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Chapter 1

Introduction

1.1 Airship history and the Italian heritage

The airships are aerospace vehicles that get most of their lifting capability
from aerostatic or buoyant lift, using gases which are lighter than air. They

were widely used in the first half of the 20th century, for a variety of purposes.
During this period the airships were employed for military applications by the
US Army performing search and patrol operations.

In 1921 the US Army acquired the Italian semi-rigid airship “Roma”, the
largest semi-rigid airship in the world. After its crash in 1922, the US started
to use helium instead of hydrogen as the lifting gas.

Another important Italian airship in the history was the semi-rigid airship
“Norge” (see Figure 1.1 ) that carried out what many consider the first verified
overflight of the North Pole on May 12, 1926. Norge was the first N class semi-
rigid airship, designed by Umberto Nobile, and it was the first Italian airship to
be provided with a four empennages cruciform tail (“cross” configuration).

Airships were also used for commercial passenger-carrying. For example the
“Akron” airship in 1931 could carry 270 persons and 5 fighters for a distance of
16 000 km.

The German rigid airship “Hindenburg” (see Figure 1.2), by the Zeppelin
Company, was the longest class of flying machine and the largest airship by
envelope volume, for passenger transatlantic transportation, filled with hydro-
gen. It was characterized by a length of about 245 m, an envelope volume of
200 000 m3 and a maximum speed of 140 km/h. The Hindenburg disaster took
place in 1937 and was the subject of spectacular newsreel coverage and pho-
tographs, destroying the idea of airship safety. This event represented the end
of the huge rigid airship time. However during and after the second world war
the US Navy continued to use the airships for military purposes: at first as a
weapon against the submersibles and later for the “early warning” radar system
(the radars were collocated inside the airship envelope in order to be protected
by the weather, to be hidden and to reduce the drag).

Although airships were no longer used for passenger transportation, they
continued to be used for other tasks such as advertising and sightseeing.

In the last years, the widespread concerns about climate change, the ef-

10



1.2. AIRSHIP CLASSIFICATION 11

Figure 1.1: The Norge Airship

fects of economic and political turmoil on the price of petroleum and the need
for security organizations to maintain persistent surveillance in a cost-effective
manner, were causing a fundamental reassessment of the utility of airships. A
number of organizations are now beginning to explore the use of LTA vehicles
for different roles in today’s society.

1.2 Airship classification
The airships have been conventionally classified into three different types based
upon their physical structure: “rigid airships”, “non-rigid airships” and “semi-
rigid airships”. More recently, there have been further proposals to construct
vehicles which derive most of their lift from aerostatic principles, but rely very
much upon aerodynamic lift for useful cargo capacity. These innovative vehicle
concepts have become known generically as “hybrid airships”.

The rigid airship, such as the Hindenburg (Figure 1.2), contained an in-
ternal framework constructed of a lightweight but strong material providing a
rigid structure within which were the lifting gas cells, machinery, fuel and liv-
ing/working space. A separate cover went over the outside of the framework to
provide streamlining and weatherproofing. The last rigid airship was dismantled
in 1940.

The semi-rigid airship (for an example see the airship in Figure 1.1 ), con-
sists of a rigid keel, sometimes running the whole length of the ship, suspended
below an envelope containing the lifting gas. The keel provides the prime at-
tachment of the gondola. The gondola is the airship’s cabin containing the
cockpit, engine compartment and facilities for crew, passengers and cargo. The
semi-rigid airship maintains its shape mainly by the pressure of the lifting gas
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Figure 1.2: The Hindenburg Airship

in the envelope.
The non-rigid airship or blimp, such as the famous advertising Goodyear

blimps (see Figure 1.3 ), in its simplest form is a streamlined envelope, contain-
ing the lifting gas, with a gondola suspended below it, with the crew accom-
modation, propeller and fuel. The envelope is the primary structure containing
the helium gas and the ballonets. The ballonets are air bags which regulate
the internal pressure, shape and trim: air is squeezed out of the ballonets as
the gas expands with increasing altitude and forced back in again as the helium
contracts when the airship descends. Most of the airships today used for surveil-
lance tasks are non-rigid ones and unmanned aerial vehicles (UAVs) [1], [3], [10].

1.3 Airship characteristics and applications
Nowadays the interest in using airships for several applications is increasing
worldwide, due to their advantageous characteristics.

The lift of airships is mainly aerostatic and compared to other aerial vehi-
cles, airships spend most energy moving and compensating wind disturbances,
rather than trying to keep themselves on air. For this reason, they need less
powerful engines, leading to a lower energy consumption, as well as less noise
or vibrations. They possess a long endurance and they can fly at low speeds or
even hover. However the airship could reach maximum speeds over 140 km/h.

The deadweight of an airship is strictly linked to its dimensions; greater
airship volume means greater cargo capacity. Although the huge dimensions
represent a problem in term of construction, maintenance and infrastructure
costs they allow the airship to offer a unique service in the transport of bulky
cargo. For the passengers instead great spaces would mean comfort.
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Figure 1.3: The Goodyear non-rigid Airship

The airship can also operate in areas without airports, thanks to its pos-
sibility of a vertical take-off and landing, also aided by thrust vectored pro-
pellers. However a relevant problem remains the need of huge infrastructures
and hangars for storage and maintenance.

Although their are known especially for their disasters, the airships present
high safety standards thanks to the slow degradation in case of failure. Moreover
a lot of accidents were caused by the hydrogenous, by which were filled the
airships, nowadays substituted by the helium.

Considering these characteristics, airships have a wide spectrum of applica-
tions as observation and data acquisition platforms. They can be used in several
fields related to biodiversity, ecological and climate research and monitoring.

Inspection oriented applications cover different areas such as mineral and
archaeological prospecting, agricultural and livestock studies, crop yield pre-
diction, land use surveys in rural and urban regions, fire detection and also
inspection of man-made structures such as pipelines, power transmission lines,
dams and roads [33].

With such a wide spectrum of applications, and considering the quest for au-
tonomy, airships present characteristics and competitive costs when compared
to other aircrafts, certainly constituting an important option for research, de-
velopment and also experimental validation in autonomous aerial robotics.

1.4 Airship actual projects
The dawn of the 21st century saw a variety of advanced technologies resurrecting
the concept of the airships besides their use in advertising and leisure flights.
Worldwide companies are starting several projects concerning innovative airship
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applications.
The US/LTA conducts remote sensing experiments with airships since 1992.

In 2000, SkyKitten maiden flight takes place in Cardiff. The Russian company
RosAeroSystem commercializes the Au-30 Patrol Airship series. The Total Pole
Airship Project, for instance, aims to measure the thickness of the pack ice
layer covering the Arctic Ocean, using one of the series. Two others are used
for surveillance of power lines in Russia and one other is scheduled to monitor
traffic conditions in Moscow. With a more humanitarian purpose, Mineseeker is
an airship-based mine detection system with optical, electro-optical and ground
penetrating radar sensors, tested in Kosovo by the United Nations.

In 2009, Lockheed Martin received a DARPA/Air Force contract to build
and fly a demonstrator airship and scaled-down ISiS sensor system by 2013.
The ISiS airship would use dual-band UHF ground-tracking radar and X-band
radar to spot UAVs and cruise missiles. The Army’s LEMV (long endurance
multintelligence vehicle), being built by Northrop Grumman and the U.K.’s Hy-
brid Air Vehicles, was fully funded in 2010 to complement the PTDS (persistent
threat detection system), a Lockheed Martin-built tethered aerostat, to support
coalition forces with long-endurance communications.

Actually the research projects involving unmanned airships are: AURORA,
LOTTE and DIVA. Project AURORA [5] [8] [31] – Autonomous Unmanned
Remote Monitoring Robotic Airship – focuses on the establishment of the tech-
nologies required to substantiate autonomous operation of unmanned robotic
airships for environmental monitoring and aerial inspection missions. This in-
cludes sensing and processing infrastructures, control and guidance capabilities,
and the ability to perform mission, navigation, and sensor deployment planning
and execution. Other important researches related to outdoor autonomous air-
ships in the world at this moment are the Lotte Project in Germany [24] [38]
[37], regarding also new techniques in evaluating the aerodynamic coefficients.
Recently, Project DIVA – Dirigìvel Instrumentado para Vigilancia Aerea – has
started in Portugal, sharing a partnership with the AURORA Project.

Recently an Italian society “The Airship Italia s.r.l.” is recollecting the
old Italian heritage in the airship technology: a project involving an unmanned
airship prototype (AIUX15) has been planned; the partnership of the University
“Federico II” has led to this research work concerning new stability and control
methods and approaches for airship.

1.5 State of art

The main objectives of the research work have been focused in this section. The
whole study was concentrated to solve several problems on an unmanned airship
prototype (that will be introduced in the following chapter) and to provide new
tools for airship design. The need to evaluate and improve the airship stability,
manoeuvrability and control have represented the basis of the work. Starting
from what was already done in literature, at first the research have regarded the
standard approaches to the static stability evaluation and the typical control
strategies. Then the existing methods have been improved and new approaches
have been developed.
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1.5.1 Airship static stability
Stability and manoeuvrability have always been important aspects of airship
design, and they manly depend on the empennages configuration and on the
weight and buoyant lift effects. The design criteria for the elevators and rudders
of the conventional aircrafts, referring to the static stability, are not applicable
to the airships as they are characterized by positive Cmα and negative Cnβ .

The most typical and easy airship equilibrium flight condition is character-
ized by neutral buoyancy (B = mg), that allows the airship to flight at zero
incidence meaning also the airship’s weight could not exceed the buoyant lift.
The airship could generate aerodynamic lift in a wide range of incidence, even
if characterized by CL lower than the conventional aircraft, but assuming that,
it is possible to make the airship heavier than the buoyancy. According to this
concept, a new method, developed on the based of previous work (detailed in
the following), was introduced in this research work, in order to investigate on
the effects of the weight on the longitudinal and lateral stability of the airship,
taking also in account different empennages configurations.

Instead of previous works, such as [16], [12], and [17], the researched method
wants to underline the impact of the weight and of the static lift on the stability
of the airships: the analysis of the effects on the equilibrium flight conditions
and on the longitudinal stability of an airship, with the weight exceeding the
buoyant lift, has been evaluated.

The longitudinal static stability of an airship is ensured by the righting
moment due to the buoyant lift that balances the effects of the positive value
of the Cmα of the whole body (envelope plus empennages). This is a typical
airship characteristic at low angles of attack, because of a poor stability effects
of the fins against the envelope instability. In order to estimate the stability of
the airship, it was decided to investigate on the behavior of the dynamic system,
when is constrained to In this way is possible to take in account all the stability
contributions: not only from the Cmα, but also from the aerodynamic damping
coefficient Cmq and from the added mass effects.

Other works, such as [15] and [16], had derived and applied the equation
of motion of an airship for the neutrally buoyant condition. The mathematical
model for the level flight at zero incidence and the equilibrium equations or trim
equations were given by Cook [15]; the stability of an airship was investigated
by Goineau [16], applying non-linear methods.

The mathematical model and the trim equations [15], in the research work,
have been fitted for the heaviness condition and the linearized longitudinal equa-
tions of motion, describing small perturbations about equilibrium condition,
have been written in state space form: in this way the stability of the airship
has been carried out by the analysis of the eigenvalues of the stability matrix.

A method [17], developed from the geometrical features and the aerodynamic
coefficients of the airship, has been applied to define the state space problem,
without the application of any non-linear methods [16]. This “method for airship
modeling”, has been proposed by Kulczycki and Johnson [17] for the longitudi-
nal stability. Starting from this work, the method has been fitted in order to
highlight the weight effects and, moreover, a method for the lateral-directional
stability has been proposed. The application of this developed method has also
allowed to compare the main characteristics of the “cross” configuration to the
“inverted Y” configuration of the prototype airship (detailed in the following
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chapter), demonstrating that it is possible to reduce airships empennages with
benefits in terms of weight, without relevant effects on stability and control.

1.5.2 Airship control
The second part of the research work has regarded the development of air-
ship lateral-directional control laws, both in steady air, both in turbulence.
The flight dynamics models (FDM) of a three empennage configuration and a
more conventional four empennage configuration for the same airship envelope
have been discussed and implemented, based on a six-degrees-of-freedom (6DoF)
mathematical model [9], [12], [13]. In all cases, the resulting system—for the
airship prototype without ballast and ballonets system, and provided with elec-
tric engine—could be considered as an airframe characterized by a fixed center
of gravity (CG). Given these assumptions, the developed FDM of the airship
presented a body-fixed reference frame having its origin attached to the center
of mass and not to the center of volume (CV), which represented the standard
practice with ballasted airships [12], [13]. The added mass effects have not been
included within the inertia of the airship, that was another standard assumption
for the airship FDM, but have been modeled as external forces and moments
occurring in accelerated flight. The effects of propulsion on aerodynamics have
been introduced by taking into account the increase of tail efficiency due to the
propeller arrangement [8].

The main goal has been the achievement of a satisfying roll control system
that reduces the airship high-frequency oscillatory motions and the development
of a lateral-directional control system in presence of turbulence and gusts. Two
different control approaches have been introduced to reduce the rolling motions
arising as undesired effect as a consequence of rudder deflections: these are
an annoying source of trouble for the video and picture acquisition systems
which represent the typical payload of the unmanned airship. The use of the
ailerons for the lateral control has been discussed by other works, but only
for typical four empennage configurations (AM phd, ALL STEP conDATI, e
TESI TEDESCA); furthermore, no author focused the problem on the study
of feedback control laws to limit the airship roll and lateral directional motions
in turbulence, neither on the comparison of different strategies. For ailerons
it means the elevators in the case of the cross configuration, when they are
deflected anti-symmetrically. In the case of the inverted Y configuration the
ailerons are the movable aerosurfaces placed on the two lower empennages (much
like an inverted V-tail).

The control in turbulence has been carried out according to the pole place-
ment with noise method [6] and according to the optimal control with expo-
nential decay of rate technique [14]. The selection of an optimal control design
technique has been motivated by the need to reduce the spending of energy re-
quired to move the control surfaces. The turbulent atmospheric conditions for
the airship have been chosen following the work carried out on the AURORA
airship [8], [5].



Chapter 2

Unmanned Airship AIUX15

2.1 The AIUX15 prototype

The actual airship prototype, the AIUX15, represents a little jewel of state-
of-the-art technology in this field. This airship is owned and developed by

the Italian society “Airship Italia s.r.l.”, the only airship company operating
in the Campania region. The actual research projects on this prototype are
directed to improve its stability and control in order to meet all the mission
requirements regarding research, monitoring operations and also safety and civil
protection.

The AIUX15 (see Figure 2.1) is totally powered by electric engines, with
Lithium-ion battery of new generation, specially designed to provide long en-
durance of about 2 h. It has an autopilot that can enable automatic flight over
pre-defined mission profiles. It is equipped with a GPS system that in addition
to the automatic navigation will provide georeferenced scientific data.

The airship AIUX15 has been totally developed and designed according to
the modern aerospace techniques and built largely by composite materials. The
drive mechanisms are in aerospace alloy materials processed by CNC machines.
Electrical and electronic systems have been designed and constructed using high
quality aerospace methods and materials. The two main electric engines are
coupled with thrust vectored propellers able to rotate in the XZ plane (see
Figure 2.2 of 180◦. In Table 2.1 are reported same quality features of the
AIUX15.

In November 2009, this prototype was qualitatively tested in flight for about
15 min. The AIUX15 represents the first airship to be designed and put in
flight in the Neapolitan area, after the great experience of Prof. Nobile with his
airship “ITALIA” designed and developed at the Aerodynamics Institute of the
Engineering University in Naples.

2.2 Airship configurations
A picture of the actual AIUX15 prototype is shown in Figure 2.1 during its
first test flight. This airship is characterized by a tail with three empennages,
while a former prototype of the same airship, developed in a previous research

17
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Figure 2.1: The AIUX15 prototype
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z
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propeller

Figure 2.2: The AIUX15 propeller outline

project carried out by the CIRA [2], showed a four empennage configuration.

An engineering analysis and some preliminary tests performed on the pro-
totype brought out the strong influence of the empennages in terms of weight
and trim.

One of the purpose of my research was to compare the stability and the
control of two different tail arrangement for the same envelope of the AIUX15.

In the four empennage configuration—see Figure 2.3(a)— the fins are ar-
ranged in a cross-like position; the three empennage configuration —see Fig-
ure 2.3(b)— has been obtained with the same fin dimensions of the first con-
figuration, with three empennages placed at 120◦ and arranged in an inverted
Y-like position. While the four empennages configuration represents a more
conventional choice against the three empennage tail arrangement, the airship
designers were more interested in the latter. The inverted Y configuration offers
an improvement in terms of payload of approximately 10% with respect to the
cross tail configuration applied to the same envelope.
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Table 2.1: AIUX15 main characteristics
Airship Empennages and Propulsion

Envelope volume 123.06 m3 Fin surface area 3.20 m2

Overall length 15.12 m Control surface area 0.76 m2

Max diameter 3.90 m Vectorable propellers 2 units
Helium purity 0.97 Nominal thrust per unit 45 N
Max Speed (50 km/h) Thrust vectoring range 180◦/pitch

Table 2.2: AIUX15 main aerodynamic data

Item Name CLα CMα CY β CLβ CNβ

a Cross + 1.168 0.261 -1.168 0.000 -0.261
b Inverted Y 0.950 0.659 -0.950 0.000 -0.659

2.3 Airship aerodynamic data

The airship aerodynamic database comes from CFD (Computational Fluid Dy-
namics) analysis. In particular, it is built on the basis of a number of full
three-dimensional RANS (Reynolds Averaged Navier-Stokes) computations [2].
This approach is considered more reliable and accurate compared to the avail-
able semi-empirical methods [11]. The CFD results have been validated by
comparison with the experimental aerodynamic data of a known airship with
four empennages.[2] The CFD analysis have been applied first on the cross con-
figuration and then on the inverted Y airship with respect to the wind axis
reference frame centered at the CV. The control coefficients have been calcu-
lated assuming as parameters the main aero-surface deflections. The obtained
aerodynamic data are reported in the following. The terms pn, qn, rn are the
normalized angular velocity for the airship defined as follows in Eq. 2.1,where c
is the airship reference length and V is the airspeed:

pn = pc

2V qn = qc

2V rn = rc

2V (2.1)
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Figure 2.3: AIUX15 empennage configurations
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Figure 2.4: Cross configuration – Drag coefficient
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Figure 2.5: Cross configuration – Lateral force coefficient

-30 -20 -10 0 10 20 30
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

α (deg)

C
L

 

 
q

n
=-2.2383

q
n

  =0

q
n
=+2.2383

Figure 2.6: Cross configuration – Lift coefficient
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Figure 2.7: Cross configuration – Rolling moment coefficient
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Figure 2.8: Cross configuration – Pitching moment coefficient
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Figure 2.9: Cross configuration – Yawing moment coefficient
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Figure 2.10: Inverted Y configuration – Drag coefficient
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Figure 2.11: Inverted Y configuration – Lateral force coefficient
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Figure 2.12: Inverted Y configuration – Lift coefficient
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Figure 2.13: Inverted Y configuration – Rolling moment coefficient
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Figure 2.14: Inverted Y configuration – Pitching moment coefficient
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Figure 2.15: Inverted Y configuration – Yawing moment coefficient
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(b) Lateral force coefficient variation vs. beta
ad different rudder deflections
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(c) Lift coefficient variation vs. alpha at dif-
ferent elevator deflections
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(d) Rolling moment coefficient variation vs.
beta at different lower rudder deflections
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(e) Pitching moment coefficient variation vs.
alpha at different elevator deflections
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Figure 2.16: Airship control surfaces aerodynamic data. Four-empennage con-
figuration.
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Figure 2.17: Airship control surfaces aerodynamic data. Three-empennage con-
figuration.



Chapter 3

Linear Airship Model

3.1 General equation of motion

Any scientific investigation on the stability and control requires a mathemat-
ical model built around the equations of motion. The airship mathematical

model is based on a 6-DOF dynamic model. At first, the equations of mo-
tion of the airship have been developed on the basis of the standard following
assumption:

• the airship mass remains constant;

• the airship is seen as a rigid body, meaning there are no aero-elastic effects;

• the airship is symmetric respect to the longitudinal plan, to which belong
the airship centers of gravity and buoyancy;

• the airship is provided with control surfaces and two independent thrust
vectored propellers;

• the airship equilibrium flight is rectilinear;

• there are no turbulence effects and the steady air model is assumed.

The body axes (see Figure 3.1) are conventionally centered at the airship
CV that represents a fixed point for the system. Assuming the symmetry of the
problem, the center of gravity and the center of buoyancy will have ay = by = 0
and also the products of inertia will be Ixy = Iyz = 0.

In the following, under the above mentioned assumptions, the general dy-
namic equations of the airship 3.1 will be written; then the linearized equations
of motion will be developed.

d~Q

dt
=
∑ ~Fest

d ~Ko

dt
=
∑ ~Mest

(3.1)

In addition to the usual aerodynamic terms the equations of motion of the
airship will also include significant force and moment terms due to the static

29
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Figure 3.1: Reference frame

buoyancy and inertial terms due to the added mass of air displaced by the airship
in acceleration. This mass of air gives rise to virtual mass and inertia effects, that
are formally expressed as equivalent aerodynamic acceleration derivatives. The
added mass and the added moments of inertia are introduced by the following
expressions:

mx=m− ∂X
∂U̇

=m− ẊU̇

my=m− ∂Y
∂V̇

=m− ẎV̇
mz=m− ∂Z

∂Ẇ
=m− ŻẆ

Jx= Ix − ∂L
∂ṗ = m− L̇ṗ

Jy=Iy − ∂M
∂q̇ =m− Ṁq̇

Jz=Iz − ∂N
∂ṙ =m− Ṅṙ

(3.2)

In the following equations are defined the added products of inertia:

Jxz= Ixz + L̇ṙ = Ixz + Ṅṗ
Jyz=Iyz + Ṁṙ= Iyz + Ṅq̇
Jxy= Ixy + L̇q̇ =Ixy + Ṁṗ

(3.3)

According to the assumptions done before, the components of the momentum
derivative d~Q

dt have been written as follows:

1. axial component

mxU̇ + (maz − Ẋq̇)q̇ −myrV +mzWq − (r2 + q2)axm+mazpr

2. lateral component

myV̇ +mxUr −mzpW − (maz + Ẏṗ)ṗ+ (max + Ẏṙ)ṙ +maxqp+mazqr

3. vertical component

mzẆ − (max + Żq̇)q̇ +mypV +mxUq − (p2 + q2)maz +maxpr
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where:
Ẋq̇=∂X

∂q̇ ; Ẇq̇=∂W
∂q̇

Ẏṗ= ∂Y
∂ṗ ; Ẏṙ = ∂Y

∂ṙ

(3.4)

The angular momentum derivative components d ~Ko

dt have been obtained as-
suming as pole the center of volume:

1. roll

Jxṗ− Jxz(ṙ + pq)− (maz + L̇V̇ )V̇ −mazrU +mazWp+ rq(Jz − Jy)

2. pitch

Jy q̇ − (max + ṀẆ )Ẇ − max(V p − Uq) + (maz + ṀU̇ )U̇ − maz(V r −
Wq) + pr(Jx − Jz) + Jxz(p2 − r2)

3. yaw

Jz ṙ + Jxz(rq − ṗ) + (max − ṄV̇ )V̇ −max(rU − pW ) + pq(Jy − Jx)

In the above equation figure the following virtual mass terms:

L̇V̇ = ∂L
∂V̇

; ṄV̇ = ∂N
∂V̇

ṀẆ=∂M
∂Ẇ

; ṀU̇=∂M
∂U̇

(3.5)

On the airship, in addiction to the inertial generalized force, the aerody-
namic, the control surfaces the gravitational and the propulsive forces and
moments act. In the dynamic vector F d figure the terms obtained from the
derivation of the momentum and of the angular momentum 3.1.

M



U̇

V̇

Ẇ

ṗ

q̇

ṙ


= F d(U, V,W, p, q, r) +A(U, V,W, p, q, r) +G(λ13, λ23, λ33) +C+P

(3.6)
The aerodynamic generalized force have been introduced as functions of

the dimensional aerodynamic derivatives in the following 6x1 vector, taking
in account only the significative values (descending from the assumption of
independence between longitudinal and lateral motion:

A =



Xa

Ya

Za

La
Ma

Na


=



ẊUU + ẊWW + Ẋqq

ẎV V + Ẏpp + Ẏrr

ŻUU + ŻWW + Żqq

L̇V V + L̇pp + L̇rr
ṀUU+ṀWW+Ṁqq

ṄV V + Ṅpp + Ṅrr


(3.7)
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In the same way have been also reported the control generalized force:

C =



Xc

Yc

Zc

Lc
Mc

Nc


=



Ẋδδe

Ẏδδr

Żδδe

L̇δδr
Ṁδδe

Ṅδδr


(3.8)

The gravitational generalized force include the weight and the buoyant lift
actions, as defined in the following 6x1 vector:

G(λ13, λ23, λ33) =



λ13(mg −B)
λ23(mg −B)
λ33(mg −B)

−λ23(mgaz +Bbz)
−λ33(mgax +Bbx) + λ13(mgaz +Bbz)

λ23(mgax +Bbx)


(3.9)

To describe the orientation of the airship as rigid body, the Euler angles
φ, θ, ψ have been introduced. According to this assumption the directional cosine
can be written as follows:

λ13 = − sin θ
λ23 = sinφ cos θ
λ33 = cosφ cos θ

(3.10)

The propulsive actions have been introduced in the following 6x1 assuming
two independent thrust vectored propellers:

P =



Xp

Yp

Zp

Lp
Mp

Np


=



Ts cosµs + Tp cosµp
0

−Ts sinµs − Tp sinµp
(Tp sinµp − Ts sinµs)dy

Tp(dz cosµp − dx sinµp) + Ts(dz cosµs − dx sinµs)
(Tp cosµp − Ts cosµs)dy


(3.11)

3.2 Linearized airship model
In order to linearize the general model and to further simplify the equations,
the following assumptions have been introduced:

• the small perturbation theory is applied, that allows decoupling the lon-
gitudinal and the lateral-directional problem;
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• the velocity components are defined as:

U = u + Ue

V = v + Ve

W = w + We

φ = Φ + φe

θ = Θ + θe

ψ = Ψ + ψe

(3.12)

where Ue, Ve,We, φe, θe, ψe are the trim value and the terms u, v, w, Φ,Θ, Ψ
represent the perturbations from the initial equilibrium condition. Re-
garding to the assumption of rectilinear flight, the term Ve will be zero.
The total air speed is then defined as Va =

√
(U2 + V 2 +W 2);

• the director cosine vector can be expressed as: λ13
λ23
λ33

 =

 −Θ cos θe − sin θe
Φ cos θe
−Θ sin θe + cos θe

 (3.13)

• the two propellers have been assumed to be “dependent” that means hav-
ing Ts = Tp = T and µs = µp = µ;

• the control surface deflections are null at the initial equilibrium condition.

3.2.1 Longitudinal equations

The linearized longitudinal equations of motions for an airship are reported in
the following:

mxu̇+
(
maz − Ẋq̇

)
q̇ = Xe −mzWeq + Ẋuu+ Ẋww + Ẋqq + Ẋδ (δe + δr) +

+Ts cosµs + Tp cosµp − (mg −B) (sin θe +Θ cos θe)

mzẇ −
(
max − Żq̇

)
q̇ = Ze +mxUeq + Żuu+ Żww + Żqq + Żδδe+
−Ts sinµs − Tp sinµp + (mg −B) (cos θe −Θ sin θe)

Jy q̇ −
(
max − Ṁẇ

)
ẇ +

(
maz − Ṁu̇

)
u̇ =Me − (maxUe +mazWe) q + Ṁuu+

Ṁww + Ṁqq + Ṁδδe + Ts (dz cosµs − dx sinµs) + Tp (dz cosµp − dx sinµp) +
+ (mgax +Bbx) (θe sin θe − cos θe)− (mgaz +Bbz) (sin θe +Θ cos θe)

(3.14)
To further simplify the longitudinal equations, trim conditions can be ap-

plied. Trim conditions assume that the airship is in equilibrium, causing all
perturbation variables to reduce to zero. This assumption results in the follow-
ing equations:
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Xe + Ts cosµs + Tp cosµp − (mg −B) sin θe = 0

Ze − Ts sinµs − Tp sinµp + (mg −B) cos θe = 0

Me + Tp (dz cosµp − dx sinµp) + Ts (dz cosµs − dx sinµs) +
− (mgaz +Bbz) sin θe − (mgax +Bbx) cos θe = 0

(3.15)
The linearized longitudinal problem is written below in state space form:

M
(4×4)

ẋ
(4×1)

= A
(4×4)

x
(4×1)

+ B
(4×1)

u (3.16)

that divided for the mass matrix becomes:

ẋ
(4×1)

= a
(4×4)

x
(4×1)

+ b
(4×1)

u (3.17)

where xT = [x, z, q, Θ] is the state vector, and u = δe

M =


mx 0

(
maz − Ẋq̇

)
0

0 mz −
(
max + Żq̇

)
0(

maz − Ṁu̇

)
−
(
max + Ṁẇ

)
Jy 0

0 0 0 1

B =


Ẋδ̇

Żδ̇
Ṁδ̇

0



A =


Ẋu̇ Ẋẇ

(
Ẋq̇ −mzWe

)
− (mg −B) cos θe

Żu̇ Żẇ
(
Żq̇ +mxUe

)
− (mg −B) sin θe

Ṁu̇ Ṁẇ

(
Ṁq̇ −mxUe +mzWe

) {
(mgax +Bbx) sin θe+
− (mgaz −Bbz) cos θe

}
0 0 1 0


3.2.2 Lateral-directional equations
The linearized lateral-directional equations of motion for an airship have been
developed, resulting in the following equations:

my v̇ −
(
maz + Ẏṗ

)
ṗ+

(
max − Ẏṙ

)
ṙ = Ye + Ẏvv +

(
Ẏp +mzWe

)
+

+
(
Ẏr −mxWe

)
+ Ẏδδr + (mg −B)φ cos θe

Jxṗ− Jxz ṙ −
(
maz + L̇v̇

)
v̇ = Le + L̇vv +

(
L̇p −mzWe

)
p+

(
L̇r +mzUe

)
r+

+L̇δδr − (mgaz +Bbz)φ cos θe

Jz ṙ − Jxz ṗ+
(
max − Ṅv̇

)
v̇ = Ne + Ṅvv +

(
Ṅp +mxWe

)
p+

(
Ṅr −mxUe

)
r

+Żδδr + (mgax +Bbx)φ cos θe
(3.18)

Applying the lateral-directional trim conditions, that for the rectilinear flight
result all zero (Ye = Le = Ne = 0), the linearized lateral-directional problem for
the airship can be written in state space form as follows:
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M
(4×4)

ẋ
(4×1)

= A
(4×4)

x
(4×1)

+ B
(4×1)

u (3.19)

where xT = [v, p, r, φ] is the lateral state vector, BT =
[
Ẏδr

, L̇δr
, Ṅδr

, 0
]
is the

lateral control vector and u = δr is the rudder input. The control aerodynamic
rolling term L̇δr

, that appears in the lateral control vector, in the reference [12]
is omitted, as for the cross empennages configuration the rolling contribution
of the two rudders, with respect to the center of volume, is zero; for the three
empennages configuration, instead, the only one rudder generate a non zero
rolling moment. The lateral stability matrix is obtained dividing the matrix A
for the mass matrix M , as done for the longitudinal case in the Eq. 3.17:

A =


Ẏv (Ẏp +mzWe) (Ẏr −mxUe) (mg −B) cos θe
L̇v (L̇p −mazWe) (L̇r +mazUe) −(mgaz −Bbz) cos θe
Ṅv (Ṅp +maxWe) (Ṅr −maxUe) (mgax +Bbx) cos θe
0 1 tan θe 0



M =


my −(maz + Ẏṗ) (max − Ẏṙ) 0

−(maz + L̇v̇) Jx −Jxz 0
(max − Ṅv̇) −Jxz Jz 0

0 0 0 1


The state space problem has been also modified from the reference [12] about

the linearized expression of φ; the time derivative of the Euler angle of roll is
showed below:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (3.20)

Assuming the small disturbance theory, according to which the longitudinal
and lateral motions can be treated as independent for small perturbations about
the equilibrium condition, is possible to linearize the Eq. 3.20 as follows, taking
in account the contribution of the equilibrium body attitude θe:

φ̇ = p+ r tan θe (3.21)

3.3 The airship static stability
The static stability of the airships cannot be evaluated by applying the common
aircraft methods. In fact due to their features they are affected by a positive
Cmα, but also by significant aerodynamic damping effects and by the buoyant
lift actions. In order to estimate the stability of the airship it is useful to
investigate on the behavior of the dynamic system when is constrained to small
perturbation about the equilibrium flight condition. In this way the stability of
an airship equilibrium condition is assessed by analyzing the eigenvalues of the
plant matrix.

A method [17] based from the geometrical features and the aerodynamic co-
efficients of the airship has been studied and developed to define the state space
problem. The main goal of this approach is the achievement of the state space
problem definition without using any numerical methods to linearize a mathe-
matical non-linear model, nor extensive flight data to enable the use of system
identification methods. This approach developed by [17] for the longitudinal
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problem, with neutral buoyancy, has been fitted to the “heaviness condition”
and to the lateral problem. In this way it was possible to compare the two
airship tail configurations introduced in the previous chapter. According to
the reference method [17], the aerodynamics dimensional longitudinal stability
derivatives have been calculated modifying the same expressions used for the
aircrafts [19] as follows:

Ẋu = −2CD1q1S

U1
Ẋw = (−CDα + CL1)q1S

U1
Ẋq = −CDqq1Sc

2U1

Żu = −CL1q1S

U1
Żw = (−CLα + CD1)q1S

U1
Żq = −CLqq1Sc

2U1

Ṁu = CM1q1Sc

U1
Ṁw = CMαq1Sc

U1
Ṁq = CMq + CL1q1Sc

2

2U1
(3.22)

In order to develop the aerodynamic dimensional lateral stability derivatives
from the expressions used for the aircrafts [19], the same criteria of the refer-
ence [17] have been applied. According to these, the Mach aerodynamic contri-
bution has been ignored and the geometrical features have been referred to the
volume of the airship as in the Eq. 3.23.

S = ∇2/3

c = ∇1/3
(3.23)

The mean aerodynamic chord of an airship coincides with the wingspan, being
both functions of the envelope volume.

The following expressions represent the aerodynamics dimensional lateral
stability derivatives for the airship, obtained as explained before:

Ẏv = CY βq1S

U1
Ẏp = CY pq1Sc

2U1
Ẏr = CY rq1Sc

2U1

L̇v = CLβq1Sc

U1
L̇p = CLpq1Sc

2

2U1
L̇r = CLrq1Sc

2

2U1

Ṅv = CNβq1Sc

U1
Ṅp = CNpq1Sc

2

2U1
Ṅr = CNrq1Sc

2

2U1

(3.24)

Finally in Eq. 3.25 are given the control forces and moments, that can be
used to determine the longitudinal and the lateral control vectors:

Ẋδe = CDδeq1S Żδe = CLδeq1S Ṁδe = CMδeq1Sc

Ẏδr
= CY δr

q1S L̇δr
= CLδr

q1Sc Ṅδr
= CNδr

q1Sc
(3.25)

The expressions of the aerodynamics dimensional stability derivatives [19] [11]
are referred to the stability axes (Xs, Ys, Zs) where the speed U1 coincides with
the total trim speed. The physical quantity with subscript “1”, like the dynamic
pressure q1, are referred to the equilibrium condition.

The non-dimensional aerodynamic coefficients that figure in the previous ex-
pressions could be obtained by semi-empirical approach [19] or by CFD calcula-
tion or by wind tunnel testing. The aerodynamic database for the applications
has been built on the basis of full three-dimensional CFD RANS (Reynolds Av-
eraged Navier-Stokes) computations, performed by CIRA [2], with the stability
reference frame having its origin attached to the center of volume.
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3.4 Longitudinal trim
For an airship the aerodynamic coefficients have a non-linear behavior at dif-
ferent incidences, so the knowledge of the equilibrium condition is necessary to
linearize the dynamic system around it and for evaluating the stability deriva-
tives. For the neutral buoyancy condition, according to the zero incidence, the
stability axes coincided with the body axes and the trim equations, balancing
the forces acting on the airship, could reach the following simplified expression:

D = T

L = 0

M = mgaz sin θe − Tdz

(3.26)

The Eq. 3.26, where the two only variables are the equilibrium thrust T and
the pitch attitude θe at the reference speed, have been simplified assuming also
the airship statically balanced, that is with the center of gravity beneath the
center of volume. Instead, the main problem with a non neutral buoyancy case
is the fact that the initial equilibrium condition is characterized by a non zero
incidence, that must be calculated from the equilibrium equations. The trim
equations represent an indeterminate problem as it has infinite solutions, having
more variables than equations.

Assuming the trimmed control forces and moments are zero, assuming the
thrust is parallel to the airship reference line and assuming the buoyancy applied
at the CV , the equilibrium equations may be written as follows:


1
2ρAV

2S (CL sinα− CD cosα) + T − (mg −B) sin θe = 0

− 1
2ρAV

2S (CD sinα+ CL cosα) + (mg −B) cos θe = 0

1
2ρAV

2ScCM + Tdz −mgaz sin θe = 0

(3.27)

These equations, related to body axes, have been developed from the lon-
gitudinal trim equations showed in [12], by expressing the forces and moment
according to the aerodynamic lift, resistance and moment coefficients, defined
in stability axes. The term mgaz sin θe represents the righting moment due to
the buoyant lift.

Under these assumptions, the problem, setting the speed, is reduced to have
only three variables: T, α, θe, that are uniquely determined. Knowing the
equilibrium condition is possible to evaluate the stability coefficients and the
dimensional longitudinal stability derivatives. Furthermore the expressions of
the dimensional stability derivatives, calculated in the stability axes, as defined
before, have to be transformed to the body axes, by a rotation matrix.

3.5 Application of the method
In this section is reported the application of proposed method to the unmanned
non-rigid airship “AIUX15”. The comparison between the two possible airship
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Table 3.1: AIUX15 trim conditions

Item Name α(◦) θ(◦) T (N)
1 Cross + 1.962 10.601 84.774
2 Inverted Y 2.286 17.647 94.097

empennages configurations on the same envelope, has been carried out, with
regard to the stability and the response to control, at the nominal speed. The
number and the size of the empennages have a significative influence on weight
and trim, affecting the payload especially for a small airship.

The comparison between the “cross” and the “inverted Y” configuration is
carried out assuming the same weight condition that could be reached improving
the payload. The airship is in a heaviness condition, with an exceeded weight
of about 8kg that, however, can be sustained in hovering by the vectorable
thrust. For this airship, as mentioned before, the aerodynamic models and data
for the four and three empennages configurations are available, whose main
coefficients are given in table 2.2. All the aerodynamic reference data used for
the applications have been performed by CIRA. [2]

3.5.1 “Cross” configuration results
The method explained before has been applied by setting a “Mathcad” work-
sheet. The longitudinal and the lateral results regarding the stability analysis
of the airship configurations, have been carried out for the nominal speed of
40kmh at sea level. The calculated trim condition are showed in the table 3.1.

The added mass terms have been evaluating applying the theoretical formula
for the prolate ellipsoid [4] (see Appendix A); these formula take in account
the added mass effects of the only envelope, without empennages; however the
fins contribution is such smaller that could be safely ignored. According to
this assumption about the added mass terms , the longitudinal and lateral
mass matrices, respectively named Ml and Mla do not change with the tail
configurations and are showed below:

Ml =


146.84 0 156.78 0

0 262.74 0 0
156.78 0 4856 0

0 0 0 1



Mla =


262.74 −156.78 0 0
−156.78 580.74 −265.45 0

0 −265.45 4419 0
0 0 0 1


For the four empennages configuration in heaviness condition, the matrices al

and ala have been obtained from the application of the developed method.
The stability characteristics of the system, that are related to the eigenvalues
of the plant matrices al and ala, have been reported in the table 3.2. It’s to
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Table 3.2: AIUX15 cross configuration-stability results
Long. eigenvalues Characteristics Lat. eigenvalues Characteristics

−1.834 t=0 545s −1.616 t=0 619s
−0.667 t=1 501s −0.698 t=1 443s
−0.095 t=10 514s −0.402 + 1.783i ω =1 828rads
−0.191 t=5 235s −0.402 + 1.783i ζ = 0.220

notice that the longitudinal stability modes of motion of the cross configuration
are all exponential subsidence modes, characterized by real roots, while the
lateral stability denotes oscillatory rolling motions. In order to view the stability
modes the longitudinal and the lateral small perturbations equations, from the
reference equilibrium condition, are applied for the input command of a 5◦
elevator step, and subsequently for a 5◦ rudders step. The longitudinal responses
for the cross empennages configuration are plotted in the figure 3.2. The lateral
results, for the same configuration, are plotted in the figure 3.4.

al =


−12.68 9.71 −59.02 −76.83
−13.90 −202.86 435.59 −14.3843

7.48 218.55 −9082 −1511
0 0 1 0

 bl =


−1.68
−71.16
−446.47

0



ala =


−196.50 99.97 −435.96 76.83

7.85 −396.81 1993 −1511
−218.42 −11.55 −7345 0

0 1 0.187 0

 bla =


72.51
2.48
−433.45

0



3.5.2 “Inverted Y” configuration results
The stability analysis has been carried for the three empennages configuration,
for the reference trim condition reported in the table 3.1.

Regarding to the longitudinal response to control in Figure 3.3, the in-
crease in drag is to ascribe to the equilibrium attitude that arise from balancing
the longitudinal moment of the aerodynamic actions with the stability buoyant
moment. Through the elevator control at equilibrium, it could be possible to re-
duce the attitude angle and therefore the drag. From the eigenvalues of the plat
matrices, as can be seen in table 3.3, the longitudinal stability modes denote
oscillatory motions as well the lateral stability modes of motions. The “inverted
Y” tail airship, even if it is provided with only one rudder, demonstrate a good
lateral-directional control as shows in the figure 3.5.

al =


−12.66 9.37 −80.40 −74.48
−13.46 −168.60 727.77 −23.69
22.014 551.88 −7489 −1465

0 0 1 0

 bl =


2.06
−62.43
−374.85

0
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Figure 3.2: AIUX15 cross configuration-longitudinal response to a 5◦ elevators
step
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Figure 3.3: AIUX15 inverted Y configuration-longitudinal response to a 5◦ ele-
vators step
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Table 3.3: AIUX15 inverted Y configuration-stability results
Long. eigenvalues Characteristics Lat. eigenvalues Characteristics

−1.721 t=0 581s −1.525 t=0 656s
−0.086 t=11 691s −0.297 t=3 368s

−0.254 + 0.236i ω =0 347rads −0.336 + 1.793i ω =1 824rads
−0.254− 0.236i ζ = 0.733 −0.336 + 1.793i ζ = 0.184

ala =


−162.48 116.42 −727.05 74.48

22.01 −347.44 1970 −1465
−551.44 −11.09 −5741 0

0 1 0.318 0

 bla =


36.03
7.05
−216.73

0
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Figure 3.4: AIUX15 cross configuration-lateral response to a 5◦ rudders step
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Figure 3.5: AIUX15 inverted Y configuration-lateral response to a 5◦ rudder
step



Chapter 4

Longitudinal Simulation
Model

4.1 Longitudinal equation of motion

The longitudinal equations of motion for an airship represent a second order
differential problem of three equations in the body fixed reference frame.

Differently from the standard practise, the airship presents the body-fixed ref-
erence frame having its origin attached to the CG and not to the CV ( the
center of volume coincides with the center of buoyancy CB see Figure4.1). The
airship model incorporates the standard aerostatics and aerodynamics terms,
and a special treatment of added-mass terms as external forces.The model have
been implemented using the Simulink toolbox of Matlab. In particular all the
assumptions made enabled the use of the Simulink 3DoF Body Axes/Euler An-
gle block in order to describe the dynamics of the system. This block solves the
differential equations by using numerical integration according to the algorithm
ode45 by Runge-Kutta. The resulting 3DoF dynamic model for the airship is
given by the following equation:

M

 U̇
Ẇ
q̇

 = F d(U,W, q) +A(U,W, q) +G(Θ) +C + P + F add (4.1)

On the left-hand side of system (4.1) the term M is 3× 3 generalized mass
matrix, and [U,W, q]T is the vector of state variables, i.e. the airship velocity
component along the x and the z axis and the pitch angular velocity compo-
nent in the body axes. On the right-hand side, the term A is an aerodynamic
generalized force vector depending on the above mentioned velocity and on an-
gular velocity components. The quantity C is a control generalized force vector
depending also on the aero-surface deflections at the tail. The term G is a gen-
eralized gravity force vector depending on the Eulerian angle Θ. The term F d
is a dynamic-effect generalized force vector depending on (U,W, q). The added
mass effects are not built into the mass matrix of the airship [12, 13] but are
modelled as external inertial actions in the vector F add depending on the ve-

43
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x

CB

CG

z
T

dz

propeller

Figure 4.1: Reference frame with origin in the CG

locity and angular velocity rates (U̇ , Ẇ , q̇). This model, whose terms are going
to be detailed in the following, represents the first step in the achievement of a
simulation model that takes in account all the 6DoF of motions of the airship.

The aerodynamic generalized force are calculated as:
D= 1/2 ρV 2S CD

L = 1/2 ρV 2S CL

M= 1/2 ρV 2ScCM

(4.2)

They are referred to the wind axis system centered at the CV. In order to
evaluate the aerodynamic actions in the body fixed reference frame centered at
the CG a transport of the forces and a rotation matrix (4.3) depending on the
angle of attack, were introduced in the model:

Rα =

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 (4.3)

The longitudinal aerodynamic coefficients that figure in the (4.2) have been
organized into Simulink “look-up tables” as function of the angle of attack and
of the normalized pitch speed.

Following the same criteria, the longitudinal aerodynamic control forces and
moments have been calculated as follows:

D= 1/2 ρV 2S ∆(CD)
L = 1/2 ρV 2S ∆(CL)
M= 1/2 ρV 2Sc∆(CM)

(4.4)

The longitudinal control coefficients have been implemented into “look-up ta-
bles” assuming as parameters the angle of attack and the elevators deflections.
The vector P in equation (4.1) depends on the propulsive model. In the gen-
eral case the thrust vector has a varying direction, always belonging to the
body-fixed longitudinal plane XZ. The propulsive actions are then given by
the following: 

Xp = 2T cosµ
Zp = −2T sinµ
Mp = 2T (dz cosµ− dx sinµ)

(4.5)
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In our simulation model the propeller thrust has been assumed as a constant
and held aligned with the airship longitudinal X axis , assuming a null value of
the µ angle. The gravitational actions represented by the column matrix G in
equation (4.1) depend on the buoyant lift magnitude B. The latter is a function
of the helium purity ηh and density ρh, and of the air density ρ. The air density
is assumed constant according to the low operational altitude of the airship.
The expressions that give the three elements of G are reported in the following:

Xg = − sin θ (mg −B)
Zg = cos θ cosφ (mg −B)
Mg = − sin θ bzB

where B = (ρ− ρh)ηhg∇ (4.6)

Finally the longitudinal added mass forces and moment of the airship have been
evaluated as follows: 

Xadd = ẊU̇ U̇ − ŻẆ Ẇ q − Ẋq̇ q̇

Zadd = ŻẆ Ẇ − ẊU̇ U̇q − Żq̇ q̇
Madd=Ṁq̇ q̇ − ṀẆ Ẇ − ṀU̇ U̇

(4.7)

where Ẋq̇ = Żq̇ = ṀẆ = ṀU̇ = 0.
For an airship the added mass effects can be reasonably approximated by

considering only the envelope volume, enabling the application of the theoretical
formulas for the prolate ellipsoid [4].

4.2 The Simulink 3DoF model
The longitudinal equations of motion have been implemented in Matlab/Simulink.
Each type of external forces and pitching moment acting on the airship, have
been introduced and evaluated into subsystems.

Figure 4.2: Airship 3DoF implemented Matlab/Simulink model

In Figure 4.2 is presented the general view of longitudinal airship model. The
whole longitudinal aerodynamic database, the mass and all the airship reference
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dimensions, required by the model, have been collected in a Matlab M-file. Even
the initial velocity and attitude value to give to the model have been defined in
the main M-file.

In this way, standing the Matlab/Simulink model, it’s easy to develop dif-
ferent airships simulation model, or different configurations of the same airship
by only changing the reference data in the M-file.

For the purpose of the applications the AIUX15 airship in cross empennage
configuration has been implemented and analyzed for the neutral buoyancy
condition. The trim conditions descend from the 4.8 for the nominal speed of
40 km/h at sea level. 

D = T

L = 0
Tdz=−mgaz sin θe

(4.8)

The response to the following input have been reported and analyzed; for
each input command the velocity and the external force and moment compo-
nents have been observed in order to check qualitatively the behavior of the
dynamic system:

1. 10◦ elevator step (see Figure 4.2);

2. 5◦ elevators up, 5◦ elevators down (see Figure 4.2);

3. 10 % thrust increase (see Figure 4.2);

4. 10 % thrust increase with µ =45◦ (see Figure 4.2).
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1. 10° elevators step

Figure 4.3: Airship longitudinal response to 10◦ elevator step
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2. 5° elevators up, 5° elevators down
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Figure 4.4: Airship longitudinal response to +5◦ −5◦ elevator input
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Figure 4.5: Airship longitudinal response to 10 % thrust increase
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4. 10% thrust increase with µ=45°
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Figure 4.6: Airship longitudinal response to 10 % thrust increase with µ =45◦

1. 10◦ elevator step
The positive deflection of the elevator, as expected caused a “nose down”
response of the airship. The control forces are mainly balanced by the
aerodynamic actions. The aerodynamic force component along the X
axis, FAX is not the aerodynamic drag as could be notice in the 4.9:{

−(D cosα− L sinα) = FAX
−(D sinα+ L cosα) = FAZ

(4.9)

Instead the longitudinal moment induced by the elevators is balanced by
the buoyant lift moment 4.10 that justifies the high attitude angle.

Baz sinΘ =MBY (4.10)

2. 5◦ elevators up, 5◦ elevators down
This type of input is made by a negative elevator deflection hold for 20 s
and by a positive elevator deflection, finally set to zero. The airship longi-
tudinal response to this input denote the tendency of the system to return
to its initial state after removing the control action:

3. 10 % thrust increase
The third examined input was an increment of 10 % in the propulsive
thrust, without deflecting the control surfaces. As expected the thrust
increase determines an increase in speed and drag, while the moment due
to the propellers action modify the attitude angle:

4. 10 % thrust increase with µ =45◦
Finally the last input presents an increment of 10 % in thrust with pro-
pellers tilted at 45◦ with respect to the airship reference line. At the
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Figure 4.7: Case 1: Axial Forces

nominal speed of 40 km/h the propeller control plays a minor role with
respect to the aerodynamic control. Instead at low speed it would be the
opposite. It’ to be noticed that to simulate the vertical take off and the
landing of the airship is necessary to model the aerodynamic behavior of
the system even at very high incidences.

4.3 Method comparison
The longitudinal linear model of the airship, introduced and developed in the
previous chapter, has been compared to the longitudinal simulation model. This
comparison has been carried out by superimposing the responses to a same input
of 5◦ of elevator deflection for two different airship weight conditions. In Fig-
ure 4.19 are reported the longitudinal responses, to the above mentioned input,
for the airship in neutral buoyancy condition; this weight condition presents
(mg −B) = α = We = 0. In order to compare the results, only the perturba-
tions from the initial equilibrium condition have been plotted. In Figure 4.20,
instead, are compared the longitudinal responses for the airship having 8 kg of
exceeding weight with respect to the buoyancy, for which there is a non-zero
incidence at equilibrium. As could be noticed, the linear model matches with
low gaps the simulation model, for both the weight configurations. The differ-
ences on the attitude angle is due to the small angle hypothesis on the linear
model. The main difference for the neutral buoyant condition is in the axial ve-
locity u; according to the liner model the component We is zero and the added
mass contribution mzWeq during the transient phase, remains null. In fact this
problem does not significantly affect the u response of the non-neutral buoyant
condition transient phase.

However the final equilibrium values of u is different from the linear model,
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as the value of CDα has been evaluated approximately without taking in account
the parabolic behavior of CD.

All the small differences between the responses are to be referred to hy-
pothesis of the linear model regarding the small perturbation behavior from
the equilibrium condition; in this way, assuming the velocity V as constant, all
the aerodynamic forces are evaluated with a constant dynamic pressure differ-
ently from the reality. Clearly, the smaller the perturbation is, the better the
responses match.

Figure 4.8: Case 1: Normal Forces
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Figure 4.9: Case 1:Pitching Moments

Figure 4.10: Case 2: Axial Forces
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Figure 4.11: Case 2: Normal Force

Figure 4.12: Case 2:Pitching Moments
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Figure 4.13: Case 3: Axial Forces

Figure 4.14: Case 3: Normal Force
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Figure 4.15: Case 3:Pitching Moments

Figure 4.16: Case 4: Axial Forces
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Figure 4.17: Case 4: Normal Force

Figure 4.18: Case 4:Pitching Moments
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Figure 4.19: Neutral buoyancy condition: model responses comparison
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Figure 4.20: Non-neutral buoyancy condition: model responses comparison



Chapter 5

Six-degree-of-freedom
Simulation Model

5.1 Implemented equation of motion

The 6DoF simulation model for the AIUX15 unmanned airship has been
developed and implemented in Matlab/Simulink. This airframe is treated

as a rigid body, symmetric respect to the center-line vertical plane, with a fixed
center of gravity, as previously assumed for the 3DoF model. This assumption
descend from some important features of this type of unmanned airship: the
AIUX15 is designed for constant low altitude operations and it is provided
with electric engine coupled with vectored propellers, and does not require a
ballonets system.

The revisited FDM for this type of airship, differently from the standard
practise [9, 12, 13], presents the body-fixed reference frame having its origin
attached to the CG and not to the CV. The CV is also assumed to coincide with
the gross center of buoyancy (CB), i.e. point CB in Figures 2.2 and 2.3.

As for the 3DoF simulation model, the airship 6DoF model, given in the
Eq. 5.1, includes the standard aerostatics and aerodynamics terms, and does
not model the added-mass terms within the mass matrix.

M
(6×6)


U̇
V̇
Ẇ
ṗ
q̇
ṙ

 = F d
(6×1)

+ A
(6×1)

+ G
(6×1)

+ C
(6×1)

+ P
(6×1)

+ F add
(6×1)

(5.1)

in the above equation, the matrix dimensions are indicated for clarity.
On the left-hand side of system (5.1) the term M is a generalized mass

matrix, and [U, V,W, p, q, r]T is the vector of state variables, i.e. the airship
velocity and angular velocity components on the body axes. On the right-hand
side, the term A is an aerodynamic generalized force vector depending on the
velocity and on angular velocity. The quantity C is a control generalized force
vector depending also on the aero-surface deflections at the tail. The termG is a
generalized gravity force vector depending on the direction cosines (λ13, λ23, λ33)

57
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of the body frame with respect to the inertial frame. The term F d is a dynamic-
effect generalized force vector depending on (U, V,W, p, q, r). The added mass
effects are not built into the mass matrix of the airship [12, 13] but are modeled
as external inertial forces and moments in the vector F add. The generalized
added mass force, occurring in accelerated flight, depend on the velocity and
angular velocity rates (U̇ , V̇ , Ẇ , ṗ, q̇, ṙ).

The available forces and the moments are calculated as:
D= 1/2 ρV 2

a S CD

Y = 1/2 ρV 2
a S CY

L= 1/2 ρV 2
a S CL


L= 1/2 ρV 2

a ScCL

M= 1/2 ρV 2
a ScCM

N = 1/2 ρV 2
a ScCN

with V 2
a = U2+V 2+W 2

(5.2)
They are referred to the wind axis system centered at the CV (point CB).

In order to evaluate the aerodynamic actions in the body fixed reference frame
centered in CG (see Figure 2.2), a transport of the forces was introduced into
the model (recalling that ψ = −β), by means also of a rotation matrix:

RαR−β =

 cosα cosβ − cosα sin β − sinα
sin β cosβ 0

sinα cosβ − sinα sin β cosα

 (5.3)

In the Eq. 5.4 and Eq. 5.5 are shown the aerodynamic coefficients, in the
body axes, by means of the rotation matrix: CX

CY
CZ


body
axes

= RαR−β

 −CDCY
−CL


wind
axes

(5.4)

 CL
CM
CN


body
axes

= RαR−β

 CL
CM
CN


wind
axes

+

 CY az
CDaz

0

 (5.5)

The aerodynamic database for the purpose of the airship FDM, has been
collected on the basis of full three-dimensional RANS computations. The con-
trol coefficients have been calculated assuming as parameters the aero-surface
deflections δa and δr. In Section 2.3 are reported the the airship aerodynamic
coefficient variations at different control surface deflections for both the em-
pennage configurations, obtained by the CFD computations. They enable the
calculation of the aerodynamic forces and moments variations as follows:

∆D= 1/2 ρV 2
a S ∆(CD)

∆Y = 1/2 ρV 2
a S ∆(CY )

∆L= 1/2 ρV 2
a S ∆(CL)


∆L= 1/2 ρV 2

a Sc∆(CL)
∆M= 1/2 ρV 2

a Sc∆(CM)
∆N = 1/2 ρV 2

a Sc∆(CN )
(5.6)

These are the control generalized forces that populate the column matrix C in
equation (5.1).

The vector P in equation (5.1) depends on the propulsive model. The air-
ship propulsive system is characterized by two tilting propellers powered by
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an electrical engine. In the general case the thrust vector has a varying direc-
tion, always belonging to the body-fixed longitudinal plane XZ. The propulsive
actions are then given by the following:


Xp = 2T cosµ
Zp = −2T sinµ
Mp = 2T (dz cosµ− dx sinµ)

with Yp = Lp = Np = 0 (5.7)

In our simulation model the propeller thrust has been assumed as a constant
and held aligned with the airship longitudinal axis X, assuming a null value of
the angle µ (see Figure 2.2).

The airship thrusters are two ducted fans mounted on the gondola. This
type of propulsion system affects the aerodynamic flow in the vicinity of the
airship tails. The global effect is modelled by taking into account the increase
of tail efficiency. The following multiplicative factor[8]:

ftail =

1 +

√
1 + T

4ρSpropV 2
a

2

(5.8)

has been introduced in the simulation model as an enhanced tail authority
factor. This means that the input variables δa and δr are replaced by ftailδa
and ftailδr respectively.

The airship is assumed to be neutral buoyant and statically balanced (buoy-
ancy equals weight). Regarding to the usual weight arrangement, the airship
with the gondola under the envelope, has its center of gravity beneath the center
of volume. This condition is required for the buoyant vehicles in order to ensure
the static stability. The gravitational actions, represented by the column matrix
G in equation (5.1), depend on the buoyant lift magnitude B. The latter is a
function of the helium purity ηh and density ρh, and of the air density ρ. The
air density is assumed constant according to the low operational altitude of the
airship. The expressions that give the six elements of G are the following:


Xg = − sin θ (mg −B)
Yg = cos θ sinφ (mg −B)
Zg = cos θ cosφ (mg −B)


Lg =− cos θ sinφ bzB
Mg = − sin θ bzB

Ng = 0
(5.9)

where B has been still defined in Eq. 4.6

Finally, on the right-hand side of equation (5.1) the added mass effects are
modelled as external inertial forces and moments. For this type of airship the
added mass effects can be reasonably approximated by considering only the
envelope volume. Applying the theoretical formulas for the prolate ellipsoid [4],
it is possible to evaluate the added mass terms of the airship with respect to
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the CV as follows:[12]
Xadd = ẊU̇ U̇ + ŻẆWq − ẎV̇ V r − Ẋq̇ q̇

Yadd = ẎV̇ V̇ + ẊU̇Ur − ŻẆWp− Ẏṗṗ− Ẏṙ ṙ
Zadd = ŻẆ Ẇ − ẊU̇Uq − ẎV̇ V p− Żq̇ q̇

Ladd = L̇ṗṗ− L̇V̇ V̇ − L̇ṙ ṙ
Madd =Ṁq̇ q̇ − ṀẆ Ẇ − ṀU̇ U̇

Nadd = Ṅṙ ṙ − ṄV̇ V̇ − Ṅṗṗ

(5.10)

The added mass actions Xadd, Yadd, . . . , Nadd given by (5.10) occur in ac-
celerated flight and are given by a sum of terms proportional to the airship
linear and angular accelerations ad angular velocities (state variables and their
derivatives). The coefficients ẊU̇ , ŻẆ , . . . , Ṅṗ in equations (5.10) are cal-
culated on the basis of the envelope geometry and most of them are zero for
axial-symmetrical bodies (see Appendix A). The above added mass actions are
referred to the CV. For the purpose of our flight dynamics model they have been
transported to the CG.

5.2 The implemented Simulink model
The 6DoF implemented model has been developed and check by means of the
3DoF model introduced in the Section 4.2.

In order to model the two different airship configurations, it is possible to
use the same interface by only changing the Matlab initialization file, in which
are defined all the variables declared in the Simulink model.

In the following figures are reported some pictures of the implemented 6DoF
Simulink model for the airship. The Figure 5.1 shows the main part of the
model, with the 6DoF Euler Angle Simulink built-in block and the subsystems
that evaluate all the external forces and moments acting on the airship.

The connections between subsystem are handled by means of Go-to/From-to
Simulink tags. Both the aerodynamic and the control actions are built from an
aerodynamic coefficient database organized in look-up tables (see Figure 5.2).

In Figure 5.4 and Figure 5.5 are respectively shown the propulsive and the
added mass subsystems, implementing the corresponding Eq. 5.7 and Eq. 5.10.

It’s to be noticed that in the gravitational subsystem (see Figure 5.3), dif-
ferently from the Eq. 5.9, are modeled only the buoyancy actions as the weight
effects are evaluated within the 6DoF Euler Angle block.

Finally the open loop responses to several input commands, from the trim
condition regarding the operational speed of 40 km/h at sea level, have been
obtained and analyzed. Some results for the cross configuration airship are
reported in the Figures 5.6, 5.7, 5.8, 5.9 and 5.10; the term ∆T represents the
percentage increase in thrust. As could be noticed, the airship responses are all
exponential type, with the exception of the rolling motions.

In order to check the 6DoF model was also verified the correct matching of
the longitudinal behavior with the previously defined 3DoF simulation model.
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Figure 5.1: 6DoF implemented Simulink model



62 CHAPTER 5. SIX-DEGREE-OF-FREEDOM SIMULATION MODEL

Figure 5.2: 6DoF aerodynamic subsystem

Figure 5.3: 6DoF gravitational subsystem
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Figure 5.7: 6DoF implemented model responses – angular rates in body-fixed
axes
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Figure 5.8: 6DoF implemented model responses – Euler rotation angles
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Figure 5.9: 6DoF implemented model responses – position in inertial axes
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Figure 5.10: 6DoF implemented model responses – incidence, airspeed and ftail



Chapter 6

Airship Control in Steady
Air

6.1 Implemented equation of motion

One of the main goals of the research concerned the achievement of a satis-
fying roll control system that reduces the airship high-frequency oscillatory

motions, in a stationary atmosphere. These are an annoying source of trouble
for the video and picture acquisition systems, which represent the typical pay-
load of this kind of vehicles. For a typical configuration airship, the oscillatory
rolling motions arise as undesired effect from the rudder deflections (due to the
CG offset with respect to the envelope longitudinal centerline). In our analysis
(see for example Figure 5.7 and Figure 5.8) undesired oscillatory rolling motions
have been found for both the configurations.

Two feedback control algorithms, regarding two different approaches have
been developed. The airship lateral-directional closed-loop control, for both the
tails configurations, has been carried out by acting on the rudders control only.

Then a feedback control law on both the rudders and the ailerons have been
implemented after introducing an aileron control into the simulation model. For
ailerons it means the elevators in the case of the cross configuration, when they
are deflected anti-symmetrically. In the case of the inverted Y configuration the
ailerons are the movable aerosurfaces placed on the two lower empennages.

The closed-loop flight control has been achieved by means of the state-space
approach. The state space representation of the dynamic system is carried out
by linearizing the 6DoF model around the reference equilibrium condition. Ap-
plying the small disturbance theory for airships [12] the longitudinal and lateral
equations are decoupled and written in the state space form. The state space
lateral control problem is formulated for both the above discussed approaches
as follows:

(I approach, only δr)

ẋ
(4×1)

= A
(4×4)

x
(4×1)

+ B
(4×1)

δr

ẋ
(4×1)

= ( A
(4×4)

− B
(4×1)

kT

(1×4)
) x
(4×1)

+ B
(4×1)

δr

(6.1)
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y

k

η' η
Cẋ = A x + B η+ –

Figure 6.1: Block diagram of the linear system with state feedback.

Table 6.1: Control characteristics and controller gains
Airship Configuration Mo Ts Controller gains kT Controller gains kpT

cross 5% 3 s [ 23.94 17.37 −45.06 102.05 ]
[ 32.84 −254.68 −131.88 43.00

10.54 −33.36 −20.55 −20.38
]

inverted Y 5% 3 s [ 26.86 12.39 44.53 74.17 ]
[

−67.55 32.78 −133.14 96.02
−21.70 −2.61 21.24 56.22

]

(II approach, η = [δa δr]T )

ẋ
(4×1)

= A
(4×4)

x
(4×1)

+ B
(4×2)

η
(2×1)

ẋ
(4×1)

= ( A
(4×4)

− c B
(4×2)

kT
p

(2×4)
) x
(4×1)

+ B
(4×2)

η
(2×1)

(6.2)
In the above equations the state vector has been defined as x = [v p r φ]T .
In the first approach—system (6.1)—there is only the rudder deflection δr, i.e.
the input vector is η = [δr], a 1 × 1 matrix. In the second approach—system
(6.1)—the inputs are η = [δa δr]T . In the latter case the constant c = 1 was
set. These models are schematically represented in Figure 6.1.

6.2 The pole placement method
The controller gains have been determined according to the pole-placement
method. The knowledge of the poles that guarantee the desired behavior of
the system is linked to the design criteria of the controller, such as the over-
shoot and the settling time, from which the damping and the real part of the
poles descend. The design criteria of the closed loop controllers have been set
as: Overshoot (Mo) less than 5% and Settling Time (Ts) less than 3 s, that lead
respectively to a damping coefficient of 0.7 and a pole real part of −1.94.

The feedback control laws with the controller gains obtained from the state
space linear analysis (see Table 6.1) have been subsequently introduced in the
simulation models to compare the closed-loop results to the open-loop responses.
In order to avoid deflections at which the control surfaces do not work prop-
erly (beyond ranges), saturation blocks have been introduced in the simulation
model, imposing upper and lower limits on the input signal from the feedback
control law. These limits are assumed to be −25◦ and 25◦, that are the surface
deflections at which the maximum absolute values of the aerodynamic coeffi-
cients are achieved.
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Figure 6.2: simulink roll response with feedback control to an initial rudder step
of 25◦

6.3 Applications and results
The two control strategies have been applied to both the airship tail configu-
rations for different initial rudder deflections. The first roll control strategy,
involving only the rudders, achieves for both the configurations a reduction of
the oscillatory motions. This control strategy continues to reduce the oscillatory
rolling motion up to 25◦ of initial rudder deflection.

In Figures 6.2 and 6.3 are shown some examples for the cross configuration;
the same is true for the three empennage airship. The second control strategy
involving both rudder and ailerons, is considered to be not satisfactory especially
for the four empennage airship; moreover in some conditions, even it could
worsen the stability characteristics of the airship that could lead to instability
of the feedback control system. Regarding to the cross configuration for initial
rudder step greater than about 10◦, the control response denotes an undamped
harmonic behavior: this is linked to the saturation features on the ailerons that
cuts the deflections beyond range (see Figure 6.4 and Figure 6.5). The same
instability occurs for the inverted Y configuration, but for greater initial rudder
step, as the aileron control power for this configuration is comparable to the
rudder one. In Figure 6.6 and Figure 6.7 are shown, respectively for the four
and three empennages airship, the lateral-directional closed loop responses to a
unit rudder step input, for both the control approaches, compared to the open
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Figure 6.5: aileron deflection after and before the saturation block
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Figure 6.6: Cross configuration lateral responses without and with control
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Figure 6.7: Inverted Y configuration lateral responses without and with control



Chapter 7

Airship Control in
Turbulent Air

7.1 The turbulence model

In the second part of the research work regarding the airship lateral-directional
control, the atmospheric turbulence model has been introduced.
The turbulence is a random process which describes the chaotic motion of

the air, in terms of velocity component fluctuations superposed on a mean wind.
For the purpose of the control application the mean wind velocity has been set
to zero.

The model chosen to represent the atmospheric turbulence is based on the
Power Spectral Density (PSD) function (7.1) of Dryden.[7, 8] The Dryden Con-
tinuous Wind Turbulence Model Simulink built-in block has been used to im-
plement the turbulent air into the simulation; this block is based on the Dryden
spectral representation( see Eq. 7.1) to add turbulence to the aerospace model
by passing band-limited white noise through appropriate forming filters.

Φu(ω) = 2σu2Lu
πV

1
1 + (Luω/V )2 Φp(ω) = σw

2

LwV

0.8(πLw/4b)1/3

1 + (4bω/πV )2

Φv(ω) = σv
2Lv
πV

1 + 3(Lvω/V )2

[1 + (Lvω/V )2]2 Φr(ω) = (ω/V )2

1 + (3bω/πV )2Φv(ω)

Φw(ω) = σw
2Lw
πV

1 + 3(Lwω/V )2

[1 + (Lwω/V )2]2 Φq(ω) = (ω/V )2

1 + (4bω/πV )2Φw(ω)

(7.1)
The intensity of turbulence is assumed as isotropic, having a maximum value

of σu = σv = σw = 7 m/s. [8] An unitary noise seeds has been also assumed
and the aircraft wingspan that figures in the above equation, has been referred
to the airship envelope volume: b = ∇1/3. The scale for the wave length of the
atmospheric turbulence has been chosen according to the low altitude model. [7]

The vector of the wind velocity plus gust is used to calculate the airship air
velocity affecting the aerodynamic and control actions.
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Figure 7.1: Block diagram of the linear system with turbulence and state feed-
back.

7.2 The pole placement with noise
In order to reduce the lateral-directional motions of the airship in turbulence,
the two control strategies have been fit to this more realistic scenario. The pole
placement method with noise [6] has been applied at first to the control strategy
that uses only the rudders; the state space representation with turbulence has
been written as follows:

ẋ
(4×1)

= A
(4×4)

x
(4×1)

+ B
(4×1)

u+ F
(4×4)

xn
(4×1)

(7.2)

The noise coefficient matrix F has been assumed as an identity matrix, while
the noise vector xn represents the turbulence effect, acting as an input for the
closed-loop system. A schematic diagram of the full-state feedback regulator
with noise is shown in Figure 7.1.

To place the closed-loop poles at desired locations while counteracting the
effect of the noise, a full-state feedback regulator has been designed, based on
the following control-law:

u = − K
(1×4)

x
(4×1)

− Kn
(1×4)

xn
(4×1)

(7.3)

The state space representation in turbulence has been carried out also for the
control approach involving both rudder and ailerons:

ẋ
(4×1)

= A
(4×4)

x
(4×2)

+ B
(4×2)

up
(2×1)

+ F
(4×4)

xn
(4×1)

(7.4)

Table 7.1: Controller gains with turbulence
Airship Configuration Kn

T Controller gains Knp
T

cross [ −2.42 8.48 7.34 0 ]
[

−20.20 48.05 −62.17 0
−4.71 13.92 0.29 0

]
inverted Y [ −2.73 10.70 14.50 0 ]

[
−18.62 47.41 −38.50 0
−0.19 4.23 19.75 0

]
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Figure 7.2: Matlab/Simulink 6Dof airship model with turbulence control, pole
placement method.

up
(2×1)

= −Kp

(2×4)
x

(4×1)
−Knp

(2×4)
xn

(4×1)
(7.5)

The regulator feedback gain matrices, K and Kp, have been selected ac-
cording to the stationary atmosphere condition (see Table 6.1), to place the
closed-loop poles at desired locations.

The regulator noise gain matrices, Kn and Knp, can be selected such that
the effect of the noise vector xn on the closed-loop system is minimized. The
ideal situation would occur when (F −BKn) = 0.

In our analysis the control matrix B has more rows than columns and is not
of full rank, then the overdetermined least squares problem (F − BKn) = 0
does not have a unique solution. Among the possible solutions, theKn solution
that minimize ‖F −BKn‖ has been found. In this way some effects of noise
on the closed-loop system still occur but, according to the calculation, they are
minimized.

The controller gains with turbulence, evaluated for the two airship config-
urations, are showed in Table 7.1. The airship Matlab/Simulink model with
the control feedback in atmospheric turbulence (managing the above mentioned
gains) is reported in Figure 7.2.

The simulation results regarding the lateral-directional control in turbulence
are reported in Figure 7.3 and Figure 7.2, respectively, for the cross and the
inverted Y configuration. The two control strategies for both the configurations
reduce the oscillatory motions. The attenuation is more effective when also
the ailerons are used. This control approach, however, requires high aileron
deflections to be effective against airship rolling motions in turbulence.
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Figure 7.3: Cross configuration lateral responses in turbulence.

7.3 Linear quadratic optimal control
Optimal control provides an alternative design strategy producing the best pos-
sible control system for a given set of performance objectives. This is done by
formulating an objective function which is be minimized in the design process.
In this case, the expenditure of the control signal energy is the main concern.
For vehicles with electric control system the term [u(t)]2 represents the expen-
diture of battery energy and must be restricted to save the energy for long
missions.

The linear quadratic regulator (LQR) is an optimal control technique that
realizes the feedback control loop through the optimization of the following
scalar function:

J =
∫ ∞

0
(xTQx+ uTRu) dt (7.6)

The symmetrical matrices Q and R, respectively semi-positive and positive
defined, are called “weight or cost matrices”. Assuming the dynamic system
controllable, the gain vector is given by:

K = R−1BTP (7.7)

where P is the positive defined solution of the algebraical “Riccati equation”:

ATP + PA− PBR−1BTP +Q = 0 (7.8)
In this particular control problem it is convenient to introduce into the cost

function definition (7.6) an exponential decay of rate.[14] Two new vectors x̄ =
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Figure 7.4: Inverted Y configuration lateral responses in turbulence.

xeαt and ū = ueαt have been introduced —which differ from the actual x and
u by the exponential term eαt—that enable to redefine the scalar function J as
follows:

J =
∫ ∞

0
e2αt(xTQx+ uTRu) dt (7.9)

In this case, the plant matrix that goes into the Riccati equation (7.8), taking
in account the exponential decay of rate α, becomes (A + αI). Similarly, K
becomesKpα. In order to observe the influence of the exponential decay of rate
on the poles of the lateral-directional dynamics, in Figures 7.5 and 7.6 have been
respectively reported the roots of the augmented stability matrix A − BKT

pα

for different values of α, compared to the poles chosen according to the pole
placement specifications.

In Figure 7.7 are shown the Matlab/Simulink 6Dof airship model with the
optimal controller in turbulence. It has been decided to apply the optimal
control technique in turbulence only to the control strategy involving both the
rudders and the ailerons that seemed to be the more suitable approach. For the
purpose of the optimal control the following cost matrices have been assumed,
as the best trade-off of a trial and error approach:
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Figure 7.5: root locus analysis, cross configuration

Q =


1 0 0 0
0 20 0 0
0 0 10 0
0 0 0 200

 R =
(

0.1 0
0 1

)
(7.10)

The resulting optimal control gain matrices are showed in Table 7.2.

Table 7.2: LQR controller gains with α = 1.1
Airship Configuration KT

pα

cross
[ 35.14 −154.30 −89.30 −147.14

12.05 4.11 −18.20 14.20
]

inverted Y
[

−256.13 128.54 −291.49 −42.14
0.66 −0.10 17.02 19.58

]
From the applications it could be noticed that the use of both rudder and

aileron is more suitable for the purpose of the lateral-directional regulation in
turbulence. In Figures 7.8 and 7.9 are plotted the optimal control results for
this strategy, assuming the exponential decay of rate α = 1.1. This particular
value comes from the analysis carried out in the previous section—see Figure 7.5
and 7.6.

Finally, for both the airship configurations, in Figures 7.10(a) and 7.10(b) is
shown a comparison between the terms uTu descending from the applications
of the pole placement with noise method and from the LQR with exponential
decay of rate technique. As is observed, the optimal control presents a lower
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Figure 7.6: root locus analysis, inverted Y configuration
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Figure 7.7: Matlab/Simulink 6Dof airship model with turbulence optimal con-
trol method.

value of the term uTu, whose integral with respect to the time means a lower
work on the control surfaces.
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Figure 7.8: Optimal control responses in turbulence, cross configuration
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Figure 7.9: Optimal control responses in turbulence, inverted Y configuration
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(b) uTu, inverted Y configuration

Figure 7.10: Surface deflections efforts in turbulence atmosphere.



Chapter 8

General Layout of the
Experimental Tests

8.1 Introduction

In the last part of the research work, a preliminary study regarding experimen-
tal tests on the airship AIUX15 has been carried out: the aim of this project

is to validate the airship aerodynamic database obtained by CFD RANS compu-
tations with experimental data. A new method for the calculation of the longi-
tudinal airship stability derivatives by using a towing tank, has been developed;
for the symmetry of the problem, once evaluated the longitudinal aerodynamic
coefficients, even the lateral-directional coefficients could be estimated.

The towing tank, differently from the wind tunnel, allows to reach higher
Reynolds numbers with smaller model dimensions and flow velocity; the main
characteristics of the towing tank of the Department of Marine Engineering
(DIN) at the University of Naples ”Federico II” (see Figure 8.1 ) are shown in
Table 8.1:

8.2 The mathematical model
The experimental tests are based on a 1-degree of freedom mathematical mass-
spring-damper model, defined as follows 8.1:

Iy θ̈ + bθ θ̇ + (k0 +∆k0)−M(t) = F (t)a (8.1)

where:

Table 8.1: Towing tank characteristics

Length Beam Depth Max Velocity Max Deceleration
140.2 m 9.0 m 4.25 m 10.0 m/s 3.0 m/s2
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Figure 8.1: The towing tank of the DIN

• Iy is the airship moment of inertia, without taking in account the effects
of the added mass;

• M(t) = Mθθ+Mθ̇ θ̇+Mθ̈ θ̈ represents the hydrodynamic action arising from
the airship oscillations. In particular the termMθ̈ represent the moment of
inertia due to the added mass, the termMθ̇ is the hydrodynamic damping;

• bθ = 2aθk0

ω
is the structural damping coefficient, depending on the re-

strain characteristics;

• k0 + ∆k0 is the elastic constant of the restrain. For the particular ge-
ometry of the restrain, the elastic constant could change according to the
different loads applied on it; the term ∆k0 represents the variation of the
elastic constant due to drag and the lift acting on the model that, as will
be explained in the following, could be safely ignored;

• F (t)a is the external moment applied to excite the system. The harmonic
force could be expressed as F (t) = F eiωt = (F ′ + iF ′′) eiωt.

The experimental method is based on the comparison of the exciting forces
applied on the airship model at zero speed and in motion, as reported in the
following equations:

Mθ̇ = 2aθIyω0
2

ωv

(
1−

¯F ′′v
¯F ′′0

)
Mθ = Aω0

2Iy − ωv2 (Iy −Mθ̈) (8.2)
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Table 8.2: Airship model characteristics

Vm c = ∇1/3 lm dm ∇ RN

4.5 m/s 0.355 m 1.050 m 0.272 m 0.045 0 m3 1.0 · 106

where:

• ¯F ′′0 is the imaginary force component at zero speed with frequency ω0;

• ¯F ′′v is the imaginary force component for the airship moving in the water,
with frequency ωv;

• A = k0 +∆k0

k0
takes in account the increment in elastic constant due to

the drag and the lift acting on the airship.

After evaluating respectively the damping and the elastic term of the hy-
drodynamic moment, the sought aerodynamic coefficients can be evaluated as
follows:

Cmα = Mθ

q∞Sc
Cmq = 2Mθ̇V∞

q∞Sc2 (8.3)

The method introduced in this paragraph has been applied in a previous
research work to evaluate the stability derivatives for an aircraft by wind tunnel
tests [20].

8.3 Preliminary analysis
The dimensions of the airship model, the maximum forces and moments on the
restrain, and the speed of the model during the tests have been determined
on the basis of preliminary analysis carried out from the CFD aerodynamic
database, having RN = 4.7 · 106. The Reynolds number for the airship AIUX15
has been calculated, assuming the reference cord (c = ∇1/3), the airship maxi-
mum velocity of 50 km/h and the air temperature at sea level as 15◦.

Some consideration on the maximum weight and size of the model, related
to the towing tank characteristics, led to the choice of the following model
dimensions (Table 8.2). The scale factor have been assumed to be λ = 14: this
is the best compromise to obtain a model that realized a significative RN and
remaining manageable.

Another advantage in using a towing tank instead of a wind tunnel is the
reduction in the frequency of the oscillation for the test. In Table 8.3 are
compared the preliminary values of the natural frequencies of the airship motion
in air and in water. These values, that during the test will be measured to
evaluate the experimental stability derivatives 8.2, in this analysis have been
obtained from the numerical CFD stability derivatives. The comparison has
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Table 8.3: Frequency comparison

Fluid λ ω0(1/s) ωv(1/s) ωv

ω0
F ′′

v

F ′′0
Vm m/s

AIR 6.5 22.2 19.97 0.90 395.8 20.0
WATER 14 4.78 2.19 0.46 84.1 4.5

Figure 8.2: Cross flexure pivot

been carried out for the same Reynolds number of 1.0 · 106 and assuming an
initial k =150 N m/rad. The significative advantages in using water as test fluid
are the reduction in speed, in model dimensions and in frequencies; there is also
a lower value of the ratio ωv

ω0
that means lower error on the measurements.

The restrain chosen and designed for the test is a cross flexure pivot shown
in Figure 8.2. Cross flexure pivots do not require lubrication and are of very
simple and robust construction, but they are not suitable for very large angle of
rotation. For the design of this restrain the method developed by Wittrick [22]
has been followed, obtained for the dimensions shown in Table 8.4 a value of
k0 =295 N m/rad and A = 1 as, from the calculations, the term ∆k0 could be
safely ignored.

8.4 Model test arrangement
In the last part of this work, the model arrangement inside the towing tank
has been expected. The main problem with an underwater test is the need to
match the deep water condition. In this way a good correlation between the
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Table 8.4: Cross flexure pivot main dimensions

Length Beam of each strip Tickness
80 mm 25 mm 3 mm

Figure 8.3: Voice coil actuator

model test data and the real data is ensured. The model should not generate free
surface effects, so the airship has to be placed enough underwater. According
to the standard practice for the submarine [21], the deep water dept h has to be
three-four times the maximum diameter of the body: in this case h = 1.20 m.
During the test will be also used a carter with an aerodynamic section to cover
the connection beam at the free surface in order to limit the undesirable wave
generation.

It was also estimated that the maximum force F = 43 N, that the actuator
must exert on the model of the airship in order to cause an oscillation of θ = 2.5◦,
applied at a distance of about 30 cm from the constraint. The exciting force will
be applied by using a voice coil 8.3: this is a small linear actuator that uses
a permanent magnet field and a coil winding to produce a force proportional
to the current applied to the coil. The main advantage in using a voice coil
actuator is the possibility to easily introduce a servo control on the intensity
and on the frequency of the exciting force.



Chapter 9

Conclusion

9.1 Linear analysis
The main objective of this research work has regarded the development of new
methods in analyzing and evaluating the stability and the control of the airship.
The theoretical approach to airship dynamic model and then the numerical
approach in developing the 3DoF and 6DoF simulation models represented basis
of the work.

At first the mathematical linearized longitudinal model has been applied to
a small airship at the nominal speed and solved with an approximate approach.
Airships static stability, due to their fuselage shape without wing and due to
their nature of buoyant lift cannot refer to the aircraft standard methods in
appraising static stability. In the performed analysis the effects of the weight
have been taken in account, and the trim equations in heaviness condition have
been developed and solved.

With the introduction of an innovative method, based on the knowledge of
the main geometrical and aerodynamical characteristics of the airship, it was
possible to demonstrate that an airship could carry more weight without relevant
consequences on stability and drag.

Observing the numerical test cases on the AIUX15, the airship in heaviness
condition could have the same stability characteristic of the neutral buoyancy
one’s, keeping down the excess of weight. Furthermore, thanks to the thrust
vectoring the airship at hover could sustain the exceeded weight aiming vertical
take-off and landing too. As expected, the stability modes were quite distinct
exponential subsidence modes for these cases.

For significant excess of weight, instead, the airship would required high
incidence to flight. Regarding to the AIUX15, the stability at equilibrium in
the range of negativity of Cmα, over 15◦ of incidence has been investigated.
In this conditions the airship seemed to be stable too, but with a significant
total drag, that would require a thrust increase, and with oscillatory modes of
motion.

All that confirmed that for an airship the value of Cmα has not the same
relevance on the stability as for a conventional aircraft. The significant difference
between a neutral buoyancy condition and the heaviness conditions, as could
guessed, was due to the effect of the excess weight on X and Y axes, (mg −
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B) cosΘe and (mg −B) sinΘe respectively, which tended to reduce or increase
the total speed according to its direction were nose up or nose down.

Then the proposed method had been extended also to the lateral motions, to
compare the stability and control characteristics of two different typical tail ar-
rangement configuration. The cross empennages airship in a heaviness condition
denoted a drag lower than the inverted Y airship drag, due to the equilibrium
attitude without control. The main advantage in having a three empennages
configuration is the improvement of the airship payload (approximately 10%
increase), reducing the fins number.

9.2 Simulation model
In the second part of the research, it was reported about the development of
the FDM model for an unmanned airship in stationary and turbulence atmo-
sphere, intending this vehicle for use at low altitude operations. The details
of the implementation of a specific Matlab/Simulink dynamic model were also
reported. This model has been applied to analyze the lateral-directional be-
havior at the nominal speed for two different empennages configurations. A
satisfying closed-loop control system that reduces the airship oscillatory rolling
motions was achieved. The simulation of flight responses to assigned conditions
and inputs enabled to compare two different control strategies regarding the use
of rudders (two vertical aero-surfaces in the “cross” tail configuration and one
in the “inverted-Y” tail configuration) and of the ailerons (i.e. elevators with
imposed anti-symmetrical rotations, both in the “cross” and in the “inverted-
Y” tail configuration). The analysis of the feedback control laws for the 6DoF
model has been carried out by linearization around the operational trim condi-
tions. The closed-loop flight control by means of the state-space approach were
achieved, in order to limit the oscillatory rolling motions induced by the rud-
der deflections. A low ailerons roll control power, as compared to the rudders
control power, resulted from our analysis, leading initially to an unsatisfactory
closed-loop control, especially for the four empennages configuration.

A Dryden power spectral density function was implemented to model the
atmospheric turbulence in the simulation. The closed-loop control in turbulence
was achieved firstly by applying the pole placement with noise method. Both
the control strategies for the two airship configurations reduced the oscillatory
motions in turbulence. The control approach using both the rudders and the
ailerons resulted quite satisfactory.

Finally the LQR optimal control technique was introduced with an expo-
nential decay rate applied to the strategy involving both rudder and aileron.
Using this method it was possible to reduce the amount of control surface work
to control the lateral-directional oscillations in turbulent air.



Appendix A

The Added Mass

The added mass contribution, in the equations of motion, is take in account;
in fact the airship motions accelerate the surrounding air, yielding to it energy.
For the airship, the added mass effects could be approximately referred only
to the envelope, for which the added mass term could be calculated using the
theoretical formulas for the prolate ellipsoid [4], for which, due to the symmetry
of the body, the added mass matrix is diagonal:

Xu̇ = −4
3πρAab

2k1

Yv̇ = Zẇ = −4
3πρAab

2k2

(A.1)

where:

k1 = α0

2− α0
k2 = β0

2− β0

and ρA is the density of the fluid. For a prolate spheroid with a > b, where
b represents the maximum radius of the airship, the two coefficients assume the
following expression [4]:

α0 =
2
(
1− e2)
e3

(
1
2 ln 1 + e

1− e − e
)

β0 = 1
e2 −

1− e2

2e3 ln 1 + e

1− e
(A.2)

where e is the eccentricity of the longitudinal section:

e =

√(
1− a2

b2

)
The additional moments of inertia are given by [4]:

Kṗ = 0

Nṙ = Mq̇ = −4
3πρAab

2 b
2 + a2

5 k′
(A.3)

where:
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k′ = e4 (β0 − α0)
(2− e2) [2e2 − (2− e2) (β0 − α0)]

The added mass matrix of an airship, due to the presence of the fins, is not
strictly diagonal; however, the non-diagonal terms are such smaller than the
others, that could be safely ignored [18].
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