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SUMMARY

Hamartomatous polyposis syndromes are a rare group of
hereditary autosomal dominant disorders that comprise less than
1% of all hereditary colorectal cancers. However, these
hamartomatous polyposis syndromes have a malignant potential
for the development of colorectal cancer as well as extracolonic
cancers. The hamartomatous polyposis syndromes include juvenile
polyposis syndrome (JPS); PTEN hamartoma tumor syndrome, which
includes Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba
syndrome (BRRS), and Peutz-Jeghers syndrome (PJS). Due to the rarity
of these conditions, a thorough understanding of their clinical
presentation, including extraintestinal manifestations, and genetics is
important. For pediatric gastroenterologists, understanding how to
recognize and establish the appropriate diagnosis and cancer risk and
following appropriate screening and surveillance guidelines is crucial for
early detection to minimize the risk of carcinoma as children reach
adulthood.

Peutz-Jeghers syndrome (PJS) is an autosomal dominantly inherited
syndrome characterized by mucocutanoeus pigmentation, multiple
hamartomatous polyps in the gastrointestinal tract and an increased risk of
cancer at a young age. Inactivating germ-line mutations in the tumor
suppressor gene STK11/LKB1 have been detected in approximately 80%
of patients.

The aim of this work is to clarify the molecular basis of the disease in
Italian PJS patients.

We investigate the STK/1/LKBI gene mutations in a well-characterized
series of 9 unrelated Italian PJS patients, by using a combination of PCR,
RT-PCR, DNA sequencing, Southern blot analysis and real-time
polymerase chain reaction techniques.

We have characterized the specific STK11 mutation in 6 probands, and
identified 2 truncating mutations (1 novel and 1 known mutation), one
missense known mutation in the exon four, and two novel small in-frame
deletions in the exon six. Finally, we have found an intra-exonic in-frame
deletion encompassing exons 2 and 4: the possible mechanism leading to
this genomic rearrangement is most likely an Alu-Alu homologous
recombination.

In our study point mutations, small scale deletions/insertions and exonic
STK11 deletions account for about 67% of PJS; mutations in other
STKI11 related genes examined have not be found. Other gene



inactivating methods, such as chromosomal rearrangements mediated by
Alu-Alu homologous recombination, which cannot be detected by
routinely molecular biology screening methods, might be responsible for
PJS in mutations negative population subset. However, the existence of
genetic heterogeneity cannot be excluded.

The “PTEN hamartomatous tumor sindrome” (PHTS), include a group af
syndromes that are caused by germline mutations of the tumor suppressor
gene PTEN (phosphatase and tensin homolog deleted on chromosome
ten). They belong to hamartomatous polyposis syndromes family, a rare
and heterogeneous group of hereditary autosomal dominant disorders
characterized by multiple polyps in the gastrointestinal tract and greatly
increased risk of developing malignant tumours in multiple tissues.

The PTEN tumor suppressor gene affects multiple cellular processes
including cell growth, proliferation, and cell migration by antagonizing
phosphatidylinositol 3-kinase (PI3K)/Akt phatway.

we have first screened the PTEN coding region in three italian patients
with clinical diagnosis of PHTS by using a combination of RT-PCR,
direct sequencing of the amplified fragments and real-time polymerase
chain reaction techniques. Afterwards, in periferal blood cells of these
patients, we have defined the expression profile of other genes directly
related to PI3K/Akt phatway, as cMYC, COX2, CCNDI1 and TNFa, or
involved in colorectal cancer onset, as APC, DKC1 and hTERT.

We have characterized the specific PTEN mutation in 1 subject, the
c406C->T (CI136R) mutation, a missence mutation of the catalytic
domain just described in literature before. The others two patients showed
a low level of PTEN mRNA expression, respectively of 0,3 and 0,4 fold
change, related to a healthy controls. All three patients were characterized
by an high level of COX2, TNFa and CCNDI1 genes expression and
decrease expression of APC gene.

Our data represent the first evidence of a PI3K/Akt phatway
dysregulation in periferal blood cells of PHTS patients that probably
determine a pro inflammation attivation. Knowledge of specific molecular
phatways costitutively dysregulated in this syndrome could be helpful in
optimizing molecular targeted therapy and preventative care.



RIASSUNTO

Le sindromi amartomatose sono un gruppo di disordini
autosomici dominanti molto rari, rappresentate dalla poliposi
giovanile (JPS), dalla sindrome di Peutz-Jeghers (P]S), e dalle
sindromi amartomatose associate al gene PTEN (PHTS); queste
includono a loro volta la sindrome di Cowden (CS) e la sindrome
di Bannayan-Riley-Ruvalcaba (BRRS).

Pur essendo molto rare, esse sono tuttavia associate ad un aumento
significativo del rischio di sviluppare un tumore del colon, cosi
come di altri tipi di tumori extracolici, le cui sedi variano tra le
varie sindromi. Appare, quindi, evidente 'importanza di poter
preventivamente diagnosticare,ciascuna sindrome al fine di
indirizzare i pazienti ad una specifica ed adeguata sorveglianza.
L’analisi molecolare dei geni candidati svolge un ruolo cruciale sia
nella diagnostica, che nella ricerca dei processi molecolari alla base
delle sindromi amartomatose. Inoltre lo studio delle alterazioni dei
pathways molecolari coinvolti nell’insorgenza di tali sindromi
rappresenta un importante mezzo, per chiarirne i meccanismi
molecolari e individuare nuovi e pit mirati bersagli terapeutici.

A tal fine sono stati analizzati 9 pazienti affetti da sindrome di
Peutz-Jeghers e 3 soggetti affetti da sindrome di Cowden
provenienti da altrettante famiglie non imparentate tra loro.
Mutazioni germinali nel gene oncosoppressore STK11/LKB1, che
codificano per una proteina della famiglia delle serine-treonine-
chinasi, la serina-treonina-chinasi 11 (STK11), sono responsabili
dell'insorgenza della PJS. La chinasi LKB1 fosforila ed attiva 14
chinasi a valle, attraverso le quali regola numerosi processi
cellulari tra cui quello apoptotico, della regolazione della
proliferazione cellulare, della polarita cellulare e della regolazione
del metabolismo.

Le mutazioni a carico del gene STK11/LKB1 rendono conto di una
percentuale di casi di PJS che varia tra il 30 e 70% ed & quindi di
grande importanza chiarire le basi molecolari dell’insorgenza della
malattia nei casi che non presentano mutazioni puntiformi a carico
del gene STK11/LKBI.

L’analisi molecolare della regione codificante del gene
LKB1/STK11, eseguita in 9 individui con diagnosi clinica di PJS ha



permesso l'identificazione e la caratterizzazione di tre mutazioni
non descritte in letteratura e di due gia precedentemente descritte.
Nella nostra casistica la mutazione e stata identificata nel 60% dei
casi, coerentemente a quanto indicato in letteratura. Nei soggetti
affetti da PJS, negativi per la presenza di mutazioni puntiformi, nel
gene STK11 ¢ stata effettuata un’analisi sia qualitativa che
quantitativa del messaggero utilizzando le tecniche di RT-PCR e di
real-time-RT-PCR. Per valutare la presenza di eventuali delezioni
intrageniche sono stati effettuati esperimenti di long-range PCR sul
DNA genomico e di Souther Blotting. I frammenti di peso
molecolare inferiore a quello atteso, evidenziati in seguito ad
elettroforesi dei prodotti di PCR, sono stati caratterizzati mediante
sequenziamento diretto dei frammenti amplificati. In fine é stata
poi eseguita 1'analisi in silico della sequenza del gene STK11/LKB1
utilizzando il programma RepeatMasker al fine di effettuare una
precisa localizzazione delle sequenze ripetute presenti all’interno
della sequenza genomica.

In uno dei soggetti analizzati & stata identificata, a livello del
messaggero, la perdita degli esoni 2 e 3 Attraverso l'analisi di
sequenza é stato possibile identificare la presenza di due sequenze
Alu, appartenenti alla stessa sotto-famiglia (AluY), in
corrispondenza dei “break-point” della delezione che si trovano
proprio all'interno della ripetizione di 26 coppie di basi che
costituisce il “core” di queste sequenze.

Nei tumori umani l'elevata densita di sequenze Alu e stata spesso
associata ad un’elevata frequenza di riarrangiamenti genomici,
quali delezioni o inversioni, che non sempre vengono rilevati
mediante le comuni tecniche di biologia molecolare, e che
potrebbero giustificare la percentuale di casi di PJS, nei quali non
viene identificata la specifica mutazione a carico del gene
STK11/LKBLI.

La sindrome di Cowden é dovuta a mutazioni nel gene
oncosopressore PTEN, che codifica per una proteina con attivita
tirosina-fosfatasica che determina l'inibizione della via PI3K/ Akt.

I pazienti affetti da noi analizzati, presentavano caratteristiche
fenotipiche tipiche di tale sindrome. L’analisi molecolare e stata
condotta mettendo a punto in primo luogo una reazione di RT-
PCR e sequenza diretta del prodotto di PCR, a cui



successivamente e seguita la valutazione dei livelli di espressione
del messaggero del gene PTEN. In uno dei tre pazienti e stata
dunque identificata una mutazione puntiforme a livello dell’esone
5 del gene, successivamente confermata mediante amplificazione e
sequenziamento diretto sul DNA genomico del soggetto. A questa
prima analisi e seguita la quantizzazione relativa dei livelli
d’espressione del gene, effettuata mediante real-time PCR, che ha
evidenziato una marcata diminuzione di espressione del gene
PTEN nei due pazienti negativi per la presenza di mutazioni nella
regione codificante del gene.

Infine, per meglio comprendere i meccanismi molecolare coinvolti
nell’insorgenza delle sindromi PHTS, e stato effettuato uno studio
sui livelli di espressione di alcuni geni correlati al pathway
molecolare PIBK/Akt o comunque coinvolti nell’insorgenza dei
CRC, quali APC, cMYC, CCND1, COX-2 e TNFa, in linfociti
estratti da sangue periferico. Tale analisi ha evidenziato un
significati aumento nell’espressione nei pazienti affetti da CS
dell’espressione della COX-2, CCD1 e TNFa, mentre risulta
diminuita 1'espressione del gene APC. Queste indicazioni, che
certamente  necessitano  di  ulteriori  approfondimenti,
rappresentano pero la prima evidenza di una possibile attivazione
del pathway  PI3BK/Akt in linfociti di sangue periferico
provenienti da pazienti con mutazioni del gene PTEN. Mutazioni
di tale gene dunque determinare un’attivazione molto precoce di
segnali pro-infiammatori che a lungo andare possono alterare la
crescita cellulare, spingendo cosi la cellula verso la trasformazione
neoplastica.
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Introduction

INTRODUCTION

A more individualized approach to cancer treatment and prevention will
depend upon the ability to identify and understand the molecular changes
that drive the tumorigenic process in each individual tumor. The
advancement of DNA sequencing technologies spurred by the human
genome sequencing project is allowing researchers to determine how
many somatic mutations exist in a given tumor (Heinen C. D., 2009). The
number of mutations may be as high as 80 or more (Sjoblom T. et al.,
2006, Wood L.D. et al., 2007) or it may be as small as eight to ten (Ley
T.J. et al., 2008), these differences likely are due to the tumor type, the
methods involved for detecting alterations and the threshold for predicting
whether an alteration is significant to phenotype. Determining which
variations drive tumor phenotype will depend upon an ability to ascertain
the cellular function affected by each somatic change. The relationship
between genotype to phenotype remains the great challenge of basic
cancer research and the key to developing effective targeted therapies.
Nothing, perhaps, demonstrates this challenge better than contemplating
how much, yet how little, we understand about the relationship between
genotype and phenotype in hereditary colorectal cancer (CRC) (Heinen C.
D., 2009). Because of the high frequency of cases in the population, of the
ability to identify and isolate benign precursor lesions in the colon, and of
hereditary diseases with increased predisposition to CRC development,
colon cancer has been one the most studied cancers and it serves as a
model for understanding basic principles of tumorigenesis that may apply
to all tumor types (Fearon E.R., Vogelstein B., 1990).

More than 1 million new cases of colorectal cancer (CRC) are diagnosed
worldwide each year. The CRC is the 3rd most common malignancy and
the 4th most common cause of cancer mortality worldwide. (Tenesa A. et
al. 2009).

Approximately 5% of CRC cases are associated with highly penetrant
inherited mutations and clinical presentations that have been well-
characterized. Kindred and twin studies estimated that approximately
30% of all CRC cases are an inherited form of the disease, are not
completely understood. They are likely to be caused by alterations in
single genes that are less penetrant but more common than those
associated with the well-characterized syndromes. Inherited CRCs are
also likely to be caused by alterations in multiple susceptibility loci that
have additive effects. A precise understanding of the genetics of inherited
CRCs is important for identifying at-risk individuals, improving cancer
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surveillance and prevention strategies, and developing better diagnostic
and therapeutic approaches. (Lichtenstein P, et al. 2000; Grady WM.
2003).

Between 2% to 5% of all colon cancers arise in the setting of well-defined
inherited syndromes. Each is associated with a high risk of colon cancer.
Clarification of predisposing genes allows for accurate risk assessment
and more precise screening approaches. (TAB 1). The syndromes of CRC
are defined on the basis of clinical, pathological, and, more recently,
genetic findings. Conditions that express adenomatous polyps include
Lynch syndrome (also called hereditary nonpolyposis colorectal cancer)
familial adenomatous polyposis (FAP), and MUTYH-associated
polyposis (MAP) (Jasperson KW et al., 2010).

Lynch syndrome, accounting for 2%—4% of all CRCs (Stoffel E, et al.
2009), is the result of a germline mutation in a class of genes involved in
DNA Mismatch Repair (MMR), including hMSH2, hMLH1, hMSH6, and
hPMS?2, and it is characterized by a high level of microsatellite instability
(MSI-H). The lifetime risk is 40%—-60%, and it is many greater than the
estimated risk for CRC in general population. Lynch syndrome is also
responsible for approximately 2% of all endometrial cancers (Hampel H.
et al, 2006).

FAP is the second-most common inherited CRC syndrome, with a
prevalence of 1 in 10,000 individuals. Characteristic features of FAP
include development of hundreds to thousands of colonic adenomas
beginning in early adolescence, and inevitable CRC in untreated
individuals. The average age of CRC diagnosis if untreated is about 39
years; nearly 7% develop CRC by age 21 and about 95% by age 50. FAP
and attenuated FAP are caused by germline mutations in APC gene ,
which encodes a tumour suppressor that is part of the WNT signalling
pathway. The characterization of APC mutation in a proband confirms the
diagnosis, allowing precise identification of at risk-relatives who have
inherited the disease (Jasperson KW et al., 2010). Hamartomatous polyps
are the primary lesions in hamartomatous syndromes; they include
juvenile polyposis syndrome (JPS), PTEN hamartoma tumor syndrome,
which includes Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba
syndrome (BRRS); and Peutz-Jeghers syndrome (PJS). Finally,
hyperplastic polyposis (HPP) is an unusual condition that has a
substantial cancer risk and must be distinguished from the other
conditions. All of these conditions are inherited, autosomal-dominant
disorders, except MYH associated polyposis (MAP), which is autosomal-
recessive, and HPP, which is rarely inherited. Attenuated FAP is
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associated with small number of adenomas so his phenotype can be
confused with Lynch syndrome, or sporadic polyps. Although clinical
similarities do exist, each syndrome has distinct cancer risks,
characteristic clinical features, and separate genetic etiologies. Diagnosis
and management recommendations are based on these divergent features
(Jasperson KW et al., 2010).
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Table 1: Hereditary colon cancer syndromes
JP, juvenile polyps; HP, hyperplastic polyps; PJ, Peutz-Jeghers; BRRS,
Bannayan-Ruvalkaba-Riley syndrome;CHRPE, congenital hypertrophy of the
retinal pigment epithelium; CRC, colorectal carcinoma; SCTAT, sex cord tumors
with annular tubules; AD, autosomal dominant; AR, autosomal recessive; ?,
unknown at present; DD, differential diagnosis; ™ HNPCC and BHD are not
themselves polyposis syndromes, but are included in the DD of polyposis
syndromes. According to recent studies, BHD is not associated with intestinal

polyps;

From: Arztebl Int. 2010 March; 107(10): 163-173.
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1.1 Hereditary Hamartomatous Polyposis Syndromes.

Hamartomatous polyposis syndromes are a rare group of hereditary
autosomal dominant disorders that comprise less than 1% of all hereditary
colorectal cancers. (Wirtzfeld DA et al., 2001) Hamartomatous polyps are
benign entities comprised of cells that are indigenous to the area in which
they are found (ie, all cell layers with a mesenchymal predominance).
However, these hamartomatous polyposis syndromes have a malignant
potential for the development of colorectal cancer as well as extracolonic
cancers. The progression of hamartomatous polyps to carcinoma is still
being elucidated. Unlike adenomatous polyps, in which malignant
transformation progresses through the adenoma-carcinoma sequence via a
gatekeeper or caretaker defect, in hamartomatous polyps, a proposed
hamartoma-carcinoma sequence hypothesis involves a landscaper defect
in which stromal elements create a local environment that promotes
epithelial dysplasia and ultimately leads to carcinoma (Kinzler KW et
al,1998). The hamartomatous polyposis syndromes include juvenile
polyposis syndrome (JPS); PTEN hamartoma tumor syndrome, which
includes Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba
syndrome (BRRS), and Peutz-Jeghers syndrome (PJS). Due to the rarity
of these conditions, a thorough understanding of their clinical
presentation, including extraintestinal manifestations, and genetics is
important. For pediatric gastroenterologists, understanding how to
recognize and establish the appropriate diagnosis and cancer risk and
following appropriate screening and surveillance guidelines is crucial for
early detection to minimize the risk of carcinoma as children reach
adulthood (Manfredi M, 2010).

Juvenile polyps are the most common type of pediatric gastrointestinal
polyps. Solitary juvenile polyps can develop at any age, though they
appear most frequently in preschool children and have an incidence of 2%
in children under 10 years of age. In JPS, affected individuals develop
multiple gastrointestinal juvenile polyps, predominantly in the colon,
though the condition may also affect the rest of the gastrointestinal tract
(Desai DC. Et al., 1995). Multiple extraintestinal manifestations have
been reported in approximately 11-20% of cases with JPS, and they can
include heart defects, polydactyl, clubbing, intestinal malrotation, Meckel
diverticulum, hydrocephalus, macrocephaly, hypertelorism, cleft lip, cleft
palate, double renal pelvis and wureter, bifid uterus and vagina,
undescended testes, and supernumery teeth. (Chow E. et al. 2005)
Individuals with JPS are at risk for the development of colorectal, gastric,
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small intestinal, and pancreatic cancers. The risk of developing colorectal
cancer from solitary juvenile polyps is thought to be negligible or
nonexistent. However, individuals with JPS are at risk for developing
adenomatous change and carcinoma. The incidence of colorectal cancer
has been reported to be to 20%, with a mean age of 34 years (age range,
15-59 years) and an estimated cumulative colorectal cancer risk of 68%
by 60 years of age (Schreibman IR. et al., 2005). The surveillance
protocol for this disease recommends the continue screening until 70
years of age if a genetic mutation is found, and no polyps are detected at
the time of the initial endoscopy; however, if no genetic mutation is found
and no polyps are detected at the initial endoscopy, repeat endoscopy
should be performed every 1-2 years until 35 years of age. (Manfredi,
2010).

The PTEN hamartoma tumor syndromes (PHTS) are a collection of rare
clinical syndromes characterized by germline mutations of the tumor
suppressor PTEN (phosphatase and tensin homolog deleted on
chromosome 10. They includes Cowden’s syndrome (OMIM 158350),
Bannayan—Riley—Ruvalcaba syndrome (OMIM 153480), and all
syndromes that are caused by germline mutations of the tumor suppressor
gene PTEN (Wirtzfield et al. 2001). The PHTS are a spectrum of
syndromes with variable clinical manifestations characterized by aberrant
growth. Hamartomas are a histologically distinct subtype of benign
tumors in which cells maintain normal differentiation but are disorganized
with respect to architecture. Cowden syndrome (CS) is the prototypic
syndrome, characterized by mucocutaneous lesions, benign hamartomas,
macrocephaly, and increased predisposition to breast, thyroid, and
endometrial carcinoma. Lhermitte—Duclos (LD), a variant of CS, is
characterized by dysplastic gangliocytomas of the cerebellum, which can
lead to hydrocephalus, ataxia, and seizures (Hobert JA, Eng C., 2009). CS
is an autosomal dominant syndrome, with a reported incidence of 1 in
200,000 individuals. This most likely remains an underestimation, as CS
is associated with a high degree of phenotypic variability and its hallmark
features are under-recognized within the medical community (GM
Blumenthal and PA Dennis 2008). Hamartomatous polyps throughout the
gastrointestinal tract are associated with this syndrome but are not as
common as the extraintestinal findings associated with the syndrome,
Gastrointestinal polyps in CS are typically asymptomatic, and can occur
anywhere in the GI tract, with colonic polyps present in 60-90% of
patients. Their incidence varies in the literature, ranging anywhere from
30% to 85% (Marra C. et al. 1994; Starink TM, et al. 1986). 1t is
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generally thought that the incidence of gastrointestinal polyps in CS is
less than that of BRRS, though this belief is debated in the literature.
Benign thyroid lesions occur in up to 75% of patients with CS, including
adenomas, hamartomas, multinodular goiter, and Hashimoto’s thyroiditis.
Up to half of women with CS are afflicted with benign breast disease,
which can be extensive and bilateral. Cowden syndrome patients are at
increased risk to develop breast, thyroid, and endometrial cancer. The
lifetime risk of breast cancer in women with CS is estimated to be as high
as 50%, as compared to 11% within the general population. In addition to
breast, thyroid, and endometrial cancers, other malignancies have
anecdotally been reported to be increased with CS, including melanoma,
renal cell carcinoma, and gliomas (Eng C, 2003).
Bannayan—Riley—Ruvalcaba sindrome is characterized by macrocephaly,
benign hamartomas, pigmented macules of the glans penis, lipomas,
hemangiomas, and the developmental delay, or mental retardation. Other
phenotypic features of BRRS disorder include thyroid abnormalities such
as Hashimoto’s thyroiditis, high-arched palate overgrowth of prenatal or
postnatal onset, macrosomia, hypotonia, joint hyperextensibility,
downward slanting palpebral fissures, frontal bossing, hypoglycemia,
seizures, and cafe” au lait spots. These phenotypic features are highly
variable, although they appear to cluster within a given family. There is
significant phenotypic overlap between CS and BRRS with common
features including hamartomas, macrocephaly, and thyroid abnormalities.
Interestingly, identical PTEN mutation shave been found in patients who
present with phenotypic manifestations characteristic of either BRRS or
CS. Even individuals within a single family that have the same germline
PTEN mutation can have phenotypic features more consistent with either
BRRS or CS. Same authors have suggested that BRRS and CS represent
a single disorder with variable phenotypic expression and age-related
penetrance, and have questioned whether the distinction between BRRS
and CS is clinically relevant. (Pilarski R, Eng C., 2004)

Peutz—Jeghers syndrome (OMIM 175200) is an autosomal dominant
hamartomatous polyposis syndrome characterized by melanotic
mucocutaneous hyperpigmentation and GI hamartomas, which occur
anywhere from the stomach to the anus with a prevalence of
approximately one in 200,000. The pigmentation, by melanin, has the
appearance of freckle-like spots on the face, lips, mouth, and anal region,
presenting in more than two thirds of patients with PJS (Winship IM,
2008). The numbers of polyps present in each case are usually fewer than
20, and these polyps vary in size from several millimeters to more than 5
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cm in diameter. In contrast to JPS, in which the polyps occur in the colon,
Peutz—Jeghers hamartomatous polyps are most prevalent in the small
intestine (64%), but they may also be present in the colon (53%), the
stomach (49%), and rectum (32%). The disease, associated with
inactivating mutations in lkb1/Stk11 gene, has variable penetrance, even
within families; some patients only manifest with hyperpigmentation,
while others may manifest with both pigmentation and intestinal polyps
(McGarrity TJ, Amos C 2006). The diagnosis of PJS is based upon
clinical findings and the histologic appearance of the polyps. Individuals
with PJS are at risk for the development of colorectal, gastric, small
intestinal, esophageal, and pancreatic cancers. PJS patients are also at risk
for extraintestinal cancer such as lung, breast, ovarian, testicular, and
endometrial cancers. A meta-analysis showed that the risk of developing
any type of cancer by 64 years of age was 93% (relative risk of 15) and
found that the relative risk of developing any type of cancer was 47% by
65 years of age in PJS patients with known genetic mutations in
LKBI1/STK11. More recently, a study looking at 419 PJS patients, 297 of
whom had documented mutations, showed the risk of cancer to be 60%
by 60 years of age and 85% by 70 years of age. This same study reported
the risks of developing gastrointestinal cancer (31%), breast cancer
(31%), gynecologic cancer (18%), pancreatic cancer (7%), and lung
cancer (13%) by 60 years of age. Individuals with PJS are also at risk for
developing rare sex cord tumors. Women are at risk for sex cord tumors
with annular tubules that are benign, and men are at risk for developing
Sertoli cell tumors, which result in feminization (Jasperson KW, et al.
2010).

1.2 Genetic of the Hereditary Hamartomatous Polyposis Syndromes.

Juvenile polyposis syndrome (JPS) has been commonly associated with
three genes: SMAD4, BMPRIA, and ENG, all of which are part of the
transforming growth factor-f (TGFp) superfamily of proteins. The
SMAD4 gene, located on chromosome 18q21.1, was first identified;
germline mutations in the SMAD4 gene have a prevalence of 20% in JPS
patients. (Jasperson KW, et al. 2010). Patients with the SMAD4 mutation
are more likely to have upper gastrointestinal polyps. Multiple types of
mutations have been reported in the SMAD4 gene, including missense,
nonsense, deletions, and insertions; however, the most common mutation
is the 4-base pair deletion in exon 9.
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The bone morphogenetic protein receptor type IA (BMPRIA) gene is
located on chromosome 10g22-23 and was reported by Howe and co-
worker in 2001. (Howe JR et al. 2001). Germline mutations in the
BMPRIA gene have a prevalence of 20% in JPS patients. Mutations of the
endoglin gene (ENG) have recently be identified in 2 patients with JPS;
however, its role as a predisposition gene still requires additional
confirmation. The ENG gene is located on chromosome 9q34.1.47 ENG
encodes the protein endoglin, which is an accessory protein of the TGF-f
signalling pathway (Jasperson KW, et al. 2010).

The involvement of the PTEN gene mutation in patients with juvenile
polyposis is a controversial topic, they are present in five percent of
familial JPS which initially led to speculation that PTEN mutations might
lead to some cases of JPS. However, upon further study, it was found that
these patients had unrecognized Cowden’s syndrome (Howe JR et al.
2001; Eng C. 2001). This finding may not exclude PTEN involvement in
some cases of JPS, and it might indicate a biological synergy of the
BMPR1A and PTEN genes. In addition, several infants with very
aggressive phenotype of JPS, characterized by generalized polyposis and
often diagnosed before 2 years of age, were found to have germline
deletions that encompass both PTEN and BMPR1A. These children’s
clinical manifestations often overlap with those seen in Cowden’s
syndrome or Bannayan— Riley—Ruvalcaba syndrome (BRRS). Given the
high occurrence of breast and thyroid neoplasms in patients with
Cowden’s syndrome, the screening for these cancers should be
undertaken if a PTEN mutation is identified in JPS patients (Hui-Min
Chen & Jing-Yuan Fang 2009).

Approximately 85% of patients with Cowden syndrome and more than
60% of patients with BRRS were noted to carry germline mutations in the
PTEN tumor suppressor gene, located on chromosome 10923 (Eng C.
2000). The PTEN protein inhibits cell growth and proliferation by acting
as a negative regulator of the AKT pathway (Zhou XP, et al. 2003) and
somatic PTEN mutations are prevalent in various malignancies (Eng C.
2003). Mutations have been detected in the promoter region of PTEN in
patients with Cowden’s syndrome, whereas deletions of all or part of
PTEN (not normally detectable by conventional polymerase chain
reaction) have been documented in patients with BRRS. Several BRRS
patients do not have a PTEN mutation; however, it has recently been
demonstrated that a significant proportion of these patients have germline
PTEN deletions. Therefore, point mutations or deletions in the different
regions of the PTEN gene might be corresponding to the different levels
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of possibility of developing BRRS or Cowden’s syndrome. Until recently,
no gene mutation for Proteus syndrome has been identified. Although
mouse models of PTEN deficiency are available, their function in helping
to dissect the pathogenesis of human PHTS syndrome is limited.
Heterozygous PTEN +/— mice often develop thymic and peripheral
lymphomas and prostate cancer at a young age. They also develop
hamartomatous polyps of the gastrointestinal tract, but the spectrum of
neoplasia and malignancies observed bears little resemblance to that seen
in cases of human PHTS syndrome (Chen H and Fang J, 2009).

Germline mutations in the serine/threonine kinase 11 gene
(STK11/LKB1) are documented in approximately up to 70-80% of the
PIJS patients; of these about 15% have germline deletions in all or part of
the gene. (Volikos E, et al. 2006, Aretz S, et al 2005; Hearle NC, 2006) In
the remaining 20-30 % of PJS patients, defects in other genes or not yet
identified ways of LKBI1 inactivation might be responsible for PJS.
Several putative candidate genes have been studied, including genes
encoding LKBI1 interacting proteins; so far a second PJS gene has not
been identified. (4/hopuro P et al. 2005). The STK11 gene is localized on
chromosome 19 at position p13.3, spans 23 Kb in the genome and
includes 10 exons, of which, nine are coding exons and 1 is an
untranslated exon localized at 3’-UTR. (Hemminki A, Tomlinson I, et al.
1997). It is an ubiquitously expressed gene encoding a serine/threonine
kinase involved in the transduction of intracellular growth signals.
LKB1/STK11 has an essential role in G1 cell cycle arrest, cell polarity,
p53-dependent apoptosis, and cellular energy levels. (Manfredi M., 2010).
Genotype—phenotype correlation suggests that patients with PJS, who
have a truncating mutation in STK11/LKB1, have a significantly earlier
age of onset than those who have a missense mutation or when no
mutation is detected in STK11/LKB1 (Amos CI, et al. 2004). A follow-up
study on patients with PJS who had a germline mutation in this tumor
suppressor gene confirmed that these patients have a very high risk of
developing cancer (Chen H and Fang J, 2009).

1.3 Hamartomatous Syndromes and their molecular pathways.
Transforming growth factor beta (TGF-f) patway in hamartomatous
syndromes:

The TGF-fB signalling pathway is involved in the control of several
biological processes, including cell proliferation, differentiation,
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migration and apoptosis (Massague J. et al., 2000) (Fig.1). It is one of the
most commonly altered cellular signalling pathways in human cancers
(Elliott RL, Blobe GC., 2005). TGF-B signalling is activated by the
binding of TGF-B ligands to type II TGF-B receptor (TGFBR2). Three
TGF- B isoforms (TGFBI, TGFB2 and TGFB3) are expressed in
mammalian epithelium, and each is encoded by a unique gene and
expressed in both a tissue-specific and developmentally regulated manner.
TGFBI1 is the most abundant and ubiquitously expressed isoform. Once
TGFBR2 bound to TGF-p, recruits and phosphorylates the type I TGF-
receptor (TGFBRI1), which stimulates TGFBRI1 protein kinase activity.
Activated TGFBR1 phosphorylates two downstream transcription factors,
SMAD2 and SMAD3, allowing them to bind to SMAD4. BMPRIA is a
type 1 serine/threonine kinase receptor protein that is bound to a type II
serine/threonine kinase receptor protein; it acts upstream of SMADA4,
phosphorylates SMAD proteins that then bind to SMAD4. The resulting
binds SMAD complexes translocate into the nucleus and interact with
other transcription factors in a cell-specific manner to regulate the
transcription of a multitude of TGF-B-responsive genes (Elliott RL, Blobe
GC., 2005). 1t is increasingly apparent that TGF-B-related proteins initiate
the activation not only of SMADs but also of other signalling pathways.
These pathways regulate SMAD-mediated responses and also induce
SMAD-independent responses. Some of the downstream targets of TGF-f3
signalling are important cell-cycle checkpoint genes, including CDKN1A
(p21), CDKNI1B (p27) and CDKN2B (p15), and their activation leads to
growth arrest (Derynck R, Zhang YE, 2003). Therefore, TGF-f3 serves as a
tumor suppressor in the normal intestinal epithelium by inhibiting cell
proliferation and inducing apoptosis. Many colorectal cancers escape the
tumor-suppressor effects of TGF-f and are resistant to TGF-B-induced
growth inhibition (Derynck R, Zhang YE, 2003). However, during the late
stages of colorectal carcinogenesis, TGF-f acts as a tumor promoter and
is usually highly expressed. High levels of TGFBI in the primary
colorectal tumor are associated with advanced stages and a greater
likelihood of recurrence and decreased survival (Xu Y, Pasche B., 2007).
Experimentally, prolonged exposure to high levels of TGF-3 promotes
neoplastic transformation of intestinal epithelial cells and TGF-8
stimulates the proliferation and invasion of poorly differentiated and
metastatic colon cancer cells (Sheng H, et al. 1999). Although the
mechanism by which TGF-f switches its growth inhibitory effect into
growth stimulatory effect is not well understood, TGF-p has been shown
to increase the production of several mitogenic growth factors including
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TGF-0, FGF and EGF. In addition, TGF-B can activate SMAD-
independent pathways, such as Ras/MAPK pathway, JNK pathway and
P13 kinase/Akt pathway (Elliott RL, Blobe GC., 2005). Thus, TGF-$ may
drive the proliferation of colorectal cancer cells in conjunction with these
oncogenic pathways. TGF-f is also a potent regulator of cell adhesion,
motility and the extracellular matrix composition, which are involved in
tumor invasion and metastasis. In addition, TGF-B signalling promotes
angiogenesis and immuno-suppression (Elliott RL, Blobe GC., 2005).
Therefore, it is likely that cancer cells achieve resistance to the tumor-
suppressor effects of TGF- but remain responsive to the tumor-promoter
effects of TGF-f via selective alterations of this signalling pathway (Xu Y,
Pasche B., 2007).
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Figure 1: TGFf molecular pathways.
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PI3K/PTEN/AKT Pathway:

Phosphoinositide 3-kinase (PI3K) plays a crucial role in effecting
alterations in a broad range of cellular functions in response to
extracellular signals. A key downstream effector of PI3K is the serine-
threonine kinase Akt which, in response to PI3K activation,
phosphorylates and regulates the activity of a number of targets, including
kinases, transcription factors and other regulatory molecules (Fig. 2) . A
major role for PI3K pathway activation in human tumors has been more
recently established following both the positional cloning of the PTEN
tumor suppressor gene, and the discovery that the PTEN protein product
was a lipid phosphatase that antagonizes PI3K function and consequently
inhibits downstream signalling through Akt. Subsequently a number of
the components of the pathway have been found mutated or deregulated
in a wide variety of human cancers highlighting the key role of this
pathway in cellular transformation.

PI3K belongs to a large family of PI3K-related kinases or PIKK. Other
members of the family include mTOR (mammalian target of rapamycin),
ATM (ataxiatelangiectasia mutated), ATR (ATM and RAD3 related),
DNA-PK (DNA-dependent protein kinase). All possess the characteristic
PI3K-homologous kinase domain and a highly conserved carboxyl-
terminal tail (Kuruvilla & Schreiber, 1999). However, only PI3K is
known to have an endogenous lipid substrate. Importantly, all members of
the PIKK family have been implicated in human cancer both as
oncogenes, this is the case of type I PI3K or as tumor suppressor genes in
the case of ATM and ATR. The PI3K family comprises eight members
divided into three classes according to their sequence homology and
substrate preference (Fruman et al., 1998; Vanhaesebroeck & Waterfield,
1999). All mammalian cells express representatives of the three groups.
PTEN (phosphatase and tensin homolog deleted on chromosome
10)/MMACI (mutated in multiple advanced cancers)/TEP-1(TGFb-
regulated and epithelial cell enriched phosphatase) antagonizes signalling
through the PI3K pathway. Indeed, cells lacking PTEN function exhibit a
two fold increase in PtdIns-3,4,5-P3 levels (Stambolic et al., 1998). PTEN
can also dephosphorylate tyrosine-, serine-, and threonine-phosphorylated
peptides (Myers & Tonks, 1997). This activity may be related to
regulation of cell adhesion and spreading. Literature findings suggest that
this activity is not sufficient to block tumor development. Indeed, the
preponderance of the published data suggests that PTEN’s role as a tumor
suppressor is mediated largely through its lipid phosphatase activity.
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The serine-threonine protein kinase Akt (also known as protein kinase B,
PKB) mediates many of the downstream effects of PI3K and
consequently plays a central role in both normal and pathological
signalling by the PI3K pathway. There are three closely related enzymatic
isoforms Aktl (PKBa), Akt2 (PKBb)and Akt3 (PKBg), they are similar
both in structure and size and are thought to be activated by a common
mechanism. To date, no differences in substrate preference have been
established are currently assumed to have identical or similar substrate
specificity. The three isoforms are widely expressed though Akt3 tissue
distribution seems to be more restricted than 1 and 2, being primarily
expressed in brain and testis (Okano, et al. 2000).

Activation of Akt is a multi-step process involving both membrane
binding and phosphorylation. Upon PI3K activation and production of
PtdIns-3,4,5-P3 and PtdIns-3,4-P2, Akt is recruited to the plasma
membrane where it binds to these phosphoinositides through its PH
domain. Activation is then thought to involve a conformational change
and phosphorylation on two residues. Growth factor stimulation of PI3K
activity leads to Akt activation. Conversely, PI3K inhibition (i.e. using
chemical inhibitors such as wortmannin or LY294002) and PTEN
mediated dephosphorylation of PtdIns-3,4,5-P3 and PtdIns-3,4-P2 results
in inhibition of Akt. After activation, Akt can phosphorylate a number of
substrates both in the cytoplasm and in the nucleus.

Akt phosphorylates a variety of substrates involved in the regulation of
key cellular functions, including cell growth and survival, glucose
metabolism and protein translation. These targets include GSK3, IRS-1
(insulin receptor susbtrate-1), PDE- 3B (phosphodiesterase-3B), BAD,
human caspase 9, Forkhead and NF-kB transcription factors, mTOR,
eNOS, Raf protein kinase, BRCAI, and p21Cipl /WAF1 (Altiok et al.,
1999; Montagnani, et al., 2001; Zhou et al., 2001, Zimmermann &
Moelling, 1999). One common mechanism through which Akt-mediated
phosphorylation results in substrate inhibition is through the regulation of
subcellular localization by interaction with 14-3-3 proteins (i.e. BAD,
forkhead transcription factors). 14-3-3 proteins are cytoplasmic proteins
that bind specifically to phosphoproteins and retain them in the cytoplasm
away from their targets. In particular the Akt consensus phosphorylation
site is also a consensus 14-3-3 binding site (Yaffe et al., 2001). FKHR,
FKHRL1 and AFX transcription factors (henceforth referred to as
Forkhead) belong to the winged helix/forkhead transcription factors
family characterized by a 100-amino acids, monomeric DNA binding
domain (DBD) (Kops & Burgering, 1999, Kops et al., 1999). These three
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family members are directly phosphorylated and regulated by Akt. In
cancer cell lines lacking functional PTEN, FKHRL1 and FKHR are
constitutively phosphorylated by Akt and are hence constitutively
cytoplasmic and unable to activate transcription. Thus, Forkhead is a
critical effector of both cell-cycle progression and apoptosis downstream
of PTEN (Nakamura et al., 2000). In addition, other Forkhead family
members have also been implicated in the induction of apoptosis both
through the upregulation of FasL (Brunet et al., 1999) and through the
regulation of the pro-apoptotic Bcl-2 interacting mediator (Biml)
(Dijkers, et al. 2000). Human Caspase-9, a member of the protease family
intimately associated with the initiation of apoptosis, is thought to be
phosphorylated and inhibited by Akt. (Cardone et al., 1998). However,
the Akt phosphorylation site is not conserved in the Capase 9 proteins
from other mammals making its in vivo importance unclear. In addition
to the inhibition of pro-apoptotic factors, Akt can also activate the
transcription of anti-apoptotic genes through the activation of the
transcription factor NFkB. When bound to its inhibitor, termed IkB,
NFkB localises to the cytoplasm. Akt associates and activate the IkB
kinases (IKKs). Activated IKKs phoshorylate IkB targeting it for
degradation by the proteosome. This allows NFkB to translocate to the
nucleus and activate transcription of a variety of substrates including anti-
apoptotic genes such as the inhibitors of apoptosis (IAP) c-IAP1 and 2
(Kane, et al 1999; Romashkova & Makarov, 1999).
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Recent data indicate that serine/threonine protein kinase Akt (Akt)
signalling cooperates with Wingless (Wnt) to activate P-catenin in
intestinal stem and progenitor cells through phosphorylation at Ser552 (P-
B-catenin552). The phosphorylation at Ser552 was associated with the
transcriptional activation. This activation impaires the [-catenin
degradation translocates to the nucleus where it binds Tcell
factor/lymphoid enhancing factor and initiates transcription of Wnt target
genes such as c-myc and cyclin- D1. Nuclear accumulation of [-catenin is
a hallmark of activated canonical Wnt/B-catenin signalling. PI3K-
mediated generation of PI-3,4,5-triphosphate recruits Akt for activation of
proliferation and survival signalling. He et all5 reported that Phosphatase
and tensin homolog (PTEN) deficiency increased PI3K/Akt activation,
resulting in excessive proliferation and crypt fissioning within small-
bowel (SB) polyps.

Reduced [(-catenin degradation and enhanced nuclear localization of
stabilized (-catenin are key events in stem cell activation in a variety of
systems including the intestine, Phosphatidylinositol 3-kinase
(PI3K)/serine/threonine protein kinase Akt (Akt) signalling, in fact has
been proposed to induce proliferative signals in intestinal epithelial cells
(IECs). Recent studies suggest PI3K/Akt signalling is up-regulated in
crypt IECs; in chronic ulcerative colitis (CUC) and active Crohn’s disease
(CD) indicating a probable involvement of this pathway in the
inflammation. .

PI3K-induced and Akt-mediated P-catenin signalling are required for
progenitor cell activation during the progression from CUC to colitis-
associated cancer (CAC); these factors might be used as biomarkers of
dysplastic transformation in the colon (Lee G, et al. 2010)
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Figure 3: Link between PI3K/AKT and WNT pathways
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The LKBI Pathway:

LKBI1 serves to activate AMPK by direct phosphorylation of Thr172 in
its activation loop, which is essential for AMPK -catalytic activity.
AMPK, a cellular energy sensor, functions as a master regulator of
cellular energy metabolism. Depletion of intracellular ATP levels due to
either physiological stimuli such as exercise and muscle contraction or
pathological stresses such as hypoxia, oxidative stress and glucose
deprivation, activate AMPK (Fig. 4). AMPK functions to restore
intracellular ATP levels by inhibiting ATP-consuming processes such as
protein translation and cell growth; moreover promotes ATP-generating
processes such as gluconeogenesis and lipogenesis. Thus, under energy
starvation AMPK inhibits cell proliferation by directly phosphorylating
TSC2 and enhancing its ability to switch off mTORCI1 signalling.
Mutational inactivation of LKB1 results in hyperactivation of mTORC1
signalling under low energy conditions, suggesting that LKB1 is required
for repression of mMTORCI in a AMPK- and TSC2-dependent manner.
(Krymskayal, V.P. and Goncharova E.A. 2009)

In addition to the involvement in energy metabolism, LKB1 has the
capacity to regulate multiple cellular processes, such as cell cycle arrest,
Wnt signalling, transforming growth factor beta signalling and chromatin
remodelling.

LKB1 forms a complex with pseudokinase STRAD and the scaffolding
protein MO25,(Baas AF,2003) that activates at least 14 serine/threonine
kinase by phosphorylation of the “T-Loop” threonine localized in their
kinase domain. This implicates the involvement of LKBI in several
signalling pathways (Shaw RJ, 2004, Lizcano JM 2004). The first
identified physiological substrate of LKBlwas AMPK (AMP-activated
protein kinase), which is a master regulator of cellular energy charge.21
Ten of these 14 AMPK related protein kinases possess an ubiquitin
associated domain (UBA) immediately downstream the kinase catalytic
domain. The UBA domains found in AMPK related kinases do not
interact with polyubiquitin or other ubiquitin-like molecules. Whereas,
the UBA domains appear to play an essential conformational role and are
required for the LKBI-mediated phosphorylation and activation of
AMPK-related kinases. Specifically, UBA domain directly interacts with
the catalytic domain of these enzymes, allowing them to be in a
conformation that can be readily phosphorylated and activated by the
LKB1 complex (Woods A, 2004; Jaleel M, 2006). Thus, it could be
intriguing to investigate whether mutations in the UBA domains might be
present in families with PJS and/or in other cancer patients.
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1.4 Molecular therapeutic target.

The increase of protein synthesis by mTOR has been implicated in the
carcinogenesis of various human tumors by regulating the cell cycle,
apoptosis and angiogenesis through downstream targets such as
cyclooxygenase-2 (COX-2), p53, cyclin D1, c-Myc and hypoxia inducible
factor-1a [5—7]. The signalling pathway that activates mTOR is altered in
many human cancers, and treatment of cancer with mTOR inhibitors has
shown responses in various cancers. [8,9]. (No JH et al. 2009)

Essentially PI3Ks, PDKI1, AKT and mTOR are heavily targeted for
therapy in different ways. These proteins are that could be drug target of
cancer cells. In fact cancer cells with the activated pathway will be more
dependent upon this pathway for their survival. (No JH, et al. 2009)

There are currently no approved therapies for PHTS and PJS in clinic.
However, rapamycin, a specific inhibitor of mTORCI, discovered more
then 30 years ago, attracts a renewed interest. Rapamycin (sirolimus is the
official generic name) is a prototypical inhibitor of mMTORCI signalling.
Rapamycin forms a cytosolic complex with FK506 binding protein 12
(FKBP12), which inhibits the catalytic activity of mTOR. (Sabatini DM,
2006). However, the precise mechanism of rapamycin-induced inhibition
of mTORCI signalling is not completely understood, and at least two
mechanisms of rapamycin action have been proposed. It was shown that
under some experimental conditions FKBP12-rapamycin destabilizes the
interaction of mTOR with raptor, which is required for mTOR activity.
Separate studies demonstrate that the FKBP12- rapamycin complex
suppresses mTORCI1 autophosphorylation, which also may inhibit
mTORCI1 activity76 suggesting the possibility that the rapamycin-
dependent mTORCI1 inhibition may involve more then one mechanism.
Because mTORCI1 signalling is a highly conserved pathway that regulates
protein synthesis and cell growth in all eukaryotes and because of its
activation not only in hamartoma syndromes, but in many types of cancer,
there is a growing interest in rapamycin and its analogs. In 1999
rapamycin was approved by the Food and Drug Administration (FDA) for
the prevention of renal allograft rejection. Currently, clinical studies
demonstrate that rapamycin and its analogs have shown anti-cancer
activity in variety of malignancies. Furthermore, a number of rapamycin
analogs are in preclinical development. Numerous compounds as PI3K,
Akt and mTORCI inhibitors also have been filed. Currently, the phase 11
clinical trial of rapamycin in patients with Cowden syndrome is open for
enrollment at the Warren Grant Magnuson Clinical Center, Maryland
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(NCI, ClinicalTrials.gov Identifier NCT00722449). (Krymskayal, V.P.
and Goncharova E. A, 2009) .

PI3K-mTOR signalling also regulates chemokine (C-X-C motif) ligand 1
(CXCL-1), cyclooxygenase-2 (COX-2), and interleukin-8 (CXCL-8) that
enhance tumor metastasis. PI3K and AKT regulate epithelial—
mesenchymal transition (EMT), which is a change allowing tissue
invasion and metastatic potential (Cheng et al., 2008, Onoue et al.2006).
A large body of evidence support that it has a role in tumor promotion,
and accordingly selective COX-2 inhibitors have been shown to be
beneficial in colorectal cancer patients. These results encouraged to
perform a short-term pilot clinical trial in colorectal cancer patients with
celecoxib showing that a subset (2/6) of patients responded to the
treatment with reduced polyposis (Katajisto P, et al. 2006).
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1.5 Aim of the work

The inherited hamartomatous syndromes occur at approximately 1/10th
the frequency of the adenomatous syndromes and account for <1% of
colorectal cancer. However, proper identification of the specific
syndrome has major importance for the affected individual and at-risk
family members as the malignant potential in these autosomal dominant
syndromes is quite high. Although the inherited hamartomatous polyposis
syndromes are less common and less well characterized than the
adenomatous polyposis syndromes, major advances in the molecular
understanding and genetic basis of these syndromes have similarly
needful. The identification of affected patients points to the need for
genetic counseling prior to predictive gene testing for the individual and
at-risk family members. Potentially, as our understanding of these novel
genes accumulates, our ability to diagnose, classify, treat, and hopefully
prevent polyp formation and malignant transformation will improve.
(Schreibman IR 2005). All the evidence indicates that the PI3K/AKT
pathway is a promising target for cancer chemotherapy in hamartomatous
syndromes. Indeed, many companies and academic laboratories have
initiated a variety of approaches to inhibit the pathway at different points.
Therefore, proper diagnosis of tumours with an activated PI3K pathway is
pre-requisite for the use of the targeted therapies (Carnero A., 2010) .
The aim of this study was the precise molecular characterization, of the
genetic defect and the evaluation of involvement of the molecular
pathway downstream, to better clarify the molecular mechanism and the
potential targeted therapy in patients with hamartomatous poliposys
syndromes.

To better clarify the molecular background of the PJS families, we have
analyzed the entire coding sequence and splice junctions of the
STK11/LKB1 gene in a series of PJS patients. All patients recruited in
this study showed well-established clinical diagnostic criteria for PJS,
including the characteristic PJS polyps in the gastrointestinal tract and
classical PJS pigmentation; about half of which presented family history
of PJS .

Finally in order to try to understand more specifically the molecular
mechanisms that characterize the onset of PHTS, we have first screened
the PTEN coding region in three italian patients with clinical diagnosis of
PHTS and afterwards, in periferal blood cells of these patients, we have
defined the expression profile of other genes directly related to PI3K/Akt
phatway, as cMYC, COX2, CCNDI1 and TNFa, or involved in colorectal
cancer onset, as APC.
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MATERIALS AND METHODS

2.1 Patients

A total of 9 unrelated patients, exhibiting mucocutaneous pigmentation
and hamartomatous polyposis, were referred by gastroenterologists and
pediatric gastroenterologists to the laboratory, for genetic analysis. The
histological aspects of polyps were unambiguous in all cases.
Characteristic features defining the clinical diagnosis were considered:
presence of pigmentation, polyps localization, histological diagnosis (the
specific phenotypes are listed in Table 2 (see “Results” section). When at
least two patients belonged to the same family, they were considered as
familial cases.

Samples from all families that participated in the study were collected
after informed consent of the participants.

2.2 LKBI1/STKI11 and PTEN germline point mutations analysis

Samples of genomic DNA and RNA from affected individuals and at-risk
family members individuals were isolated from peripheral blood
lymphocytes by standard methods. RNA was obtained from peripheral
white blood cells collected with EDTA. We used a combination of 4
techniques to analyze sequence variants within the LKB1 gene: the direct
sequencing of amplified fragments, for point mutations DNA analysis of
the nine exons and flanking intronic sequences; patients without
LKBI1/STK11 point mutations were further investigated by Southern blot
analysis and genomic amplification of large fragments for detection of
deletions of all or part of the gene. RT-PCR and quantitative Real-time
RT-PCR techniques were used for the analysis of the LKB1/STK11 gene
at the RNA level.

For PTEN analysis we have performed a qualitative RT-PCR, followed
by the direct sequencing of amplified fragments, and also the direct
sequencing of genomic DNA fragment in the region where we have found
an alteration in cDNA sequence. Finally quantitative Real-time RT-PCR
assay was performed to evaluate the RNA levels.

Genomic DNA from at least one affected individual per family was PCR-
amplified in eight different genomic regions that covered the entire
coding sequence of the LKB1 gene and all of the splicing junctions. The
oligonucleotide primers used are described in Table 2 and the conditions
for PCR amplification are the following: 94 °C for 5 min, initial
denaturing phase; 33 cycles at 94 °C (30 sec), 60-67 °C (20 sec) 72 °C
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(45 sec) and 72 °C for 3 min, final extension. Exons 3 and 9 were
amplified as Nested PCR with the following oligonucleotides (the 3a
couple for the first reaction and the 3b couple for the Nested amplification
reaction of the exon 3 and the 9a couple for the first reaction and the 9b
couple for the Nested amplification reaction of the exon 9, respectively,
as reported in Table 2).

STEK1T1LEB1 gencmic redgion

{GeneBank N5 HC_000019.9) Bp

TFP -8 000 0 i, 0 A S TIC A,
TRP-GTCACGGTGCTGATGGTTCTGTC- 421 bp
2FP-GAGGTACGCCACTTCCAC A
2RP-GCTCCTCTTCCCGTCTCCTT- 284 bp
GaFP-CCTCCAGAGCOCCTTTTCT-
SaRP-GUCACACTGCTTGTCCTGAT- 264 bp
SEFP-CCCCCTGAGCTETGTGTC-

SERP-TTTCCGTGAGGCCACACT- 201 bp
AFP-GTGTGCCTGGACTTCTGTGA-
SRP-ACTCACCACACGCACACTC- 476 bp
BFP-A 00 ACCTTOACTGACCACGE-
ERP-CAGALATCTAGGGTTGGEGETGTC- 250 b
TFP-GCGGoETOCCCCTTAGGAG-

TRP-CTGGTTGAGC GGG OGCTAG- 264 bp
SFP-GGAGCTGGGTCGGAALACTGGA-
SRP-CAGGATGTOOCACGGGAGTA- 321 bp
aFP-GTAAGTGCGTOCCOETGET G-

e P-GUTAGTCAGTCATGETGACCG- 400 bp
ApFP-CCTGTGGECTGGEGTTGE-
AbRP-GATGCCACAGCCAGCCGTGA- 334 bp
10aFP-CTGACCTCTTCCGTCTTOLT-

10arp-TCGEALCC AT 00T 00 AN 0 SED b
10bTp-GGAGACCAGHCTCCTGAL
10brp-TGAGACGLGALCAALACT- 593bp

Table 2: Oligonucleotides primer used for genomic sequences DNA analysis

Amplification and direct sequencing were also set up to screen the region
coding for the UBA domains of AMPK related protein kinases,
phosphorylated and activated by STK11/LKB1. Each region was PCR-
amplified in one or two fragments; the oligonucleotide primers used are
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described in Table 3 and the conditions for PCR amplification are the
following: 94 °C for 5 min, initial denaturing phase; 33 cycles at 94 °C
(30 sec), 60-67 °C (20 sec) 72 °C (45 sec) and 72 °C for 3 min, final
extension.

Gene | Primer sequence [ bvp

Ilark] STE L I0FP-TGTTGTGTGTGTCCCAAGTC- 4a0
STE 1ML I0RP-AAATCGACAATGCAAGTATTTTTCAA
STE 1ML NFP-TGGTATCCGTAGGTTAATAGTCCAG- 340
STE 111 1IRP-TTGGTACCCAGAAATACAACCA-

Ilarlk2 STE M M2 I0FP-TGCCCTTTTCCTTCTCTGTG- 410
ST M2 1IRP-GATGAGCTTCTGCCCTCAAC

Ilark3 STE LI IOFP-TTTTTGAGTTTATGCTTTGAACGA 323
STE M3 I0RP-TGTGCTTAACTTTCCATTATTCACAT
ST M3 1FP-GGATGATTTCTTACCCAAACALAA- 200
STE 11 M3 1IRP-CAGGGTATTTCAGCTCTTTCTGAT

Ilarlk4 ST M4 10FP-GGCAGGGCAGAAGCTGTAT- 441
STE 114 I0RP-GAGGCTGAGGCACAAGAATC-
STE 14 1IFP-AGCCTGGG TG ACAGAGTGAC 313
STE 114 1IRP-CACCCCAAGTCCCTCCAC-

Bkl STE1B1 I0FP-CCCGGTTCCCAATAATGTTT- 339
STE11B1 10RP-AAACCATGCCCCATGAGAG-
STEI BRI 1IFP-ACCATGGGCAGAAATACAGG- 38
STK11B1 1IRP-CCCTTCTTTCCTTGGGAATC-

Brrslsd STK1IB2 I0FP-ACAGGGAGAGTGGCAGGAT- 604
STE11B2 1IRP-CTGAGTACAGACGAAGGTCAGG-

Qsk ST 1K 8FP-GGGTTGACAGCTTCCTCCTT- 605
ST K SRP-TGTCCTGAACTAGG TCACTG GA-

Amplkel 3TE11A 8FP-CCTGATCCTGCCATTTTTCT- 554
ST 11 ARRP-TTGCCAAATATGCTAATAATCAAAA-

Qik STK11 Q7FP- CCCTGAAGTGCAAGGTGATT- 408
ST Q7 RP- CCTAGGCGCTGGAGATACAT-
ST 11 Q 8FF- CAGTTCTTTGCCTTTACCACTTG 340
ST 11 Q8RP- GAAAAACGGAGTGTAGAGGATGA

aik ST 11 38FP- TTGGGTGGCAGGACTGAG 536
ST 11 38RFP- TCCTTTAGTGGGGTGGACAA
ST 11 39FP- CCAAGAATAACCTGGGATCG 755
STE 11 39RP- TCTGTC TG GAGTGUAAGCTG

Snrlk ST 11 32 5FF- TATTCCCATCTGCCCCACT 477
ST 1152 3RP- AGGTGTCCAAAGGCTGTGTT
ST 11 32 6FF- CCTGATATGGCTGACGTTTG 234
ST 11 52 6RP- CTCACCTAAACTGGGCCTTG

Table 3: Oligonucleotides primers used for analysis of the UBA domains of AMPK
related protein kinases
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Amplification of genomic DNA from the PHTSI patient was performed
in different genomic region of exon 5 of the PTEN gene. The
oligonucleotide primers used are described in Table 4 and the conditions
for PCR amplification are the following: 94 °C for 5 min, initial
denaturing phase; 33 cycles at 94 °C (30 sec), 60-67 °C (20 sec) 72 °C
(45 sec) and 72 °C for 3 min, final extension.

PTEHN region {GeneBank N ;NG 007466.1) Ep

BeFP-TTGAAGACCATAACCCACCA
SRP-CTCTGEGTCCTTACTTCCOCAT-

214

Table 4: Oligonucleotides primer used for PTEN mutation analysis

Sequencing analysis was performed in a 3100 Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA). For nucleotide numbering, the first A
of the initiator ATG codon is nucleotide +1 of the STK11/LKBI mRNA
sequence (GenBank Accession number NM 000455.4); the GenBank
Accession number of the genomic STK11/LKBI region is: AC_000019.4
The GenBank Accession number of PTEN genomic sequence is: NG-
007466.1. All oligonucleotides were obtained with primer 3 Software
(http://www.genome.%20wi.mit.edu/cgi%20bin/primer/primer3) and
checked with web Basic Local Alignment Search Tool program (BLAST,
NCBI home page http://ncbi.nlm.nih.-%20gov/blast).

The novel mutations were searched for in 100 control samples to exclude
the possibility of a rare polymorphism.

2.3 Qualitative RNA based analysis of patents.

For RNA analysis, we synthesized cDNA with 1 ug of total RNA, 500 ng
of random hexamers, and 1 pl Superscript III reverse transcriptase
(INVITROGEN), in the presence of 4 pul SX RT buffer, 1 ul DTT (0.1 M)
and 1 mM dNTPs. The reaction was run for 50 min at 42 °C in a 20 pl
reaction volume, heated to 70 °C for 15 min and snapchilled on ice.

For STK11/LKBI1 analysis 1 pl of the cDNA was amplified with primers
described in Table 2, that produce three overlapping fragments (1FP—
4RP, 2FP-8RP, SFP-9RP) covering exons 1-9 of the cDNA. The reaction
was performed as described above: 94 °C for 7 min, initial denaturing
phase; 40 cycles at 94 °C (1 min), 60°C (45 sec) 72 °C (2 min) and 72 °C,
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and a 5-min final extension.

For PTEN analysis 1 pl of the cDNA was amplified were amplified as
Nested PCR with the following oligonucleotides (the PTEN 5’UTR-
1FP/3’UTR-1RP couple for the first reaction and the PTEN 5’UTR-
2FP/3’UTR-2RP couple for the Nested amplification reaction as reported
in Table 5) that cover the entire coding sequence of the gene and all of the
splicing junctions, and produce two fragments of 1815 bp and 1550 bp,
respectively.

The PCR products were analyzed on a 1% agarose gel in trisacetic acid
(TAE)-EDTA standard buffer and visualized by ethidium bromide
staining.

STK11LKB1 mRNA {GeneBank N°: NM 000455.4)  Bp
TeFE-TTTORAGAAG GEAAGT CO0
4cRP-ACCCTCAAAATCCGACCT SO
2P GAGGAGGTTACGGCACAAL
BcRP-GTACTT GGAGGAC CTGCAC e
ScFP-ACGGEC CTERACAZCTTCT
9cRP-CAAGC AGCAGT GAGGCTGG 5
PTEHN region {GeneBank N°:NG 007466.1) Ep
PTEM & -UTR 1FP-TTCCATCCTGCAGAAGALGT 1815
FTEMN 3UTR-1REP-TCTGAGCATTCCCTCCATTC
PTEM 8-UTR-2FP-GCAGCTTCTGOCATCTCTCT 1550
PTEMN 3UTR-2RP-TCAC CACACACAGGTAMC GG

Table 5: Oligonucleotides primer used for RT-PCR analysis

2.4 Quantitative RNA based analysis of patents.

The quantitative RNA real-time assays was performed using the iCycler
1Q Real-Time Detection System BIO-RAD. Amplification was carriedout
in a total volume of 15 ul containing the SYBR Green PCRMaster Mix
1X (BIO-RAD), using 15 ng of cDNA synthesized from poly(A) mRNA.
The real-time PCR reaction was optimized according to the
manufacturer's instructions but scaled down to 15 pl per reaction. The
PCR conditions were standard (iQ™ SYBR Green Supermix) and all
reagents were contained in the standard iQ™ SYBR Green Supermix
(BIORAD). The reactions were: 95 °C for 3 min initial denaturing phase;

29



Materials and Methods

95 °C for 15 s and 60 °C for 1 min. At the end of the PCR, the
temperature was increased from 55 to 95 °C at a rate of 3 °C/min, and the
fluorescence was measured every 10 s to construct the melting curve. A
nontemplate control was run for each assay, and all determinations were
performed at least in triplicate to ensure reproducibility. Synthesis of
expected PCR product was confirmed by melting curve analysis.
Oligonucleotides yielding 100—150-bp-long PCR products at an annealing
temperature of 60 °C were obtained with Primer Express Software
(Applied  Biosystems, Foster City, USA) and primer 3
(http://wwwgenome.%20wi.mit.edu/cgi%20bin/primer/primer3), and
checked with web Basic Local Alignment Search Tool program (BLAST,
NCBI home page http://ncbi.nlm.nih.-%20gov/blast).

To measure STK11/LKB1 mRNA level, we selected two couples of
oligonucleotides (reported in Table 2) within exons 1 - 2 and 7 - 8, to
amplify the canonical messenger of the STK11/LKB1 gene.

To analyze PTEN gene mRNA, we used the couple of oligonucleotides
(reported in Table 6) within exons 5 - 6, to amplify the canonical
messenger of the STK11/LKBI gene

Finally a relative quantization of APC,cMYC,CCNDI,COX-2 and TGFp
mRNA level was performed in CS patients (All primers usedare reported
in Tab.6).
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STE111LKB1 mRHA (GeneBank N°: NI 000455.4)

Ep

CTLOFP-GCOCGTCAAGAT CCT CAASAL,
CR2ORP-TTCETTGTATAACACATCCAL
CYOFP-GOCAAGAGETTCTCE

CHORP-GTGCAGGTCCTCCAAGTAL

140

153

PTEN region (GeneBank N*:NG 00745661}

Ep

BE2FP-AT GGGAAGT AMGGAC CAGA
BeRP-TCTTGT GAARACAACAGTGOCA

129

APC mRHNA {GeneBank N°: NI 0000385 | |

Ep

13c2FP-TGC GAGAAGTT GEAAGTGT G
TAcEP- TCAGTGCAATGTGCT GACAR

131

cMYC mRNA (GeneBank N°: NM_002467.3) |

Bp

2FF CACCADCAGCAGCGACTCT
IRP-GCCTGCCTCTTTTCCACAGA,

113

CCND' mRNA {GeneBank N°: nM_053086.2 )

Bp

JeFP- GAACAAACAGATCATCC GCA,
4eRP-GUGGATTGEAAAT GAACTTC

26

COX-2 mRNA {GeneBank N°: MNM_000963.2 ) |

Bp

BFP-CAGCACTTCACGCATCAGTT
BRP-CECTGTCTAGC CAGASTTTCA,

1049

TNFa mRNA {GeneBank N°: MM_000594.2 ) I

Bp

THFABFP-CCCTGGETATGAGCCCATCTA,
THFADBRP-CEGECAAAMGT CGAGATAGTCG

145

Table 6: Oligonucleotides primer used for real-time analysis

2.5 Amplification analysis of genomic DNA

Genomic PCR reaction was performed for the analysis of region
encompassing exons from 2 to 8 of the LKB1 gene (from nucleotide
12515 to nucleotide 17436). The first product consists of a 4200 bp long
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fragment including the LKB1 genomic region from exon 2 to exon 8. The
second and third products consist of two fragments, of 2160 bp (from
exon 2 to exon 4) and of 2000 bp long (from exon 5 to exon 8),
respectively. The oligonucleotide primers used are described in Table 5
and the conditions for PCR amplification are the following: 94 °C for 7
min, initial denaturing phase; 40 cycles at 94 °C (1 min), 60°C (45 sec) 72
°C (5 min) and 72 °C, and a 20-min final extension.

To analyze the genomic alteration of patient number 2, carrier of exons 2
and 3 skipping at the RNA level, we performed a set of PCR reactions
encompassing genomic region between exons 1 to 4. This region was
amplified in 13 PCR fragments, using the same reverse oligonucleotides
in each reaction (IVS 3RP in Table 7) and different forward
oligonucleotides spaced each other by about 1000 bp. The oligonucleotide
primer sequences are described in Table 2 and the PCR conditions were
the following: 95 °C for 2 min, initial denaturing phase; 10 cycles at 95
°C (1 min), 66°C to 64 °C with a decrement of 0.2°C each cicle (30 sec),
72 °C (3 min), 30 cycles at 95 °C (1 min), 64 °C (30 sec), 72 °C (3 min)
and 72 °C 5-min, final extension. The PCR products were analyzed into a
1% agarose gel in trisacetic acid (TAE)-EDTA standard buffer and
visualized by ethidium bromide staining.

STE11LEB 1 genemic region (Gene Bank n® MC_000019.9)

MWS14 - CCTGAGCTGGACZCCGTCTG
V518 - CCTTATCGCAGCCAGAC ACG
MWE1C - GECTEGEEAAGGETGTETTTE
[WS10 - CAATTTCATCCTGGECCCTGAST
WST1E - CETGGECCAACAT GGTGARAL
WE1F -TCTGTTTGTGCCCCTCTCTGE
WE15 - CTGGAGT GCAGTGGLGTGAT
WETH - AGCCCCACCTCTCTGTGAGE
W11 - GTCTTGCCTCC CAGGAATGE
WL - TEGTCGGETTACASGCET GA
WEIM - CCCTGEGEETGETTCCACATCT
MSTM - ASGCT GAGGCASGGAMLT CA,
WE2FP - CCTGGGACCGTCCTGCAT
[VEIRP - AGCCTCCCAAACACCACAGS

Table 7: Oligonucleotides primer used to analyse genomic alteration of patient number 2

32



Materials and Methods

2.6 In silico analysis.

The nucleotide sequences of genomic LKB1 region (NCBI
NC 000019.9) were analyzed with the RepeatMasker program using the
default settings (exon.cshl.org/ESE/). This is a program that screens DNA
sequences for interspersed repeats and low complexity DNA sequences.
The output of the program is a detailed annotation of the repeats that are
present in the query sequence as well as a modified version of the query
sequence in which all the annotated repeats have been masked (default:
replaced by Ns). Sequence comparisons in RepeatMasker are performed
by the program cross-match, an efficient implementation of the Smith-
Waterman-Gotoh algorithm developed by Phil Green (A.F.A. Smit, R.
Hubley & P. Green RepeatMasker at http://repeatmasker.org).

2.7 Southern blot analysis

Genomic Southern blot was performed after endonuclease digestion of
genomic DNA from PJS patients and healthy non affected controls with
BamHI restriction enzyme; afterwards it was probed with a cloned cDNA
fragment that comprised the entire coding region of LKB1/STK11 gene.
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RESULTS

3.1 LKBI/STKI11 and PTEN germline point mutations analysis

We have analyzed the disease-causing mutations in 9 unrelated PJS and 3
PHTS patients from Italy. All patients showed the classical phenotype
associated to these two disease; multiple hamartomatous polyps in the
gastrointestinal tract and mucocutanoeus pigmentation for PJS and
hamartomatous gastric or colonic polyps, colon cancer, penis macules for
PHTS. Sequencing of the 9 exons and the exon—intron junctions of
LKBI/STK11 gene led to the identification of 6 unique pathologic
germline mutations. (Table 8). According to the human gene mutation
database (http://archive.uwcm.ac.uk/uwem/mg/hgmd/search.html), 2 are
known and 3 are novel germline LKB1 point mutations. Of these one is
located in exon 1, one in exon 4 and three in exon 6. The sixth mutation
consists in an intragenic deletion that eliminates exons 2 and 3 of the
gene.

Two of the point mutations are frameshift mutations: the ¢.169-170insG
mutation, that consists in an insertion of a G nucleotide at position 169-
170 and the ¢.842delC mutation, that consists in a C nucleotide deletion at
position 842. Both mutations create a premature stop codon respectively
105 and 5 codons below.

The mutation named ¢.580G—2>A is a missense mutation in exon 4, that
consists in a G to A substitution at position 580, causing the change of an
Aspartic Acid in an Asparagine residue at position 194.

The last two germline point mutations identified, previously not described
in literature, are two in frame micro-deletions localized in exon 6. The
first, called ¢.747-749delCAC determines the deletion of the Threonine
residue at position 250; the second, named c856-858delCTC determines
the deletion of the Leucine residue at position 286. Both mutations
modify the catalitic domain (kinase domain) of the LKB1/STK11 protein,
characterized by highly conserved residues among different species
(human, mouse, xenopus), likely altering the correct protein function.
These two in frame deletion are not common polymorphisms, since they
were not detected in the DNA of the 100 normal Caucasians controls.

In the family of the patient carrier of the ¢.747-749delCAC mutation, the
molecular diagnosis was performed in six relatives, two of whom were
affected and four apparently healthy individuals. This mutation always
segregates with the disease in this family; furthermore, we were be able to
carry out the presymptomatic diagnosis in the two young proband’s at-

34



Results

risk sons (of eight and seven years old respectively), both resulted carriers
of the deletion.

We found about the same prevalence of LKB1/STK11 mutations both in
sporadic PJS patients (66.7%; 2 out of 3) and familial cases (60%; 3 out
of 5).

No mutations were identified in the region coding for UBA domain of the
AMPK related protein kinases. Moreover, two patients, negative for
LKB1/STK11 gene mutation, proved to be carriers of two intronic single
nucleotide  substitutions not reported in database (NCBI:
http://www.ncbi.nlm.nih.gov/snp)  with  unknown meaning (the
¢.983+55C>T in MARK2 gene and the ¢.968+32G—> A in BRSK2 gene,
in patient number 8; the c.1007+43C>A in MARK4 gene and the
¢.972+57C->T in SIK gene, in patient number 5).

In patient PHTS1 we found a missense mutation named c.406T->C in
exon 5 of PTEN gene, this mutation just described in literature before that
determines the aminoacidic change of cysteine residuel36 in arginine
(Kubo Y, et al. 2000).
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. Age of . . . ;
Patient n° SIF - g 5 Mutation Exon Clinical manifestations
Diagnosis
G42delC hamartomatous duodenal polyposis
e o i[E] p.Leu281fs4X s and riucocutaneous pigmentation
hamartomatous palyposis and
PJs2 b= Haa Deletion exons 2-3 AD-3 : h
oral rmucocutaneous pigmentation
PJS3 AN 14aa 169-170insG 1 harnartornatous polyposis and
oral mucocutaneous pigmentation
PJS4 F 13aa S80G=A 4 harnartornatous duodenal and
p.D194R stomach polyposis and
mucocutaneous pigrentation
PJsS S 18a = - hamartomatous gastric polyposis
and rucocutaneous pigmentation
PJSE S 13aa 836-858delCTG B hamartomatous gastric polyposis
p.286dell and rucocutaneous pigmentation
PJST F 1B6aa = - hamartomatous duodenal polyposis
and riucocutaneous pigmentation
PJ58 F 10aa - - hamartomatous gastric polyposis
and mucocutaneous pigmentation
PJ=g F 17aa T47-749delCAC B hamartomatous gastric polyposis
p.250delT and mucocutaneous pigmentation
PHTS1 F a3 yy c.406T>C 5 BRR
C136R macrocephaly, brain - asymmetry
aferiovenous malformations
glycogenic acanthosis
hamaromatous  gastric  polyps
colon cancer, the penis macules
keratoses of the hands and feet
PHTS2 5 A5yy 1 mRKA - (&S
hamartomatous  gastric  polyps
colon cancer, glycogenic acanthosis
keratosis of the hands and feet, 4
fewe freckles on penis
PHTS3 F Bdyy LhmRMNA e [
hamartomatous  colonic  polyps
colon cancer, kidney horseshoe.

Table 8: Clinical phenotype and mutation spectrum of Italian PJS and PTHS patients
studied. F: familial cases; S: sporadic cases; N.F.: mutation not found; the bold character
indicates the novel mutations.
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3.2 Qualitative RNA based analysis of patents.

We examined LKB1/STK11 mRNAs from peripheral blood lymphocytes
of four PJS patients negative for germline LKB1/STK11 point mutations
and three healthy individuals, as controls. Using the RT-PCR technique
we amplified three fragments encompassing exons 14, 2-8 and 5-9,
respectively. In addition to the normal sized fragment, which was
observed in all samples tested, a low-molecular-weight fragment was
detected in one affected individual (Fig 5a line number 3). Sequence
analyses showed in Fig. 5b of the expected and low-molecular-weight
fragment revealed the skipping of exons 2 and 3 in the shorter fragment.
The deletion of exons 2 and 3 results in a novel exon 1/4 connection, that
maintains the reading frame and encodes for a protein lacking a region
that includes part of the kinase domain. No other mRNA alterations were
detected in all samples analysed.
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Figure 5: cDNA analysis of STK11/LKB1 coding region.

a) Gel electrophoresis of the amplified products by RT-PCR technique; numbers from 1
to 7 correspond to PJS patients as described in table 1. The arrow indicates a PCR
product of molecular weight shorter than expected. N.C.: PCR negative control; S.M.:
DNA molecular weight marker.

b) Sequence analysis of the normal sized (above) and low-molecular weight (below) RT-
PCR products. The arrows indicate the nucleotides at the canonical junction between
exon 1 and exon 2 (above) and at the novel junction between exonl and exon 4 (below).
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PTEN analysis was performed amplifying the whole coding region of the
gene in a unique fragment, using RT-PCR reaction has revelled only the
normal sized fragment, which was observed in all samples tested. This
result exclude the presence of splicing alterations or intragenic deletions
in these patients. Direct sequencing of amplified fragments reveded in
patient PHTS1 a T->C transversion at position 406. These missense
mutation, called ¢.406T=>C determines the aminoacidic substitution of
the C 136 with the R. The nucleotide sequence accession number for this
messenger region is: NM_000314.4. No other sequence alterations were
detected in all samples analysed.
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Figure 6: cDNA analysis of PTEN coding region: a) Gel electrophoresis of the
amplified products by RT-PCR technique; b) Sequence analysis of the RT-PCR
products.
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3.3 Quantitative RNA based analysis of patients.

Finally quantitative Real-time RT-PCR assay was performed to evaluate
the RNA levels. To verify whether quantitative mRNA alterations were
responsible for PJS and for (PHTS) in our patients, we performed
quantitative Real-Time PCR analysis on cDNA from peripheral blood
lymphocytes. Fig. 7a shows the relative expression of the LKBI1 transcript
containing exons 1-2 (columns 1) and of the LKB1 transcript containing
exons 7-8 (columns 2), normalized versus the glucuronidase (GUS)
transcript. We found a quantitative mRNA alteration in patient number 2,
in whom the LKB1 1-2 transcript fragment, but not the LKB1 7-8
transcript fragment, was significantly down-expressed (the decrement was
0.5-fold compared to the healthy control).

Fig. 7b shows the relative expression of the PTEN transcript containing
exons 5-6, normalized versus the glucuronidase (GUS) transcript. We
found a quantitative mRNA alteration in both patients negative for the
presence of mutation in the PTEN gene coding region, with a
relative espression of 0.3 and 0.1 fold compared with the healty
controls. As expected from previous results, it is not observed any
change in the PTEN gene expression level.
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Figure 7: Real-time PCR quantification analysis. Relative expression, calculated with
the comparative Ct method, of two STK/! transcript fragments spanning the junctions
between exons 1-2 and exons 7-8, respectively, b) of PTEN gene fragments spanning the
junctions between exons 5-6,compared to glucuronidase transcript fragment. Patients
numbering corresponds to that adopted in Table 2.
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Relative expression analysis, performed in all the three PHTS patients,for
the four genes related to the molecular pathway PI3K/AKT has shown an
increment of expression for COX-2,CCD1 and TNFa genes, in all PHTS
patients, whereas APC transcript fragment, was down-expressed (as show
in fig.8)

PI3/AKT pathway releted genes relative expression
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Figure 8: Relative expression of four PI3K/AKT pathway genes calculated with the comparative
Ct method, compared to glucuronidase transcript fragment. Patients numbering
corresponds to that adopted in Table 2.
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3.4 Amplification analysis of genomic DNA

No qualitative DNA alterations were detected using genomic
amplification analysis, as described the in method section. Gel
electrophoresis of amplified fragments followed by etidium bromide
staining evidences only products of expected size (data not shown).
According to the quantitative mRNA data, PJS patient number 2, carrier
of exons 2 and 3 deletion at the RNA level, resulted heterozygous at
polymorphic marker localized in exon 4 of the LKB1 gene, thus
excluding a whole-gene deletion. However, we have been unable to detect
point mutations at either the splice sites or the neighboring intronic
sequences (up to 40 bases) of the two exons (2 and 3) at the genomic
DNA level, suggesting the presence of an intragenic deletion
encompassing exons 2 and 3. To verify this hypothesis we have amplified
this region with specific oligonucleotides, as described in the methods
section, and have characterized the precise breakpoints of this mutation.
Abnormal fragment products were identified in patient number 2 but not
in the healthy control subjects, of about 1000, 2000 and 3000 bp long
respectively, using primer pairs [IVS1D-FP/IVS3-RP, IVS1E-FP/IVS3-RP
and IVSIF-FP/IVS3-RP. No amplified fragment was obtained by using
several forward primers within IVS1 and IVS2 and reverse primer (IVS3-
RP) (Fig. 9a).

As shown in Figure 9b, sequence analysis of the amplified fragment
IVS1TF-FP/IVS3-RP revealed the loss of a genomic region of about 7000
bp long. We have characterized the breakpoints of this region within two
sequences of 12 bp that share 100% homology, located in intron 1 from
nucleotide 6999 to nucleotide 7010 and in intron 3 from nucleotide 73987
to nucleotide 13998. The two 12 bp long sequences are located within
two sequences of 26 bp that differ from each other only by one nucleotide
(96% homology) (Fig. 9b). The nucleotide sequence accession number for
this genomic region is: NC_000019.9.

To confirm the mutation ¢.406T—>C detected in PHTS patient 1, we had
performed a genomic amplification analysis for exon 5 of PTEN gene.
The subsequently sequence analysis had confirmed the presence of the
mutation also in the genomic region of gene.
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Figure 9: Molecular characterization of the STK11/LKBI1 intragenic deletion.

a) Gel electrophoresis of the amplified products by genomic PCR performed on patient
number 3. P.: patient; N.C.: PCR negative control; S.M.: DNA molecular weight marker.
b) Sequence analysis of the amplified product obtained with primer pair IVS1-F-FP and
IVS3-RP. Boxed sequence corresponds to the twelve nucleotides repeated both at the 5’
and 3’ breakpoints sharing 100 % of homology and representing the novel genomic
connection produced by the deletion event. A schematic representation of the primer
pairs position on the gene, used for the deletion breakpoints characterization, is shown
above the electropherograms. Bold arrows indicate the genomic region involved in the
deletion and the genomic nucleotides position involved in the novel genomic junction,
referred to GenBank sequence with accession number: NC_000019.9.
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3.5 In silico analysis.

Using the Repeat Masker program, the 5" and 3’ breakpoints of this 7 kb
deletion were found to lie within the core of two Alu sequences (26 bp) of
the complete Alu elements (both AluY subfamily), (Fig. 10B, Table 9).
Furthermore, a fragment of 400 bp, homologous to the 3" region of long
interspersed nuclear element L1 (L1MBS5), is located immediately
downstream of 5" breakpoint of the deletion. A 266-bp fragment,
homologous to the 3" region of another L1 repeat (LIMB7), is located
about 3100 bp downstream of the 5" breakpoint. In addition, there are
other 16 Alu repeat elements and 2 simple repeats interspersed within the
genomic region including introns 1-3; the Repeat Masker program
recognizes a total of 18 Alu sequences, 3 L1 sequences and 6 simple
sequences (Table 9).
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Figure 10: Schematic representation of the intragenic deletion

a) Repetitive elements present in the genomic region from exons 1-4 of the
STK11/LKBI1 gene and a diagram (below) of the deletion are shown. The arrow
indicates the novel genomic junction.

b) Sequence of Alu element present at the 5* and 3’ breakpoints (5° BP, 3’ BP, of part a);
boxed nucleotides represent the core sequence of Alu elements.
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-position in gquery-

-poEition in repeat-

gquery C matching repeat {left) end bagin
seguence begin end (left) + repeat class/family begin end (left)
HC_00001%.9 662 707 (270%3) + GA-rich Low_complexity 2 47 (0}
HC_00001%.9 862 1172 (26628) C Alusg2 SINE/Alu () 31z 1
HC_00001%.9 132% 1377 (26423) C Charlie5 DMA/hAT-Charlie (215) 2409 2361
HC_00001%.9 1614 1656 (26144) C L1MD LINE/L1 (2513) 3633 3551
HC_00001%.9 1657 1807 (259%3) C Alusp 5INE/Alu (14) 299 14%
HC_00001%.9 1813 1%24 (25876) + AluSx SINE/Alu 113 224 (B8)
HC_00001%.9 2840 2977 (24823) + GC_rich Low_complexity 1 138 {0}
HC_00001%.9 3074 3123 (24677) + GC_rich Low complexity 1 50 {0)
HC_00001%.9 4166 4203 (235%7) + CT-rich Low_complexity 140 177 (0}
HC_00001%.9 5208 5508 (2229%2) C AluY SINE/Alu (11) 300 1
HC_00001%.9 550% 5821 (21979%) C Alusg4 SINE/Alu {5) 307 1
HC_00001%.9 6202 6528 (21272) + AluSx SINE/Alu 1 31z (0}
HC_00001%.9 T48% 7774 (20026) + AluSp SINE/Alu 1 294 (1%)
HC_00001%.9 7782 7915 (15885) + AluSg SINE/Alu 1 134 (176)
HC_00001%.9 T91e 8211 (19589) + AluSp SINE/Alu 2 308 (5)
HC_00001%.9 9175 9444 (1B356) C AluJo SINE/Alu (2) 310 9
HC_00001%.9 9460 9744 (1B0S56) C AluY SINE/Alu () i1 1
HC_00001%.9 5752 9880 (17920) C FLAM C SINE/Alu (10) 133 1
HC_00001%.9 9892 101%6 (17604) C AluY SINE/Alu (&) 305 2
HC_00001%.9 10197 10626 (17174) C L1MBS LINE/L1 [32) G142 5700
HC_00001%.9 12646 12933 (14867) C AlusSxl EINE/Alu [20) 292 1
HC_00001%.9 12988 13239 (14561) C LIMBT7 LINE/L1 (5) 6179 5913
HC_00001%.9 13245 13500 (14300) + AluSc SINE/Alu 45 300 (%)
HC_00001%.9 13507 13751 (1404%) + aluJb SINE/Alu 22 258 (11)
HC_00001%.9 13782 14034 (13766) C LI1MBT LINE/L1 (302) 5876 5610
HC_00001%.9 14103 14372 (13428) C AluJhb SINE/Alu () iz 29
HC_00001%.9 14800 15057 (12743) + AluScH SINE/Alu 37 285 (17)
HC_00001%.9 16432 16745 (11055) C Alu¥ SINE/Alu (o) in 1
HC_00001%.9 22167 224659 (5331) C Alusg EINE/Alu (5) 305 1
HC_00001%.% 24083 24103 (369%7) + (CCCCAG)n Simple_repeat 2 22 (0}
HC_00001%.9 2560% 25634 (2166) + GC_rich Low_complexity 1 6 (0}
HC_00001%.9 25612 25666 (2134) + &C_rich Low_complexity 1 55 (0}
HC_00001%.9 26583 26637 (1163) + GC_rich Low _complexity 1 55 {0)
MC_00001%.9 26728 26780 (1020) + GC_rich Low complexity 1 53 (0}

Table 9: Repetitive sequences in the STK11/LKB1 genomic region.

LINE: long interspersed nuclear element; SINE: short interspersed nuclear element.
Modified from RepeatMasker program (exon.cshl.org/ESE/)
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3.6 Southern blot analysis.

All LKB1/STK11 mutation-negative probands were analyzed by Southern
blot to detect deletions that would not be revealed by a combination of
genomic amplification and RNA based analysis. No deletions were
detected, since all fragments were of expected size (data not shown).
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DISCUSSION

Recognition and correct differential diagnosis of the hamartomatous
polyposis syndromes, although they are quite rare, is essential because
patients have a high lifetime risk of gastrointestinal and extraintestinal
carcinoma and their first-degree relatives have high risk of recurrence of
the sindrome.

Inactivating mutations in LKB1 have been detected in 18—70% of the PJS
patients (Lizcano JM et al. 2003) and the absence of detectable LKB1
mutations could be explained by the existence of an alternative LKBI
gene inactivation mechanism that remains undiscovered by conventional
screening methods or, alternatively, by genetic heterogeneity. Some
families have been reported to be clearly unlinked to the LKB1 locus
(Woods A, et al. 2003; Jaleel M, et al. 2006) and linkage analysis has
previously suggested a second locus on chromosome 19ql13.4.
Furthermore, a t(11;19)(q13;q13.4) translocation in a small bowel PJS
polyp has been found, although no mutations within the genes in this
region have yet been reported.”'**** Candidates for the second PJS locus
might be genes known or suggested to interact with the LKBI1 either by
direct association with LKB1 or by their own function; three such genes,
LIP1, MO25a, and STRAD have been screened with negative results.

The mutation screening strategy used in our study was targeted to detect
STK11/LKB1 and PTEN genetic alterations as point mutations, large
genomic rearrangements and mutations in the regulatory domains of the
gene, leading to qualitative or quantitative alterations of its transcript.
Despite a detailed molecular genetic analysis, we observed germline
STK11/LKB1 mutations in 6 out of 9 patients (about 66.7%), thus
indicating that such a novel mechanism affecting STK11 gene expression
in PJS patients is yet to be investigated; however, genetic heterogeneity in
PJS could not be excluded.

Using the strategy described above we have characterized the breakpoints
of the LKB1/STK1 1 intragenic deletion found in one PJS patient and have
suggested the mechanism probably involved. This rearrangement is most
likely an Alu-Alu homologous recombination event that deletes about 7
kb of the LKBI genomic region encompassing exons 2 and 3 (Fig. 3C).
Two 26 bp core sequences of two Alu elements (both AluY sequences),
showing a 96% homology, are localized at the 5’ and 3’ end of the
breakpoints, respectively. This sequence, could itself act as a recombinase
(Fig. 3C).
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Alu-mediated homologous recombination is a mechanism well
documented so far, (Kolomietz E et al. 2002, Grover D, 2004) however it
is the first evidence that this mechanism is involved in the STK11/LKBI1
gene rearrangements. Since the average frequency of Alu elements along
the human genome is estimated to be one element every 4 kb, the region
spanning the 7 kb deletion (including introns from 1 to 3 of the LKBI1
gene), shows an over-representation of complete Alu elements (Fig. 3C).
Seventeen Alu elements are detected in this region by using in silico
analysis, which corresponds to more than one element every 1 kb in this
14.5-kb region (Table 3).

The over-representation of Alu elements indicates that this is a region of
DNA instability; thus, it is not surprising that several intragenic
rearrangements involving this region have been reported so far.
Intriguingly, genomic sequence of chromosome 19 from GeneBank
position 1203099 to 1230861 shows the presence of Alu elements at the
genomic regions involved in the intragenic deletions in most of the cases
so far described. The intragenic deletions described include the exon 1
(encompassing 5’UTR region and exon 1), exons from 1 to 10, exons 2
and 3, exons from 2 to 10, exons 4 and 5 and the exon §; 8 in parallel Alu
elements are localized at chromosomal region encompassing the 5’UTR,
IVSI1, IVS3, IVS8 and the 3’UTR regions of the STK11/LKB1 gene;
furthermore, repeated sequences, as Simple-repeat and GC-rich Low-
complexity sequences, are included in the region corresponding to
5’UTR, 1VSI1, IVS9 and 3’UTR. Genomic sequence also reveals two
incomplete L1 elements near the deletion, about 490 bp and 3.3 kb
downstream the 5’ breakpoint (Fig. 3B, Table 3), but it is still unclear
whether it could play an active role in the rearrangement, since the
homologies are with the 3’ untranslated region of L1 elements.”'

The LKBI allele containing this intragenic deletion code for a LKBI1
mRNA that lacks exons 2 and 3 and maintains the protein reading frame;
the translated product should results in a protein lacking the portion of
LKBI1 catalytic domain. Noteworthy, the clinical manifestation is that of
severe phenotype with very early onset age of the disease (5 years).
According to the literature data, our results suggest that large intragenic
rearrangements could intervene at the LKBI locus and that their
incidences have probably been underestimated by mutation screening
strategies based on molecular biology techniques.

However, we observed germline S7TK11 mutations in about 66.7% of
affected subjects, although it is not possible to exclude that genetic locus
heterogeneity exists in PJS manifestations. Because of over-
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representation of Alu elements involving this region, in our opinion is
reasonably to hypothesize that Alu-mediated homologous recombination
could give rise to several intragenic rearrangements, as translocations or
inversions, not always detectable using classical molecular biology
techniques. These rearrangements could in part explain the remaining PJS
cases without identified molecular alterations.

Finally, we investigate the hypothesis that mutations in the ubiquitin-
associated domain (UBA) of the AMP-related kinase genes, might be
present in families with PJS. The AMPK related kinases are activated
following phosphorylation of their T-loop threonine residue by the LKB1
complex™” and nine of these contain an UBA domain immediately C-
terminal to the kinase catalytic domain; this domain allows LKBI-
induced phosphorylation and activation. No mutations were identified in
the region coding for UBA domain of the AMPK related protein kinases;
however, two of the analyzed patients resulted carrier each of two intronic
single nucleotide substitutions not reported in database (described in
result section). Additional studies are necessary to shed light on their
meaning.

Concerning the molecular analysis PHTS patients, unfortunately we could
analyze a lower series o f patients, so we have identified a missense
mutation in one of the three PHTS patients screened. However, our
casuistry have to related to the rarity of the disease, which appears to be
underestimated, because the PHTS syndromes presents a incomplete and
variable penetrance, that can complicate the clinical diagnosis.

In both of the PHTS patients negative for the presence of mutation in
gene coding region, the quantitative analysis showed a marked decrease
in the levels of messenger. We have excluded the possibility of a deletion
of the entire gene in these patients due to the presence of heterozygous
polymorphisms, and the DNA real-time quantitative analysis. So this
decrease is probably due to other mechanisms of inactivation in the PTEN
gene, as alterations in the promoter region or the involvement of modifier
genes (Zhou XP, et al. 2003).

The next step of our study was to test the effects of PTEN inactivation on
the expression of several genes regulated by PI3K/AKT molecular
pathway or otherwise involved in CRC development.

PTEN is a tumour-suppressor gene that has attracted significant interest
given its high mutation frequency in human cancers and its roles in
apoptosis/proliferation via negative regulation of AKT/PKB activity
(Downward, 2004; Parsons, 2004). Consistent with the direct protein-
protein interactions that regulate p53 function (Freeman et al., 2003; Lei
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et al., 2006), PTEN mutation in individuals with Cowden Disease results
in cancer predisposition (Liaw et al., 1997) associated with cutaneous
hyperkeratosis (Fistarol et al., 2002), suggesting that roles in keratinocyte
differentiation can be added to PTEN activities that are essential for
normal development. In transgenic mice, Pten hetrozygotes (Stambolic et
al., 2000) or conditional knockouts (Li et al., 2002; Suzuki et al., 2003)
exhibit neoplasia associated with increased anti-apoptotic AKT activities,
cell migration/adhesion anomalies (Subauste et al., 2005) and cell cycle
control failure (Di Cristofano et al., 2001). In addition, recent models
demonstrate that PTEN via PI3K—Akt signalling, cooperates with Wnt to
increase -catenin signaling during inflammation. Instead, further recent
study has linked this interaction with the inflammatory process, in fact
inhibition of PI3K signaling in interleukin (IL)-10 knockout (IL-10 B-/B-)
mouse colitis abrogated [ -catenin signaling, crypt proliferation, and
dysplasia (Lee G, et al 2010). Furthermore evidence shows a connexion
between AKT and TNFoa-NF-kB pathway. In fact NF-xB increases Akt
activity as evidenced by increased phosphorylated form of Akt and its
downstream target GSK-3B. These data suggest that the increased Akt
activity is facilitated by reduction in PTEN expression. NF-kB-induced
activation of Akt also suggests an interesting positive feedback loop,
where activated Akt further facilitates NF-xB activation. Such a feedback
loop may augment Akt activity in tumors and increase tumor growth and
invasion. The NF-kB inhibitor IxB-a is degraded rapidly upon TNF-a
stimulation and then resynthesized after NF-xB stimulation. One
implication of the role of IxB-a as a temporal regulatory switch to
turn off NF-«xB by resynthesis of IkB-a is the hypothesis that some NF-
kB-responsive genes are activated with a short pulse of NF-kB, whereas
other genes need longer exposure to activate transcription. The bimodal
temporal signal activation of NF-kB/IxB-a to up-regulate the two classes
of NF-«kB target genes was demonstrated for NF-kB-induced activation of
the chemokine interleukin-10. These findings underlying the interaction
between PTEN/PI3K/Akt and NF-kB at the level of transcription and
offer one possible explanation for increased tumorigenesis and
inflammation in systems where NF-kB is chronically activated. (Kim S, et
al. 2004).

The results of our analysis, performed on mRNA of the three CS patients
and two healthy controls extracted from peripheral blood lymphocytes,
showed in previous section, is according to this hypothesis. In fact we
have found a sensible increase in mRNA levels of COX-2,CCDI and
TNFa genes whereas decrease expression of APC gene in all PHTS
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patients.

Our data represent the first evidence of a PI3K/Akt pathway deregulation
in periferal blood cells of PHTS patients that probably determine a pro
inflammation activation. Knowledge of specific molecular pathways
constitutively deregulated in this syndrome could be helpful in optimizing
molecular targeted therapy and preventative care. Otherwise the data
suggests the interesting possibility of use these PI3K/Akt pathway
downstream genes as molecular markers that could support a more
precise and rapid diagnosis of PHTS syndromes.
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PURPOSE: Familial adenomiatous palyposis is an autosomal
dominanthy inherited syndrome characterized by
hindreds or thousands of colorectal palyps and a high
sk of colarectal cancer at a young age. Truncating
germline mutations in the adenomatous palypaosis coli
gene are detected in approximately 80 percent of patients
with classical familial adenomatous palyposis and in
approximately 10 percent of the attenuated familial
adenamatous palyposis patients.

METHODS: We investigated the adenamatous polypasis
aoli and MUTYH genes mutations in a well-characterized

series of 25 unrelated [talian patients with familial
adenamatous palyposis.

FESULTS: We characterized the specific adenomatous
polypaosis coli gene mutation in 10 probands, and
identified eight truncating mutations (4 novel and

4 known mutations) and twao splicing mutations. One of

these, & novel missense mutation in exon 15, activates
an exonic splicing enhancer contral sequence. Mareover,
Il MUTYH gene mutations have been identified in

T patients without a daminant family histary af palypasis.

(DNCLUSTONS: This study enlarges the genatype-phenatype
arrelations of familial adenamatous polyposis and suggests
that messenger altterations could e responsible for a subset
of familial adenomatous palyposis cases without germ-line
adenomatous palyposis coli or MUTYH gene mutations. It
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alio canfirms that genatype-phenatype correlations in
MUTYH-associsted polyposis are very complex.

KEY WORDS: Adenomatous palyposis coli gene; Farnilial
adenomatous polyposis; MUTYH: Human homaolog af
E Coli MutY gene.

autosomal dominant precancerous condition char-

acterized by multiple adenomatous polyps in the
colon and rectum. If not treated, these polvps invarishly
dwdap to colorectal cancer, typically by the age of 40
vears.” This condition is primarily ass ociated with germ-
ine mutations in the adenomatous palypasis cali (APC)
gene [L'.I‘w-{[‘-f{‘l?il':‘-:"]. 2 uhlqmtau;l}r aq:-rﬁ;ed tu-
mar suppressar, which contains at least 21 exons.”

The clinical manifestations and severity of FAF vary
greatly with the mutation site. The disorder is classically
characterized by maore than 100 colorectal adenaomas, earh.r
nset of colorectal carcinoma, and specific extracalonic
atures® Attenuated familial adenomatous palyposis
[AFAF) is a milder form of the disease in which patients
have fewer than 100 adenomas. AFAP patients with
dnmin.uﬂ inheritance harbor germ-line mutations in the
5 or 3 regions of the Mi;_gem ar in regions affected by
altemative splicing events.*™ Another group of patients
have the FAF or AFAF phenatype and recessive inheritance.
These patients often harbar inherited biallelic mutations in
the base-excision repair [BER] gene ;".-:I'YH [‘-f{L‘T‘:'H
OMIM# 604933, Gene Bank NM_0122221).%

Finally, a group of individuals have an AFAP-like
phenotype, with 3 to 100 palyps throughout the cola-
rectum and often with unclear ar no family history of
polyposis. In mast cases, no germ-line APC aor MYH
mutations have been detected in these patients.

By wing 2 combination of the polvinerase chain reaction
[FCR), reverse transcriptase (RT)-FCR, protein truncation
test [PTT), _iingle-strand conformation palj.rmarphism

Fanilia] adenomatous polyposis (FAF) is an inherited

Dszasms o i Comoed & Hacmine Voo 5= 2 (2009
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[S5CF), DMA sequencing and real-time palymerase chain
reaction techniques, we analyzed the entire coding region af
the APC gene at the DNA and RNA levels in 25 unrelated
Italian probands affected by FAP. We also analyred the
coding region and intron-exan boundaries of the MYH gene
for disease-cansing mutations in patients with FAP negative
for APC mutations.

PATIENTS AND METHODS

We studied 25 unrelated [talian probands
FAP. Their polyposis phenotypes are listed in Table 1.
The inheritance for multiple polyposis is defined as
dominant (DY) when every affected individnal has an
affected parent and as recessive (K] when the disease
appears at least in ane affacted sibling of the proband, but
not in the ancestors ar collateral relatives. No inheritance
[MI) is indicated in families in which no affected relatives
af the proband are present. All patients received clinical

affected by

269

and genetic counseling and provided written, informed
consent to the study.

DMA and RNA were obtained from peripheral white
blood cells collected with EDTA. We used a combination
of four technigues to analvze sequence variants in the
APC gene: the PTT, 55CF, diract sequencing of amplified
fragments, RT-PCR, and guantitative real-time analysis.
For the PTT, averlapping fragments of exan L5 were
amplified and the reaction was performed as described
elsewhere.” F-L'El S5CF analysis was perrarmed as previ-
ously reparted 'i-aquencmg analysis was performed in a
3100 Genetic Analyzer [Applied Epla.q.r;tema. Foster City,
CA). For nucleatide numbering, the first A of the initiator
ATG codon is nuceotide +1 of the APC sequence
[GenBank Acecession number: M74088.1) and MYH
sequence [GenBank Accession number: NM_012332.1].

The quantitative RNA and DNA real-time assays are
described elsewhere.” To measure mRNA, we selacted
aligonudleatides within exons 13 and 14 to amplify the
canonical messenger of the APC gene. The relative

TABLE 1. Clinkeal phenotype and mutstion spectrum of talian FAP patients studied

Ype of Ertracolonic Mo of colan
Potent  Phenotpe  nherlonce mantiestatian pabyms ARC mutatian MYH muitian
1 Dassical FaR ] ) 100=1000 ME. 494020 a Y1880
c8IaGnA (pAzaTH)
2 Dlagsical B2 £ Ll 1001033 L1 c 8Nl T o A1sal]
13959745 G4,
{nadeiE)
3 Daggcal FaR i MO 100=1000 AR deletian AE
4 AEAR hL N3 T WE. 114554, jp G320}
c270C-2, {oY20X)
L1 AEAR a Thyraid nadules =130 897 deil (pQraaiea)
] Oazgical FAR o Thyraid nadules 100=1000 SLE. LE.
T ] ML L] 25 ME c TG pa 2dd)
g Casgical FAD a NG 100=1300 . 4008G-=T jnf133ay)
El Daggcal BaR i MO 100=1000 Vi
o) AEAR B Lung cancer {prabend’s 15=30 W W
Bther, B8 years)
n ARAR WL Ciomach cancer oraband's T W WE
@ther, 81 yr)
12 AEAR ] NG i Ml 2fteratian SLE.
12 Daggical FaR A MO 103=1300 C3FIT=2del G
{pG1309-13 1 14&3X)
= AT ML L) 12 . 420954 (p 0e3Ty) L
& AEaE = ) =130 ME M
148 Casgcal FAD i i) 100=1030 . 238854eiT {nCys1 2835 14K)
7 AEAR ML Lymphama {praband’s & hLF. . 3100->T (pA2aHg
Bther, 53 yr) ca3h-o0 (n Y1480
18 Dassical FAR ] N 100=1320 392721 delhi G,
{pG1309-13 114&3X)
19 Dasgical FAD a NG 100=1000 . 3181-A2delAl (o H108eE1X)
x Dlagsical FAR o Ll 100=1300 35T o AN
| AEAD ML NG n MF M
= L ML L] =100 ML ML
pri- | Clagsical B i} Ll 1001033 c 28FT-od (LB1X]
1 A S ) 50100 ME. 114550 in 538 20
= ] ML L] Ed=100 ME. 114850, inG18 20)

FAF = familial aderoracs polypois AFAF = ararcated familial aderoeances podypads; dassical FAR = = 00 podypa; AFAF 450 polyps; B = mcsiw inkad e
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expression aof the target transeript was calculated with the
comparative Ct method [Applied Bicsyvsterns User Man-
ual) by using a ¢cDMA fragment from the glucuranidase
[GUS) housekeeping gene as contral.

To messure DNA, we selected aligonucleotides that
anplify the entire APC gene exon 14, including the
intron-exon boundaries, and aligonucleotides that ampli-
fir the entire MYH gene exon 15, including the intron-
exon boundaries, used as control gene. The APC DNA
target was quantified by using the ACt of a normal
cantral as calibrator to calculate the relative quantifica-
fion. As positive contrals we measured, in each determi-
nation, the APC genamic DNA of twa carriers of the APC
locus deletion previously characterized.™

For RNA analysis, we synthesized ¢cDONA, Half micro-
liter of the cONA was a.lTrpIJﬁad with primer C29.1 and
primer 1303 s previously reported. ™ Hnally, nested FCR
amplifications were performed with 1 yl of the fist FCR
product with the following primers. The primers used to
amplify the fragment encompassing the region from exon
& to exon 12 of the cONA were: APC &FF and APC
[2cRP." The primers used for PTT analysis of exons - 14
were: 1T7: 5-T7-GCT GCA GCT TCA TAT GAT -3,
and 15B3b: 5-GGG TAA CAC TGT AGT ATT CAA AT-¥
and the reaction was performed as described ahove.

To analyze exon 15 mENA alterations in the carrier
af the 49096 =4 mutation (p.D1637N), we amplified 0.5
ul of the cONA with primers |3¢FF and LZKRE described
by Groden et al. = Fnally, seminested PCR amplifications
were performed with | pl of the first FCR produc with
the same forward primer 13cFF and different reverse
pimers |5GRF, 15GIRF, and [S[RF.™ * The PCR products
were analyzed an | to 2 percent agarose gels in tris-acetic
xid (TAE)] EDTA standard buffer and visualized by
dhidium bromide staining. The missense mutation
[4909G=A) was searched for in 30 contral samples to
eclude the possibility of a rare palymarphism. The
nuclaotide sequences of normal and mutated exon 15
were analyzed with the ESEfinder program using the
default settings (exon.cshLorg/ESE/). This is a prediction
program that evaluates the influence of hase substitution
on putative exanic splicing enhancers (E3E] sites. Exonic
plicing enhancers (ESEs) act as binding sites for
members of the Serine-Rich (SR) protein family; the
program scores every sequence for the presence of ESE
matifs recognized by the human SR proteins SF/ASF,
SRp40, SRpS5 and 5C35.* Exans 1-1& of the MYH gne
were analyzed by PCR-55CF and direct sequencing af the
a'npllﬁad tragmenh. as previously described. o

RESLILTS

We have analyzed the disesse-causing mutations in 25
mrelated patients with FAF from southern Itaty, OF these
petients, ¥ showed the classical FAF phenotype with

D Howa, £ als APS anls MYH MUTATIONS I FAR

dominant inheritance, | showed the classical FAP pheno-
type without inheritance for the disease, 2 showed the
classical FAP phenotype with recessive inheritance, and 13
showed the AFAF phenatype. Only ane of the latter patiants
had adominant inheritance, three had recesive inheritance,
and the remaining nine patients had an unclear family
history or did not report positive family history of FAF.

As shown in Table |, we found the disesse-caming
mutation of the APC gene in nine of ten probands
(90 percent) with a dominant syndrome [FAP ar AFAP)
and in one FAP patient with a classical phenotvpe but
without a family histary af this disease. Eight of these ten
(80 percent] APC mutations are truncating routations (4
novel mutations and 4 previously described; Patients 5, 8
18, 23 and 13, 18, 19, 20, respectively; Table 1). The ninth
is a splicing mutation (Fatient %) and the tenth is prahahly
a deletion of the entire or a part of the gene (Fatient 3). In
fact, in Patient 3, quantitative PCR analysis perfarmed on
dINA and genomic DNA showed significant down-
axprassion of mENA associated to genamic APC germ-
ing deletion encompassing exon 14 (Figs. 1A and B
sample Fl). This patient resulted apparently hamazygous
Buggesting hemizygosity] at all palymorphic markers
spanning the APC gene, consistent with a whaole-gene
deletion, thus confirming that haplainsufficiency can result
in a classical polyposis phenotype. Also, another patient
with FAF with an apparently recessive inheritance, showed
dgnificant down-expression of mANA bt not genamic
deletion when analyzed with the same quantitative PCR
technique (Figs. 1A and B, sample F2; Table 1, Patient 12).
In this last case, the down-expression of the RMNA could be
probably caused by mutations in the promater region ar in
other regulating elerments. Therein, in both cases a limited
amount of functional APC protein encoded could be maost
likely the pathogenetic maolecular alteration. Finally, a
glicing variant was identified in a patient with AFAP
phenatype withaut inheritance for the disease (Patient 14).

Two of the mutations characterized are splicing
mutations: one is a transition in the first nucleotide
[+1) of the comnsensus donor splice-site of intron @
(IW58+1G=A), first described by Gavert ef al,® and the
cther is a novel missense mutation in exon 15 (4909G-
=A), which most likely generates a splicing enhancer
matif that activates an upstream cryptic splice site.

Fatient %, who had the V594 1G=A mutation, is a 1&-
vear-old boy affected by a very aggressive FAF phenatype
with adenomatous calorectal polyps and rectal adenocarci-
nomas. We investigated the pathogenetic mechanism
wmderlying the apgressive FAF phenotype in this patient.
Pratein truncation anahsis of fragment 1T7-1583b gener-
ated a polypeptide of the expected normal size and anather
af about 34 kDa from the mutant allele. RT-FCR anahysis of
awons 8-12 showed the expresiion of the APC chain that
lacks exon 9 and 9a thereby creating a frame-shift and a
premature stop codon (data not shown).
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FIGURE 1. A=al-time PCR quantification analysis. A. Aelative expression, calolatad with the comiparative Tt methad, of the sdenamatous
pofyposis coli mah transchipt containing exon 14 compared with Gitathione-synthetass in hasithy cantral subjects {01 and CJ) and patiants
with fmilial sdenomatous polyposis (71, P2, and PE)L B, Aelative genamic DN A quantification, calculated with the comparative Ct methad, of
the exon 14 adenomatous pofyposis coli amplified fragment compared with exon 15 MUTYH amplified fragment in healthy contel subjacts
€1 and (2, patients with familial adenomatouws palypasis (71, P2, and P3), and patient with familial adenomatous polyoass carrying

enamabus pafypasis ool gene deletion {D1]

It is likely that this overexpressed APC light-chain
malecule could antagonize the tumaor-suppressor effect of
the APC protein cansing the aggresive phenotype in this
patient.

The other patient [Tahle 1; Patient 14), 2 62-vear-ald
man without a dominant family histary of FAP, had an
attenuated FAP [AFAF) phenotype with few colonic
palyps [approximately 10} and without extracolonic
manifestations. The family history was unclear; a eousin
died from colorectal cancer at aged &5 vears, but his
parents died from causes other than colorectal cancer.
Becanse this patient developed only few adenomas,
colanoscopy is recommended every two years. This AFAP
patient had a missense mutation in exan 13, C49090G-=A
[pD1837N), which consists in a G to A transition at
position 490% and causes a substitution of the aspargine
1637 to aspartic acid PCR-S55CP analwis and DNA
sequencing was performed on all 15 exons of the APC
geng, including their exon-intran boundaries, and no
other mutation was found. This novel missense mutation
wai not found in any of the 30 narmal contral samples
analyzed.

Using the “ESEfinder" program, we made a compu-
tational analysis to look for ESE sequences in the region
af exon 15 encompassing the mutation (from nudeotide
4886 to nucleotide 4%45). Binding matifs for known
splicing enhancer proteins (SR proteins: SE2/ASE, 5C35,
SRp4D, and SRp55), were found in this region in both
normal and mutated sequences. Remarkably, we identi-
fied an increase of the SC35 hinding matif affinity in the
mutated sequence [score 3.0) campared with the contral
sequence (scare 2.5 Fig. ZA).

Using RMWA extracted from lmphooytes of the
patient and two healthy contral subjects, we perr'arm-ed
RT-PCR and nested PCR as described in METHODA An
abnormal fragment product was identified, in the patient
and not in the heathy contral subjects, for fragments
13¢FP-15IRF and | 3cFP-15IRP. Mo amplified fragment
was obtained with thel3cFP- 12GRF primers, because it is
internal to the mBNA deletion.

As shown in Figures 2D and E, sequence analysis of
the ¢ONA amplified fragment revealed the lost af the
exon 15 region fram nucleatide 2214 to nucleatide 4820,
probably caused by activation of a cryptic nancanonical
GA-AG splice site pairs. This deleted messenger was
produced anly from the mutated allele; in fact, the
sequence shows only the mutated nuclectide at position
4909 (Fig. 2D, whereas the genomic DNA sequence of
the same region shows both normal and mutated
nucleotides [Fig. 2C).

Anunusual feature of mutation 48080G-=4 is that the
change does not alter an authentic splice site nor does it
generate a cryptic splice site, rather, the mutation
probably activates an ESE contral sequence that indirectly
activates a cryptic splice junction upstream of the
mutated site within the same exan.

We also analyzed coding region and intron-exon
boundaries of the MYH gene for disease-causing muta-
tions in patients negative far APC mutstions, using PFCR-
SSCF and direct sequence techniques. We found 11 MYH
mutations, all previously deseribed, ™% in seven
patients without a dominant family history of palyposis.
Four patients had hiallelic mutations of the MYH gene;
one of these, a carrier of mutations Y®0X and G382D
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[Tahle 1; Patient 4}, had an attenuated phenatype without
a family histary of polypasis. Of the other three patients,
two showed the classical palyposis phenatype with
recessive inheritance and were carriers respectively of
the RISBC/465delE (Table |; Patient 2) and Y185C/
R231H (Patient |} mutations. Interestingly, the third
patient [Patient 17), also a carrier of the same Y1650/
F231H mutations, showed an attenuated phenatype
without a family history of disease. Finally, three patients,
with attenuated phennt:.rpe and no farmlj.r histary af
disease, were carriers of only ane mutation: two of these
had the G382D mutation [ Patients 24 and 25) and the last
ane had the Q324H mutation [Patient 7).

DISCUSSION

Our data enlarge the spectrum of APC gene mutations
ad shed light on the correlations between the kind of
APC genmline mutations and the clinical manifestations
of FAP. Furthermore, the data suggest that mRMNA

alterations could he responsible for a subset of FAF cases
in which no germ-ling APC or MYH mutations have been
detected. Appraximately 15 percent of inherited human
dsesses irvolve splicing errors caused by mutations in
plice sites or in splicing contral sequences.™ Maost
Plicing mutations are distributed within the coding
eons or in the adjacent ¥- and Ysplice sites, which
fraquently lead to exon skipping. In human disesse genes,
there are numerous mutations in ESE control sequences
that have been shown to cause sberrant exon skipping ™
According to the literature data, we suggest that exonic
dngle-hase substitutions may affect splicing when oceur-
ing at hinding sites for splicing regulatary factors.
However, disease-cansing missense and silent mutations
i tumor-suppressor genes are rarely reported because
their functional consequence often remains uncertain.

In this context, APC maolecular screening should be
extended at the mENA level to obtain 2 more precise
maolecular diagnosis and a better characterization of
patients with FAP. It is our opinion that the malaclar
tecnigues at the RMA level and computational analysis
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could increase the mutation detection rate, particularly in
nanclassical cases.

Interestingly, the patient carrier af the [V58+ 1G=A
mutation that leads to an APC messenger lacking exons 9
and %a showed a very aggressive FAF phenotype. Usually,
mutations in this region are associated with an attenuated
phenatype. In fact, exon ¥ undergoes alternative splicing
in a fraction of mRNA maolecnles and mutations localized
in the spliced-out portion of the exon are expected tﬂ
result in the residual production of wild-type tran_,crl]:lt
However, variable phenotypes in the alternatively spliced
region of exon 9 have been reported An AFAP
phenotype has been described in a kindred bearing a
mutation at the splice-donar site of exon 9a by Varesco
o al.** Moreover, FAP families cartier of mutations in the
same region showing a classical palyposis phenaotype with
hundreds of colorectal adenama, were described by
Gavert o al'% and Curia & af™ Interestingly, in The
family studied by Curia & al.® the polyps were detected
in three patients who were aged 47, 12, and 8 vyears,
respectively. The authars suggest that, in addition to the
mutation site, the type af the mutation and the transcri]:lt
dnsage effect contribute to the phenaotypic heterogeneity
af the disesse. Intriguingly, the mutation described by
Varesco ot al.™ is localized at position +5 of the splice-
donor site, whereas the mutations reported by Gavert
et al."® and Curia & all* a5 those described in this study,
occurred at the first base of the same splice-donar site.
The two different sites of mutations could canse different
efficiency of exan skipping. Maoreover, the mechanism of
splicing sites selection, as well as the mechanizms that
regulate the stahility of RNA and that cantain premature
termination codons (FTCs), also could differ significantly
a3 a result of individual ar tissue-specific differences, thus
leading to the phenatypic varishility.

Our study confirmed that genotype-phenatype cor-
relations in MYH-associated polyposis (MAF) are very
complex; hiallelic MYH mutations can result in classic ar
attennated 'Flc:l]‘.."Fﬂiii. Furthermare, ]:atienti with the
same MYH hiallelic mutations can show different
phenatype.” Hnally, in a relevant fraction of patients
with colon polyposis, a mutation is found in a single
MYH allele [maonaallelic mutatian ).

This causes problems nat only for the interpretation of
the results but alsa for the clinical management (diagnosis
and counseling) of patients and families in whom such
variants of uncertain pathogenic significance are detected.

Hasmary of Genetic Terms

Oiigonucfeatides a polynocleatide of low malecular
weight, consisting of approximately 20 nuclentide
palymers, which anneals to a carplernentary se-
quence of demaribonucleic acid [DMA) and has a
¥IH terminus at which a DNA polymerase begins
the synthesis of a DNA chain.
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Splice sitesr sequences immediately surrounding the
exon-intron boundaries recognized by the splicing
machinery and used to connect two adjacent exans.

Cryptic splice siter asplice site generally nat utilized hy
the splicing machinery for the splicing mechanism.

Exonic splicing enfunsr (ESE) contral sequencer pre-
mBMA cis-acting element required for splice-site
recognitian.

Hﬁplmuul‘ﬁ'lem}f genetic condition caused by a muta-
tion camsing loss of function of one allele that
determines disease when the contribution of a
normal allele is not sufficient to prevent disease.
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Reshdans An ancouraged i write latient 1o e adifor concaming Aficlet i hive been pubiishad in GETRENTERCLOAY. Lidiant Thid inchude ongnal,
urpubiishad data will nat ba cortidanad. L aflans shauld ba typéawritian and dubmitiad alasironically 1 hiipFawa aditoriaimanagar Sam.igasing,

Alu-Mediated Genomic Deletion of the
Serine/Threonine Protein Kinase 11
(STK11) Gene in Peutz—Jeghers Syndrome
Dear Sir:

The key feature of Peum-leghes syndrome (PIS) is a
greatly incressed risk of dewloping malignant tumars in
ruliple tsues In addidon to an elevared risk af gasiro-
ntestinal malignancies, such a8 gastrossophageal, small
boweel, and salorestal cancers an increased risk of cancers ar
ather sites, particularly in breast, pancreas, ovary, uterus,
@i lung, and testicle, has been repartsd 2 Thus, an
appropriate diagnoasis is crusial for cancer prevention.

BIS [MIM 175200}, which has an inecidence of 1 in
150,000 in Narth Amedes and Wastern Europe, is 4 rare
atosamal-daminant inhedted precanescaus condition
characterized by multiple polyps in the gastraintestinal
rract and distinerive muessutansous pigmentation.

Cermline mutations in the serine/threanine kinass 11
gene (STRII/LKED) (OMIM*602216) are documented in
up to M- B of the PIS parients; of thess, about 15%
have germline deletions af all or part of the gene? In
the remaining 20%-30% of PIS parients, defects in other
gnes ar not wet identified ways of LKS] bactivation
might be mspansible far PIS.

The airm of this work is to clarifi the molscular basis af
the disease in [ralian PIS parients. We investigated the
STK11/IKBI gene mutations in awell-chamererized series
of 9 unrelared [ralian PJS patents, by using a combina-

ton af polymerase chain reactian [PCR), reverse trans-
aiptase (RT-PCR, DNA sequencing, Southern blot anal-
1515, and real-time PCR rechnigques.

As shown in Table 1,we have characterized the specific
STRIT mutation in 6 probands, sonsisting of 2 trunzat-
ng mutations (1 novel and 1 known mutarion, 1 mis-
nse known mutation in the seon 4, and 2 novel small
n-frame deletions in ewan 6. Finally, we have found an
ntm-sxonic in-frame delstion encampassing exons 2 and
3 and we hawe characrerized the breakpoints of this
LKBI/ASTEDD imtragenie deletion. This rearrangement,
that deletes about 7 kb of the LKB] gnomis region
meampassing ewans 2and 3 (Figure 14} is most likely an
Alu-Alu hemologous recombination ewent. Two 2e-bp
eare ssquensces af 2 Alu elements (both AluY sequenses),
showing a 96% homalogy, are indesd localized ar the §'
and 3 end of the breakpoine, respectively. This se
quense, sould iself acr as a recambinase [Rgure 1)

Alu-medisted homologous resambination is a mecha-
mim well documented so Br however, it is the Brse
sidenss that this mechanism is invalved in the STEID/
LEB] gere rearrangerments. Becaise the awerage fre-
quency of Alu elements along the human gename is
stmated to be 1 element every 4 kb?* the region span-
ring the 7-kb deletion (including introns from 1 to 3 af
the LKB] gene), shows an over-repressntation of oam-
petz Alu elements. Seventesn Alu elements are detecrad
in this 14.5 Kb region by using in silico analysis with the

Tahis 1. Clinical Phenotype and Mutation Spectrum of Ktallen P15 Patients Studied

Patiam Typ= af Onmat
mumber  inheritanos .~ ETH11 /LKB1 mutation Exan Clinical manifestation
1 F 18y o84 2deil o L2381 fdy a Hamartamatous duodenal gayposs and ara
mucaouian=aus gEgmmeTiaian
2 5 1dy 01681 7 linsts pEBTR10BN i Hamartomatous imestinal gaynoss and ara
mucaouian=aus agmeTiatian
3 z By NC_000019 889981 3998dsl (T KB dal. 23 Hamartamatous imestinal gaynoss and ara
spanning exons 2=3) p.E98_G11Bdal muoooutansgus ggmentatian
4 F 1.3y o B80G A pO19dN 4 Hamartamatous duadenal and gastric palyoosis
and oral mucacutan=ous Digmentatian
5 ] 18y WL, - Hamartamatous gasirio palyaasis and ara
MUCIcUtANSIUS Sigmentatian
8 ] 13y 0.8 BE-8 RldellTE p.28Edail a Hamartomatous gasirio palynass and ara
MUCOTUtANSIUS Sigmentation
T F 18y H.F. - Hamartamatous duodenal gaypass and ara
MUCOoUtANSIUS Sigmentatian
] F 10wy WLE. - Hamartomatous gasirc poynass and ara
MUCOTUtANSIUS Sigmentatian
9 F 1Ty 0.747-T48daiCAC p.2B0dalT a Hamartomatous gasirc saynass and ara

mucaouian=gus pgmeriaian

E famiial cas=s: & sporadc cas=s; MF. muiation not found; the= bold character indicates th= novel mutations.
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Figung 1. Mialédular oaradtrizaion of $a STK11/LKE irfragéric 9éléd on. fd) Fapdt it darmaris pratdrt in $a gandomt ragian fram doars 1-4
of 18 ST 1/ 1 gara and & diagrar (Balow) & e dakadion 2 shdear. Tha ariow indicatss 58 rioval ganarmic unclian §'BP and ' BP: 5 &nd
J' Erasgedar. (5 Sequen o srsytit of T arnpifed roduct dbtingd o Dt e, B o @ cormiirardl o e Sadl v rud actices
repaniad ot & e 5 and 3 brasiedris sharing 100% of harnalogy &nd répndaten g (ha noedl gandris sormad ion prodiucad By $a daiation
e, Boly arrows indicats T genarmic ragion rghad in $a deleion and 5 ganamic rucesides potition rrakeedin e novel geanarmic unsia,
redérrad it GariBark Aaguerds with Addetdicn rurmnbbér: NC_0000 8.8, (C) Saguanida of Al ddrmarts pratart & Te §' &and 3’ bradlpan® (5' BP,

3 BP, of A); Bowad ruc iBoSas e ratart 1ha oord sagquancs of Al aarmars.

RepeatMasker progmm, which carresponds to =1 ele-
ment every 1 kb, The over-representation of Alu elements
ndizates that this is a regian of DNA insability; thus, it
i not sirprising that several intrageniz rearmngements
nvalving this region have been mparted so far Intrigu-
ngly, genamie ssquense af chromosome 19 from Gene-
Bank position 1203000 ro 1230861 shows the presenze of
Alu elements ar the genamic regions invalved in the
ntmgenis deletions in most of the cases 5o far deseribed.

Qur straregy to screen the entire coding region of the
LEB] gene, both at DNA and BENA level, has allowed the
dentification of the dissase causng mutations in about
&7% of P]S parients. Other gene inactivating mechanisms
might be respansible for PIS in mutatians negative pop-
dation subset. However, the esdstensas aof genetic hetara-
geneity cannot be execluded.

Because of an over-representation af Alu elements in
this reg-ian, in our apinian, s reasonable h}l‘pﬂ!h&iil&
that Alu-mediated homologous recombination eould
gy rise to several intrgenis rearrangements, a8 translo-
atians ar inversions, not always detectable using classi-
al maleeular bialogy techniques. Thes rearangements
awld in part explain the PJS cases without identified
malecular alterations.
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