measurements to the multi-

sensor tracking filter. 

Figure 3.10 is a clarifying example of the main steps 

regarding the EO obstacle detection SW by panchromatic camera. 

 

Figure 3.31    Panchromatic camera image processing algorithm main steps 

 

That is the general panchromatic camera SW structure. Next 

chapters will be concerned, more in detail, on its 

performance, the chosen image processing technique, the 

reasons of that choice and how it fulfills the DS&A 

requirements.  
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Chapter 4 

IMAGE PROCESSING ALGORITHMS 
 

 

EO system engineering started development at various locations 

throughout the world just prior to World War II. Primarily, it 

was relegated to laboratory interest, and, subsequently, it 

found wide applicability in the military field. However, 

optics and sensors have continued to evolve, and, nowadays 

they have had the starring growth in capability of automatic 

target cuers (ATCs) and recognizers (ATRs) for automatic 

multisensor systems. Indeed, when we talk of EO object 

detection system, the prime decision maker is still the human 

being; therefore, many research studies have been carrying out 

all over the world with the aim of realizing fully automatic 

ATC and ATR systems, which could be able to substitute 

completely the human’s eyes. 

Thus, when evaluating EO system for target detection, it is 

necessary to talk in terms of probabilities of detection, 

recognition, classification, and identification, together with 

the modalities of performing such analyses, and the choice of 

the appropriate method. Indeed, such probabilities depend on 

many external and internal to EO system factors, such as the 

contrast between target and background, the atmosphere and the 

display. 

This chapter aims at presenting some of the most common image 

processing techniques, applied at several international 
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research programs in the automatic target detection field. 

However, we will describe their main theoretical aspects, and 

we will present some examples of application; moreover, we 

will compare them, on the basis of their performance limits 

and advantages. 

4.1 BINARIZATION 
Binarization is a detection technique which aims at segmenting 

an image on the basis of a threshold fixed on its histogram of 

luminosity. Consequently, image is distinguished in two 

different classes, characterized by luminosity values above 

and under the set threshold. However that method is also named 

image segmentation with thresholding and, due to the rapidity 

of calculus, its suitable for real-time system [47,48,49,50]. 

Thus, if the threshold is fixed during all the image 

processing execution, the technique is defined static 

thresholding, whose algorithm is expressed as follows: 




x,y: S(x,y) =                    (4.1) 
 
  

where I(x,y) is the image function, T is the set threshold, 

(x,y) are the pixel coordinates in the image plane, and S(x,y) 

is the output binarized image. 

Figure 4.1 represents an image whose object can be easily 

separated from the background, applying a threshold between 

100 and 200, as the reader can evaluate from its histogram of 

luminosity. 

  
                                                    Figure 4.32    Image of Analysis          Figure 4.33     Binarized Image 
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Figure 4.34    Image Histogram of Luminosity 

Static thresholding has a limited field of application, which 

regards above all the processes of automatic industrialization 

[50], where usually image background luminosity is constant 

and of strong intensity, so that it is easily distinguishable 

from targets.  

More general cases of application consider variable 

thresholds, depending on the image spectral analysis. Indeed 

the technique is defined “dynamic thresholding” [49], which 

consists in selecting the most suitable threshold for the 

instantaneous acquired image, whose background differs rapidly 

during the time of experimentation. Although its merits, that 

algorithm has not very success in real-time system, due to its 

heavy computational load. 

As regards target detection in the aerospace field, 

binarization is widely considered in automatic UAV take-off 

and landing projects [51]. However, ground images are 

processes by the simple thresholding technique, which provides 

the black and white image, and subsequently algorithm works to 

determine ground target centroid in the overall image.  

In particular, the x and y centroids with respect to the image 

plane are calculated as: 

ݔ ൌ 		
∑ ௜ݔ
ே
௜ୀଵ

ܰ
 

ݕ ൌ 		
∑ ௬೔
ಿ
೔సభ

ே
                       (4.2) 

 Where N is the number of pixels which characterize the ground 

target, xi and yi are their coordinates in the image plane. 
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Finally, ground target position in the image plane is 

converted to the CRF by coordinate’s transformation which is 

based on EO camera intrinsic parameters and UAV altitude [45]. 

The following figure illustrates a generic case of relative 

positioning between image plane and CRF. 

 

 

Figure 4.35     Image Plane with respect to CRF 

 

 

At last, it’s worth mentioning the partial thresholding, which 

is often applied in order to reduce the computational time 

and, indeed, it consists in binarizing only on a portion of 

the overall image [52]. An example of application is 

illustrated in the following figures, where it’s a priori 

known that intruder aircrafts are above the horizon line, 

therefore image is segmented and only the upper half part is 

processed. 
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        Figure 4.36           Overall Panchromatic  Image                                                                       Figure 4.37 Portion of  image processed by 
thresholding 

 

4.2 EDGE DETECTION 
Edge detection is a very important area in the field of 

Computer Vision [53-59]. Edges define the boundaries between 

regions in an image, which helps with segmentation and object 

recognition.  

In particular, the edge detection technique main goals are: 

 Producing a line drawing of a scene from an image of that 

scene; 

 Extraction of important features from the edges of an 

image(e.g., corners, lines, curves); 

 Using of these features by higher-level computer vision 

algorithms (e.g., recognition). 

Generally, edges are caused by  significant local changes of 

intensity in an image; however, several physical events cause 

intensity changes: geometric and non-geometric events. 

The first ones are object boundary (discontinuity in depth 

and/or surface color and texture) and surface boundary 

(discontinuity in surface orientation and/or surface color and 

texture); whilst, non-geometric events are specularity (direct 

reflection of light, such as a mirror), shadows (from other 

objects or from the same object) and inter-reflections.  
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Moreover image edges are described by four parameters, whose 

two are depicted in figure 4.7. 

 

Figure 4.38     Image Edge Representation 

In particular, the edge normal is the unit vector in the 

direction of maximum intensity change; the edge direction is 

the unit vector to perpendicular to the edge normal; the edge 

position or center is the image position at which the edge is 

located; and the edge strength is related to the local image 

contrast along the normal. 

In addition, several types of edges can be defined: 

 Step edge: the image intensity abruptly changes from one 

value to one side of the discontinuity to a different 

value on the opposite side; 

 Ramp edge: a step edge where the intensity change is not 

instantaneous but occur over a finite distance; 

 Ridge edge: the image intensity abruptly changes value 

but then returns to the starting value within some short 

distance (generated usually by lines); 

 Roof edge: a ridge edge where the intensity change is not 

instantaneous but occur over a finite distance (generated 

usually by the intersection of surfaces). 

For clarification, hereinafter we present some graphical 

illustration of those edges in terms of their intensities 

changes. 
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(a)                      (b) 

 

 

(c) 

Figure 4.39    (a)  Step and Ramp Edge in ideal and real cases;   (b)   Ramp edge in ideal and real cases;  (c)  Roof edge in 

ideal and real cases 

 

There more edge detection methods, which are based on 

different theoretical principles of detection of intensities 

changes, which characterize the image in analysis. They can be 

distinguished in “edge detection using derivatives” and “edge 

detection using gradient”. Anyway, both groups of methods are 

based on four main steps of processing: 

 Smoothing: suppress as much noise as possible, without 

destroying the true edges.  

 Enhancement: apply a filter to enhance the quality of the 

edges in the image(sharpening).  

 Detection: determine which edge pixels should be 

discarded as noise and which should be retained (usually, 

thresholding provides the criterion used for detection).  
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 Localization: determine the exact location of an edge 

(sub-pixel resolution might be required for some 

applications, that is, estimate the location of an edge 

to better than the spacing between pixels). Edge thinning 

and linking are usually required in this step. 

The description of the first group of edge detection 

techniques is out from our interest, because it deals with 

very heavy methods, not suitable for real-time systems as well 

as for automatic target recognition systems. 

Thus, we will be focused on the edge detection methods, based 

on the using of gradient, and which find a wide field of 

application in the real-time vision-based navigation [55-59].  

4.3.1 Edge Detection Using Gradients 
From mathematics, let us call gradient of a function f(x,y), 

the vector whose magnitude and direction are: 

݉ܽ݃݊ሺ݂׏ሻ ൌ 	ටሺ
డ௙

డ௫
ሻଶ ൅ ሺడ௙

డ௬
ሻଶ 			ൌ 					ඥܯ௫

ଶ ൅		ܯ௬
ଶ           (4.3) 

ሻ݂׏ሺݎ݅݀ ൌ ଵሺି݊ܽݐ
ெ೤

ெೣ
ሻ                   (4.4) 

For computational time reasons, the magnitude of gradient is 

usually approximated by the sum of its components: 

݉ܽ݃݊ሺ݂׏ሻ 	ൎ 		 |௫ܯ| ൅	 หܯ௬ห               (4.5) 

While, the partial derivatives are simplified by finite 

differences: 

డ௙

డ௫
ൌ 		݂ሺݔ ൅ 1, ሻݕ െ 	݂ሺݔ, ,ሻݕ ሺ݄௫ ൌ 1ሻ            (4.6) 

డ௙

డ௬
ൌ 		݂ሺݔ, ݕ ൅ 1ሻ െ 	݂ሺݔ, ,ሻݕ ൫݄௬ ൌ 1൯            (4.7) 
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Thus, using pixel-coordinate notation, expressions (4.6) and 

(4.7) become: 

 
డ௙

డ௫
ൌ 		݂ሺ݅, ݆ ൅ 1ሻ െ 	݂ሺ݅, ݆ሻ                 (4.8) 

డ௙

డ௬
ൌ 		݂ሺ݅, ݆ሻ െ 	݂ሺ݅ ൅ 1, ݆ሻ                 (4.9) 

where i and j correspond to the Yimage and Ximage of figure 4.4, 

respectively. 

From those theoretical principles, more edge detectors based 

on gradient have been developed; basically, they differ for 

the considered mask of image derivation with respect to a 

reference pixel (i,j). Thus, we present hereinafter the main 

edge detectors and their filters of derivation. 

 The Roberts edge detector is characterized by the 

following masks of derivation: 

௫ܫ ൌ 		 ቂ
1 0
0 െ1

ቃ																											ܫ௬ ൌ 		 ቂ
0 െ1
1 0

ቃ       (4.10) 

So the magnitude of the gradient applied at the image I 

in the pixel (i,j) is: 

݉ܽ݃݊	ሺܫ׏ሻ ൌ ݂ሺ݅, ݆ሻ െ ݂ሺ݅ ൅ 1, ݆ሻ ൅ 	݂ሺ݅ ൅ 1, ݆ሻ െ ݂ሺ݅, ݆ ൅ 1ሻ   (4.11) 

 The Prewitt and Sobel edge detectors are based on common 

expressions of the partial derivatives: 

௫ܯ ൌ 		 ሺܽଶ ൅ 	ܿܽଷ ൅ ܽସሻ െ	ሺܽ଴ ൅ 	ܿܽ଻ ൅	ܽ଺ሻ       (4.12) 

௬ܯ ൌ 		 ሺܽ଺ ൅ 	ܿܽହ ൅ ܽସሻ െ	ሺܽ଴ ൅ 	ܿܽଵ ൅	ܽଶሻ       (4.13) 

Thus, setting c = 1 we get the Prewitt operator: 

௫ܫ ൌ 		 ൥
െ1 0 1
െ1 0 1
െ1 0 1

൩																											ܫ௬ ൌ 		 ൥
െ1 െ1 െ1
0 0 0
1 1 1

൩   (4.14) 

Whilst, setting c = 2, we the Sobel operator: 

௫ܫ ൌ 		 ൥
െ1 0 1
െ2 0 2
െ1 0 1

൩																											ܫ௬ ൌ 		 ൥
െ1 െ2 െ1
0 0 0
1 2 1

൩   (4.15) 

However, the Sobel edge detector gives more emphasis to 

pixels closer to the center of the mask. 
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 The Canny edge detector has the peculiarity of 

considering the Gaussian function G(x,y) to build the 

masks of filtering; however they have the following 

expressions: 

௫ܫ ൌ 	
డ

డ௫
ሺ݂ ∗ ሻܩ ൌ 	݂ ∗ 	 డ

డ௫
	ܩ ൌ 		݂ ∗  ௫        (4.16)ܩ

 

௬ܫ ൌ 	
డ

డ௬
ሺ݂ ∗ ሻܩ ൌ 	݂ ∗ 	 డ

డ௬
	ܩ ൌ 		݂ ∗  ௬        (4.17)ܩ

Moreover, after the image derivatives calculus, a thresholding 

phase is performed, during which a black and white image is 

generated, applying a reference threshold of binarization on 

the gradient image. 

   

(a)                        (b) 

Figure 4.40     (a)   Reference Image;   (b)  Processed Image after Image Gradient Calculus and Binarization 

 

Each method is characterized by own detection performance, 

which can be synthesizes in:  

 good detection: minimizing the probability of false 

positives, caused by noise; 

 good localization: edges are as close as possible to real 

edges; 
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 single response contrast: the detector must return one 

point for each one point; 

 computational time. 

However, the most widely used edge detector in computer vision 

is the Canny method, because it is able to suppress as much 

background noise as possible by means of the Gaussian smoother 

and to provide good performance in the localization and single 

response contrast; indeed, in real-time application it is not 

preferable, due to its heavy computational load which 

increases with the filtering size, frequent choice, applied 

when more smoothing effects are desired. 

Finally, hereinafter we present a reference figure processed 

by the Sobel and Canny edge detectors. For both, the same 

threshold of binarization is considered; the reader can 

observe that the Canny method smoothing effects are more 

consistent as much as the filtering size increases, so that 

also the computational load grows up. Thus, Sobel method is 

the most common solution adopted in real-time applications 

[57], due to its light computational load, due to the emphasis 

it gives to the edges points by means of the coefficient 2 of 

its kernel, and its good smoothing effects which are stronger 

than Roberts’, whose filtering matrix is the littlest.  

 
Figure 4.41   Reference Image 
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Figure 4.42          Sobel edge Detector 

 
Figure 4.43    Canny Edge Detector with 3x3 Gauss Filter 

 

Figure 4.44    Canny Edge Detector with 5x5 Gauss Filter 
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4.2.2. Edge Detection Application in the Aerospace Field 
An example of aerial images, processed by edge detection, is 

represented by the project carried out by Blue Bear Systems 

Research and the Cranfield University, which aims at 

performing automatic land-sea search and surveillance 

operations on UAV platforms [59]. However, the chosen image 

processing technique is the edge detection which has 

presented good performance of identifying salient object of 

the acquired images. 

Some obtained results are presented in the following 

figures, where detected objects are signed by red 

rectangles. 

 
(a) 

 

(b) 

Figure 4.45  (a) Land image by UAV;  (b) Sea image by UAV 
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Other studies involve edge detection in forward-looking UAV 

applications, for intruder aircraft platforms detection and 

tracking [56]. 

4.3 CORNER DETECTION 
Currently, corner detection is widely used in many industrial 

applications, such as the ones concerning the object 

identification [60] and tracking in real-time systems [61-63]. 

However, it is demanding the improvement of this technique in 

terms of computational load; that effort has been carrying out 

also by the French Aerospace Research Lab ONERA, in the 

framework of the ReSSAC project [16], which involves an 

unmanned helicopter platform, where vision-based navigation 

and target tracking systems are installed onboard in order to 

allow the drone to fly fully autonomously in an unknown urban 

environment. Thus, about the ability of performing autonomous 

landings at unprepared sites, the terrain characterization is 

a necessary step for UAVs, when they select autonomously a 

landing location. However, ONERA ReSSAC helicopter studies the 

terrain by means of a nadir-mounted camera, which applies a 

monocular stereovision technique, based on the motion of the 

UAV. In particular stereovision algorithm roughly works in the 

following way: 

1. Selection of points of interest in the image; 

2. Matching of the selected points between two following 

images; 

3. Triangulation and estimation of the relative localization 

of objects corresponding to these points. 

As regards, the first point, the corner detection technique is 

applied; however, a very fast terrain feature detection 

algorithm is demanded, and it requires a strong improvement of 

the classical corner detection techniques: Shi-Tomasi [64] and 

Harris-Stephens [65]. 
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As follows, a brief description of those corners detection 

technique and their theoretical principles. 

4.3.1 Criterions of Detection of the Points of Interest 
Image features, or points of interest are a very broad concept 

which, generally, indicates the image points with particular 

characteristics, used to match two or more consecutive images. 

From the Harris point of view [65], an image feature is a 

corner, detected by computing on each pixel a saliency degree 

taking into account the local texture surrounding the 

considered pixel. Texture is related to local variations of 

pixel's intensity around the considered point. 

In particular, the corner detection criterion is based on a 

score calculated for each pixel from two eigenvalues of the 

image, considered as matrix; after that, the searching of 

score maximum values is implemented; they correspond to the 

image corners. 

The Shi-Tomasi corner detector is based entirely on the Harris 

corner detector [64]. However, this method differs from the 

previous one in the pixel score evaluation, which depends only 

on eigenvalues, in order to determine if a pixel is corner or 

not. 

In detail, we illustrate the equations that characterize the 

two methods and that provide more clearly their differences. 

Let us consider the image array I(x,y), with x and y 

respectively horizontal and vertical pixel indexes, and we 

define Ix(x,y) and Iy(x,y) the first order directional 

differentials, provided by a differential operator, such as 

Sobel, Prewitt, Roberts etc. [53]. We can build the symmetric 

autocorrelation matrix S(x,y) in the neighborhood of the pixel 

(x,y) in the following way: 













yx, y)(x,

2
yIy)(x,yy)I(x,xI

y)(x,yy)I(x,xIy)(x,
2
xI

y)w(x,y)S(x,         (4.18) 
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where w(x,y) is a smoothing function that weighs differently 

the points of the considered neighborhood; its characteristic 

function can be square, triangular or Gaussian. 

Let us indicate 1ߣ and 2ߣ the eigenvalues of matrix S(x,y), 

given by of the second order equation: 

0det(S)track(S)λ
2

λ              (4.19)          

Both Harris and Shi-Tomasi methods are based on pixel scores, 

depending on eigenvalues. 

Indeed, Harris calculates that score as explained hereinafter: 

            y)][S(x,2track*ky)]det[S(x,y)(x,HarrisC       (4.20)          

where k is an empirical value, usually fixed as 0.06 [66], and 

det[S(x,y)] and track[S(x,y)] depend on the eigenvalues by the 

following equation: 

det[S(x,y)] = λ1   λ2;        (4.21)              

track[S(x,y)] = λ1 + λ2           (4.22)          

On the other hand, the Shi-Tomasi method evaluates the pixel 

score on the basis of a more simple relation (4.23): 

)2λ,1min(λy)(x,TomasiC 
                                        (4.23) 

Maximum values of C(x,y) parameter are the image points of 

interest, as in the Harris as in the Shi-Tomasi cases. 

Therefore, when the user asks for a selected number of 

corners, the algorithm lists the C(x,y) values in ascending 

order, and provides the position of pixels which correspond to 

the first values of the list, on the basis  of the requested 

number of corners. 
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4.3.2 Fast Corner Detection Algorithms 
Many cases of study have been implemented in order to slight 

the classical corner detection technique, which requires 

long times of computation. However, we can mention many 

international experiences [67-69], as well as the French one 

[70]. In each case, some geometric figures have been taken 

as reference and corner detection time of those figures is 

evaluated. The following image is the test image adopted by 

ONERA; red crosses are the algorithm outputs. The respective 

evaluated computation time is 45 ms for Image in Video 

Graphics Array (VGA) resolution (640x480) and 13 ms for 

binned VGA images (320x240) [71]. 

 

Figure 4.46    Corner Detection Test Image 
 

4.4 CLUSTERING 
Clustering is another common technique to detect and isolate 

objects from background of an analyzed image. However, it 

consists in detecting one or more clusters in the overall 

image, each of them representing a characteristic object, and 
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subsequently the method outputs one object position, on the 

basis of established criterions of choice. 

Several methods can be applied to cluster an image; the most 

common is based on a thresholding technique which provides 

more clusters, one for each assigned thresholds range; 

furthermore, the biggest cluster is chosen as the object of 

the research, so it is the clustering algorithm output. 

 

Figure 4.47    Image with two clusters 

From literature, that method is often discarded in real-time 

executions due to its computational load, which is already 

heavy for images with three clusters [47]. 

Some studies have been implemented in order to reduce the time 

of computation, to introduce that method also in automatic 

surveillance applications. However, the Laboratory of Speech 

an Image Information Processing of the Northwestern 

Polytechnical University of China has experimented an online 

clustering-based passenger counting system, suitable for real-

time systems; indeed, results show that the system can process 

two 320 x 240 video sequences at a frame rate of 25 fps 

simultaneously and it is quite reliable for different 

scenarios background [72]. 

Moreover, similar studies have been carried out by the 

University of Zaragoza, which has designed a real-time 

algorithm to detect and classify football players during a 
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match. Thus, that algorithm is based on the clustering logic 

and it has offered good results, also in this case [73]. 

 

Figure 4.48     Correct Detection of football players by clustering 

 

4.5 OPTICAL FLOW 
An optical flow algorithm estimates the 2D flow field from 

image intensities, which is the perspective projection onto 

the image plane of the true 3-D velocity field of moving 

surfaces in space [74], arising from the relative motion of 

objects and the viewer. Moving objects can be separated from 

the background by analyzing this motion [75]. It is worth 

noting that the Optical flow only requires electro-optical 

sensors measurement to evaluate kinematical behaviour of 

objects, without any need of navigation system measures. 

In particular, two techniques were implemented and tested in 

this study, which are the most used according to literature 

[13]: the Horn and Schunck’s (HS) [77] and the Lucas and 

Kanade’s (LK) algorithms [76]. Both of them are based on 

differential solving schemes. In other words, they compute 

image velocity from numerical evaluation of spatiotemporal 

derivatives of image intensities. The image domain is 
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consequently assumed to be differentiable in space and time. 

The basic assumption in measuring image motion is that the 

intensity structures of local time-varying image regions are 

approximately constant for, at least, a short time duration. 

This assumption brings to the following condition, known as 

the “Optical Flow Constraint Equation”: 

డூ

డ௫
ݑ ൅	 డூ

డ௬
ݒ ൅	 డூ

డ௧
ൌ 0                (4.24) 

where I represents intensity, x and y the two spatial 

coordinates in the image, u and v the corresponding apparent 

velocity components, and t is time. 

This is an under-constrained equation, since only the motion 

component in the direction of the local gradient of the image 

intensity function may be estimated: this is known as 

“aperture problem”. Therefore, one more assumption is 

necessary. 

Horn and Schunck’s method assumes that the motion field is 

smooth over the entire image domain. Thus, it computes an 

estimation of the velocity field [u, v] that minimizes both 

the sum of the errors for the rate of change of image 

brightness in eq. (4.23), and the measure of the departure 

from smoothness in the velocity flow [77]. Iterative equations 

are used to minimize equation (4.23) and thus to obtain 

velocity field: 

௡ାଵݑ ൌ 		 ௡ݑ െ				
ூೣ 			ሺூೣ 	௨೙ାூ೤௨೙ା	ூ೟ሻ

∝మାூೣమାூ೤
మ             (4.25) 

௡ାଵݒ ൌ 		 ௡ݒ െ				
ூ೤			ሺூೣ 	௩೙ାூ೤௩೙ା	ூ೟ሻ

∝మାூೣమାூ೤
మ             (4.26) 

where superscripts refer to the iteration number, subscripts 

refer to derivation, and α is a positive constant known as 

smoothness factor. 
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Instead, Lucas and Kanade’s method divides the original image 

into smaller sections, Ω, assuming a constant velocity in each 

section. Then, it performs a weighted least-square fit of the 

optical flow constraint equation, to a constant model for [u, 

v] in each section, by minimizing the following equation: 

∑ ܹଶሺݔሻ	ሾܫ௫௫ୀఠ ሺݔ, ݑሻݐ ൅	ܫ௬ሺݕ, ݒሻݐ ൅	ܫ௧ሺݔ,  ሻሿଶ       (4.27)ݐ

where W is a weights function which basically gives more 

importance to the equations written near the center of the 

considered window ω. 

The University of Naples Federico II has experimented both 

optical flow techniques on aerial images, acquired by visible 

cameras. From tests, both techniques resulted quite sensitive 

to background clutter, so not a reliable technique [78]. 

 

Figure 4.49   Target detected on uniform background 

Thus, an alternative technique, named region-based, has been 

adopted by the University of Maryland and the Microsoft 

Research center of Washington [79]. It consists in comparing 

patches of the image (or filtered image) at different 

disparities to determine the flow. It has provided good 
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results in the evaluating human gesture flow, as shown in the 

following image.  

 

Figure 4.50    (a)  Flapping action;  (b) Flapping flow 

 

4.6 MORPHOLOGICAL FILTERS 
Morphology is a broad set of image processing operations that 

process images based on shapes. Morphological operations apply 

a structural element to an input image, creating an output 

image of the same size. However, in a morphological operation 

the value of each pixel in the output image is based on a 

comparison of the corresponding pixel in the input image with 

the neighbors. Thus, by choosing the size and shape of the 

neighborhood, you can construct a morphological operation that 

is sensitive to specific shapes of the input image. 

Australian Aerospace research center of Queensland has been 

carrying out and interesting analysis of Vision-Based 

Detection and Tracking of Aerial Targets for UAV Collision 

Avoidance, based on morphological operations, which aim at 

highlighting potential targets [30,80]. 

In particular, they apply the most basic morphological 

operations of dilation and erosion, consecutively. 
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Thus, dilation adds pixels to the boundaries of objects in an 

image, while erosion removes pixels on objects boundaries. The 

number of pixels added or removed from objects in an image 

depends on the size of the structural element used to process 

the image. Combinations of simple dilation and erosion 

generate more complex morphological operations, named opening, 

an erosion followed by a dilation, and closing, the reverse. 

Hereinafter we present their algebraic expressions. 

Dilation: 

,ݔሺܫ ሻݕ ⊕ ܵሺݔ, ሻݕ ൌ maxሺ୶ᇲ,୷ᇲ	∈	ୗ	ሺ୶,୷ሻሻ 		ሼܫሺݔ െ ,ᇱݔ ݕ െ ᇱሻݕ ൅ ܵሺݔ െ ,ᇱݔ ݕ െ  ᇱሻሽ (4.28)ݕ

where I(x,y) is the processed image, S(x,y) is the structural 

element, while (x’,y’) are set by the structural element. 

Erosion: 

,ݔሺܫ ሻݕ ⊖ ܵሺݔ, ሻݕ ൌ maxሺ୶ᇲ,୷ᇲ	∈	ୗ	ሺ୶,୷ሻሻ 		ሼܫሺݔ െ ,ᇱݔ ݕ െ ᇱሻݕ െ ܵሺݔ െ ,ᇱݔ ݕ െ  ᇱሻሽ (4.29)ݕ

Opening: 

ܫ ⊙ ܵ ൌ ሺܫ ⊝ ܵሻ⊕ ܵ                (4.30) 

Closing: 

ܫ ⊚ ܵ ൌ ሺܫ ⊕ ܵሻ⊖ ܵ                (4.31) 

Indeed, Australians have experimented a Close-Minus-Open (CMO) 

Filter to detect aerial objects. It consists in applying 

subsequently the closing and the opening, such as indicated as 

follows: 

,ܫሺܱܯܥ ܵሻ ൌ ሺܫ ⊙ ܵሻ െ ሺܫ ⊚ ܵሻ          (4.32) 

Thus, hereinafter some results from the aerial images: 
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(a) 

 

 (b) 

Figure 4.51   (a) original grayscale image; (b) output from CMO filtering 

 

 

4.7 OBSERVATIONS AND TECHNIQUE COMPARISON 
Analyzing each image processing technique, just describe in 

the previous sections, we can easily distinguish the most 

suitable methods for real-time aerial objects detection 

operations, which are faster than others.  

However, the main requirements for vision-based aerial 

platforms detection are light computation load and low 

background sensitive. Thus, we can conclude that Sobel edge-

detection, optical flow and morphological filters are the best 

candidates for that field of applications. 
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Chapter 5 

TESTING STRATEGY 
 

 

This chapter is mainly focused on the research experiences of 

the DIAS and the CIRA, concerning the SAA TECVOL project. In 

particular, it aims at describing the testing strategies 

carried out to evaluate EO obstacle detection SW performance, 

to tune data fusion, and to compare radar-only and 

multisensory intruder tracking. Indeed, two testing platforms 

have been used to undertake two different ways of results 

analysis: the hardware-in-the-loop (HWIL) facility and the 

FLARE platform, described in detail in chapter 2. 

As regards the HWIL system, it is a laboratory test-bed, which 

has allowed us to work out image processing capabilities for 

different flight scenarios, how visible camera reacts to radar 

requests and its time of answer, staying in the laboratory 

environment, and consequently reducing exponentially the costs 

of experimentation. 

In parallel, flight tests have been performed on the 

Castelvolturno (Caserta, Italy) flight field, the FLARE 

platform’s location. During each flight a lot of data are 

acquired: intruder position reported by GPS and by radar; 

panchromatic flight images; FLARE attitude by AHRS. Those are 

the input data to laboratory tests, whose results anticipate 
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obstacle detection and intruder tracking performance of the 

real flying system. 

5.1 HWIL LABORATORY SYSTEM 
HWIL is a form of real-time simulation.  HWIL differs from 

pure real-time simulation by the addition of a real component 

in the loop. One important benefit provided by HWIL platform 

is that testing can be done without damaging equipment or 

endangering lives.  For instance in the automotive field, 

potentially damaging conditions in an engine, such as over-

temperature, can be simulated to test if the Electronic 

Control Unit (ECU) can detect and report it.  Another instance 

would be an anti-lock braking (ABS) simulation at performance 

extremes. If simulated, the performance of the ABS system can 

be evaluated without risk to the vehicle or operator. 

Moreover, in the aerospace sector laboratory test-bed are used 

to work out either the aerial traffic planning [81], or the 

UAV development life cycle [82]. However, some indoor 

platforms dedicated at testing UAV SAA performance have been 

already developed, providing many advantages in terms of 

costs, safety and times of experimentation [83]. 

5.1.1 Simulation System Setup 
The detailed description of the indoor facility installed in 

our laboratory is provided in ref. 84 and 85. However, for the 

sake of clarity, we report hereinafter some structural 

aspects. 

Thus, hardware setup is comprised of the Real World and the 

Simulated Hardware. The first one is represented by the 

visible camera, the IP-CPU, the RTT-CPU, and the hardware 

connections and protocols (CAN bus, Ethernet link, UDP and 

TCP/IP protocols). The second one is constituted by the 

simulators of all remaining Real World components and by the 

systems dedicated to the flight scenario representation: GN&C 
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System and Radar System Simulators, Scenario Displayer 

Computer, Scenario Activation Computer.   

The camera is fixed to the optical bench and it processes 

images projected on a LCD display which is set in front of it. 

Both components are enclosed in a black box so that stray 

light effects can be neglected. In particular the monitor is 

connected to the Scenario Displayer Computer through a VGA 

connector and it shows a predefined flight scenario, activated 

by the Scenario Activation Computer via the Ethernet link. The 

Radar and the GN&C System Simulators are also activated 

synchronically through an Ethernet link. 

Indeed, during laboratory tests data flow is the same of the 

real flight system: RTT-CPU receives the estimates of target 

position from the Radar Simulator and it transmits the 

relevant firm tracks estimates to the IP-CPU thus enabling the 

processing of the displayed images captured by the camera. If 

the estimated intruder position is in the camera FOV and the 

object detection is successfully performed, image processing 

will provide an improved and more accurate estimate of 

intruder azimuth and elevation. This estimate is then sent 

back to the RTT-CPU which can perform data fusion and 

tracking. 

Figure 5.1 depicts the HWIL system architecture. 
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Figure 5.52    HWIL system architecture 

 

5.1.2 Radar and Tracking 
As soon as Scenario Activation Computer transmits the starting 

command, the Radar Simulator and the GN&C System Simulator 

start processing the  radar measurements and own aircraft 

dynamics. Subsequently, in case of aerial target detection 

(apparent altitude higher than a given threshold), a one-plot 

track is initiated by the tracker that is the same used during 

real flights and it runs on RTT-CPU. If the track is 

associated with subsequent measurements, track status changes 

from tentative tracking and to firm tracking. The tracking 

algorithm makes use also of the data received by the GN&C 

System Simulator. In particular the latter one sends 

navigation data as follows: i)GPS position, ii) attitude 

angles and velocity components in the NED reference frame; 

iii) acceleration and angular velocity components in the BRF. 

Firm tracks data are sent to the image processing system to 

perform EO intruder detection. 

5.1.3 EO and Image Processing 
The visible camera works as auxiliary sensor to the radar 

system to increase the overall sensing system performance in 
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terms of accuracy and data rate, in fact camera resolution is 

1280 x 960 pixels and it acquires 7.5 fps. These 

specifications allow for a system accuracy of 0.1° that is an 

order of magnitude less than the radar. Furthermore, EO 

sensors allow for a measurement update frequency of 2 Hz and 

more, while radar works with a data rate of less than 1 Hz. 

As soon as the IP-CPU receives the estimates of the firm track 

from the RTT-CPU, the camera starts processing the displayed 

images. During HWIL tests the processing algorithm receives in 

input intruder range, azimuth, and elevation data in the BRF. 

They are converted into the CRF coordinates and compared to 

the camera FOV. If the estimated intruder position is enclosed 

in it, the image processing starts and the camera algorithm 

can generate an accurate intruder position reference in the 

CRF. In case of detection CRF estimates are converted back to 

the BRF and transmitted to the RTT-CPU.  

The image processing algorithm has been developed on the basis 

of the main requirement of reduced computational load, in 

order to give in output a very fast answer to the RTT-CPU 

request. Therefore the visible camera analyzes only the image 

portion enclosed in the search window centered on the intruder 

position detected by radar, with width and height depending on 

intruder range. The adopted image processing technique is the 

coupled edge detection and labeling [52-54,89,91,92], whose 

choice has been already exposed in the previous chapters. 

Thus, it is a suitable technique for real-time applications 

and it is able to detect small objects such as VLAs for 

different illumination conditions up to about 2000 meters. 

5.1.4 Display operation and scenario representation 
The monitor is a 19” LCD display whose performance is 

described in the following table. 
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Table 5.8   LCD Performance 

CONTRAST RATIO 500:1 (tip)
BRIGHTNESS 300 cd / m²
MAXIMUM 

RESOLUTION 
1440 x 900 
pixels 

 

 They are important for the overall system performance; in 

particular the monitor resolution influences the angular error 

of intruder representation, which considering camera-monitor 

distance is the order of 0.04°. This uncertainty corresponds 

to one pixel in the camera reference frame and as such is 

acceptable. Moreover monitor refresh time is significant for 

test execution: it exhibits good performance also at a 

frequency of 20 Hz, which ensures large oversampling at 

standard camera update rate.  

Regarding the flight scenario representation, some synthetic 

images have been generated that replicate the real ones in 

terms of mean and standard deviation of the background 

luminance of sky and ground, with the main purpose of 

stimulating camera in laboratory such as during flight tests. 

Moreover horizon line fluctuations and intruder dynamics are 

simulated independently from the background, on the basis of 

the selected flight configuration.  

Also in this case, the technique considered to realize the 

synthetic images from the real ones is the edge detection. In 

this case it has been used to detect the gaps of luminance in 

the entire real image, and then gaps have been replicated in a 

new image of LCD monitor maximum resolution dimensions (1440 x 

900 pixels).  

The second simulated feature is the horizon line displacement 

caused by FLARE attitude motion. Horizon position is 

calculated considering height, pitch and roll of FLARE 

aircraft; in particular, referring to Figure 3, the 
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coordinates (x1, y1) and (x2,y2) of the end points of the 

horizon line (whose length is 2a) in the image are given by: 

ଵݔ ൌ െܽ	ܿ;ߙݏ݋							ݕଵ ൌ 	െሺߚ଴ሺ݄ሻ ൅ ߚ	 ൅  ሻ          (5.1)ߙ݊݅ݏ	ܽ
 
 

ଶݔ		 ൌ 					;ߙݏ݋ܿ	ܽ ଶݕ					 ൌ െ		ሺߚ଴ሺ݄ሻ ൅ ߚ െ  ሻ         (5.2)ߙ݊݅ݏ	ܽ

 

 

Figure 5.53     Horizon Line Representation 

 

where h, α and β are height, roll and pitch FLARE angles 

respectively, while β0 depends on the height [86]. The 

effective position of the horizon line on the LCD display is 

also based on the intrinsic camera parameters and the external 

calibration between camera and monitor which allows finding 

the connection between the CRF and the Display Reference Frame 

(DRF). The first ones, such as focal length, skew coefficient 

and distortion coefficient, have allowed for correcting all 

geometric optical deformations [87]; the second one have 
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provided the direct correlation between camera image pixel and 

monitor pixel, on the basis of the rigid motion equation: 

ܺ௖ ൌ ܴ௖ ∗ ܺௗ ൅ ௖ܶ                                                         (5.3) 
 

in which Rc is the rotation matrix, Tc is the translation 

vector, Xc and Xd are the position vectors of the considered 

pixel in the CRF and in the DRF, respectively (see figure 5.3) 

[45]. 

 

Figure 5.54     CRF with respect to DRF 

 An example of the synthetic background image is represented 

in figure 5.4. 

 

Figure 5.55    Example of Synthetic Background Image 

The last simulated real image feature is the intruder 

aircraft. In particular it is represented by the shape of 

figure 5.5, which reproduces the geometric invariants of a 

real intruder aircraft as estimated from flight images, up to 

the second order [88], with an error of 0.13%. Moreover, its 
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luminance coincides with the mean luminance of the real 

aircraft. 

 

Figure 5.56     Simulated Intruder Shape 

 

5.1.5 Optical System Setup 
As already stated above, a test can be initiated as soon as 

the Scenario Activation Computer sends the “run test” command 

to the others CPU, i.e. the Radar Simulator, the GN&C System 

Simulator and the Scenario Displayer Computer. Subsequently, 

each of them starts processing the same scenario. In 

particular, the intruder is represented on the monitor if it 

is enclosed in the camera FOV.  

Moreover, an appropriate collimation lens has been sized and 

set between camera and monitor, on the optical bench so that 

luminance uniformity could be guaranteed. Figure 5.6 shows the 

camera, the monitor and the collimator on the optical bench; 

then two pictures of the black box which contains all the 

components are reported (figures 5.7a and 5.7b). 

 

Figure 5.57   Camera‐Collimator‐Monitor relative disposition on Optical Bench 
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(a)                                                                                           (b) 

                              Figure 5.58         Black Box 

5.1.6 Operating Modes 
The indoor facility can operate in two operating modes, such 

as pre-recorded and simulated flight scenario. Therefore, it 

allows verifying real-time performance of image processing, 

data fusion and tracking algorithms on the basis of acquired 

flight data. On the other hand, system performance can be 

evaluated also in different flight configurations, which are 

often difficult or very expensive to realize. In particular, 

in the case of pre-recorded flight data, intruder position is 

known with a frequency of 1 Hz (GPS update rate), so that the 

scenario displayer computer performs an interpolation of 

intruder range, azimuth and elevation in order to generate 

images at a frequency of 10 or 20 Hz. 

5.2 RESULTS FROM HWIL TESTS ON THE BASIS OF FLIGHT DATA 
Several HWIL experiments have been carried out in order to 

tune the radar-based tracking algorithm and the image 

processing software and to verify their reliability and real 

time capabilities. Results referring to tests based on flight 

data are reported in this section. In particular, they are 

related to a near collision geometry between FLARE and the 

intruder aircraft; therefore, the distance between the two 

aircrafts decreases while they fly at almost the same 

altitude. In this flight phase the tracker operates in firm 
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tracking mode due to the quite large number of intruder echoes 

detected by the radar. Tracker output constitutes the input 

data for the image processing algorithm, which outcomes a more 

accurate intruder position. 

Figures 5.8a-d show the image processing algorithm applied to 

an image acquired by the camera during the HWIL test, and 

figures 5.9a-c report the radar-only and EO detection results 

in range, azimuth, and elevation in the BRF, compared to 

relative geometry computed in post-processing from GPS/AHRS 

data.  

 

(a)                                                                                                      (b) 

       

(c)                                                                                                         (d) 

Figure  5.59    (a)  Instantaneous  Acquired  Image;  (b)  Search  Window  built  on  the  basis  of  Radar‐Only  Tracking 
Measurements; (c) Image Processing Algorithm applied to the search window; (d) Comparison between tracker EO input 
and EO output 
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 (c) 

Figure 5.60   (a) Comparison of intruder range as estimated by GPS and by Radar‐only Tracking; (b) Comparison of 
intruder elevation as estimated by GPS/AHRS, by Radar‐only Tracking and by the EO System; (c) Comparison  of intruder 
azimuth as estimated by GPS/AHRS, by Radar‐only Tracking and by the EO System. 

 The quality of the obtained results confirms the good 

synchronization obtained in the laboratory tests. The range 

diagram (figure 5.9a) shows that the tracker has attained a 

very high accuracy level which directly derives from the radar 

sensor. The elevation diagram (figure 5.9b) illustrates that 

the EO detection output is more accurate than the radar-only 

tracking one and it corrects the radar error bias which is due 

to residual misalignment between radar and AHRS. Of course, 

the capability to remove this bias in flight experiments 

depends on the accuracy of cameras-AHRS alignment onboard the 

aircraft, which indeed has been demonstrated to be of the 

order of 0.1° in reference no. 40. In particular, the error 

standard deviation in EO estimates is one order of magnitude 

smaller than radar one, as it was expected from the off-line 

analysis of flight images. A similar result can be observed in 

figure 5.9c which represents azimuth plot. It is worth noting 

that the radar outputs useful measurements, i.e. measurements 
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that can be associated with the intruder, at a frequency in 

the order of 1 Hz or less, whereas the EO detection estimates 

are at a frequency of 5 Hz.  

Finally, table 5.2 synthesizes EO detection performance 

evaluated in the real-time tests by reporting error mean and 

standard deviation. It demonstrates that this performance is 

fully compliant with the requirements. 

 

Table 5.9    EO Real‐Time Detection Performance in terms of error mean and standard deviation 

 µε (°) σε  (°)

Azimuth 3.0 10-3 1.2 10-1

Elevation 2.2 10-3 7.0 10-2

 

An important point is related to latency in image processing 

for obstacle detection. From this point of view, performed 

tests revealed a latency of less than 0.1 s (mean value 85 

ms). This result is shown in figure 5.10 which reports the 

epochs of tracker requests and related image processing 

estimates. 

The main limit of HWIL analysis regards the difficulty to 

evaluate the false alarm and miss detection rate of the image 

processing algorithm. In fact, these ones mainly depend on the 

illumination distribution in the flight scenario. From this 

point of view, the simulation still needs to be improved to 

reproduce the one acquired in real conditions. As a 

consequence, it is not possible to study the trend of EO 

detection range for the different conditions. At the moment, 

all these analyses have been carried out off-line, and will be 

explained in the following chapter. 
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Figure 5.61  Times of tracker requests and image processing answers. 

 

Thus, the main advantage provided by HWIL facility is to have 

allowed us to test the camera capability of performing 

obstacle detection in the required by radar time and to 

evaluate image processing algorithm reliability in good 

luminosity background conditions. Indeed, HWIL results have 

demonstrated that EO system is able to work out the intruder 

position very accurately, and its frequency of measurements 

can increase the overall DS&A system data rate from three to 

five times with respect to the radar-only system 

configuration. So, results prove that main EO cameras 

requirements, expressed in chapter 3, are fulfilled. 

 

5.3 FLIGHT TESTING STRATEGY 
Several flight tests were carried out to gather radar and 

electro-optical data and to estimate system performance. In 

particular, they permitted to asses several features of the 

system that cannot be properly modeled by numerical or 

laboratory tests, such as the effect of ground clutter and 

background on both radar and EO sensors, the effects of sun 
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illumination changes, and all secondary sources of error that 

are present in real platforms and that are not easily 

accounted for in standard level simulations, such as 

vibrations and electromagnetic interferences. 

Flight tests were performed by exploiting the following 

configuration of test facilities: 

 FLARE aircraft piloted by human pilot or by the 

autonomous flight control system with the fully installed 

and functional setup described in the previous sections; 

 A piloted VLA aircraft in the same class of FLARE 

equipped with GPS; 

 A Ground Control Station (GCS) for real-time flight 

coordination and test monitoring [90]; 

 A full-duplex data-link between FLARE and GCS. This data-

link allowed GCS operators to send commands to initiate 

or terminate tests and to receive synthetic filter output 

and navigation measurements. Indeed, no workload was 

assigned to human pilot in terms of sensor unit 

management in flight;  

 A downlink between intruder and GCS. This data-link was 

used for flight monitoring. 

During the tests autonomous anti-collision logic was not 

engaged, since the focus was set on sensor system development 

and performance estimation. Two types of maneuvers were 

basically executed during flight experiments: 

1. Chasing tests with FLARE pursuing the intruder. These 

tests were performed in order to estimate tracking performance 

for long time duration with negligible miss detection rate. 

Moreover, chasing phases can be effectively used to estimate 

residual radar misalignment with respect to AHRS thanks to the 

large number of intruder detections, smooth relative dynamics, 

and consequent small impact of latencies. For this reason, the 
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two aircraft started their routes from the closest point that 

is compatible with safe flight and they continued their 

straight flight increasing the relative distance. This 

condition was achieved by assigning a small speed excess to 

intruder aircraft; 

2. Quasi-frontal encounters. These tests were performed to 

estimate detection and tracking performance in real scenarios. 

The two aircraft started the test from furthest points within 

the data-link coverage area. They followed quasi-collision 

trajectories on parallel routes or on routes that formed a 

small angle. Different relative flight level configurations 

were assigned to the aircraft depending on the expected ground 

clutter level. 

 

 

(a) 

 

 (b) 

Figure 5.62    (a)  Chasing Configuration;  (b) Quasi‐frontal encounter. 
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Chapter 6 

IMAGE PROCESSING ALGORITHM RESULTS 
 

 

HWIL analysis has allowed us to test real-time performance of 

the edge detection-labeling algorithm, realized for the 

panchromatic camera in the framework of the TECVOL DS&A 

project. Thus, good results have been obtained, in terms of 

times of answer to radar’s requests, data rate measurements, 

accuracy of intruder position estimates. Indeed, an off-line 

analysis, conducted on the real images acquired during flight 

tests, is needed in order to evaluate image processing 

algorithm performance in more different luminosity and 

background conditions and to study its reliability in a realer 

context. 

However, this chapter is dedicated to the description of that 

off-line analysis, and the customization of the image 

processing technique, worked out to guarantee the best results 

in terms of detection range, missed detection rate, and false 

alarm rate. Lastly algorithm performance is evaluated, 

confirming again the importance of the EO sensors in the 

overall DS&A system: the improvement in terms of accuracy and 

data rate, compared with radar-only tracking, is 

quantitatively demonstrated. 
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For more clarity, the reader can refer to paper number 93 of 

References. 

6.1 SELECTION OF THE BEST IMAGE PROCESSING TECHNIQUE 
The image processing algorithm selection for the panchromatic 

camera has followed a detailed comparison of the main 

techniques listed in literature, whose description has been 

already reported in detail in chapter 4. It has aimed at 

evaluating the best algorithm in terms of computational load, 

detection range, false alarm and missed detection rates, and 

adaptability to various background brightness and illumination 

conditions. 

From all techniques, the best candidates for real-time object 

detection have resulted optical flow, binarization, coupled 

edge detection and labeling, and morphological filters. Thus, 

clustering is too slow and corner detection is not suitable 

for our research application.  

Indeed, also optical flow and morphological filters have been 

discarded: the first is not ideal for our system, because it 

characterized by a maximum acquisition data rate of 7.5 fps. 

In fact this low date rate provides the pixel displacement 

speed major than 1 pixel per frame, which is an optical flow 

technique requirement [79]. Moreover, the morphological 

filters operators are very effective for standalone EO 

sensors, which is a DS&A system configuration different from 

ours, where they are auxiliary to radar. 

Thus, the comparison has been conducted between binarization 

and edge detection. 

The binarization technique has been applied to several image 

sequences taken during flight tests, in order to evaluate the 

best threshold for isolating the intruder aircraft from the 

background noise. µ±3σ resulted as the best choice for our 

application on the basis of statistics on images acquired 



94 
 

during flights. In the above reported criterion, µ is the mean 

intensity of the considered search window, while σ is its 

standard deviation. Assuming a Gaussian distribution of pixel 

intensity in the search window, this threshold corresponds to 

an estimated probability of 99,7%. As it will be better 

clarified in the following, the main drawback of the 

binarization technique has been demonstrated to lie in its 

unsatisfying performance for non-homogeneous background.    

Finally, the implementation of the edge detection-labeling 

technique is carried out following a stepwise procedure, such 

as: 

 - Building of the search window on the basis of the radar 

estimates, as already explained in the previous section; 

-  Search window binarization by means of the Sobel edge 

detection technique [53,54,89]. In order to limit the impact 

of background noise, a relatively high threshold has been 

considered in Sobel method, on the basis of the assumption 

that the intensity gradient generated by the intruder is 

larger than the other background objects. More details about 

threshold selection are discussed in the following;  

- Implementation of the labeling technique which connects all 

detected pixels in the binarized search window (if any) and 

outputs a limited number of edges;  

- Detection of the intruder aircraft as the largest edge, 

i.e., the edge that is comprised of the greatest number of 

pixels.  

For the sake of concreteness, figures 6.1 and 6.2 illustrate 

the implementation of the adopted method and its output on a 

flight image taken during a frontal encounter phase. 
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(a) 

                                                   

    

 (b)                                       (c) 

Figure 6.63     (a) Flight  image with the search window centered on  input radar‐based tracking estimates; (b) processed 
image; (c) edge detection–labeling algorithm output. 
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Figure 6.64    EO intruder position detection compared with radar‐based tracker estimation. 

 

 

Finally figure 6.3 shows the edge detection–labeling technique 

applied on a search window which encloses the intruder 

aircraft at a range of 2400 meters. 

         

    

              (a)                                                                                                    (b) 

Figure 6.65 (a) Output of the image processing technique applied on the search window; (b) Intruder aircraft detected 
at 2400 m. 



97 
 

 

Two important points for algorithm implementation are relevant 

to the dimensions of the search window and the choice of Sobel 

threshold. They are focused in what follows.  

6.1.1 Search window dimensions 
Search window definition has to take into account several 

aspects. First of all, window dimensions have to be set 

considering uncertainty sources such as radar error in NED and 

residual time/space registration errors. On the other hand, at 

relatively small range the search window has to be large 

enough to enclose the largest possible obstacles. Finally, 

window dimensions cannot increase too much because of the 

consequent computational weight of obstacle detection 

techniques.  

Thus, search window dimensions are defined as follows. When 

the estimated intruder range is larger than 350 m, the window 

has constant dimensions in pixels, i.e. 150 (width) X 100 

(height) pixels, corresponding to an angular FOV of about 6° X 

4°. Of course, linear dimensions of the search window increase 

for increasing range and are always large enough to enclose a 

typical civil aviation aircraft, such as a Boeing 737 or an 

Airbus A320. In order to set a lower bound for search window 

dimensions, when the range is smaller than 350 m the window 

dimensions in pixels are inversely proportional to range thus 

achieving constant linear dimensions. Indeed, these cases are 

of little interest for sense and avoid applications.  

Figure 6.4 depicts linear dimensions (in m) of the search 

window as a function of the estimated intruder range.  



98 
 

  

Figure 6.66   Search Window: law of variation 

 

6.1.2 Sobel threshold 
As regards the choice of the Sobel threshold, it is not fixed, 

but it changes as a function of the estimated intruder range. 

The most effective thresholds able to distinguish the intruder 

from the background have been calculated by an empirical 

analysis based on the large amount of images taken during 

flight tests [94]. It has resulted that the most suitable 

threshold applicable at the intensity gradient magnitude 

increases when intruder range reduces and it changes from 

about 39 to a maximum value of 42. These results are explained 

in the following figure which reports an example of histogram 

of gradient magnitude in the search window and depicts the 

thresholds applied on three different intruder range cases 

(low, medium and long range). Indeed, the reader can observe 

that the histogram has a Rayleigh distribution, being in 

accordance with Voorhees and Poggio theory [95]. 
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Figure 6.67  Threshold versus Intruder Range 

 

Moreover, evaluating the probability density function (pdf) of 

our Rayleigh curve, we obtain it is directly proportional to 

intruder range, standing for the increasing of false alarm 

probability parallel to the range. However, figure 6.6 

illustrates the pdf variation in function of the intruder 

range and it demonstrates that the probability of false alarms 

is very low, less than 10-8, for the entire threshold slot. 
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Figure 6.68   Rayleigh pdf distribution of Search Window Background 

 

6.2 PERFORMANCE ASSESSMENT AND FLIGHT RESULTS 
In order to compare the two candidate image processing 

techniques, they have been applied to the same sequence of 

images taken during near collision encounters in the performed 

flight tests. Indeed, we have obtained the results reported in 

table 6.1.  

They can be summarized as follows: 

the binarization technique has good performance in terms of 

computational load, false alarm rate, and missed detection 

rate for brightness conditions of homogeneous backgrounds. 

Indeed, its performance is degraded for inhomogeneous 

backgrounds and the relevant detection range of VLA doesn't 

overcome 1 km; 
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on the other hand, the edge detection–labeling technique 

reveals good performance for all requirements, both in terms 

of detection range and  reliability, in fact it is able to 

detect VLA as far as 2400 m. 

Therefore, the edge detection–labeling overcomes the 

binarization in all considered aspects, except for the 

computational load which is almost equal for both. The 

computational load and real time performance was evaluated by 

means of the laboratory system facility described in the 

previous chapter [84,85].  

Table 6.10   Performance Comparison of image processing techniques relevant to frontal encounters carried out during 
flight tests 

Technique 
False 
Alarm
s (%) 

Missed 
detection
s (%) 

Correct 
Detection
s (%) 

Initial 
detectio
n range 
(m) 

Computatio
n Time on 

the 

IP–CPU(ms) 

Binarizatio
n 32 54 13 930 < 100 

Edge 
Detection - 
Labeling 

9 12 80 2400 < 100 

 

After this first performance estimate, the edge detection-

labeling algorithm has been refined with the aim of 

drastically reducing false alarm rate in spite of increasing 

missed detections [96]. Since the camera output is used to 

improve the accuracy of the tracker that is based on the radar 

as primary sensor, it is preferable that the IP-CPU outputs to 

RTT-CPU fewer, but more reliable EO measurements in order to 

enhance the overall system tracker performance. In fact, the 

main effect of a missed detection is to reduce EO measurement 

rate and thus the algorithm capability to filter sensors noise 

and improve estimation accuracy, especially on angular 

derivatives. Instead, if a false alarm falls inside the track 

gate, disassociation occurs and, due to the small EO 



102 
 

measurement covariance, it can have dramatic consequences for 

tracking reliability such as biases generation and then track 

loss.  

In particular the critical situations for false alarms risks 

can be classified in two main categories: presence of sun 

glares in the captured image, and horizon presence in the 

search window.  

For the first case a “Sun Presence Detector” has been 

implemented. It evaluates the percentage of saturated pixels 

of the whole image and it is based on a statistical study 

applied on real images. From results it has been always 

verified that when sun is in front of the camera, more than 

15% of the pixels are saturated. This percentage is the 

reference threshold considered by the detector; if the sun is 

detected, the edge detection algorithm is not run and the IP-

CPU doesn’t send any EO measurements to tracker.  

An example of sun detector implementation is shown in figure 

6.7.  

 

Figure 6.69      Sun presence detected by "Sun Detector" 

 

Horizon presence in the search window is handled in different 

ways depending on intruder range. In particular, after edge 

detection-labeling, a further filter is implemented in order 
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to compare the largest edge length to the instantaneous 

intruder range and to evaluate the probability that it is an 

intruder or background noise. The reference lengths are the 

wing span of a civil aviation aircraft (B737) as well as the 

wing span of smaller vehicles such as the TECNAM P92. They are 

calculated at different ranges, taking into account also the 

extension atmosphere and height effects [55], and explained by 

the following equation: 

ோܥ ൌ 	 ݁ିఙೡ
ሺ௛ሻ	∗	ோ                        (6.1) 

Where CR is the attenuated length in percentage, R is the 

object range from the point of observation, and σv is the 

attenuation factor, depending on the object altitude h. Our 

flight tests happen usually in “haze” atmosphere [55]. 

Therefore, the value of σv is attenuated when altitude 

increases from sea-level on the basis of the following curve, 

replicated from ref. 55: 

 

Figure 6.70     Altitude Effects on Atmospheric Attenuation Coefficient 

Therefore the edge detection output is declared as intruder if 

it is enclosed in the range of reference wing spans. Secondly, 

the algorithm provides a higher-level control during which 
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assures that the detected edge has no comparable segments, 

otherwise it doesn’t output any intruder position measurements 

An example of horizon presence in the search window and of the 

resulting edge detection output is reported in figures 6.9. 

        

(a)                                                                    (b) 

 

 (c) 

Figure 6.71      (a) Search window enclosing horizon;  (b) Edge detection‐labeling  implementation;  (c)  Image processing 
algorithm output. 

 Applying these controls of false alarm risks, the edge 

detection-labeling method provides new performance synthesized 

in Table 6.2. 

Table 6.11   Edge detection–labeling performance optimized in the considered frontal encounters 

Technique 
False 
Alarms 
(%) 

Missed 
Detections 

(%) 

Correct 
Detections 

(%) 

Initial 
Detection 
Range (m) 

Computation 
Time of  

IP-CPU(ms) 

Edge 
Detection 

– 
Labeling 

1.6 37.6 60.8 2400 < 100 
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It is important to point out that these results are compliant 

with tracking requirements expressed in terms of false alarms 

rate, computational time, and detection range. 

Moreover, figures 6.10 and 6.11 show that panchromatic camera 

measurements allow a great improvement in both accuracy and 

data rate with respect to radar-only tracking, either for 

azimuth or for elevation angle estimates. In these cases there 

are no EO false alarms and every measurement from panchromatic 

camera falls properly into the track gate and can be fused 

with radar estimates by RTT-CPU.   

As regards the achievable accuracy and measurement rate, 

because of the residual uncertainties on data synchronization 

and sensor alignment, average EO detection accuracy in the 

North-East-Down (NED) reference frame was found to be of the 

order of 0.5°, with a measurement rate of 5 Hz (limited by the 

maximum achievable frame rate at full resolution). Though 

these values do not represent the performance limit of the EO 

system, they already constitute a significant improvement 

compared with radar performance (1.7° angular accuracy and 

measurement rate smaller than 1 Hz on average). It is worth 

noting that real time hardware-in-the-loop tests demonstrated 

an accuracy of about 0.1°, as reported in chapter 5. 
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Figure 6.72   Comparison of  intruder azimuth  in NED reference frame among radar, EO, and the post processing of GPS 
data output that is used as reference. 

 

 

 

Figure 6.73  Comparison of intruder elevation in NED reference frame among radar, EO, and the post processing of GPS 
data output that is used as reference. 
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As a result of these performance levels, accuracy and 

reliability of the developed multi-sensor tracker can be 

greatly improved [91,92,97,98]. 

6.3 EO OBSTACLE DETECTION IMPLEMENTION: EXAMPLES 
Hereinafter some examples of EO obstacle detection 

implementation are proposed. In particular, each of them 

presents the intruder aircraft at about 1500 m from FLARE 

platform, in three different background and illumination 

conditions, respectively. Thus, the purpose is to demonstrate 

how the algorithm is able to provide the correct estimate of 

intruder position for each of the considered case.  

In each figure the whole image acquired by the camera, the 

processed search window, the result of binarization based on 

edge detection-labeling, and the algorithm output indicated 

with a blue arrow, are shown. In all three cases the arrow 

coincides with the actual intruder aircraft position. In 

detail, figure 6.12 is a flight image acquired in sunny 

conditions, figure 6.13 shows the algorithm implementation on 

a cloudy background image and figure 6.14 shows another case 

in which the horizon line lies in the search window, but the 

algorithm is able to discard it thanks to the high threshold, 

and to successfully detect the intruder. 
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Figure 6.74  Intruder detection in a sunny image 

 

 

Figure 6.75  Intruder detection in a cloudy image   
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Figure 6.76  Intruder detection with horizon line 
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CONCLUSIONS AND FURTHER DEVELOPMENTS 
 

This thesis is focused on the EO sensors of an integrated 

multi-sensor based non cooperative anti-collision system for 

UAVs. In particular, it aims at demonstrating the benefits 

provided by cameras to the overall DS&A system. 

Thus, the sensing system is installed onboard a VLA, which is 

the experimental platform, and it is constituted by radar, 

principle sensor, and four EO cameras, two visible and two IR, 

that operate as secondary sensors, performing auxiliary 

functions to radar. That hierarchical sensor architecture 

comes out very strategic, in fact it takes advantage of all 

good EO performance, in terms of accuracy and data rate, 

discarding the negative aspects, such as the sensitiveness to 

background luminosity and clutter. 

The DS&A hardware architecture is described in detail and it 

is worth noticing that sensing processing unit is divided into 

two parts: one dedicated to elaborate radar measurements and 

intruder tracking; another one dedicated only to image 

processing and connected to the other processing unit by 

Ethernet link. That CPU’s structure is very advantageous in 

terms of computational load, which turns out light and quick, 

main requirements for real-time systems. 
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The main part of the thesis is dedicated to the analysis of 

the most common image processing techniques listed in 

literature and used for object detection operations. This 

study has been carried out in order to find out the most 

suitable method to our application. Indeed, the coupled edge-

detection labeling technique has been chosen because it has 

come out very fast, accurate, with low sensitiveness to 

background clutter. However, two parallel ways of testing have 

been undertaken, with two different testing platforms, 

respectively: laboratory tests have been performed by means of 

a HWIL system, in order to verify real-time image processing 

performance; an off-line analysis has been pointed out on real 

images, acquired during flight tests, in order to evaluate 

object detection performance in real background clutter.  

Satisfying results have been obtained from both sides: HWIL 

tests have demonstrated that cameras are able to elaborate 

images in restricted times; in fact they answer to radar’s 

request almost immediately, so that data fusion and intruder 

tracking can be worked out. The off-line analysis has been 

advantageous to evaluate the behavior of the algorithm in 

different background and luminosity conditions, such as sun 

presence in front of cameras, horizon line, or, more in 

general, clutter generated by clouds in proximity of the 

intruder aircraft. That study has allowed us to customize the 

algorithm, in order to manage also these features, which can 

be cause of false alarms. 

The study explicated in this thesis concludes with the resume 

of the image processing algorithm performance, evaluated from 

real-time and off-line tests, and based on the customized 

algorithm. 

Thus, results demonstrate that EO system fulfills the expected 

object detection performance; indeed, it allows the overall 

DS&A system to increase intruder position accuracy and data 
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rate, with respect to the only-radar configuration. In 

particular, the performance improvement is very drastic: 

angular accuracy is about 0.5° with respect to 1.7° of radar 

measurements, and data rate, gets to 5 Hz instead of 1 Hz 

provided by the radar sensor. 

From off-line and HWIL analysis, also the multi-sensor 

intruder tracking has been worked out. Results have again 

confirmed benefits brought by EO sensors to the DS&A system, 

in fact multi-sensor tracking accuracy is one order of 

magnitude less than radar-only tracking. Next developments of 

that SAA project foresee to carry out multi-sensor intruder 

tracking during flight tests, in order to assess definitively 

that advantageous SAA UAV technology. 

Further steps could consist in experimenting a SAA technology 

based on standalone EO sensors, because it would mean less 

weight and less costs of hardware and tests implementation. 

Moreover it would be suitable to a wider range of unmanned 

platforms, also micro UAV’s. However, this study demands 

studying new image processing techniques, robust and reliable 

for a wide range of flight configurations. 
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