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ABSTRACT 
 
Imatinib mesylate is a potent inhibitor of the Bcr-Abl tyrosine kinase, an oncoprotein 

that plays a key role in the development of chronic myeloid leukemia. Consequently, 

imatinib is used as front-line therapy for this disease. A major concern in imatinib 

treatment is the emergence of resistance to the drug. The aim of this study was to 

obtain further insights into the Bcr-Abl activity-independent mechanisms underlying 

imatinib resistance, in chronic myeloid leukemia. The imatinib-resistant KCL22R and 

sensitive KCL22S cells were used as experimental model. None of the already 

described resistance mechanisms has been detected so far in KCL22R cells; 

therefore additional mechanisms independent of Bcr-Abl kinase activity could be 

envisaged. Moreover, KCL22S cells exhibited typical features of the quiescent 

hematopoietic Ph+ stem cells, thereby representing a good experimental model to 

investigate imatinib resistance. To this aim differentially expressed proteins between 

KCL22S and KCL22R cells were characterized using a proteomic approach: two-

dimensional differential gel electrophoresis (2D-DIGE) coupled with Tandem Mass 

Spectrometry. 51 proteins were identified: 27 over-expressed and 24 under-

expressed in KCL22R cells versus KCL22S cells. Bioinformatic analysis with 

GeneSpring and Ingenuity Pathway Analysis (IPA) softwares showed that several of 

these proteins were involved in the modulation of redox balance and activation of 

anti-apoptotic pathways mediated by NF-kB and Ras-MAPK signaling. Since the Erk 

pathway has been shown to influence chemotherapeutic drug resistance of 

hematopoietic cells, the level of activation of Erk in KCL22R and KCL22S cells was 

investigated. This analysis demonstrated that continuous activation of Erk occurred in 

KCL22R cells as compared to sensitive cells. Interestingly, examination of the most 

statistically significant protein network showed that several differentially expressed 
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proteins, between KCL22R and KCL22S cells, were directly or indirectly connected 

with Erk. In particular, among them, this study focused on two SH2-containing, non-

receptor protein tyrosine phosphatases: Shp1 (PTPN6) and Shp2 (PTPN11). It has 

been shown that Shp2 positively regulates the Ras-Erk pathway and is activated by 

phosphorylation. This study demonstrated that the level of phosphorylation and 

hence of activation of Shp2 in KCL22R cells was higher than in KCL22S cells. In 

addition the knock-down of Shp2 expression, in combination with imatinib treatment, 

significantly reduced the activation of Erk 1/2 in KCL22R cells and produced a 

reversion of the KCL22R phenotype, suggesting that Shp2 plays a role in the Bcr-Abl 

activity-independent mechanisms of imatinib resistance. Interestingly this study also 

demonstrated that Shp1, that was found down-regulated in KCL22R cells, interacted 

with Shp2 and that Shp1 played a negative role in the Shp2 activation in KCL22S 

cells. Moreover Annexin A1 and Hsp70, belonging to the same protein network, were 

found down-regulated in KCL22R cells. They could also play a role in imatinib 

resistance by the direct or indirect interaction with Shp2. 

Taken together these results suggest that a reduced Shp1 expression in KCL22R 

cells could contribute to a continuous Shp2 activation, sustaining a Bcr-Abl activity-

independent pathway of proliferation and survival to imatinib treatment. These two 

proteins could be used as putative biomarkers to evaluate the efficacy of imatinib 

treatment and to develop new combinatorial therapeutic approaches.  
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Chapter 1 

INTRODUCTION 

1.1 Bcr-Abl and its oncogenic activity in chronic myeloid leukemia 

Chronic myeloid leukemia (CML) results from the neoplastic transformation of 

hematopoietic stem cells (Figure 1). CML is characterized by three distinct clinical 

phases namely chronic phase (CP), accelerated phase (AP) and blast phase (BC) [1]. 

The initial chronic phase is characterized by a massive expansion of the granulocyte 

cells. The median duration of the chronic phase is 3-4 years. As the disease 

progresses, after the acquisition of additional genetic and/or epigenetic abnormalities, 

patients enter an accelerated phase followed by blast crisis. This is the most 

aggressive phase and is characterized by a block of cell differentiation that results in 

the presence of 30% or more myeloid or lymphoid blast cells in peripheral blood or 

bone marrow [2]. The molecular hallmark of chronic myeloid leukemia (CML) is the 

Philadelphia chromosome (Ph), which results from a reciprocal translocation between 

the long arms of chromosomes 9 and 22 [t(9;22) (q11;q34)]. The Philadelphia 

chromosome contains a BCR-ABL hybrid gene that encodes an oncogenic fusion 

protein. The Bcr-Abl protein has deregulated tyrosine kinase activity that promotes 

cell growth through phosphorylation of signaling proteins [3-7].  

Depending on the precise breakpoints in the translocation and RNA splicing, different 

forms of Bcr-Abl protein with different molecular weights (p185 Bcr-Abl, p210 Bcr-Abl 

and p230 Bcr-Abl) can be generated in patients [4]. 

 

http://cancer.gov/cancertopics/pdq/treatment/CML�
http://cancer.gov/cancertopics/pdq/treatment/CML�
http://www.nature.com/nrc/journal/v5/n3/full/nrc1567.html#f1#f1�
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Figure 1. Chronic myeloid leukemia (CML) is a disease initiated by expression of the BCR–ABL fusion 

gene product in self-renewing hematopoietic stem cells (HSCs). HSCs can differentiate into common 

myeloid progenitors (CMPs), which then differentiate into granulocyte/macrophage progenitors 

(GMPs; progenitors of granulocytes (G) and macrophages (M)) and megakaryocyte/erythrocyte 

progenitors (MEPs; progenitors of red blood cells (RBCs) and megakaryocytes (MEGs), which 

produce platelets). HSCs can also differentiate into common lymphoid progenitors (CLPs), which are 

the progenitors of lymphocytes such as T cells and B cells. The initial chronic phase of CML (CML-

CP) is characterized by a massive expansion of the granulocytic-cell series. Acquisition of additional 

genetic mutations beyond expression of BCR–ABL causes the progression of CML from chronic 

phase to blast phase (CML-BP). 
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1.2 Molecular mechanisms of BCR-ABL translocation  

The breakpoints within the BCR gene on chromosome 22 are found within three 

defined regions [4]. In the 95% of patients with CML and approximately one third of 

patients with ALL, the BCR gene is truncated within a 5.8-kb region known as the 

major breakpoint cluster region (M-bcr) (Figure 2). This region contains five exons, 

originally named b1 to b5, but now referred to as e12 to e16, according to their true 

positions in the gene [8]. Breakpoints within the ABL gene can occur anywhere within 

a 5′ segment that extends for over 300 kilobases (kb) [9]. Typically, breakpoints form 

within intronic sequences, most frequently between the two alternative first exons of 

ABL. Thus, BCR-ABL fusion genes may contain both exons 1b and 1a, exon 1a 

alone, or neither of the alternative first exons. BCR-ABL mRNA lacks exon 1, 

regardless of the structure of the fusion gene, with the transcript consisting of BCR 

exons fused directly to ABL exon a2 (Figure 2). Because processing of BCR-ABL 

mRNA results in the joining of BCR exons to ABL exon a2, hybrid transcripts are 

produced that have an e13a2 (b2a2) or an e14a2 (b3a2) junction. In both cases, the 

mRNA consists of an 8.5-kb sequence that encodes a 210-kDa fusion protein, p210 

Bcr-Abl (Figure 2). In two-thirds of patients with Ph-positive ALL and in rare cases of 

CML and acute myelogenous leukemia, the breakpoint in BCR occurs in a region 

upstream of the major breakpoint cluster region known as the minor breakpoint 

cluster region (m-bcr) (Figure 2). The hybrid mRNA consists of sequences that are 

approximately 7 kb in length in which exon e1 from BCR is joined to exon a2 of ABL. 

The translated product is a 190-kDa fusion protein, p190Bcr-Abl (also referred as 

p185Bcr-Abl) [10]. The third defined breakpoint cluster region within the BCR gene 

was named “micro” breakpoint cluster region (μ-bcr), (Figure 2) [11]. In this case, the 

breaks occur within a 3 ′ segment of the BCR gene between exons e19 and e20 

http://www.mdconsult.com.ezproxyhost.library.tmc.edu/das/article/body/109105363-2/jorg=journal&source=&sp=14898082&sid=0/N/429459/1.html?issn=0889-8588#F04000139001#F04000139001�
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(known as c3 and c4 in the original nomenclature). Transcription of the hybrid gene 

yields an e19a2 BCR-ABL fusion transcript that encodes a 230-kDa protein, p230 

Bcr-Abl. 

1.3 Pathways downstream of Bcr-Abl 

The cytoplasmic location of Bcr-Abl oncoprotein allows access to many cellular 

substrates leading to the activation of proliferation and survival pathways. Same of 

them are here described (Figure 3). Many signaling proteins have been shown to 

interact with Bcr-Abl through various functional domains/motifs (for example, Grb2, 

Crkl, Shc, 3Bp2, Abl-interacting protein 1 and 2, and Crk-associated substrate 

(Cas)), and/or to become phosphorylated in Bcr-Abl-expressing cells (for example, 

Crkl, Shc, Docking protein 1, Gab2, Cbl, Cas, Signal transducer and activator of 

transcription 5 (Stat5), the p85 subunit of pi3k, phospholipase c , Synaptophysin, 

Vav1, Ras GTPase-activating protein, Focal adhesion kinase, Fes, Paxillin and Talin 

[4,12]. These proteins in turn control a range of signaling pathways that activate 

proteins such as Ras, pi3k, Akt, Jnk, Src family kinases, protein and lipid 

phosphatases, and their respective downstream targets, as well as transcription 

factors such as the Stats, Nuclear factor-kb and Myc [4]. Bcr-Abl expression also 

seems to be correlated to the expression of Src kinases family such as Lyn. At this 

regard is interesting that down-regulation of Lyn expression by small interfering RNA 

induces apoptosis of human blast-phase CML cells [13]. Bcr-Abl also recruits the 

scaffold adapter Gab2 through Grb2. The major Grb2-binding site at Y177 of Bcr-Abl 

was shown to regulate the tyrosine phosphorylation of Gab2 [14] (Figure 3). In this 

way Gab2 mediates the ability of Bcr-Abl to confer cytokine-independent growth of 

primary myeloid cells. Gab2 also contains binding sites for the SH2 domains of the 

p85 subunit of pi3k and for Shp2 [14]. The pi3k and Shp2 signaling pathways could 
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be required for Bcr-Abl leukemogenesis. In particular Shp2 is required for normal 

activation of the Ras-Erk (extracellular signal-regulated kinase) pathway (Figure 3). 

The mechanism of the activation of Ras-Erk pathway by Shp2 is not completely 

known. In addition to Shp2, Ras can be activated directly by Bcr-Abl through the 

Grb2-Sos complex [15] (Figure 3).  
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Figure 2. The t(9;22) translocation and its products with breakpoint locations at the BCR and ABL loci. 

 

 

Figure 3. A simplified diagram of the associations between Bcr-Abl and signaling proteins.
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1.4 Imatinib in CML therapy 

Allogenic stem-cell transplantation is the only known curative therapy for CML. 

However, most patients are not eligible for this therapy, because of advanced age 

(making them unable to tolerate the serious side effects of the treatment) or lack of a 

suitable stem-cell donor [16]. Because Bcr-Abl plays a key role in the pathogenesis 

of CML and because the tyrosine-kinase activity of Abl is essential for Bcr-Abl-

mediated neoplastic transformation, Abl kinase has became a potential target for 

therapeutic intervention. In 1998, imatinib mesylate (STI571®, Gleevec) (Figure 4), a 

tyrosine kinase inhibitor belonging to the 2-phenylaminopyrimidine group of 

pharmacological compounds, was introduced as first line therapy of CML [17]. 

Imatinib has a high affinity for the ATP-binding site of Abl, in addition to other kinases 

such as Pdgfr, Kit and Arg. Imatinib is a potent inhibitor of the Abl tyrosine kinase 

and has been shown to selectively induce apoptosis of Bcr-Abl positive cells [17,18]. 

Imatinib locks the Bcr-Abl protein in an inactive conformation (Figure 5), thus 

preventing phosphorylation of target proteins and blocking the proliferation in CML 

cells [19]. There are two major obstacles to imatinib-based therapies for patients with 

CML. One is the persistence of Bcr-Abl-positive cells. This is known as ‘residual 

disease’, and is detected by a sensitive nested reverse-transcriptase PCR assay 

[20,21]. The second is related to the emergence of resistance to imatinib during 

disease progression, namely ‘acquired resistance’, in addition to ‘primary resistance’. 

Most of the mechanisms implicated in resistance to imatinib involve mutations in the 

Bcr-Abl kinase domain that impair the drug binding or protein kinase over-expression 

[22, 23], but they do not account for all the resistance mechanisms. 
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Figure 4. Imatinib chemical structure. 

 

Figure 5. (a) Bcr-Abl activation and phosphorylation of downstream substrates. (b) Imatinib works by 

binding to the ATP binding site of Bcr-Abl kinase thus preventing its activation and inhibiting the 

enzyme activity. Inhibition of Bcr-Abl activity blocks deregulated signaling as altered cellular adhesion, 

abnormal proliferation and apoptosis inhibition. 

Imatinib 
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1.5 Imatinib resistance 

Studies of resistance to imatinib mesylate were long hampered by the lack of cells 

resistant to the drug. However, in the year 2000, the group led by Junia V. Melo 

produced resistant sub-lines from various Ph-positive cells [24]. They demonstrated 

that human Bcr-Abl-positive cells can evade the inhibitory effect of imatinib by 

different mechanisms. The two most common affect the BCR-ABL gene itself such as 

mutations in its tyrosine kinase domain and over-expression of the Bcr-Abl protein 

due to amplification of the BCR-ABL gene [24-27]. Resistance may also be related to 

Bcr-Abl-independent mechanisms. These include the up-regulation of the drug efflux 

pumps [28-30], the down-regulation of drug influx transporters [31,32], the drug 

sequestration mediated by alpha-1-acid lipoprotein (AGP) [33], and other Bcr-Abl-

independent mechanisms such as the over-expression of Src family kinases, Lyn and 

Hck [34] and the activation of pathways downstream of Bcr-Abl, independent of its 

kinase activity, that confer resistance to imatinib [35]. 

 

1.5.1 Mutations in the Abl kinase domain 

The emergence and selection of clones exhibiting point mutations in the Abl kinase 

domain is the most frequently identified mechanism of resistance in patients treated 

with imatinib [36, 37]. These mutations are not induced by imatinib, but rather, just 

like antibiotic resistance in bacteria, arise through a process whereby the drug itself 

selects for rare pre-existing mutant clones, which gradually outgrow drug-sensitive 

cells [38]. Mutations can be categorised into 4 groups: (i) those which directly impair 

imatinib binding; (ii) those within the ATP binding site; (iii) those within the activation 

loop, preventing the kinase from achieving the conformation required for imatinib 

binding; and (iv) those within the catalytic domain (Figure 6). The substitution of the 
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amino acid threonine with isoleucine at position 315 of the Abl protein was the first 

mutation to be detected in resistant patients [39]. At least 73 different point mutations 

leading to substitution of 50 amino acids in the Abl kinase domain have been isolated 

from CML patients resistant to imatinib so far, and this number is likely to increase 

with more sensitive methods of detection (Figure 6). 

 

Figure 6. Map of Bcr-Abl kinase domain mutations associated with clinical resistance to imatinib. 

Abbreviations: P, P-loop; B, imatinib binding site; C, catalytic domain; A, activation loop. Amino-acid 

substitutions in green indicate mutations detected in 2–10% and in red in >10% of patients with 

mutations. 
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1.5.2 Bcr-Abl over-expression 

Over-expression of the Bcr-Abl protein due to amplification of the BCR-ABL gene 

was first observed in vitro when resistant CML cell lines were generated by exposure 

to gradually increasing doses of imatinib [24,40]. Over-expression of Bcr-Abl leads to 

resistance by increasing the amount of target protein needed to be inhibited by the 

therapeutic dose of the drug. It is also possible that a transient over-expression of 

Bcr-Abl may be an early phenomenon in the establishment of imatinib resistance, 

preceding the emergence of a dominant clone with a mutant kinase domain, as 

suggested by kinetic studies in cell lines [40]. 

 

1.5.3 Drug efflux and influx transporters 

Multidrug resistance (MDR) is mediated by an increased expression at the cell 

surface of the MDR1 gene product, Pgp, an energy dependent efflux pump, which 

reduces intracellular drug concentrations and leads to ineffective levels of the drug 

reaching its target [28,41]. Imatinib and other tyrosine kinase inhibitors are substrates 

of Pgp, and the intracellular levels of imatinib were shown to be significantly lower in 

Pgp-expressing cells [31,42]. An imatinib-resistant CML cell line generated by 

gradual exposure to increasing doses of the drug was shown to exhibit Pgp over-

expression, and MDR1 over-expression in CML cell lines also confers resistance to 

imatinib [24]. Recently, two other drug transporters, breast cancer resistance protein 

(BCRP)/ABCG2 and human organic cation transporter 1 (hOCT1), have been 

implicated as possible mechanisms for promoting imatinib resistance. Imatinib has 

been variably reported to be a substrate and/or an inhibitor for the BCRP/ABCG2 

drug efflux pump which is over-expressed in many human tumours and also found to 

be functionally expressed in CML stem cells [29,30]. The drug transporter, hOCT1 



 20 

mediates the active transport of imatinib into cells, and inhibition of hOCT1 

decreases the intracellular concentration of imatinib [31,32].  

 

1.5.4 Other Bcr-Abl activity-independent mechanisms of imatinib resistance 

The Src family kinases, Lyn and Hck, are activated in Bcr-Abl-expressing cell lines. 

Very recently, over-expression of Lyn and Hck kinases has been reported in some 

imatinib-resistant patients [43]. Lyn and Hck belong to the SRC family of kinases that 

are expressed in CML cells and activated by Bcr-Abl kinase [44]. However, kinase 

activation is also controlled by other mechanisms that could cause imatinib 

resistance. In fact, Lyn over-expression, irrespective of Brc-Abl, occurs in the K562 

CML cell line [34] and in some CML patients [44]. Microarray analysis have shown 

that transcripts from genes with anti-apoptotic or malignant transformation properties 

and with involvement in signal transduction/transcriptional regulation are over-

expressed in CML cells innately resistant to imatinib. This would suggest that 

pathways downstream of Bcr-Abl and independent of its kinase activity may be 

important factors which confer resistance to imatinib [35]. 

 

1.6 The proteomic approach  

Proteomics, defined in the 1995 as "the total protein complements of a genome", has 

burst onto the scientific scene with stunning rapidity over the past few years, perhaps 

befitting a discipline that can enjoy the virtually instantaneous conversion of a 

genome sequence to a set of predicted proteins. In fact, for almost two decades, 

major efforts have been directed at the polynucleotide level and, particularly, at the 

gene sequencing of a variety of different organisms. Complete genome sequencing 

has been achieved for a wide variety of organisms, and efforts to sequence the 
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complete human genome have resulted in completion of a first draft. While it is often 

conceptualized that one gene produces one protein, it is known that the expressed 

products of a single gene in reality represent a protein population that can contain 

large amounts of microheterogeneity [45-46]. More than 100 modification types are 

recorded and additional ones are yet to be discovered [47]. All modified forms from 

one protein can vary in abundance, activity or location inside a cell. Indeed, cellular 

proteins are not invariant products of genes, but are subject to a high degree of 

interdependent processing at the protein level that is a critical component of cellular 

function and regulation. In addition, protein expression is dynamically regulated in 

response to external and internal perturbations under developmental, physiological, 

pathological, pharmacological and aging conditions. In fact, in contrast to the static 

genome, where all information could in principle be obtained from the DNA of a single 

cell, the proteome is dynamic and highly dependent not only on the type of cell, but 

also on the state of the cell [48].  

Proteome analysis presents specialized analytical problems in three major areas: 

expression proteomics [49], which aims to measure up- and down-regulation of 

protein levels, functional proteomics, which aims at the characterisation of cellular 

compartments, multi-protein complexes and signaling pathways [50] and chemical 

proteomics [51] that comes in two different fields: (i) activity based probe profiling 

(ABPP), which focuses on the enzymatic activity of a particular protein family, and (ii) 

a compound-centric approach, which focuses on characterizing the molecular 

mechanism of action of an individual bioactive small molecule.  
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1.6.1 Expression proteomics: qualitative and quantitative proteome analysis 

Classical proteomic approaches have relied upon separating whole cell lysates by 2D 

Gel Electrophoresis (2DE). Historically, 2DE has been the tool of choice to resolve 

complex protein mixtures and to detect differences in protein expression patterns 

between normal and diseased tissue. High-resolution gel electrophoresis, of which 

2DE is currently the most powerful protein separation method, was already used as 

an analytical tool in the late 70s [52]. The 2DE consists in the separation of proteins 

by isoelectric point in one dimension and molecular weight in the second dimension 

(Figure 7). Proteins carry a negative, positive or zero net charge depending on their 

amino acid composition and covalent modification (such as phosphorylation, 

nitrosylation, sulphation and glycosylation), and the pH of the environment. The pI of 

a protein is the pH at which the protein carries no net charge. If the proteins are 

electrophoresed in a pH-gradient they will migrate until they reach a position in the 

pH-gradient where their overall net charge is zero i.e. the pH is equal to the pI of the 

protein (Figure 7).  
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Figure 7. Schematic representation of a 2D-PAGE. a), b), c) The first step in the 2D-PAGE is the 

separation of the proteins according to their isoelectric points (pI). At this point the protein becomes 

‘focused’ at its isoelectric point (pI). A protein with a net negative charge will migrate towards the anode 

and proteins with a positive charge will migrate to the cathode. A protein will stop migrating when the 

pH is equal to its pI. d), e) The second step in the 2D-PAGE is the separation of the proteins according 

to their molecular weight. 

Low 
MW 

High 
MW 
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Isoelectric focusing (IEF) allows the separation of proteins in a mixture according to 

very small differences in their isoelectric points. The original 2DE method, described 

by O’Farrell (1975) [52], used carrier ampholytes in tube gels to create and maintain a 

pH-gradient. Carrier ampholytes are small amphoteric molecules with high buffering 

capacity near their isoelectric points and are usually employed as mixtures covering a 

set pH range. When an electric field is applied across a mixture of carrier ampholytes 

the most negatively charged move towards the anode and the most positive towards 

the cathode. In this way it is possible to form a continuous pH-gradient within a gel, 

which is suitable for the focusing of larger amphoteric molecules such as proteins. 

However, the cylindrical tube gels and carrier ampholytes used to create the pH-

gradient had limitations in resolving power and other technical difficulties. The pH-

gradients formed by carrier ampholytes are unstable and have a tendency to drift 

during longer focusing periods. In 1982 Bjellqvist [53] introduced important 

modifications which involved the carrier ampholytes being co-polymerised into the gel 

matrix itself as it was being cast. The creation of this ampholyte pH-gradient 

decreased markedly the drift observed using the tube gel system of isoelectric 

focusing. Further developments included the gel being cast onto a plastic support 

strip making the system much more robust and easier to handle. These innovations 

significantly improved reproducibility and performance of the first dimension focusing 

step (IEF) in 2D-PAGE. The second dimension utilises the traditional SDS-PAGE 

technique with the low percentage of acrylamide IEF strip replacing the stacking gel. 

Despite being a well-established technique for protein analysis, traditional 2D gel 

electrophoresis is time-consuming and labor-intensive. In addition, the lack of 

reproducibility between gels leads to significant system variability making it difficult to 

distinguish between system variation and induced biological change, which means 
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that real differences between protein abundance attributed, for example, to a disease 

state can rarely be predicted with confidence. The group of Unlu [54] first described a 

method, 2D difference gel electrophoresis (2D-DIGE) that enabled more than one 

sample to be separated in a single 2D polyacrylamide gel. 2D-DIGE differs from 2D-

PAGE in that each sample is pre-labeled with a fluorescent dye (called Cy2, Cy3 and 

Cy5, Figure 8), prior to isoelectric focusing. The labeled samples can be run at any 

one time and on the same gel (Figure 9). The ability to pre-label each sample with 

different dyes and run them together on the same gel makes 2D-DIGE a much more 

powerful technique than running single samples on individual 2D-PAGE gels. 

Analysing 3 samples on one 2D-DIGE rather than three individual 2D-PAGE gels 

reduces experimental gel-to-gel variation. Traditionally 2D-PAGE gels are stained 

using coomassie blue or the more sensitive silver staining procedures. Gels are then 

compared using computer software for changes in protein expression. However, the 

degree of linearity of both silver and coomassie blue stains are limited compared to 

the 5 orders of magnitude possible using CyDye technology. The CyDye technique is 

a much quicker and sensitive method for the detection of proteins (low nanogram) 

than silver and coomassie blue. With silver and coomassie staining, gels require 

being fixed and stained/destained using time-consuming techniques. However with 

DIGE, immediately after completion of electrophoresis each gel is scanned three 

times, at three different wavelengths (red, blue and green) and the analyses is 

complete. The three samples can then be compared and analysed using 

sophisticated computer software and subtle changes in protein expression detected 

very accurately [55]. 
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Figure 8. Cy2, Cy3 and Cy5 chemical structures. 

 

 

Figure 9. Three samples, differentially labeled with CyDyes, are mixed and analysed together. 
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In addition the introduction in the analysis of an internal standard increases the 

accuracy of the analysis. The internal standard, obtained by pooling equal amounts of 

protein from each biological sample in the experiment, is labeled with one of the 

CyDye DIGE fluor dyes, which is usually Cy2 for “minimal labeling”. The last results in 

the labeling of 3-5% of total proteins in the sample. This means that every protein 

from all samples will be represented in the internal standard. The internal standard is 

then run on every single gel along with each individual sample labeled. Linking every 

sample in-gel to a common internal standard has several advantages. It means that 

each sample within a gel can be normalized to the internal standard present on that 

gel. In addition, the abundance of each protein spot in a biological sample can be 

measured as a ratio to its corresponding spot present in the internal standard. This 

enables accurate quantization and accurate spot statistics between gels and, most 

importantly, separation of experimental variation from inherent biological variation. 

This has not been possible with conventional 2D gel electrophoresis, because of the 

high level of variation associated with running all samples on individual gels. 

In summary the greater quantitative accuracy of 2D-DIGE is enabled by two main 

factors: 

• the ability to run multiple samples on the same gel 

• an internal standard (reference) sample which can be run on all gels 

The image analysis allows to compare the samples in the experiment. To this aim 

fluorescence-labeled proteins in the 2D gels are scanned at different wavelengths 

using an imager to generate an image specific for each CyDye. To compare protein 

expression across a range of experimental samples and gels, two distinct steps are 

required (Figure 10): 

• Intra-gel co-detection of sample and internal standard protein spots 

http://www.google.it/url?q=http://science.hq.nasa.gov/kids/imagers/ems/waves3.html&ei=ZbviSsuSHJDkmwO19fn8AQ&sa=X&oi=spellmeleon_result&resnum=2&ct=result&ved=0CAwQhgIwAQ&usg=AFQjCNG7oSlPAIDnzQf13ikC35oPrXbbDQ�
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• Inter-gel matching of internal standard samples across all gels within the 

experiment 

In the first step three scans are made of each gel, Cy2, Cy3 and Cy5 scans. Scanned 

images of each sample and the internal standard are overlaid by a software. The 

algorithms within the software co-detect the spots present in each scan-image, 

effectively identifying the position of each spot within the gel (Figure 10a). In this way 

every protein in the sample is intrinsically linked to the corresponding protein spot in 

the internal standard sample. In the second step, the inter-gel comparisons of spot 

abundance are carried out. Following co-detection, each image has a spot map 

species. The internal standard image with the most detected spots is assigned as the 

'Master'. The spot map species for the internal standard assigned as the Master, is 

used as a template to which all remaining spot map species for the other internal 

standards (intrinsically linked to their co-detected sample images) are matched 

(Figure 10b). Once the protein spots have been matched, the ratio of protein 

abundance between samples can be determined. Spot volume (i.e. the sum of the 

pixel values within a spot minus background) for each experimental sample is 

compared directly to the internal standard by the software. Spot ratios are calculated 

indicating the change in spot volume between the two images. The protein 

abundance for each spot in each sample is then expressed as a (normalized) ratio 

relative to the internal standard. Statistical tests such as the Student’s T-test can then 

be applied to the data-software. The statistical tests verify that any change between 

the groups is significant and give the user a level of confidence by taking into account 

the inherent biological variation within a group compared to the induced difference 

between groups. It assigns a confidence rating as to whether this change is above the 

biological variation. 
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Figure 10. 2D-DIGE image analysis: a) intra-gel co-detection of sample and internal standard protein 

spots; b) inter-gel matching of internal standard samples across all gels within the experiment. 

 

1.6.2 Protein Identification by mass spectrometry 

To measure the mass of molecules, the sample must be charged (hence ionized) and 

desolvated (dry). The two most successful mechanisms for ionization of peptides and 

proteins are matrix-assisted laser desorption ionization (MALDI) and electrospray 

ionization (ESI) [56-58]. In MALDI the analyte of interest is embedded in a matrix that 

is dried and then volatilized in a vacuum under ultraviolet laser irradiation. Typically, 

the mass analyzer coupled with MALDI is a time-of-flight (TOF) mass analyzer that 

simply measures the elapsed time from acceleration of the charged (ionized) 

molecules through a field-free drift region. The other common ionization source is 

ESI, in which the analyte is sprayed from a fine needle at high voltage toward the inlet 

of the mass spectrometer at a lower voltage [59]. The spray is typically either from a 

Gel 1 Gel 2 
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reversed phase HPLC (RP-HPLC) column or a nanospray device that is similar to a 

microinjection needle. During this process, the droplets containing analyte are dried 

and gain charge (ionize). The ions formed during this process are directed into the 

mass analyzer, which could be either a single or a triple quadrupole, an ion trap, a 

Fourier-transform ion cyclotron resonance (FT-ICR), or a hybrid quadrupole TOF (Qq-

TOF) type [60-62]. A mass spectrometric method for rapid identification of proteins 

uses the characteristic distribution of peptide masses obtained by chemical or 

enzymatic fragmentation of proteins [61]. A number of computer programs are 

available for using the observed peptide masses to search gene sequence databases 

for proteins that fit the mass fingerprint [63-64]. Searching of gene sequence 

databases is again used to identify the protein at the gene level. Indeed, the typical 

proteomics experiment consists of five steps. In step 1, the proteins to be analyzed 

are isolated from cell lysate or tissues by biochemical fractionation, 2D-GE separation 

or affinity selection. Proteins are then degraded enzymatically to peptides in step 2, 

usually by trypsin, leading to peptides with N-terminally protonated amino acids, 

providing an advantage in subsequent MS masses (obtained generally by MALDI-

MS) with the calculated list of all peptide masses of each entry in a database. Mass 

fingerprint method works well for isolated proteins, but the resulting protein 

identifications are not sufficiently specific for protein mixtures (e.g. for co-migrating 

proteins). The addition of sequencing capability to the MALDI method should make 

protein identifications more specific than those obtained by simple peptide-mass 

mapping. In step 3, the peptide mixtures are separated by one or more steps of high-

pressure liquid chromatography. In step 4, a mass spectrum of the peptides eluting at 

this time point is taken (MS spectrum). The program generates a list of these peptides 

for fragmentation and a series of tandem mass spectrometric experiments (step 5). 
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MS-MS data consist in the isolation of a given peptide ion, fragmentation by energetic 

collision with gas, recording of the tandem or MS-MS spectrum and storing for 

matching against protein sequence databases. The outcome of the experiment is the 

identity of the peptides and therefore the proteins making up the purified protein 

population. Often MS-MS instruments are classified in one of two categories: tandem 

in space or tandem in time. Tandem in space instruments require a distinct analyser 

for each stage (isolation and fragmentation) of MS-MS. Today, almost all tandem in 

space MS-MS instruments are either triple quadrupole (QqQ) or hybrid instruments 

quadrupole/time-of-flight (Q/TOF). Trapping instruments are typically tandem in time. 

The various stages of MS-MS are performed in the same analyzer but separated in 

time. In MS-MS experiments the isolated ions (termed parent ions) are induced to 

undergo a reaction that increases the internal energy of the ions, leading to 

dissociation. The ions resulting from the various reactions (product ions) are analyzed 

in the second stage of MS-MS. The scheme of a tandem MS experiment can be 

summarized in the following reaction: 

 

Mp+ → Md+ + Mn 

 

Mp+ is the parent ion 

Md+ is the product or fragment ion  

Mn is the neutral fragment or another product ion if the parent ion is multiply charged 
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The dissociation method almost universally used is collision-induced dissociation 

(CID) [65]. In CID, the parent ion collides with a neutral target (collision) gas and 

some of the kinetic energy of the parent ion can be converted to internal energy. The 

CID spectra of peptides obtained by a collision energy shows abundant fragment ions 

generated by the cleavage of the peptide bonds. In mass spectrometric sequencing, 

the information that describes the amino acid sequence of a peptide is contained in a 

product ion spectrum. This product ion spectrum is obtained in a tandem mass 

spectrometry experiment by using collision induced dissociation of a protonated or 

multiply protonated peptide ion. Understanding the structure of protonated peptides 

and their fragmentation pathways plays key roles in one’s ability to interpret ion 

spectra. Peptide sequence identification by mass spectrometry involves 

fragmentation of a peptide to produce smaller m/z fragments; ideally, measured m/z 

values of these pieces can be assembled to produce the original peptide sequence. 

Cleavage of the backbone typically occurs at the peptide bond to produce b ions, if 

the amino terminal fragment retains the charge, or y ions, if the carboxy-terminal 

fragment retains the charge (Figure 11). In the case of multiply charged ions, a 

charge separation can occur to produce complementary ion pairs. Both partners of 

the complementary pair are not always detected in equal abundance, because they 

are not equally stable against further fragmentation or because instrument 

discrimination may enhance or diminish one partner of the pair. Although b and y ions 

are considered to be the most useful sequence ion types, because they correspond to 

cleavage of the amide bond, other ion types are observed and used in spectral 

interpretation as reported in Figure 11. 
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Figure 11. Although b and y ions are considered to be the most useful sequence ion types, because 

they correspond to cleavage of the amide bond, other ion types are observed and used in spectral 

interpretation. These include a ions which correspond formally to loss of CO from b ion; a Δm= 28 Da 

between two peaks suggests an a-b ion pair and is useful in identifying the ion series to which the 

peaks belong. The y series is sometimes accompanied by satellite peaks formally corresponding to 

NH3 loss from the y ions, allowing designation of y ion series. Ions that correspond to immonium ions, 

or fragments of immonium ions, of individual amino acid residues in a peptide are often detected, even 

for residues from the internal portion of the sequence. 
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1.7 Aim of the thesis 

The aim of this study was to obtain insights into mechanisms of imatinib resistance 

independent from the Bcr-Abl activity. The imatinib-resistant KCL22R and sensitive 

KCL22S cells were used as experimental model. The KCL22R cells and its sensitive 

counterpart KCL22S were established by Junia Melo and co-workers [24], to analyse 

imatinib resistance in vitro. Because none of the known resistance mechanisms has 

been detected in these cell lines [24], novel mechanisms could be envisaged. 

Imatinib resistance has been studied in four imatinib-resistant cell lines: AR230, 

LAMA84, K562 and KCL22 [24,66]. AR230 cells are characterized by up-regulation 

of the Bcr-Abl protein associated with amplification of the BCR-ABL gene. In addition 

to this mechanism, LAMA84 cells over-express the multidrug resistance P-

glycoprotein, thereby indicating that imatinib resistance occurs via at least two 

mechanisms in these cells. Bcr-Abl is not over-expressed in K562 cells, but the 

imatinib IC50 for the inhibition of Bcr-Abl autophosphorylation was increased in 

resistant clones [24]. None of the afore-reported mechanisms of resistance was 

detected in KCL22R cells. Imatinib caused an elevated growth rate and resistance to 

apoptosis in KCL22R cells [67]. Autophosphorylation of Bcr-Abl in KCL22R cells was 

suppressed by imatinib, as occurs in KCL22S cells [68], which suggests that KCL22R 

cells have evolved an alternative means for survival that bypasses dependence on 

the primary oncoprotein activity. KCL22R cells did not require higher imatinib 

threshold for tyrosine kinase inhibition. Moreover, KCL22S cells exhibited typical 

features of the quiescent hematopoietic Ph+ stem cells [69]. It has been in fact 

shown that imatinib, in combination with a farnesyltransferase inhibitor, induced 

KCL22S growth arrest but the apoptosis was less evident in KCL22S than in other 

CML cells [70]. KCL22 cells are then a good model to be used to gain insights into 

http://www.sciencedirect.com.ezproxyhost.library.tmc.edu/science?_ob=ArticleURL&_udi=B6T54-4KSVGB1-1&_user=5674961&_coverDate=05%2F08%2F2007&_rdoc=1&_orig=browse&_srch=doc-info(%23toc%234992%232007%23997509997%23647268%23FLA%23display%23Volume)&_cdi=4992&_sort=d&_docanchor=&_ct=20&_acct=C000003838&_version=1&_urlVersion=0&_userid=5674961&_fmt=full&md5=3f7c16e860752e04882fbab1e40fb96b#bib35#bib35�
http://www.sciencedirect.com.ezproxyhost.library.tmc.edu/science?_ob=ArticleURL&_udi=B6T54-4KSVGB1-1&_user=5674961&_coverDate=05%2F08%2F2007&_rdoc=1&_orig=browse&_srch=doc-info(%23toc%234992%232007%23997509997%23647268%23FLA%23display%23Volume)&_cdi=4992&_sort=d&_docanchor=&_ct=20&_acct=C000003838&_version=1&_urlVersion=0&_userid=5674961&_fmt=full&md5=3f7c16e860752e04882fbab1e40fb96b#bib35#bib35�
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the mechanisms of imatinib resistance. This PhD project was a part of a multi-topic 

project that combines microarray, proteomic and clinical studies. Here the author 

illustrates the results obtained during the four year PhD course. 
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Chapter 2 

MATERIALS AND METHODS 

2.1 Drug 

STI571 was kindly provided by Novartis Pharma (Basel, Switzerland). A 10 mM stock 

solution was prepared by dissolving the compound in sterile phosphate-buffered 

saline (PBS) or dimethylsulfoxide (DMSO).  

 

2.2 Cell Culture 

KCL22S, KCL22R and K562 cells were grown in RPMI 1640 medium (Gibco, Paisley, 

UK) supplemented with 10% fetal bovine serum (FBS) and 1 mM L-glutamine, 100 

U/ml penicillin, and 50 µg/ml streptomycin at 37 °C in a water saturated atmosphere 

of 5% CO2 in air. KCL22R cells were supplemented with 1µM imatinib mesylate. This 

cell line has been supplied from Professor Junia V. Melo of the Division of 

Haematology, Institute of Medical & Veterinary Science, Adelaide SA, Australia. 

 

2.3 Cell viability assay 

Cells were plated at a density of 5×105 cells/ml in RP-10 with or without 1µM and 5 

µM imatinib. Cells were stained with 0.5% Trypan Blue solution and vital cells were 

counted after 5 min at 37°C. Aliquots were taken out at 24-hour intervals for 

assessment of cell viability by Trypan Blue exclusion for 4 days. K562 cells, sensitive 

to imatinib treatment, served as internal control.  

 

2.4 Sample preparation for 2D-DIGE 

To obtain total protein extracts, cells were washed twice with cold PBS, centrifugated 

at 1000 rpm for 5 min and resuspended with a lysis buffer containing 7M urea, 2M 
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thiourea, 30 mM Tris-HCl pH 8.5, 4% CHAPS (w/v), 1x Complete® EDTA free, 

containing a cocktail of protease inhibitors (Roche Applied Science, Indianapolis, IN, 

USA). Protein extracts were incubated at 4°C for 5 min and than sonicated to disrupt 

the cells and to shear the DNA and RNA in the cell. Protein samples were cleared 

from cell debris by centrifugation at 14000 rpm at 4°C for 20 min and then purified 

using the 2-D Clean-up Kit (GE Healthcare, Piscataway, NJ, USA) following supplier's 

instructions. Protein samples were then resuspended in lysis buffer. In order to 

perform the reaction between the N-hydroxysuccinimidyl ester reactive group of the 

CyDye fluorochrome and the epsilon amino group of lysine residues of proteins, 

protein solution pH was adjusted to the value of 8.5. Protein quantification was 

performed with the 2-D Quant Kit (GE Healthcare) by reading protein absorbance at 

480 nm. To perform a successful CyDyes labeling using the Ettan DIGE Manual, 

protein concentrations was adjusted between 5 and 10 mg/ml of lysis buffer. 

 

2.5 Labeling efficiency and same same same tests 

The labeling efficiency of the samples with the CyDye DIGE Fluors was tested, 

before DIGE experiment, by performing the following reactions: 

• 50 μg of total KCL22 protein extract was labeled with 400 pmol of Cydye Cy5.  

• 50 μg of total E. coli protein extract, used as control, was labeled with 400 

pmol of Cydye Cy5. E. coli protein extract has already been labeled 

successfully. 

Labeling reactions were carried out in the dark on ice for 30 min before quenching 

with 1 µl of a 10 mM L-Lysine solution for 10 min. Serial dilutions of 25 μg, 12.5 μg 

and 6.25 μg of KCL22 and E.coli protein lysates were made. Proteins were then 

resolved on two one-dimensional SDS gel with a concentration of 12.5% 
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polyacrylamide. The gels were than acquired at the Cy5 wavelength using the 

Typhoon 9400 imager (GE Healthcare) and processed and analyzed with Image 

Quant Analysis software (GE Healthcare) to verify that the labeling efficiency of the 

protein sample is comparable to the control.  

The “same same same” test was performed to verify that none of the three Cydyes 

labels the same test sample preferentially. 50 μg of total KCL22 protein extract was 

labeled with 400 pmol of each Cydye. Proteins were resolved on a two-dimensional 

SDS 12.5% polyacrylamide gel (26x20 cm) by using an Ettan DaltTwelve system (GE 

Healthcare). After electrophoretic separation, gels were scanned using the Typhoon 

9400 imager (GE Healthcare). Fluorescence-labeled proteins were visualized at the 

appropriate wavelength for Cy3, for Cy5 and for Cy2. Images were acquired with 

Image Quant Analysis software (GE Healthcare). The images were processed and 

analyzed by DeCyder v5.02 software (GE Healthcare). The comparison of the volume 

of fluorescence for all spots allowed us to define a threshold. All variations under this 

threshold were not considerate.  

 

2.6 Protein labeling with CyDye DIGE Fluor dyes 

Protein extracts were labeled with Cy2, Cy3 and Cy5, according to the Ettan DIGE 

User Manual (18-1173-17 Edition AA, GE Healthcare). Labeling reactions were 

carried out in the dark on ice for 30 min before quenching with 1 µl of a 10 mM L-

Lysine solution for 10 min. 50 µg of each protein sample from KCL22R and KCL22S 

cells, labeled with 400 pmol of Cy3 or Cy5, were loaded in each analytical gel. 4 

different biological replicates for KCL22S and 4 replicates for KCL22R were loaded 

on 4 gels as reported in Table 1. To avoid technical interferences and fluorochromes 

bias the experiments were performed swapping the dyes as reported in Table 1. In 
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each gel the pool standard was constituted by 50 µg of protein derived from a mixture 

of all biological replicates, labeled with Cy2. This standard enables accurate inter-gel 

statistical analysis. 

Table 1. 2D-DIGE experimental design  

Gel  Cy3a (50 µg)  Cy5a (50 µg)  Cy2a (50 µg)  

1  KCL22S replicate 1  KCL22R replicate 2  Pool standardb 

2  KCL22S replicate 2  KCL22R replicate 1  Pool standardb 

3  KCL22R replicate 3 KCL22S replicate 4  Pool standardb 

4  KCL22R replicate 4 KCL22S replicate 3  Pool standardb 

 

aFluorochrome compounds used for protein labeling 

bConstituted by 25µg of protein from each of the eight samples 

 

2.7 2D separation of KCL22R and KCL22S protein samples  

Protein samples, mixed as described in Table 1, were separated on 18-cm-long IPG-

strips with a 3-11 non linear pH range (GE Healthcare). Strips were rehydrated before 

use, without protein samples, with 350 µl of rehydration buffer containing 7M urea, 2M 

thiourea, 4% CHAPS (w/v), DTT 2% (w/v), 2% Pharmalyte range PH3-10 (v/v), 

overnight at room temperature. The samples were mixed to an equal volume of 

sample buffer containing 7M urea, 2M thiourea, 4% CHAPS, 2% DTT (w/v) and 1% 

Pharmalyte, range PH3-10 (v/v), (GE Healthcare). The samples were loaded on the 

pH 3-11NL IPG strips by the anodic cup-loading method. The first dimension (IEF) 

was carried out on the Ettan IPGphor system (GE Healthcare) for 18 h for a total of 

60 kV/h at 20°C using the following protocol: 
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• Step 1 300 V for 4h 

• Step 2 from 300 V to 1000 V for 6 h 

• Step 3 from 1000 V to 8000 V for 3 h 

• Step 4 8000 V for 5 h 

After IEF, the proteins were reduced by incubating strips in 100 mM Tris pH 8.0, 7M 

urea, 30% glycerol (v/v),  2% SDS (w/v) containing 0.5% DTT for 15 min. Proteins 

were then alkylated for 15 min using the same buffer containing 4.5% IAA (w/v) 

instead of DTT. The second dimension (SDS-PAGE) was carried out on 11% 

polyacrylamide gels (18x20 cm) by using an Ettan DaltTwelve system (GE 

Healthcare) at 2W/gel until the bromophenol blue reached the bottom of the gel. 

Two independent two-dimensional preparative gels were run with the same condition 

applied for the analytical gels, using for each gel, 0.5 mg of protein extract from 

KCL22R and KCL22S cells, respectively. Preparative gels were washed with a fixing 

solution of 40% methanol, 10% acetic acid, 50% water for 3 h before overnight 

staining in SYPRO Ruby (Molecular Probes, USA) with gently agitation, in the dark.  

 

2.8 Image analysis with DeCyder software 

After electrophoretic separation, gels were scanned using the Typhoon 9400 imager 

(GE Healthcare) at a resolution of 100 μm. Fluorescence-labeled proteins were 

visualized at the appropriate excitation/emission wavelengths: 532/580 nm for Cy3, 

633/670 nm for Cy5 and 488/520 nm for Cy2. Preparative gel images were acquired 

using the Typhoon imager at excitation/emission wavelengths of 457/610 nm. All gels 

were scanned by using the same parameters, selected to prevent pixel saturation. 

Images were acquired with Image Quant Analysis software (GE Healthcare). The 

images were processed and analyzed with the Differential In-gel Analysis (DIA) and 
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Biological Variation Analysis (BVA) modules contained in the DeCyder v5.02 software 

package (GE Healthcare). Protein spots were detected and quantified with the DIA 

module. The maximum number of estimated spots was fixed at 5000. The Cy2, Cy3 

and Cy5 images derived from all single gels were merged using DIA. In addition, DIA 

was used to detect spot boundaries and calculate spot volumes, normalized versus 

the volume of the corresponding spot present in the pool standard of the same gel. 

Protein spots that matched between gels were obtained using the biological variation 

analysis module (BVA). The Cy2 image that contained the highest number of spots 

was assigned as “Master image”. The spot boundary maps of the master image were 

used as template. Matching of protein spots across gels was performed automatically. 

A standard abundance for each spot was thus calculated thereby allowing inter-gel 

variations. Each spot intensity was then expressed as mean of 4 standard 

abundances calculated for the four gels described in Table 1. Spot intensities were 

then compared in the two conditions used: KCL22R and KCL22S cells. Statistical 

significance of differences in spot intensity was determined by Student’s t-test. Only 

protein spots with at least 1.25-fold changes in volume (p< 0.01) after normalization 

were considered significantly altered. The accuracy of spot matching was verified by 

manual inspection of gels.  

 

2.9 In situ idrolysis of protein spots 

Protein spots on preparative gels were chosen for excision on comparison with the 

analytical gel. Spots of interest were picked using an Ettan Spot Picker (GE 

Healthcare). Gel pieces were washed in 100% ACN for 15 min and subsequently 

rehydrated in a modified trypsin (Sigma) solution (10 ng/µl) in 50 mM ammonium 

bicarbonate pH 8.5, at 4°C for 1 h. The enzymatic solution was then removed. A new 
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aliquot of buffer solution was added to the gel particles and incubated at 37°C 

overnight. The supernatant was collected whereas gel pieces were subjected to 

another extraction in ACN at 37°C for 15 min. The supernatant fraction and samples 

obtained from extraction steps were pooled and dried in a vacuum centrifuge. 

 

2.10 Protein identification by mass spectrometry and bioinformatics 

Peptides obtained by protein digestion with trypsin were resuspended in 0.2% formic 

acid before injection using the LC/MSD Trap XCT Ultra (Agilent Technologies, Palo 

Alto, CA, USA) equipped with a 1100 HPLC system and a chip cube (Agilent 

Technologies). After loading, the peptide mixture (7 µl in 0,2% HCOOH) was first 

concentrated and washed at 4 µl/min in 40 nl enrichment column (Agilent 

Technologies chip), with 0.1% formic acid as the eluent. The sample was then 

fractionated on a C18 reverse phase capillary column (75 µm x 43 mm) at a flow rate 

of 200 nl/min with a linear gradient of eluent B (2% formic acid in acetonitryl) in eluent 

A (2% formic acid) from 5 to 60% in 50 min. Elution was monitored on the mass 

spectrometer without a splitting device. Peptides were analyzed using data-

dependent acquisition of one MS scan (mass range from 400 to 2000 m/z) followed 

by MS/MS scans of the three most abundant ions. Dynamic exclusion was used to 

acquire a more complete survey of the peptides by automatic recognition and 

temporary exclusion (2 min) of ions from which definitive mass spectral data had 

previously been acquired. Moreover a permanent exclusion list of the most frequent 

peptide contaminants (keratins and trypsin doubly and triply charged peptides, 

403,20; 517,00; 519,32; 525,00; 532,90; 559,32; 577,30; 587,86; 616,85; 618,23; 

721,75; 745,90; 747,32; 758,43; 854,30; 858,43; 896,30; 1082,06) was used in the 

acquisition method in order to focus the analyses on significant data. 
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Data analysis was performed using Mascot software (http://www.matrixscience.com) 

against the NCBI database (www.ncbi.nlm.nih.gov). The protein search was based on 

the following parameters: specificity of the proteolytic enzyme used for hydrolysis 

(trypsin); no protein molecular weight was considered; up to 1 missed cleavage; 

cysteines as S-carbamidomethylcysteines; unmodified N- and C-terminal ends; 

methionines both unmodified and oxidized; putative pyroGlu formation by Gln; 

precursor peptide maximum mass tolerance of 400 ppm and a maximum fragment 

mass tolerance of 0.6 Da. According to the probability-based Mowse score, the ion 

score is -10xLog(P), where P is the probability that the observed match is a random 

event. Individual scores >41 indicate identity or extensive homology (p≤ 0.05). All the 

MS/MS spectra displaying a Mascot score higher than 41 had a good signal/noise 

ratio leading to an unambiguous interpretation of the data. Individual MS/MS spectra 

for peptides with a Mascot score equal to 41 were inspected manually and included in 

the statistics only if a series of at least four continuous y or b ions were observed.  

 

2.11 Western blot analysis  

KCL22R and KCL22S protein extracts (25 µg) were resolved on a 10% SDS-PAGE 

gel and then transferred onto nitrocellulose membranes (GE Healthcare) by Mini 

Tans-Blot electrophoretic transfer (Biorad). The membranes were blocked in 5% non-

fat milk in PBS pH 7.5 for 2 h and incubated over night at 4°C with 1% milk/PBS pH 

7.5 and 0.05% TWEEN containing specific mouse anti-Annexin A1 (1:5000) (BD 

Biosciences, Erembodegem, Belgium), anti-Heat shock protein 70 (1:200), anti-Rho 

GDP dissociation inhibitor (2.5 µg/ml) (Abnova Corporation, Taipei, Taiwan), anti-

Grp78 (1:500) (Santa Cruz Biotechnology, Heidelberg, Germany), anti-Heat shock 

protein 60 (1:1000) (Stressgen, Victoria, BC Canada) and anti-Nqo2 (1:1000) 

http://www.ncbi.nlm.nih.gov/�
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(Abnova Corporation, Taipei, Taiwan) or rabbit anti-Heat Shock Protein 27 (1:1000), 

anti-human transcription factor 1 (1:5000) (Stressgen, Victoria, BC Canada), anti-Hck 

(1:1000), anti-p-Hck (1:1000), anti-Lyn (1:2000), anti-pLyn (1:1000), anti-Crkl 

(1:1000), anti-Erk 1/2 (1:1000) and anti-pErk (1:500) (Santa Cruz Biotechnology), 

anti-pCrkl (Cell Signaling Technology, Danvers, MA, USA), anti-Carbonic anhydrase 

II (2 µg/ml) (Rockland Gilbertsville, PA, USA), anti-Malic enzyme (0,5 µg/ml) and anti-

Idh1 (1 µg/ml) (Sigma Prestige Antibodies, Saint Louis, USA), anti-Eef1d (1:1000), 

anti-Shp1 (1:500) and anti-Shp2 (1:1000) (Santa Cruz Biotechnology, Heidelberg, 

Germany), anti-Shp2-pTyr 542 (1:1000) (Cell Signaling Technology, Danvers, MA, 

USA), and goat anti-Peroxiredoxin I (1:200) and anti-Fuse Binding Protein 1 (1:200) 

(Santa Cruz Biotechnology). A mouse anti-Gapdh (Sigma-Aldrich, Saint Louis, MO, 

USA) antibody was used as loading control, at a dilution of 1:5000 at 4°C overnight. 

Immunoblot detections were carried out using HRP-conjugated anti-mouse (1:5000), 

anti-rabbit (1:10000), or anti-goat (1:40000) secondary antibodies (Ge Healthcare) 

with 1% milk/PBS pH 7.5 and 0.05% TWEEN for 45 min. Immunoblots were detected 

using the ECL-Advance Western Blotting Detection kit (GE Healthcare) by 

chemioluminescence. The resulting western blot images were scanned by PDquest 

7.1 software (Biorad). The protein band images on X-ray films were acquired with the 

Chemidoc XRS system (Bio-Rad). Band volumes were normalized by using Gapdh as 

control, visualized on the same film. Densitometric measurements were made using 

the Quantity One 4.5 tool (Bio-Rad). 
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2.12 Real-time quantitative PCR assay 

Total RNA was extracted using the RNeasy kit (Qiagen, Hilden, Germany) and 

treated with RNase-free DNase (Qiagen), according to the manufacturer direction. 

One microgram of total RNA was pre-warmed for 10 min at 70°C and incubated for 10 

min at 25°C; the RNA solution was then incubated for 45 min at 42°C and 3 min at 

99°C in a 20-μL reaction mixture containing 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 

5.5 mM MgCl2, 1 mM of each deoxyribonucleotide, 20 U of RNAsin (Pharmacia, 

Uppsala, Sweden), 25 mM random examers (Pharmacia), 10 mM of DTT 

(Pharmacia), and 100 U of MoMLV reverse transcriptase (BRL, Bethesda, MD, USA). 

Real-time reverse transcription-PCR (RT-PCR) for ANXA1, BCR-ABL (p210) and the 

housekeeping gene ABL was performed with an ABI PRISM 7900 HT Sequence 

Detector (Applied Biosystems, Milan, Italy) using TaqMan inventoried gene 

expression assays (Applied Biosystems), according to the manufacturer's protocol. 

Linearity of PCR amplification and equal efficiency for primer/probe systems was 

demonstrated for BCR-ABL, ANXA1 and ABL. The (2−ΔΔCt) algorithm was used to 

determine the expression of BCR-ABL and ANXA1 mRNA. The experiments were 

carried out from quadruplicate independent cultures. 

 

2.13 In silico characterization of identified proteins: data mining 

Proteins were grouped with regard to their Gene Ontology molecular functions and 

cellular localization annotations (www.geneontology.org) using GeneSpring GX 

software version 7.3, setting p-value equal to or smaller than 0.05. In addition, data 

were analyzed through the use of Ingenuity Pathway Analysis software 7.0 (IPA) 

(Ingenuity Systems, Inc. www.ingenuity.com). Drawing on published, peer-reviewed 

literature, IPA constructs networks of direct and indirect interactions between 

http://www.geneontology.org/�
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orthologous mammalian genes, proteins and endogenous chemicals. These 

relationships include those that occur due to disease and/or environmental input. This 

system can generate a set of networks with a maximum size of 35 genes/gene 

products. Each network is characterized by a score computed according to the fit of 

the user’s set of focus genes/gene products with all the genes/gene products stored 

in the knowledge base. The score is derived from a p-value (equal to or smaller than 

0.05, Fischer's exact test) and indicates the likelihood of the focus genes/gene 

products in a network being found together due to random chance. Biological 

functions were then assigned to each network. 

 

2.14 NADPH assay 

NADP and NADPH levels were determined using commercial colorimetric system 

(Biovision, Mountain View, CA). Briefly, 1x106 KCL22R and KCL22S cells were lysed. 

Half of the lysate was used to measure total NADP/NADPH (NADPt) and the other 

half to measure NADPH only. In the latter case, NADP was decomposed by heating 

at 60 °C for 30 min, while NADPH was still intact. The corresponding OD 450 nm 

measurements were read in a NADPH standard curve to obtain concentrations. The 

NADP/NADPH ratio was calculated as (NADPt-NADPH)/NADPH. All the above 

assays were done in triplicates in three independent experiments. 

 

2.15 GSH assay 

1x106 KCL22R and KCL22S cells were washed twice in PBS, harvested and 

centrifuged at 1700xg for 10 min at 4°C. The pellets were lysed by adding 100 µl of 

perchloric acid (3%) for 15 s and centrifuged at 20,000g for 10min at 4°C. The 

supernatant was neutralized with NaH2PO4 0.1 M, EDTA 5mM. GSH content was 
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measured by adding 600 mM DTNB 5,5’-dithio-bis(2-nitrobenzoic acid) and read at 

412 nm. After lysis, pellets from perchloric acid were resuspended in NaOH 1M and 

protein amount was measured by the Bradford assay. GSH content was normalized 

as the ratio between O.D./mg protein. 

 

2.16 Shp1 knock-in and Shp2 Knock-down in KCL22R cells 

Human full-length SHP1 sequence (NCBI NM_002831.4) was cloned in retroviral p-

IRES2-EGFP (p-IRES-SHP1-neo) expression vector (Clontech, Montain View, CA, 

USA) by polymerase chain reaction (PCR) using primers pIRES-SHP1. KCL22R cell 

line was transfected by Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, 

CA) in 6-well plates with 4 μg/ml of p-IRES-SHP1 or mock vector (p-Control-neo) 

according to the protocol provided by the company.  

Knock-down of SHP2 was obtained by shRNA technology using pShag Magic 

retroviral vector (pSM2) purchased from Open Biosystem (Huntville, AL, USA, clone 

ID V2HS_170946). KCL22R cell line was transfected with 4 μg/ml of pSM2-

shRNASHP-2-puro or pSM2 carrying a scramble shRNA sequence (pSM2-Control-

puro) by Lipofectamine 2000 (Invitrogen) in 6-well plates following the manufacturer’s 

instructions. After transfection, cells were grown in RPMI complete media containing 

1μg/mL puromycin (Sigma, St. Louis, MO) or 0.8 mg/ml neomycin to select clones 

with a stable expression. 

 

2.17 Immunoprecipitation assay 

2×107 KCL22R and KCL22S cells were washed with cold phosphate-buffered saline 

three times and centrifugated at 1000 rpm for 10 min. The pellet was incubated with 

1,5 ml of cold lysis buffer containing Tris-HCl 50 mM pH 7.5, 150 mM NaCl, 1mM 



 48 

NaF, 1 mM PMSF, 1% Nonidet P-40, 1mM EDTA, 1mM sodium orthovandate, 

protease inhibitor cocktail (Complete mini EDTA-free Roche Applied Science) for 30 

min in ice and then cleared by centrifugation at 15,000xg for 20 min at 4°C. 500 µg of 

protein lysates were pre-clearing with 2 µg of the appropriate control, normal rabbit 

IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA), corresponding to the host 

species of the primary antibody used for the immunoprecipitation, for 2h at 4°C on a 

rocker platform. The solution was then incubated with 50 µl of slurry Protein A/G-

PLUS-Agarose beads (Santa Cruz Biothecnology Santa Cruz, CA, USA) for 1h at 4°C 

on a rocker platform. Lysate pre-clearing allows to reduce non-specific binding of 

proteins to agarose beads and to remove proteins that bind immunoglobulins non-

specifically. Beads were then centrifugated at 8000xg for 5 min at 4°C. The 

supernatant was incubated with primary polyclonal antibodies (20 ug) of anti-Shp1, 

anti-Shp2 or anti-Annexin A1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), to 

perform the relative  immunoprecipitation assay, overnight at 4°C on a rocker platform 

and then incubated with 50 µl of fresh Protein A/G-PLUS-Agarose beads for 5h at 

4°C. Beads were then centrifugated at 8000xg for 5 min at 4°C. After extensive 

washing of the pellet beads with IP buffer, containing Tris-HCl 50 mM pH 7.5, NaCl 

150 mM, NaF 1mM, PMSF 1 mM, Nonidet P-40 1%, 1mM EDTA, 1mM sodium 

orthovandate, Protease inhibitor cocktail, (Complete mini EDTA-free Roche Applied 

Science), the resulting immune complexes were eluted from the beads with 2X 

electrophoresis sample buffer at 90°C for 10 min. Supernatants were then separated 

by electrophoresis in 10% SDS/polyacrylammide gels and then transferred to 

nitrocellulose paper for immunoblot analysis, performed as described above. 
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2.18 Primary cells from CML patients 

Before imatinib treatment, bone marrow samples from nine patients with CML in 

chronic phase at diagnosis were analysed. Written informed consent to the use of 

their cells in this study was obtained in all cases, according to the requirements of the 

local research ethic committee. None of the patients carried a mutated Bcr-Abl, as 

shown by sequencing of the tyrosine kinase or BCR-ABL gene amplification (the 

analysis was performed at the sequencing facility of Ceinge, in Naples). Mononuclear 

cells were isolated by density-gradient separation from bone marrow of CML patients. 

Cells were cryopreserved at 107/ml in liquid nitrogen. To prepare protein samples, the 

cells were rapidly thawed, washed three times in PBS, and 107 cells were 

resuspended in lysis buffer constituted by 10 mM NaH2PO4 (pH 7.4), 150 mM NaCl, 

5mM EDTA, 1% TritonX-100, supplemented with 2 mM Na3VO4, 2 mM PMSF, 10 

mM NaF and 1x Complete® EDTA free containing a cocktail of protease inhibitors 

(Roche Applied Science, Indianapolis, IN, USA). 
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Chapter 3 

RESULTS 

3.1 Evaluation of the known imatinib resistance mechanisms in KCL22R cells 

To determine if already known mechanisms of imatinib resistance [23] operate in 

KCL22R cells, the level of proteins already involved in such mechanisms was 

measured. Therefore the expression of pHck, Hck, pLyn, Lyn, pCrkl and Crkl was 

analysed by Western blot. As shown in Figure 12, the expression of these proteins 

and their pattern of phosphorylation were similar in the KCL22R and KCL22S cell 

lines.  

In addition BCR-ABL mRNA expression, evaluated by quantitative RT-PCR, was 

similar in KCL22S and KCL22R cells (Figure 13). 

Furthermore there were no mutations in the Bcr-Abl kinase domain (the analysis was 

performed at the sequencing facility of Ceinge, in Naples). 

A previous study showed similar levels of P-gp in KCL22S and KCL22R cells [68]. 

Cell viability was next examined in KCL22S and KCL22R cells with K562 cells as 

control. Cell viability was reduced in KCL22S and K562 treated with 1µM or 5µM 

imatinib (Figure 14A and B). In contrast, the viability of KCL22R cells (Figure 14C) 

was not affected by 1µM and 5µM imatinib. Moreover in KCL22 cells, significant 

differences in growth inhibition between sensitive and resistant clones were observed 

only after 4 days of 1µM imatinib, in contrast to K562 (Figure 14A and B) and other 

sensitive cell lines [24] in which the same effect was achieved in less time. KCL22S 

cells were intrinsecally less sensitive than other CML cell lines to imatinib. Taken 

together, these observations indicate that resistance may occur in KCL22R cells by 

mechanisms other than those already known. 
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Figure 12. Western blot analysis of total protein lysates of KCL22R and KCL22S cells. Proteins were 

separated on 10% SDS-PAGE and immunoblotted with antibodies against pHck, Hck, pLyn, Lyn, pCrkl 

and Crkl. Gapdh served as control. 

 

 

Figure 13. Quantitative RT-PCR analysis. Expression level of BCR-ABL mRNA in KCL22S and 

KCL22R cell lines. The results, obtained from quadruplicate independent cultures, are shown as 

means±SD. 
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Figure 14. Cell viability assessed by Trypan Blue exclusion of KCL22S (A), K562 (B) and KCL22R (C) 

cell lines cultured without or with 1 μM and 5 μM imatinib. Results represent the mean ± SD of viable 

cells taken from independent quadruplicate cultures. 
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3.2 2-DIGE analysis: labeling efficiency and same same same tests 

Before DIGE experiment the labeling efficiency of the samples with the Cy5 dye was 

tested. To this aim, the labeling efficiency of KCL22 protein extract was compared 

with that of a control that has already been labeled successfully. The control was 

constituted by E. coli total protein extract. As shown in Figure 15 proteins were 

resolved on two one-dimensional SDS-PAGE gels, as described in the “Materials and 

methods” section. The gels were acquired at the Cy5 wavelength using the Typhoon 

imager and the relative images were processed and analyzed with the Image Quant 

Analysis software. The volume of fluorescence, measured for each lane, the relative 

average values and the labeling efficiency values are listed in Table 2. The labeling 

efficiency was calculated as ratio between the average volumes of fluorescence of 

the sample with that of the control. 
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Figure 15. Cy5-gel images of KCL22 (Sample) and E.coli protein lysates. Cy5-labeled proteins were 

loaded and resolved on two one-dimensional 12.5% SDS-PAGE gels using a serial dilution of 25 μg, 

12.5 μg and 6.25 μg. The gels were acquired using the Typhoon 9400 imager.  

 

Table 2. Labeling efficiency analysis 
        

Lanes Volume of 
fluorescence Average Labeling 

efficiency % 

RECT-1 217716363.4 197585916.8 104 
RECT-2 186203112.5     
RECT-3 188838274.6     
RECT-4 201880089.1 190129064   
RECT-5 172124090.4     
RECT-6 196383012.5     
RECT-7 102913614.9 92375399.96 112 
RECT-8 85961155.73     
RECT-9 88251429.29     
RECT-10 93054671.39 82385220.24   
RECT-11 80334319.81     
RECT-12 73766669.51     
RECT-13 43882175.05 40577700.86 102 
RECT-14 37347132.77     
RECT-15 40503794.76     
RECT-16 38429891.99 39635754.45   
RECT-17 37217010.96     
RECT-18 43260360.41     

 

Sample  
 

Sample  
 Sample  

 
E. coli 

 

E. coli 
 

E. coli 
 

25 μg 25 μg 12.5 μg 12.5 μg 6.25 μg 6.25 μg 
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In addition, to verify that none of the three CyDyes labels the same test sample 

preferentially, the “same same same” test was performed. By DeCyder software, the 

volumes of fluorescence for all spots of the sample labeled with Cy2 were compared 

with those labeled with Cy3 and Cy5, obtaining a similarity of labeling of 98% (Figure 

16). The threshold was then set to 1.25 fold-change. All variations under this 

threshold were not considerate (Figure 17). 
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Figure 16. 2D-DIGE image of the same same same gel. Overlapped image of Cy2, Cy3, Cy5 gel 

images. Isoelectrical focusing was performed using non linear pH 3-11 in the first dimension and 12,5% 

SDS-PAGE in the second dimension. 
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Figure 17. Statistical representation of the overall protein distribution in individual samples, in the 

same same same test. The red line indicates the number of spots with a specific abundance ratio (log 

scale). The blue line represents the calculated Gaussian distribution. Red dots represent decreased 

and blue increased protein content in individual spots detected in both samples (considered from Cy3 

→ Cy5). Green dots represent equal protein content between the samples. The threshold was set to 

1.25 fold-change.  
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3.3 Identification of differentially expressed proteins by DIGE 

To identify proteins differentially expressed between KCL22R and KCL22S cells, 

protein extracts were first compared between the analytical gels, using two-

dimensional DIGE analysis (see “Materials and methods” section and Table 1). 

Fluorescence-labeled proteins in the 2D analytical gels were acquired at different 

wavelengths using an imager to generate an image specific for each CyDye. In this 

way three scans were made of each gel, Cy2, Cy3 and Cy5 scans. In the co-

detection step scanned images of each sample were overlaid with the internal 

standard by the DIA module of the DeCyder software (Figure 18A). By this way every 

protein in the sample was linked to the corresponding protein spot in the internal 

standard sample. Following co-detection step, the matching of protein spots across 

the gels was performed using the BVA module of the DeCyder software. The spot 

map for the internal standard, with the most detected spots, was used as a template 

to which all remaining spot maps, for the other internal standards (intrinsically linked 

to their co-detected sample images), were matched. The spot volume (i.e. the sum of 

the pixel values within a spot minus background) for each experimental sample was 

directly compared, by the software, to the internal standard. By this way changes in 

the expression level of individual protein spots, expressed as ratio of protein 

abundance between KCL22R and KCL22S cells, normalized to the internal standard, 

were identified. Each spot intensity was then expressed as mean of 4 standard 

abundances calculated for the four gels described in the Table 1. Statistical 

significance of differences in spot intensity was determined by Student’s t-test. Only 

protein spots with at least 1.25 fold-changes in volume (p< 0.01), after normalization, 

were considered significantly altered. DeCyder software displayed in a graphic the 

relative abundance of each protein spot in the two conditions used, KCL22R and 

http://www.google.it/url?q=http://science.hq.nasa.gov/kids/imagers/ems/waves3.html&ei=ZbviSsuSHJDkmwO19fn8AQ&sa=X&oi=spellmeleon_result&resnum=2&ct=result&ved=0CAwQhgIwAQ&usg=AFQjCNG7oSlPAIDnzQf13ikC35oPrXbbDQ�
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KCL22S cells, and defined a fold change expression of each protein, above a 

biological variation. An example of the DeCyder analysis is reported in Figure 19. 

After this analysis sixty-eight differentially expressed spots were visualized (Figure 18 

B). Differentially expressed protein spots were then matched between the analytical 

and the SYPRO Ruby stained preparative gels for KCL22R and KCL22S protein 

extracts. Of the sixty-eight differentially expressed spots, obtained by DIGE analysis, 

forty-nine spots were matched on the preparative gels. 27 spots were excised from 

KCL22R (Figure 20A) and 22 from KCL22S (Figure 20B) preparative gels.  
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Figure 18. Representative 2D-DIGE analytical (A) and preparative (B) gel images. A: overlapped image 

of the Cy2, Cy3, Cy5 images of the analytical gel number 1 reported in Table 1. B: Differentially 

expressed protein spots between KCL22R and KCL22S cells are highlighted in yellow. Isoelectrical 

focusing was performed using non linear pH 3-11 in the first dimension and 11% SDS PAGE in the 

second dimension. 
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Figure 19. DeCyder software analysis of Me2 protein spot expression in KCL22S and KCL22R cells. A: 

enlargement of 2D gel region of the spot number 1570 corresponding to the Me2 protein. B: DeCyder 

graphic displays the relative abundance of Me2 protein spot in the two conditions used: KCL22S and 

KCL22R cells. C: three-dimensional representation of the relative abundance of Me2 protein spot. 
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Figure 20. SYPRO Ruby stained preparative 2D gel of KCL22R (A) and KCL22S (B) protein extracts. 

Gels were carried out with non linear pH 3-11 in the first dimension and 11% SDS PAGE in the second 

dimension. Red circles indicate spots that were differentially expressed and were picked for mass 

spectrometry protein identification. 
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The excised protein spots were subjected to tryptic digestion and the resulting 

peptides were analysed by mass spectrometry. The proteins over-expressed or under-

expressed in KCL22R versus KCL22S cells are listed in Tables 3 and 4, respectively. 

Proteins over-expressed and under-expressed in KCL22R cells were picked from the 

gels as shown in Figure 20A and 20B, respectively. 42/49 excised spots were 

unequivocally identified as a single protein. The 7 spots containing more than one 

protein were reported on the bottom of Tables 3 and 4. Carbonic anhydrase II, Beta 

actin, Phosphoserine aminotransferase 1, Phosphoglycerate dehydrogenase, Heat 

shock 27-kDa protein 1, Annexin A1 and Heat shock 70-kDa protein 1A were detected 

in more than one spot. This can happen because of post-translational modifications or 

splice variant status.  
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TABLE 3. Over-expressed proteins in KCL22R versus KCL22S cells 

      
Spota Fold 

increaseb 
Gene 

symbol 
Protein name Gene ID p-value 

 
1570 2.83 ME2 Malic enzyme 2, NAD(+)-dependent, 

mitochondrial 
4505145 6.7 E-04 

3420 2.35 CA2 Carbonic Anhydrase II 179780 5.1 E-06 
3317 2.3 CA2 Carbonic Anhydrase II 179780 2.0 E-06 
3421 2.24 CA2 Carbonic Anhydrase II 179780 2.5 E-03 
3805 1.88 APRT Adenine phosphorybosyltransferase 76827869 1.6 E-05 
3467 1.84 MACROD1 MACRO domain containing 1 13112029 3.2 E-03 
1743 1.77 LCP1 L-plastin 62898171 1.1 E-04 
3932 1.63 FTL Ferritin light subunit 182516 1.5 E-04 
2582 1.61 LDHB Lactate dehydrogenase B 4557032 2.2 E-03 
1668 1.5 LTA4H Leukotriene A4 hydrolase 4505029 7.8 E-03 
2527 1.41 ACTB Beta actin 4501885 5.3 E-04 
2948 1.48 EEF1D Human elongation factor-1-delta 38522 6.0 E-03 
3441 1.47 ARHGDIA Rho GDP dissociation inhibitor 36038 1.9 E-03 
2584 1.43 FAHD1 Fumarylacetoacetate hydrolase 4557587 2.3 E-04 
1975 1.42 TCP1 Chaperonin containing TCP1 4502643 3.7 E-05 
2520 1.38 ACTB Beta actin 4501885 4.3 E-03 
2693 1.36 PSAT1 Phosphoserine aminotransferase 1 16741698 2.4 E-06 
1885 1.36 CAP1 Adenyl cyclase-associated protein 1 15530330 1.3 E-03 
2535 1.36 IDH1 NADP-dependent isocitrate 

dehydrogenase 
3641398 5.7 E-03 

3355 1.35 PSME1 Proteasome activator complex subunit 1 2780871 1.7 E-04 
2730 1.3 PSAT1 Phosphoserine aminotransferase 1 16741698 2.4 E-04 
3533 1.29 TPI1 Triosephosphate Isomerase 4507645 1.8 E-04 
3068 1.26 VDAC1 Porin 31HM 238427 2.5 E-03 

 
      

2058 1.33 PHGDH Phosphoglycerate dehydrogenase 23308577 5.1 E-03 
  IMPDH2 Inosine-5'-monophosphate 

dehydrogenase 
307066  

2545 1.29 ACTR2 Actin-related protein 2 isoform b 5031571 8.3 E-03 
  PCBP2 Poly(rC)-binding protein 2 isoform b 14141166  

2360 1.28 EEF1G Eukaryotic translation elongation factor-
1-gamma 

496902 9.4 E-04 

  SSB Autoantigen La 10835067  
  SNX5 Sorting nexin 5 55957200  

2051 1.28 DARS2 Aspartyl-tRNA synthetase 45439306 6.0 E-03 
  PHGDH Phosphoglycerate dehydrogenase 23308577  
      

 
a  Spot numbers correspond to those included in the 2D gel image (Figure 20A). 
b Average ratio between KCL22R and KCL22S cells, expressed as mean of 4 standard protein 
abundances calculated for the four gels described in Table 1. Only statistically significant ratios between 
KCL22R and KCL22S (Student’s t-test, p< 0.01) are reported. The four spots containing more than one 
protein are the last ones in the table. 
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a  Spot numbers correspond to those included in the 2D gel image (Figure 20B). 
b Average ratio between KCL22R and KCL22S cells, expressed as mean of 4 standard protein 
abundances calculated for the four gels described in Table 1. Only statistically significant ratios 
between KCL22R and KCL22S (Student’s t-test, p< 0.01) are reported. The three spots containing 
more than one protein are the last ones in the table. 

 
TABLE 4. Under-expressed proteins in KCL22R versus KCL22S cells 

      
Spot a Fold 

decrease b 
Gene 

symbol 
Protein name Gene ID p-value 

      
3470 -3.51 HSPB1 Heat Shock 27 KDa protein1 450517 7.80 E-06 
3454 -3.28 HSPB1 Heat Shock 27 KDa protein1 450517 5.2 E-03 
1823 -2.87 MTHFD1 Methylenetetrahydrofolate 

dehydrogenase 
115206 2.70 E-05 

2872 -2.71 ANXA1 Annexin A1 54696696 1.70 E-06 
3473 -2.29 ERP29 Endoplasmic reticulum protein 29 75517652 2.1 E-03 
2567 -2.02 SERPINB1 Serine  proteinase inhibitor 14290494 2.0 E-03 
3696 -1.71 PRDX1 Peroxiredoxin 1 55586231 1.2 E-06 
2871 -1.67 ANXA1 Annexin A1 54696696 5.2 E-03 
1593 -1.64 FUBP1 Fuse binding protein 1 16878077 6.6 E-03 
877 -1.63 HSPA4L Heat Shock 70 KDa protein 4L 31077164 2.1 E-03 

1673 -1.60 HSPA1A Heat shock 70kDa protein  1A 4529892 1.5 E-03 
3261 -1.58 CLIC1 Stress induced phosphoprotein 1 895845 8.9 E-07 
1664 -1.43 HSPA1A Heat Shock 70 kDa protein 1 A 4529892 2.3 E-03 
1616 -1.37 XRCC5 ATP-dependent DNA helicase II 4503841 9.0 E-03 
1645 -1.28 HSPA1A Heat shock 70kDa protein  1A 4529892 6.2 E-03 
2113 -1.27 NAPRT1 Nicotinate phosphoribosyltransferase 

domain containing 1 
37787307 5.0 E-03 

2155 -1.26 ATP5A1 ATP synthase 15030240 3.3 E-04 
1786 -1.26 HNRPL Heterogeneous nuclear 

ribonucleoprotein L 
133274 8.7 E-03 

3746 -1.25 TAGLN2 Transgelin 2 12803567 5.6 E-04 
 

      
2812 -2.64 ANXA1 Annexin A1 54696696 5.9 E-06 

  HNRPH3 Heterogeneous nuclear 
ribonucleoprotein H3 

62898443  

2887 -1.38 ANXA1 Annexin A1 54696696 2.9 E-03 
  LASP1 LIM and SH3 protein 1 5453710  

2129 -1.27 LAP3 Leucine aminopeptidase 3 4335941 9.4 E-03 
  SEPT6 Septin 6 14424536  
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Protein species identified by a single peptide were analyzed further. The peptide 

sequence stretch was manually reconstructed, and the peptide sequence and 

peptide precursor ion mass were analyzed using the in-house MASCOT in the 

sequence query mode. All searches were performed against the NCBI database. The 

peptide sequence was searched for using the BLAST program 

(http://ncbi.nlm.nih.gov/blast). Peptides with ambiguously identification were removed 

from the tables, i.e., the candidate protein was removed from the list when it matched 

other proteins. Figure 21 shows the MS full scan and the MS/MS scan properly 

annotated (with masses and fragment assignments) of proteins identified by a single 

peptide. 

  

http://ncbi.nlm.nih.gov/blast�
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a) Proteasome  activator complex subunit 1 (PSME1) 
 

b)   Adenine phosphoribosyltransferase (APRT) 

c)    Macro domain containing 1 (MACROD1) 
 

d)   Endoplasmic reticulum protein 29 (ERP29) 
 

AVNCNEKIVVLLQRLKPEIKDVIEQLNLVTT
WLQLQIPRIEDGNNFGVAVQEKVFELMTSL
HTKLEGFHTQISKYFSERGDAVTKAAKQPH
VGDYRQLVHELDEAEYRDIRLMVMEIRNAY
AVLYDIILKNFEKLKKPRG 

MADSELQLVEQRIRSFPDFPTPGVVFRDISP
VLKDPASFRAAIGLLARHLKATHGGRIDYIA
GLDSRGFLFGPSLAQELGLGCVLIRKRGKLP
GPTLWASYSLEYGKAELEIQKDALEPGQRV
VVVDDLLATGGTMNAACELLGRLQAEVLEC
VSLVELTSLKGREKLAPVPFFSLLQYE  
 

MSLQSRLSGRLAQLRAAGQLLVPPRPRPGHLAG
ATRTRSSTCGPPAFLGVFGRRARTSAGVGAWGA
AAVGRTAGVRTWAPLAMAAKVDLSTSTDWKEAK
SFLKGLSDKQREEHYFCKDFVRLKKIPTWKEMAK
GVAVKVEEPRYKKDKQLNEKISLLRSDITKLEVDAI
VNAANSSLLGGGGVDGCIHRAAGPLLTDECRTLQ
SCKTGKAKITGGYRLPAKCESPTRPQLWGADRA
PVCHWDIRGAAPTGVLGNSSGGPS  

MAAAVPRAAFLSPLLPLLLGFLLLSAPHGGSGLH
TKGALPLDTVTFYKVIPKSKFVLVKFDTQYPYGEK
QDEFKRLAENSASSDDLLVAEVGISDYGDKLNME
LSEKYKLDKESYPVFYLFRDGDFENPVPYTGAVK
VGAIQRWLKGQGVYLGMPGCLPVYDALAGEFIR
ASGVEARQALLKQGQDNLSSVKETQKKWAEQY
LKIMGKILDQGEDFPASEMTRIARLIEKNKMSDGK
KEELQKSLNILTAFQKKGAEKEEL  
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Figure 21. The survey scan (MS), MS/MS scan and amino acid sequence of a) PSME1, b) APRT, c) 

MACROD1, d) ERP29 and e) FTL proteins identified by a single peptide. The mass spectrums show 

the reconstructed peptide sequence and the tryptic peptide used for the identification by Mascot. In the 

protein sequences, the identified peptide is underlined.  ♦ indicates the m/z signal of the parent ion. 

Single charged ions in the same survey spectrum are not fragmented. 

 

Definitively, 19 over-expressed and 15 under-expressed proteins in KCL22R cells, 

that were present as a single protein species in single spots, were identified. Eight 

over-expressed and four under-expressed proteins were mixed with others in several 

spots, thus making it difficult to assign a defined value of fold change for each 

protein. Details of the mass spectrometry characterization of the over-expressed and 

under-expressed proteins are provided in Tables 5 and 6, respectively.  

  

e)   Ferritin light subunit (FTL) 
 

SLGFYFDRDDVALEGVSHFFRELAEEKREGYERLLK
MQNQRGGRALFQDIKKPAEDEWGKTPDAMKAAMAL
EKKLNQALLDLHALGSARTDPHLCDFLETHFLDEEVK
LIKKMGDHLTNLHRLGGPEAGLGEYLFERLTLKHD 
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TABLE 5. Details of the mass spectrometry characterization of over-expressed proteins in 
KCL22R versus KCL22S cells 

n. 
SPOT Protein name Precursor 

Mass (m/z) 
Charge 
State (z) 

Mass 
Errors 
(ppm) 

Identified Peptide Sequence 
Single 

peptide 
MASCOT 

score 

Sequence  
Coverage 

        
1570 Malic enzyme 2, NAD(+)-dependent, 

mitochondrial 
504.35 2+ 139 GLFISISDR 44 7.8% 

  651.35 2+ 30,7 YIYIMGIQER 42  
  658.82 2+ 38 HISDSVFLEAAK 60  
  816.5 2+ 104.24 ALTSQLTDEELAQGR 80  
  834.97 2+ 23.9 AVQQPDGLAVLGIFLK 80  

3317 Carbonic Anhydrase II 492.89 2+ 193.1 VGSAKPGLQK 41 11% 
  494.37 2+ 162.1 VVDVLDSIK 41  
  585.32 2+ 94.1 SADFTNFDPR 49  

3421 Carbonic Anhydrase II 468.27 2+ 74.9 GGPLDGTYR 43 29% 
  494.39 2+ 202.7 VVDVLDSIK 42  
  585.28 2+ 25.6 SADFTNFDPR 52  
  647.81 2+ 7.7 QSPVDIDTHTAK 54  
  835.03 2+ 47.9 AVQQPDGLAVLGIFLK 81  
  713.92 3+ 163.6 YDPSLKPLSVSYDQATSLR 47  

3805 Adenine phosphoribosyltransferase 762.53 2+ 157.6 LAPVPFFSLLQYE 56 7% 
3467 MACRO domain containing 1 542.51 2+ 369.4 GVAVKVEEPR 51 4% 
1743 L-plastin 663.05 2+ 317.2 GSVSDEEMMELR 43 6% 

  708.01 2+ 304.1 IGNFSTDIKDSK 49  
  793.74 2+ 397.5 VYALPEDLVEVNPK 69  

3932 Ferritin light subunit 804.66 2+ 317.4 LGGPEAGLGEYLFER 66 10% 
2582 Lactate dehydrogenase B 457.35 2+ 120.5 IVVVTAGVR 56 9.8% 

  480.38 2+ 208.6 GLTSVINQK 47  
  755.98 2+ 119.2 IVADKDYSVTANSK 46  

1668 Leukotriene A4 hydrolase 559.84 2+ 44.7 ELVALMSAIR 52 19% 
  604.35 2+ 33.1 LTYTAEVSVPK 82  
  481.54 3+ 20.8 DGETPDPEDPSRK 47  
  729.94 2+ 61.7 GSPMEISLPIALSK 63  
  769.37 2+ 39 SAYEFSETESMLK 71  
  959.56 2+ 67.8 TLTGTAALTVQSQEDNLR 62  
  979.46 2+ 5.11 MQEVYNFNAINNSEIR 117  
  1169.56 2+ 25.6 LVVDLTDIDPDVAYSSVPYEK 68  

2527 Beta actin 566.72 2+ 79.5 GYSFTTTAER 56 59% 
  589.25 2+ 101.9 EITALAPSTMK 45  
  599.73 2+ 58.4 DSYVGDEAQSK 51  
  599.85 2+ 8.3 AVFPSIVGRPR 41  
  750.34 2+ 0 QEYDESGPSIVHR 47  
  543.24 2+ 43 QEYDESGPSIVHRK 43  
  895.95 2+ 0 SYELPDGQVITIGNER 43  
  977.55 2+ 15.3 VAPEEHPVLLTEAPLNPK 42  
  116.08 2+ 40.3 DLYANTVLSGGTTMYPGIADR 55  
  787.18 3+ 156.9 KDLYANTVLSGGTTMYPGIAD

R 
41  

  856.09 3+ 35 LCYVALDFEQEMATAASSSS
LEK 

50  

2948 Human elongation factor-1-delta 729.06 3+ 54.9 SLAGSSGPGASSGTSGDHGE
LVVR 

67 9% 

  712.16 2+ 267 ATAPQTQHVSPMR 41  
3441 Rho GDP dissociation inhibitor 959.67 2+ 203.4 SIQEIQELDKDDESLR 51 8% 

  475.31 2+ 73.8 YKEALLGR 60  
2584 Fumarylacetoacetate hydrolase 477.33 2+ 94.4 LGEPIPISK 45 5% 

  586.85 2+ 25.6 ASSVVVSGTPIR 50  
1975 Chaperonin containing TCP1, 

subunit 6A isoform a 
469.26 2+ 21.3 GLVLDHGAR 50 3% 

  511.25 2+ 19.5 SEDTSLIR   
2520 Beta actin 566.73 2+ 61.8 GYSFTTTAER 56 13% 

  589.29 2+ 33.9 EITALAPSTMK 41  
  750.33 2+ 13.3 QEYDESGPSIVHR 48  
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  896.06 2+ 122.9 SYELPDGQVITIGNER 44  
2693 Phosphoserine aminotransferase 1 563.36 2+ 62.2 FGTINIVHPK 42 9% 

  593.34 2+ 8.4 IINNTENLVR 41  
  775.5 2+ 6.4 ASLYNAVTIEDVQK 74  

1885 Adenyl cyclase-associated protein 
1 

502.32 2+ 69.8 LVTTVTEIAG 51 5% 

  713.96 2+ 70.1 LSDLLAPISEQIK 41  
2535 NADP-dependent isocitrate 

dehydrogenase 
544.31 2+ 27.6 ATDFVVPGPGK 46 17.8% 

  633.79 2+ 23.7 LIDDMVAQAMK 66  
  671.37 2+ 44.7 TVEAEAAHGTVTR 51  

  719.87 2+ 20.8 VEITYTPSDGTQK 45  

  763.39 2+ 78.7 SDYLNTFEFMDK 62  

3355 Proteasome activator complex 
subunit 1 

760.51 2+ 177.7 IEDGNNFGVAVQEK 44 10% 

2730 Phosphoserine aminotransferase 1 574.35 2+ 43.6 ALELNMLSLK 63 10.3% 
  775.94 2+ 45.1 ASLYNAVTIEDVQK 71  
  550.99 3+ 24.2 FLDKALELNMLSLK 42  

3533 Triosephosphate Isomerase 617.93 2+ 202.59 SNVSDAVAQSTR 52 29% 
  663.85 2+ 15 IIYGGSVTGATCK 82  
  699.57 2+ 264.8 QSLGELIGTLNAAK 64  
  729.88 2+ 20.5 HVFGESDELIGQK 64  
  1096.59 2+ 45.6 VPADTEVVCAPPTAYIDFAR 53  

3068 Porin 31HM 515.61 2+ 388.5 LTLSALLDGK 48 10% 
  980.55 2+ 35.7 SENGLEFTSSGSANTETTK 77  

2058 Phosphoglycerate dehydrogenase 550.25 2+ 91 GGIVDEGALLR 74 4% 
  744.93 2+ 100.8 AGTGVDNVDLEAATR 62  
 Inosine-5'-monophosphate 

dehydrogenase 
482.14 2+ 259.7 VRDVFEAK 52 4% 

  550.68 2+ 163.7 YFSEADKIK 45  
2545 Actin-related protein 2 isoform b 675.8 2+ 22.2 DLMVGDEASELR 63 6.1% 

  685.39 2+ 21.9 ILLTEPPMNPTK 41  
 Poly(rC)-binding protein 2 isoform 

b 
679.94 2+ 17.27 IANPVEGSTDR 47 6% 

  579.8 2+ 51.55 IITLAGPTNAIFK 46  
2360 Autoantigen La 590.84 2+ 110.2 AELMEISEDK 42 14.7% 

  658.85 2+ 15.2 IIEDQQESLNK 75  
  698.32 2+ 21.5 SKAELMEISEDK 60  
  749.92 2+ 33.4 GSIFVVFDSIESAK 48  
  775.49 2+ 84 LTTDFNVIVEALSK 87  
 Sorting nexin 5 583.33 2+ 3.43 SADEVLFTGVK 68 7.8% 
  616.24 2+ 105.6 YYMLNIEAAK 43  
 Eukaryotic translation elongation 

factor 1 gamma 
674.39 2+ 22.3 ALIAAQYSGAQVR 79 6% 

  722.83 2+ 55.4 LDPGSEETQTLVR 72  
2051 Aspartyl-tRNA synthetase 530.32 2+ 85 GEEILSGAQR 41 14.3% 

  580.89 2+ 94.8 IYVISLAEPR 55  
  601.32 2+ 8.3 ESIVDVEGVVR 52  
  604.33 2+ 16.5 FQTEIQTVNK 53  
  755.42 2+ 39.7 NNAYLAQSPQLYK 77  
  976.47 2+ 66.6 EAGVEMGDEDDLSTPNEK 55  
  741.75 3+ 67.5 LPLQLDDAVRPEAEGEEEGR 97  
 Phosphoglycerate dehydrogenase 550.33 2+ 36.4 GGIVDEGALLR 75 13.5% 
  565.79 2+ 26.5 VTADVINAAEK 52  
  649.88 2+ 15.4 ILQDGGLQVVEK 84  
  673.43 2+ 59.5 GTIQVITQGTSLK 91  
  744.92 2+ 67.2 AGTGVDNVDLEAATR 75  
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TABLE 6. Details of the mass spectrometry characterization of under-expressed proteins in 
KCL22R versus KCL22S cells 

n. 
SPOT Protein name Precursor 

Mass (m/z) 
Charge 
State (z) 

Mass 
Errors 
(ppm) 

Identified Peptide Sequence 

Single 
peptide 

MASCOT 
score 

Sequence  
Coverage 

        
3470 Heat Shock 27 KDa protein1 582.31 2+ 0 LFDQAFGLPR 41 21% 

  822.4 2+ 18.2 AQLGGPEAAKSDETAAK 54  
  1081.6 3+ 15.7 LATQSNEITIPVTFESR 51  

3454 Heat Shock 27 KDa protein1 582.32 2+ 17.2 LFDQAFGLPR 54 20% 
  1081.85 3+ 274.4 KYTLPPGVDPTQVSSSLSPEGTLT

VEAPMPK 
41  

1823 Methylenetetrahydrofolate 
dehydrogenase 

529.37 2+ 141.9 ITIGQAPTEK 63 15% 

  549.48 2+ 282.5 GALALAQAVQR 60  
  572.01 2+ 376 QPSQGPTFGIK 69  
  689.98 2+ 210.5 TDTESELDLISR 68  
  724.97 2+ 117.4 AYIQENLELVEK 58  
  752.86 2+ 0 TDPTTLTDEEINR 74  
  816.07 2+ 141.1 YVVVTGITPTPLGEGK 57  
  570.87 3+ 374.4 APAEILNGKEISAQIR 66  
  905.1 2+ 55.3 EIGLLSEEVELYGETK 79  
  706.58 3+ 288.2 KGEPVSAEDLGVSGALTVLMK 64  

2872 Annexin A1 607.27 2+ 0 DITSDTSGDFR 63 37% 
  631.83 2+ 47.5 TPAQFDADELR 60  
  686.37 2+ 29.1 VLDLELKGDIEK 41  
  694.4 2+ 21.6 GVDEATIIDILTK 71  
  772.47 2+ 45.3 GVDEATIIDILTKR 59  
  775.95 2+ 51.6 GTDVNVFNTILTTR 71  
  547.58 3+ 30.4 DLAKDITSDTSGDFR 58  
  839.97 2+ 17.8 KGTDVNVFNTILTTR 66  
  851.96 2+ 17.6 GLGTDEDTLIEILASR 107  
  870.39 2+ 23 SEDFGVNEDLADSDAR 89  
  689.9 3+ 96.7 GDRSEDFGVNEDLADSDAR 86  
  786.36 3+ 386.3 GGPGSAVSPYPTFNPSSDVAALH

K 
54  

3473 Endoplasmic reticulum protein 
29 

862.88 2+ 17.4 ILDQGEDFPASEMTR 58 37% 

2567 Serine  proteinase inhibitor 604.35 2+ 49.7 LGVQDLFNSSK 66 13% 

  644.34 2+ 0 HNSSGSILFLGR 51  

  653.32 2+ 45.9 FQSLNADINKR 67  

  825.91 2+ 6 IPELLASGMVDNMTK 50  

3696 Peroxiredoxin 1 410.26 2+ 109.9 SVDETLR 44 28% 

  598.96 2+ 234.1 LVQAFQFTDK 58  

  606.48 2+ 231.2 QITVNDLPVGR 50  

  680.48 2+ 198.7 GLFIIDDKGILR 72  

  811.47 2+ 67.8 QGGLGPMNIPLVSDPK 62  

2871 Annexin A1 607.41 2+ 230.9 DITSDTSGDFR 59 18% 

  821.03 2+ 170.7 DLAKDITSDTSGDFR 61  

  840.06 2+ 119.1 KGTDVNVFNTILTTR 63  

  870.42 2+ 57.5 SEDFGVNEDLADSDAR 90  
  635.77 3+ 136.5 AAYLQETGKPLDETLKK 49  

1593 Fuse binding protein 1 574.82 2+ 52.2 GTPQQIDYAR 41 7% 
  677.09 2+ 340.3 IQIAPDSGGLPER 69  
  987.44 2+ 5 IGGDAGTSLNSNDYGYGGQK 76  

877 Heat Shock 70 KDa protein 4L 525.39 2+ 209.8 FITPEDLSK 41 14% 
  646.07 2+ 356.6 IGSFTIQNVFPQSDGDSSK 50  
  654.04 2+ 344.6 SFDDPIVQTER 63  
  703.03 2+ 292 NAVEEYVYDFR 72  
  756.37 2+ 26.4 SGGIETIANEYSDR 59  
  877.55 2+ 91.2 EFSITDLVPYSITLR 41  
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  887.47 2+ 11.2 LMNETTAVALAYGIYK 100  
  910.98 2+ 27.4 QLGQDLLNSYIENEGK 57  

  1014.04 2+ 49.3 QDLPPLDEKPR 50  

1673 Heat shock 70kDa protein  1A 474.28 2+ 84.5 SAVEDEGLK 44 32% 

  502.3 2+ 49.8 LSKEEIER 49  

  599.39 2+ 66.8 DAGVIAGLNVLR 66  

  602.92 2+ 249.2 GGSGSGPTIEEVD 45  

  614.92 2+ 162.9 VEIIANDQGNR 58  

  631.42 2+ 142.7 SAVEDEGLK 44  

  652.48 2+ 268.6 NALESYAFNMK 52  

  658.34 2+ 53.2 SAVEDEGLK 44  

  733.47 2+ 81.9 AQIHDLVLVGGSTR 71  

  744.5 2+ 195 TTPSYVAFTDTER 77  

  711.94 2+ 90.8 ARFEELCSDLFR 50  

  815.93 2+ 30.6 AQIHDLVLVGGSTR 71  

  830.2 2+ 325.7 NQVALNPQNTVFDAK 67  

  838.44 2+ 83.5 ATAGDTHLGGEDFDNR 68  
  563.35 3+ 77 IINEPTAAAIAYGLDR 53  

  1160.74 2+ 137.9 SINPDEAVAYGAAVQAAILMGDK 83  

3261 Stress induced 
phosphoprotein 1 

641.37 2+ 46.8 GVTFNVTTVDTK 94 36% 

  664.78 2+ 67.7 NSNPALNDNLEK 68  

  719.35 2+ 55.6 GVTFNVTTVDTKR 45  

  870.45 2+ 23 NSNPALNDNLEKGLLK 67  

  923.14 2+ 162.6 LAALNPESNTAGLDIFAK 78  

  998.48 3+ 344.3 VLDNYLTSPLPEEVDETSAEDEGV
SQR 

51  

  1040.74 3+ 89.7 VLDNYLTSPLPEEVDETSAEDEGV
SQRK 

63  

1616 ATP-dependent DNA helicase 
II 

604.31 2+ 33.14 DSLIFLVDASK 68 4.1% 

  787.55 2+ 171.6 NIYVLQELDNPGAK 74  
1664 Heat Shock 70 kDa protein 1 A 502.25 2+ 49.8 LSKEEIER 43 22% 

  509.3 2+ 19.6 ITITNDKGR 50  

  599.41 2+ 100.2 DAGVIAGLNVLR 59  

  602.75 2+ 33.2 GGSGSGPTIEEVD 44  

  614.8 2+ 32.5 VEIIANDQGNR 55  

  652.36 2+ 84.4 NALESYAFNMK 54  

  744.38 2+ 33.6 TTPSYVAFTDTER 77  

  815.88 2+ 30.06 AFYPEEISSMVLTK 57  

  829.96 2+ 36.1 NQVALNPQNTVFDAK 66  

  559.26 3+ 17.9 ATAGDTHLGGEDFDNR 63  

  844.52 2+ 77 IINEPTAAAIAYGLDR 82  

1645 Heat shock 70kDa protein  1A 599.41 2+ 100.2 DAGVIAGLNVLR 64 16% 

  602.8 2+ 49.8 GGSGSGPTIEEVD 43  

  744.41 2+ 73.9 TTPSYVAFTDTER 77  

  816 2+ 116.5 AFYPEEISSMVLTK 60  

  830 2+ 84.4 NQVALNPQNTVFDAK 65  

  844.53 2+ 88.9 IINEPTAAAIAYGLDR 81  

  774.17 3+ 150.9 SINPDEAVAYGAAVQAAILMGDK 51  

2113 Nicotinate 
phosphoribosyltransferase 

479.81 2+ 41.7 ALAQLSLSR 65 10.6% 

  622.81 2+ 16.08 DAAEFELFFR 60  
  648.91 2+ 77.1 AAFVAYALAFPR 46  
  688.97 2+ 159.9 SPAQYQVVLSER 85  
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  793.48 2+ 82 LDSGDLLQQAQEIR 75  
        

2155 ATP synthase 788.42 2+ 31.7 ILGADTSVDLEETGR 101 6% 

  812.93 2+ 26.4 TGAIVDVPVGEELLGR 41  

1786 Heterogeneous nuclear 
ribonucleoprotein L 

611.8 2+ 0 SSSGLLEWESK 66 8% 

  941.48 2+ 42.5 NGVQAMVEFDSVQSAQR 85  

  633.98 3+ 36.8 SKPGAAMVEMADGYAVDR 53  

3746 Transgelin 2 640.48 2+ 281.5 NFSDNQLQEGK 52 13% 
  840.25 2+ 399.3 QMEQISQFLQAAER 48  

2812 Annexin A1 775.96 2+ 64.52 GTDVNVFNTILTTR 60 8.6% 
  851.98 2+ 41.1 GLGTDEDTLIEILASR 74  
 Heterogeneous nuclear 

ribonucleoprotein H3 
636.36 2+ 70.8 STGEAFVQFASK 57 7.5% 

  714.8 2+ 7 DGMDNQGGYGSVGR 48  
2887 Annexin A1 607.26 2+ 16.49 DITSDTSGDFR 52 28.6% 

  631.81 2+ 7.93 TPAQFDADELR 61  

  694.39 2+ 0 GVDEATIIDILTK 64  

  775.94 2+ 38.7 GTDVNVFNTILTTR 79  

  820.88 2+ 12.2 DLAKDITSDTSGDFR 53  

  870.44 2+ 80.5 SEDFGVNEDLADSDAR 107  

  690.01 3+ 62.9 GDRSEDFGVNEDLADSDAR 80  
 LIM and SH3 protein 1 709.87 2+ 7.05 GFSVVADTPELQR 50 15% 
  481.98 3+ 90.1 LKQQSELQSQVR 44  
  784.41 2+ 51.06 TGDTGMLPANYVEAI 52  

2129 Leucine aminopeptidase 3 584.82 2+ 17.13 ETLNISGPPLK 49 38% 
  597.84 2+ 33.5 GITFDSGGISIK 67  
  619.31 2+ 8.08 LFEASIETGDR 54  

  659.82 2+ 7.58 TIQVDNTDAEGR 72  
  480.04 2+ 180.9 LRETLNISGPPLK 54  
  763.44 2+ 45.9 GSPNANEPPLVFVGK 59  
  544.31 2+ 61.35 GSDEPPVFLEIHYK 46  

  817.39 2+ 30.62 QLMETPANEMTPTR 58  
  855.43 2+ 17.5 ADMGGAATICSAIVSAAK 71  
 Septin 6 569.28 2+ 8.79 SLDDEVNAFK 59 4.8% 
  643.83 2+ 15.55 STLMDTLFNTK 58  
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3.4 Western blot analysis of differentially expressed proteins between KCL22R 

and KCL22S cells 

To validate the 2D-DIGE results, the expression of the following proteins was 

analysed by Western blot: Hsp27, Hsp70, Peroxiredoxin 1 (Prdx1), Annexin A1 

(Anxa1), Fuse binding protein1 (Fubp1), Rho GDP dissociation inhibitor (Arhgdia), 

Carbonic anhydrase II (Ca2) and Malic enzyme (Me2). As shown in Figure 22A, 

Hsp27, Hsp70, Prdx 1, Anxa1 and Fubp1 protein expression decreased in KCL22R 

samples, whereas Arhgdia, Ca2 and Me2 protein expression increased in KCL22R. 

The results of three Western blot experiments were examined by densitometry using 

Gapdh protein expression to normalize the data (Figure 22B), thus validating DIGE 

analysis.  

Because Hsp27 and Hsp70 were under-expressed in KCL22R cells, the expression 

of other members of the heat shock protein family, namely Grp78 and Hsp60, which 

are differentially expressed in cancer cells, including leukemia, and are resistant to 

apoptosis [71], was measured. The expression of these two proteins, analysed by 

Western blot, was reduced in KCL22R cells (Figure 23A and B).  

The down-regulation of Hsp70, Hsp27, Anxa1 proteins in KCL22R cells could occur 

at genetic level as demonstrated by a preliminary study of the gene expression 

profiles (performed at the facility of microarray at Ceinge, in Naples) across imatinib-

resistant and sensitive KCL22 cells. These experiments are only briefly described 

because they were not carried out by the PhD student presenting this thesis. In 

addition, quantitative RT-PCR showed a significant decrease in the expression of the 

Annexin A1 gene in KCL22R cells (Figure 24). 

Because Hsp70 expression is under the control of Hsf-1 transcription activation 

factor, the expression of Hsf-1 was measured by Western blot analysis. The 
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expression of Hsf-1 was reduced in KCL22R (Figure 23A) as confirmed by 

densitometric analysis (Figure 23B). These data suggest that down-regulation of 

Hsp70 may be mediated by an Hsf-1-dependent mechanism.  
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Figure 22. Western blot analysis of total protein lysates of KCL22R and KCL22S cells. Proteins were 

separated on 10% SDS-PAGE and immunoblotted with antibodies against Hsp27, Hsp70, Prdx1, 

Anxa1, Fubp1, Arhgdia, Ca2 and Me2 (A). Gapdh served as control. The densitometric analysis was 

performed on three samples; the results are shown as means±SD (B). 

 

 

Figure 23. Western blot analysis of total protein lysates of KCL22R and KCL22S cells. Proteins were 

separated on 10% SDS-PAGE and immunoblotted with antibodies against Grp78, Hsp60 and Hsf1 

(A). Gapdh served as control. The densitometric analysis was performed on three samples; the results 

are shown as means±SD (B). 

Hsp70
Hsp27
A

Anxa1

Prdx1

Fubp1

D
en

si
to

m
et

ric
U

ni
ts

Gapdh

Arhgdia

Ca2

B

0,00
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00

KCL22R

KCL22S

Me2



 77 

 

 

 

Figure 24. Quantitative RT-PCR analysis. Expression level of ANXA1 mRNA in KCL22S and KCL22R 

cell lines. The results, obtained from quadruplicate independent cultures, are shown as means±SD. 
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Moreover gene expression profile analysis (carried out at the facility of microarray at 

Ceinge, in Naples) showed that SHP1 expression was reduced in KCL22R cells while 

SHP2 was expressed at similar level. The level of Shp1 protein was measured in 

KCL22R and KCL22S cells. Western blot analysis showed that Shp1 was down-

regulated in KCL22R cells (Figure 25). Since Shp1 could act as a negative regulator 

of cell proliferation essentially as antagonist of Shp2 [72], the expression level of 

Shp2 was measured in KCL22R and KCL22S cells. Western blot analysis showed 

that the level of Shp2 was similar in resistant and sensitive cells (Figure 25). 

Recently, a chemical proteomic screen for imatinib interactors [73-75] identified a 

non-kinase target, the oxidoreductase Nqo2. Therefore, the expression of the 

oxidoreductase Nqo2 between KCL22R and KCL22S cells was analysed. Western 

blot analysis showed that Nqo2 was down-regulated in the resistant cells (Figure 25). 

Interference of imatinib in the protein pattern expression of KCL22R cannot be fully 

ruled out. Therefore Western blot analysis was also performed on protein extracts 

from KCL22R cells imatinib-deprived for 3 days. The obtained results validated the 

changes observed above for all the proteins identified in presence of imatinib (Figure 

26). 
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Figure 25. Western blot analysis on total protein lysates of KCL22R cells and KCL22S cells. Proteins 

were separated on 10% SDS-PAGE and immunoblotted with antibodies against Shp1, Shp2 and Nqo2 

(A). Gapdh served as control. The densitometric analysis was performed on three samples; the results 

are shown as means±SD (B). 

 

Figure 26. Western blot analysis of total protein lysates of KCL22R and KCL22S cells. Proteins 

extracts from KCL22S and KCL22R cells, imatinib-deprived for 3 days, were separated on 10% SDS-

PAGE and immunoblotted with antibodies against Idh1, Me2, Eef1d, Anxa1, Shp1, Shp2, Nqo2, 

Grp78, Hsp27, Hsp60 and Hsp70. Gapdh served as control. 
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In summary, by DIGE and Western blot analysis, 51 differentially expressed proteins 

were identified: 27 over-expressed and 24 under-expressed in KCL22R versus 

KCL22S cells. 

 

3.5 In silico characterization of identified proteins 

3.5.1 GeneSpring software analysis 

The proteins identified were clustered in functional classes according to Gene 

Ontology (www.geneontology.org) annotations on molecular function (Figure 27A and 

B) and cellular localization (Figure 28A and B) using GeneSpring GX software. Over-

expressed proteins are shown in Figure 27A and 28A, and under-expressed proteins 

in Figure 27B and 28B. Statistical analysis by Fisher exact test of the identified 

proteins (Table 7 and Table 8) indicated that the most relevant molecular functions of 

the over-expressed proteins are related to oxidoreductase activity, being enclosed in 

the main area related to catalytic activity and to translation regulator activity (Figure 

27A). The two most relevant functions of the under-expressed proteins are related to 

peptidase activity, which is enclosed in the main area related to catalytic activity and 

nucleotide binding activity (Figure 27B). Some of the classified proteins are included 

in more than one functional group. Almost 50% of the up-regulated proteins are 

localized in the cytoplasm; 35% of down-regulated proteins are localized in the 

cytoplasm, and 27% are nuclear proteins (Figure 28A and B). 

 

 

 

 

 

http://www.geneontology.org/�
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Figure 27. Classification of the over-expressed (A) and under-expressed (B) proteins in KCL22R cells 

according to Gene Ontology molecular functions.  

 

 

 

Figure 28. Classification of the over-expressed (A) and under-expressed (B) proteins in KCL22R cells 

according to Gene Ontology cellular localization. 
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TABLE 7. Gene Ontology analysis of over-expressed proteins in KCL22R versus 

KCL22S cells 

Molecular Functions      p-value 

Oxidoreductase activity 1.86 10-6 

Translation regulator activity 2.17 10-5 

Phosphoribosyltransferase activity 1.27 10-3 

NAD binding 1.48 10-3 

Ligase activity 2.61 10-3 

Hydrolase activity 3.79 10-3 

Isomerase activity 3.79 10-3 

Transporter activity 6.31 10-3 

GDP-dissociation inhibitor activity 1.01 10-2 

Proteasome activator activity 1.02 10-2 

Ferric ion binding 2.25 10-2 

RNA binding 2.63 10-2 

AMP binding 3.12 10-2 

Peptidase activity 3.24 10-2 

Protein binding 3.5 10-2 

Carbonate dehydratase activity 3.61 10-2 

Actin binding 3.71 10-2 

Signal transducer activity 3.84 10-2 

Structural constituent of cytoskeleton 3.87 10-2 

ATP binding 3.91 10-2 

Calcium ion binding 4 10-2 

Metal ion binding 4.32 10-2 
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TABLE 8. Gene Ontology analysis of under-expressed proteins in KCL22R versus 

KCL22S cells 

Molecular Functions                                                                                            p-value 

Peptidase activity 8.59 10-4 

Nucleotide binding 3.58 10-4 

Phosphoribosyltransferase activity 4.29 10-3 

Oxidoreductase activity 4.7 10-3 

Ligase activity 6.85 10-3 

Phospholipase inhibitor activity 8.56 10-3 

Peptidase inhibitor activity 8.56 10-3 

Isomerase activity 1.2 10-2 

Calcium ion binding 2.55 10-2 

Hydrolase activity 3.63 10-2 

Protein binding 3.74 10-2 

Helicase activity 3.88 10-2 

Transcription regulator activity  3.91 10-2 

Signal transducer activity 4 10-2 

RNA binding 4.3 10-2 

DNA binding 4.35 10-2 

Transporter activity 4.9 10-2 
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3.5.2 Ingenuity software analysis  

To identify molecular networks involving proteins described above, the obtained data 

were analyzed using Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, 

www.ingenuity.com) [76]. The system created three major protein networks. The 

three networks and the related proteins are listed in Table 9. The networks are 

related to cellular function and maintenance, post-translational modification, protein 

folding (score=38), cell-to-cell signaling and interaction, haematological system 

development and function (score=29), and cell death (score=27). The identified 

proteins are shown in red (over-expressed) and green (under-expressed). 
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Table 9. Functional networks generated by IPA 

 
Networks Molecules in Network Scorea Top Functionsb 

    
1 ACTB, ANXA1, ASB9, ATP5A1, CA2, CAP1, ERK, 

ERP29, F- Actin, HSBP1, HSF1, HSP70, HSPA5, 
HSPA1A, HSPB1, HSPB6, HSPD1, Jnk, LASP1, Mapk, 
MAPKAPK3, MAPKAPK5, MAPKAPK2/3, NFkB 
(complex), P38 MAPK, PACRG, PI3K, Pkc(s), PLS1, 
PTPN6, PTPN11, SIGLEC11, TCP1, VDAC1, XRCC5 
 

38 Cellular function and 
maintenance, post-
translational 
modification, protein 
folding 
 

2 APRT, CDC42EP2, CDC42EP3, CHI3L1, CLIC1, 
CLTCL1, CTNNB1, F13A1, FAHD1, GAS6, GH1, HNF4A, 
HSPA4L, HSPB1, IL1B, IMPDH2, KCNJ11, KITLG, LCP1, 
LDHB, LTA4H, MME, MTHFD1, NQO2, PIP5K1A, PSAT1, 
RPSA, SEPT2, SEPT6, SEPT7, SNX5, TAGLN2, TXNIP, 
VDAC2, XRCC4 
 

29 Cell to cell signaling 
and interaction, 
hematological 
system development 
and function 

3 ANXA11, CASP3, CCK, CHI3L1, COTL1, DARS2, ECH1, 
EEF1D, EEF1G, EIF4G1, GARS, HNRNPH3, HNRNPL, 
HSPBP1, IL2, IL24, KTN1, LAP3, ME2, PCBP2, PHGDH, 
PIM2, PRTN3, PSME1, pyruvaldehyde, retinoic acid, 
RPS4X, SERPINB1, SERPINB8, SSB, TNF, TNFRSF1B, 
TPI1, VEGFA, WNK1 

27 Cell death 

    
The table reports the significant functional networks associated with the identified proteins. Each 
network is constituted by focus gene products, indicated in red (over-expressed) and green (under-
expressed) and non focus gene products, indicated in black, which allow connecting all the gene 
products in a network.  
a The fit of the user’s set of focus genes/gene products with all the genes/gene products stored in the 
knowledge base. The score is derived from a p-value (equal to or smaller than 0.05, Fischer's exact 
test). The p-value indicates the likelihood of the focus genes/gene products in a network being found 
together due to random chance. 
b The most statistically significant biological functions assigned to each network. 
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Because the IPA server’s restriction that a single network cannot contain more than 

35 genes/gene products, the three networks were merged into a single network 

(Figure 29). The network is constituted by 42 focus gene products (identified in our 

analysis) and 61 non focus gene products, indicated by white icons, which allow 

connecting all the gene products in a network. Interestingly, several identified 

proteins were correlated, in the IPA network 1, to Ras-mitogen-activated protein 

kinase signaling (Ras-MAPKs) (Figure 30), which is associated with proliferation and 

drug resistance of hematopoietic cells [77]. 
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Figure 29. Ingenuity merged network derived from networks 1, 2, 3 as reported in Table 9. Green 

represents a decrease, red indicates an increase in protein expression and white represent proteins 

not identified in this study, which allow in connecting all the proteins together in a network. Proteins 

are identified by gene code. The intensity of shading increases with the magnitude of change. Nodes 

are indicated by various shapes that represent the functional class of the gene product. Solid lines 

indicate direct interactions between nodes, and dashed lines indicate indirect interactions. Lines 

beginning and ending on the same node indicate self-regulation. Arrowheads show directionality of the 

relationship.  
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Figure 30. Ingenuity network 1 as reported in Table 9. 
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3.6 NADP/NADPH and GSH levels in KCL22R and KCL22S cells 

NADP-dependent isocitrate dehydrogenase (IDH1) and Malic enzyme (ME2) were 

found to be over-expressed in KCL22R cells by DIGE analysis described above. Both 

enzymes are involved in the regulation of intracellular level of glutathione (GSH) by 

providing the NADPH necessary for the activity of glutathione reductase [78,79]. The 

level of NADP/NADPH and GSH were then tested in KCL22R and KCL22S cells. The 

results (Figure 31) showed that the ratio of NADP/NADPH in KCL22R cells is higher 

than in KCL22S cells; this suggests that there is an increase in NADPH consumption 

probably required for GSH synthesis. In line with this observation, GSH increased in 

KCL22R cells (Figure 32). Taken together, these observations suggest that the level 

of expression of Idh1 and Me2 could affect the balance between NADPH and GSH. 
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Figure 31. NADP/NADPH ratio measured in KCL22R and KCL22S cells. The NADP/NADPH ratio was 

calculated as (NADPt-NADPH)/NADPH. Data represent the mean of three independent experiments. 

 

 

 

Figure 32. Glutathione (GSH) concentration measured in KCL22R and KCL22S cells as described in 

the ‘Materials and methods’ section. GSH content was normalized as the ratio between O.D./mg 

protein. Data represent the mean of three independent experiments.  
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3.7 Evaluation of Erk activation in KCL22R and KCL22S cells 

Closed examination of the IPA network 1 displays that several differentially 

expressed proteins between KCL22R and KCL22S cells are directly or indirectly 

connected with key cell signaling proteins, involved in the modulation of cellular 

proliferation and apoptosis (Figure 30). The level of activation of Erk 1/2, a mitogen-

activated protein kinase family that contributes to the survival of leukemia cells [77], 

was analysed. The level of Erk and its phosphorylated form was measured by 

Western blot. The experiment showed that the level of total Erk 1/2 was similar in 

KCL22R and KCL22S cells (Figure 33). In contrast, the level of phosphorylated Erk 

1/2 was increased in KCL22R (Figure 33), suggesting that continuous activation of 

Erk occurred in KCL22R cells. 

 

Figure 33. Western blot analysis on total protein lysates of KCL22R cells and KCL22S cells Proteins 

were separated on 10% SDS-PAGE and immunoblotted with antibodies against Erk 1/2 and pErk. 

Gapdh served as control. 
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3.8 IPA network 1 analysis 

3.8.1 Analysis of Shp2 phosphorylation in KCL22R and KCL22S cells 

Network 1, generated by IPA analysis (Table 9 and Figure 30), showed that several 

differentially expressed proteins were connected with Erk signaling. The Raf/Mek/Erk 

pathway influences chemotherapeutic drug resistance which is usually associated 

with proliferation and drug resistance of hematopoietic cells [77]. Interestingly the 

network 1 includes two SH2-containing, non-receptor protein tyrosine phosphatases, 

Shp1 (PTPN6) and Shp2 (PTPN11). Shp2 positively regulates the Ras-Erk pathway 

[80] and is activated by the phosphorylation at the Tyr542 and Tyr580 residues in its 

carboxy-terminus, in response to growth factor receptor activation and oncogenic 

protein-tyrosine kinases such as Bcr-Abl [81]. These phosphorylation events seem to 

reduce basal inhibition and stimulate the tyrosine phosphatase activity [82]. The 

activation status of Shp2 was analysed in KCL22S and KCL22R cells, evaluating the 

phosphorylation on Tyr542 that is one of the Grb2 binding site, upstream of 

Ras/Raf/Erk activation [83, 84]. Immunoblot analysis using an antibody specific for 

the pShp2 showed that the level of phosphorylated Tyr542 in KCL22R cells was 

higher than in KCL22S cells (Figure 34), suggesting that continuous activation of 

Shp2 occurred in KCL22R cells. 

 

3.8.2 The Effect of SHP2 knock-down on KCL22R viability 

The role of Shp2 in KCL22R viability was next investigated, knocking-down the 

expression of the phosphatase by shRNA technology. Interestingly, SHP2 Knock-

down KCL22R (KCL22RSHP2-), cultured in the presence of 1μM imatinib for 4 days, 

showed a reduction in cell viability (Figure 35), as assessed by trypan blue exclusion 

assay, comparing to KCL22R. This result suggests a synergistic effect between the 
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Shp2 suppression and imatinib treatment on the inhibition of the KCL22R cell 

viability. 

 

Figure 34. Western blot analysis on total protein lysates of KCL22S cells and KCL22R cells. Proteins 

were separated on 10% SDS-PAGE and immunoblotted with antibodies against Shp2-pTyr542 and 

Shp2. Gapdh served as control.  

 

Figure 35. Cell viability, assessed by trypan blue exclusion assay, on SHP2 Knock-down KCL22R 

(KCL22RSHP2-) without imatinib, KCL22R and KCL22RSHP2- with 1 µM imatinib. All experiments were 

performed in triplicate and results were expressed as means±SD. 
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3.8.3 The Effect on Erk activation of SHP2 knock-down in KCL22R cells 

The level of Erk and its phosphorylated form was measured by Western blot in 

KCL22R and KCL22RSHP2- cells, in presence of 1μM imatinib. The experiment 

showed that the level of phosphorylated Erk was significantly suppressed in 

KCL22RSHP2-, with no change in the level of total Erk 1/2, in comparison to the 

KCL22R cells (Figure 36). This result showed that the knock-down of Shp2 

significantly reduced the activation of Erk 1/2 in KCL22R cells and suggests a 

positive role of this phosphatase in Erk activation.  

 

 

Figure 36. Western blot analysis on total protein lysates of KCL22R and SHP2 Knock-down KCL22R 

(KCL22RSHP2-), with 1 µM imatinib. Proteins were separated on 10% SDS-PAGE and immunoblotted 

with antibodies against Shp2, pErk and Erk 1/2. Gapdh served as control. 
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3.8.4 Shp1 and Shp2 interaction in KCL22R and KCL22S cells 

Since a previous work demonstrated that Shp1 plays a role in regulating the function 

of Shp2, in colorectal adenocarcinoma cells [72], co-immunoprecipitation assays 

were carried out to investigate if these proteins interact in KCL22 cells. Resistant and 

sensitive KCL22 total protein extracts were immunoprecipitated with an antibody 

against the endogenous Shp2 protein. As shown in Figure 37 Western blot analysis 

with an antibody against Shp1 demonstrated that Shp1 and Shp2 interacted in 

KCL22S cells (Figure 37A) while in KCL22R cells, where Shp1 is expressed at very 

low level, this interaction was not detected (Figure 37B). To confirm these data an 

immunoprecipitation experiment was performed with an antibody against the 

endogenous Shp1 in KCL22S and in KCL22R cells. Another CML Ph+ cell line, 

sensitive to imatinib, K562, was used as a control. As shown in Figure 38, Western 

blot analysis carried out with an antibody against Shp2 confirmed the interaction 

between Shp2 and Shp1 in KCL22S and K562 sensitive cells (Figure 38A and B), 

while this interaction was not detected in resistant cells (Figure 38C).  
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Figure 37. KCL22 sensitive (A) and resistant (B) cellular extracts were immunoprecipitated (IP) with 

anti-Shp2 antibody and the immunoprecipitates were subjected to Western blot analyses with an anti-

Shp1 as indicated. An irrelevant rabbit IgG was used as control. IN = input, IP = immunoprecipitate,  

C = control. 

 

 

Figure 38. KCL22 sensitive (A), K562 (B) KCL22 resistant (C) cellular extracts were 

immunoprecipitated (IP) with anti-Shp1 and the immunoprecipitates were subjected to Western blot 

analyses with an anti-Shp2 as indicated. An irrelevant rabbit IgG was used as control. IN = input, IP = 

immunoprecipitate, C = control. 
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Moreover, an immunoprecipitation experiment was performed with an antibody 

against the endogenous Shp1 in KCL22R cells transfected with a plasmide coding for 

the human full-length SHP1-sequence (KCL22RSHP1+). As shown in Figure 39, the 

Shp1 over-expression in resistant cell line restored the interaction with the Shp2 

phosphatase, suggesting that the lack of co-immunoprecipitation of Shp1 and Shp2 

in resistant cells could be related to the low Shp1 expression more than a real 

inability to interact. 

 

Figure 39. KCL22R Shp1 Knock-in (KCL22RSHP1+) cellular extract was immunoprecipitated (IP) with 

an anti-Shp1 and the immunoprecipitates were subjected to Western blot analyses with an anti-Shp2 

as indicated. An irrelevant rabbit IgG was used as control. IN = input, IP = immunoprecipitate, C = 

control. 
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3.8.5 Shp1 Knock-in increases the level of Shp2-Tyr542 phosphorylation in 

KCL22R cells  

To evaluate if the induced expression of Shp1 phosphatase in KCL22R cells could 

affect the level of phosphorylation of Shp2 on Tyr542, a Western blot analysis was 

performed, using an antibody against the pShp2-Tyr542 on KCL22S, KCL22R and 

KCL22RSHP1+ cells, in presence of 1µM imatinib. As showed in Figure 40 the level of 

phosphorylated Shp2-Tyr542 was lower in KCL22RSHP1+ cells in comparison to the 

KCL22R cells. Furthermore, the phosphorylation level of pShp2-Tyr542 in KCL22R 

with an induced expression in Shp1 was similar to that assessed in KCL22S cells 

(Figure 40). This result suggests that Shp1 could play a role in the modulation of 

Shp2 phosphorylation and suggests a negative role of Shp1 phosphatase on Shp2 

activation, in KCL22S cells.  
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Figure 40. Western blot analysis on total protein lysates of KCL22S, KCL22R and Shp1 Knock-in cell 

line, KCL22RSHP1+. Proteins were separated on 10% SDS-PAGE and immunoblotted with antibodies 

against pShp2-Tyr542 and Shp2 (A). The densitometric analysis is shown in B; Shp2 served as 

control. Results are shown as means±SD of three independent experiments. 
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3.8.6 Shp2, Annexin A1 and Hsp70 interactions in KCL22S cell line 

To try to understand the biological pathway underlying the Shp1 and Shp2 interaction 

in KCL22 cells, additional Shp2 binding proteins were searched, within the same IPA 

network 1 (Figure 30). Interestingly a previous work [85] demonstrated, in COS 1 

cells derived from monkey kidney, that Annexin A2 binds Shp2 and that this binding 

is modulated by the Hsp70 level. Since Annexin A1, another annexin family protein, 

and Hsp70 are connected (IPA network 1) with Erk, which in turn is regulated by 

Shp2, a co-immunoprecipitation experiment was carried out to investigate if Annexin 

A1 could associate with Shp2 in our cellular system. The experiment was performed 

in KCL22S cells in which Annexin A1 was found over-expressed in comparison to 

KCL22R cells. The KCL22S immunoprecipitate against the endogenous Shp2 was 

subjected to Western blot analysis with an antibody against Annexin A1. As shown in 

Figure 41 Annexin A1 and Shp2 interacted in KCL22S cells. 

By co-immunoprecipotation assay was also demonstrated, that Hsp70 and Annexin 

A1 interacted in KCL22S cells (Figure 42).  

The direct or indirect interaction of Annexin A1 and Hsp70 with Shp2 suggests that 

these proteins, down-regulated in KCL22R cells, could play a role in regulating the 

Shp2 functions. 
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Figure 41. KCL22 sensitive cellular extract was immunoprecipitated (IP) with anti-Shp2 antibody and 

the immunoprecipitate was subjected to Western blot analyses with an anti-Anxa1 antibody as 

indicated. An irrelevant rabbit IgG was used as control. IN = input, IP = immunoprecipitate, C = control. 

 

 

 

Figure 42. KCL22 sensitive cellular extract was immunoprecipitated (IP) with an Anxa1 antibody and 

the immunoprecipitate was subjected to Western blot analyses with an Hsp70 antibody as indicated. 

An irrelevant rabbit IgG was used as control. IN = input, IP = immunoprecipitate, C = control. 
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3.9 Detection of Hsp70, Hsp60, Hsp27 and Grp78 proteins in CML patients 

The expression of four Heat shock proteins (Hsp70, Hsp60, Hsp27 and Grp78) was 

evaluated on samples from nine untreated patients with CML in chronic phase, at 

diagnosis, using Western blot. After imatinib treatment at the standard dose, five had 

an optimal response based on criteria defined by the European Leukemia Net [86], 

whereas the remaining four were classifiable as failure of treatment based on the 

same criteria. Hsp70, Hsp60, Hsp27 and Grp78 expression was lower in cells of 

imatinib-resistant CML patients than in imatinib-responding CML patients (Figure 43). 

Although the experiments were performed on a very small number of patients, 

because the very limited sample availability, the results obtained suggest that this 

class of proteins could play a role of prognostic marker in imatinib resistance. 

  



 103 

 

Figure 43. Western blot analysis of total protein lysates of cells from chronic myeloid leukemia 

patients in chronic phase, before imatinib treatment. Proteins were separated on 10% SDS-PAGE and 

immunoblotted with antibodies against Hsp70, Hsp60, Hsp27 and Grp78 proteins. Gapdh served as 

control (A). The densitometric analysis was performed on three experiments. The results are shown as 

means±SD (B). 
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Chapter 4 

DISCUSSION 

Imatinib masylate, a potent inhibitor of the Bcr-Abl tyrosine kinase activity, is used as 

first-line therapy of CML patients; however a major concern in imatinib treatment is 

the emergence of resistance to the drug during disease progression [23]. The aim of 

this study was to obtain insights into the Bcr-Abl activity-independent mechanisms of 

imatinib resistance. The imatinib-resistant KCL22R and sensitive KCL22S cells were 

used as experimental model. None of the known resistance mechanisms has been 

detected in these cell lines [24] and therefore novel mechanisms could be envisaged. 

Moreover, KCL22S cells exhibited typical features of the Ph+ hematopoietic stem 

cells [69]. It has been in fact shown that imatinib, in combination with a 

farnesyltransferase inhibitor, induced KCL22S growth arrest but the apoptosis was 

less evident in KCL22S than in other CML cells [70]. Therefore, KCL22 cells 

represent a good cellular system to investigate imatinib resistance, based on Bcr-Abl 

activity-independent mechanisms. Using a proteomic approach (two-dimensional 

differential gel electrophoresis, [2D-DIGE] coupled with mass spectrometry) 51 

differentially expressed proteins were characterized: 27 over-expressed and 24 

under-expressed in KCL22R cells versus KCL22S cells.  

Gene Ontology analysis of the over-expressed proteins in KCL22R cells showed that 

the two most statistically relevant molecular functions are oxidoreductase activity and 

translation regulator activity (Table 7). Two proteins were annotated in the 

oxidoreductase activity: NADP-dependent isocitrate dehydrogenase (IDH1) and malic 

enzyme (ME2). Both enzymes are involved in production of NADPH, which is an 

important cofactor in many biosynthesis pathways and in particular in the 

regeneration of reduced glutathione (GSH) [78]. GSH functions as a cellular 
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antioxidant, and is thus critical for maintenance of redox balance [87]. GSH 

concentration was found significantly higher in KCL22R cells than in KCL22S cells. In 

addition a previous study showed that the supplementation of GSH to KCL22S cells 

resulted in an increase in the IC50 value of imatinib [88]. It is well known that imatinib 

mesylate is metabolized via conjugation with glutathione (GSH) catalyzed by 

glutathione S-transferase enzymes [89]. Thus, GSH accumulation may affect imatinib 

catabolism together with other biological functions as intracellular signaling. In fact, 

GSH affects activation of anti-apoptotic MAP-kinase and NF-kB signaling [90, 91] 

(Figure 44). Interestingly, within the under-expressed proteins in KCL22R cells, was 

found a NAD(P)H quinone oxidoreductase, Nqo2. Nqo2 is a cytosolic flavoprotein 

that carries out the 2-electron reduction of quinones using electron donors such as 

nicotinamide riboside (NRH) and is known to be involved in metabolic activation 

and/or detoxification of xenobiotics [92,93], although its precise physiological role 

remained uncertain [94]. Recently, it has been reported that the oxidoreductase Nqo2 

was bound and inhibited by imatinib in K562 and CML patient samples [73], although 

the role of this process on the efficacy of imatinib remained unknown. The differential 

expression of Nqo2 across KCL22R and KCL22S cells could play a role in the 

imatinib metabolism (Figure 44). 

Another statistically relevant molecular function was related to translation regulator 

activity. The human elongation factor-1-delta (EEF1D), being in this class, is involved 

in the positive regulation of the I-KappaB kinase/NFkappaB cascade [95]. In imatinib-

resistant CML patients, the NF-kB cellular pathway is activated in a Bcr-Abl-

independent fashion [96]. This pathway could be enhanced by the over-expression of 

EEF1D (Figure 44). 
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To identify molecular networks involving proteins identified in this study, the obtained 

data were analysed using IPA software. Drawing on published literature, IPA 

constructs networks of direct and indirect interactions between orthologous 

mammalian genes, proteins and endogenous chemicals. The system created three 

major protein networks. The three networks and the related proteins are listed in 

Table 9. Examination of network 1, the most statistically significant interaction 

network, (Table 9 and Figure 30) showed that several differentially expressed 

proteins were connected with Erk signaling [97, 98]. The Raf/MEK/ERK pathway 

influences chemotherapeutic drug resistance [77]. Interestingly, the level of 

phosphorylated Erk 1/2 in KCL22R was found higher than in KCL22S cells (Figure 

33), suggesting that activation of Erk occurred in KCL22R cells, in line with a study 

showing that the Bcr-Abl-independent activation of Erk 1/2 may contribute to imatinib 

resistance in K562 CML cells [99].  

Protein network 1 (Figure 30) includes two SH2-containing, non-receptor protein 

tyrosine phosphatases Shp1 (PTPN6) and Shp2 (PTPN11). Although many studies 

have been focused on the role of tyrosine kinases involved in imatinib resistance 

[43,100], few data are available on the role of tyrosine phosphatases in Ph+ cells and 

in patients who lack or loose response to the imatinib treatment [101]. Shp1 and 

Shp2 have important physiological roles and may be implicated in the neoplastic 

transformation of hematopoietic cells [102]. Reduction of SHP1 gene expression is 

observed in natural killer cell lymphomas as well as other types of lymphoma and 

leukemia [103,104]. Interestingly, decreased expression level of Shp1 is associated 

with progression of chronic myeloid leukemia [105]. Shp2 positively regulates the 

Ras-Erk pathway [80] and is activated by the phosphorylation at the Tyr542 and 

Tyr580 residues in its carboxy-terminus, in response to growth factor receptor and 

http://www.sciencedirect.com.ezproxyhost.library.tmc.edu/science?_ob=ArticleURL&_udi=B6T54-4KSVGB1-1&_user=5674961&_coverDate=05%2F08%2F2007&_rdoc=1&_orig=browse&_srch=doc-info(%23toc%234992%232007%23997509997%23647268%23FLA%23display%23Volume)&_cdi=4992&_sort=d&_docanchor=&_ct=20&_acct=C000003838&_version=1&_urlVersion=0&_userid=5674961&_fmt=full&md5=3f7c16e860752e04882fbab1e40fb96b#bib35#bib35�
http://www.sciencedirect.com.ezproxyhost.library.tmc.edu/science?_ob=ArticleURL&_udi=B6T54-4KSVGB1-1&_user=5674961&_coverDate=05%2F08%2F2007&_rdoc=1&_orig=browse&_srch=doc-info(%23toc%234992%232007%23997509997%23647268%23FLA%23display%23Volume)&_cdi=4992&_sort=d&_docanchor=&_ct=20&_acct=C000003838&_version=1&_urlVersion=0&_userid=5674961&_fmt=full&md5=3f7c16e860752e04882fbab1e40fb96b#bib35#bib35�
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oncogenic protein-tyrosine kinases, included Bcr-Abl, activation [81]. These 

phosphorylation events seem to reduce basal inhibition and stimulate the tyrosine 

phosphatase activity [82]. The role of Shp1 and Shp2 phosphatases in imatinib 

resistance of KCL22R cells was then investigated. The activation status of Shp2 in 

KCL22S and KCL22R cells was analysed, evaluating the protein phosphorylation on 

Tyr542 that is as one of the Grb2 binding site, upstream of Ras/Raf/Erk activation 

[80]. Western blot analysis showed that the level of phosphorylated Tyr542 in 

KCL22S cells was lower than in KCL22R cells (Figure 34), suggesting that 

continuous activation of Shp2 occurred in KCL22R cells. Thus, to elucidate whether 

the low expression of Shp1 and the higher activation status of Shp2, could be directly 

associated with imatinib resistance in KCL22R cells, Shp2 was knock-down and 

Shp1 was over-expressed in resistant cells. Interestingly, by knocking-down the 

expression of Shp2 in KCL22R cells, it was observed a reversion of the KCL22R 

phenotype, in the presence of 1μM imatinib (Figure 35). These data suggest a 

synergistic effect between the Shp2 suppression and imatinib treatment on the 

reduction of KCL22R cell survival. This study also demonstrated that the knock-down 

of Shp2 significantly reduced the activation of Erk 1/2 in KCL22R cells and suggests 

a positive role of this phosphatase in Erk activation. 

Shp1 has been generally considered a negative regulator of cell proliferation 

essentially as antagonist of Shp2 that is an oncogenic protein [72]. Most importantly, 

this study demonstrated that Shp1 and Shp2 interact in KCL22 cells and that Shp1 

plays a role in regulating the Shp2 phosphorylation. The Shp1 induced expression in 

KCL22R cells, in fact, leads to a decrease in the level of Shp2 phosphorylation 

(Figure 40), suggesting that Shp1 plays a role of negative regulator of Shp2 

activation. Therefore the Shp1 down-regulation in KCL22R cells is in line with the 
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increased level of Shp2 phosphorylation and thus with the continuous Erk activation 

(Figure 44 and 45). 

Moreover, to try to understand the biological pathway underlying the Shp1 and Shp2 

interaction in KCL22 cells, additional Shp2 binding proteins were searched, within the 

IPA network 1 (Figure 30). By co-immunoprecipitation assay it was demonstrated that 

Shp2 interacts with Annexin A1. The last protein was down-regulated in KCL22R 

cells. Annexin A1 is a 37-kDa member of the annexin family that structurally belongs 

to a family of ubiquitous phospholipids and calcium-binding proteins. It is implicated 

in apoptosis induction [106], caspase-3 activation [107, 108] and cell growth inhibition 

[109]. Annexin A1 reduces cell proliferation by the induction of aberrant cytoskeletal 

organization through modification of Erk activation [110]. In line with these 

observations, it was found that imatinib significantly reduced cell proliferation in 

KCL22S cells, while KCL22R cells exhibited an elevated growth-rate in presence of 

imatinib (Figure 14). In this context, it is interesting to note that actin beta (ACTB), 

adenyl cyclase-associated protein 1 (CAP1) and chaperonin-containing TCP1 

(TCP1), which play a role in the actin remodelling [111] and protection of the 

cytoskeleton during stress [112] were over-expressed in KCL22R cells (Figure 44). 

Network 1 (Figure 30) also includes several stress response and chaperone proteins. 

In particular, different members of the Heat shock family were found to be modulated 

in KCL22 cells and in imatinib-resistant CML patients versus responders, as Hsp70 

(HSPA1A), Hsp60 (HSPD1), Hsp27 (HSPB1) and Grp78 (HSPA5) (Figure 43 and 

44). Recent studies showed that the over-expression of Hsp70 could be related to 

imatinib resistance in K562 CML cells and that Hsp60 and Grp78 were under-

expressed in these cells [71,113]. Interestingly, this study showed an opposite trend 

for Hsp70 suggesting that the mechanisms of imatinib resistance in KCL22R cells 
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could be unlike these showed by other resistant CML cell lines. Moreover this study 

demonstrated that Hsp70 interacts with Annexin A1 in KCL22S cells, suggesting that 

this protein could be involved, in concert with Annexin A1, in the regulation of Shp2 

functions (Figure 45). Although the results obtained highlight the complexity and 

multifactorial nature of the alterations associated with the imatinib resistance, the 

proteomic approach, based on 2D-DIGE, mass spectrometry and bioinformatic tools, 

has proved to be an efficient strategy to identify proteins that could play a role in 

imatinib resistance. Significant differences between KCL22R and KCL22S cells were 

found, as regards the expression levels of proteins involved in the modulation of 

mechanisms related to redox balance and activation of anti-apoptotic pathways 

mediated by NF-kB and Ras-MAPK signaling (Figure 44). In particular this study 

demonstrated that a reduced Shp1 expression in KCL22R cells could contribute to a 

continuous Shp2 activation, sustaining a Bcr-Abl activity-independent pathway of 

proliferation and survival to imatinib treatment, mediated by Erk (Figure 45). These 

two proteins could be used as putative biomarkers to evaluate the efficacy of imatinib 

treatment and to develop new combinatorial therapeutic approaches. 
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Figure 44. Proposed mechanisms potentially involved in imatinib resistance, as indicated by 

comparative proteomic analysis between KCL22 resistant and KCL22 sensitive cells. NAD(P)H quinone 

oxidoreductase (Nqo2), Malic enzyme (Me2), NADP-dependent isocitrate dehydrogenase (Idh1) 

proteins are involved in the modulation of redox balance. Human elongation factor-1-delta (Eef1d), SH2-

containing non-receptor protein tyrosine phosphatases Shp1 and Shp2 (phosphorylated form), annexin 

A1 (Anxa1), actin beta (Actb), adenyl cyclase-associated protein 1 (Cap1), chaperonin-containing TCP1 

(Tcp1) cytoskeletal proteins and Hsp27, Hsp60, Hsp70, Grp78 stress response and chaperone proteins 

are involved in the activation of anti-apoptotic pathways mediated by NF-kB and Ras-MAPK (i.e. p-Erk) 

signaling. Green represents a decrease, red indicates an increase in protein expression in KCL22R 

versus KCL22S cells. 
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Figure 45. The effect of Shp1 under-expression on Shp2 and Erk activation resulting in imatinib 

resistance, in KCL22R versus KCL22S cells. Shp1 acts as a negative regulator of cell proliferation 

essentially as antagonist of Shp2 that positively regulates the Ras-Erk pathway. Therefore the Shp1 

down-regulation in KCL22R cells results in the increased level of Shp2 activation as compared to the 

KCL22S cells, sustaining a Bcr-Abl activity-independent pathway of proliferation and survival to imatinib 

treatment, mediated by Erk. Annexin A1 and Hsp70 could also play a role on the modulation of this 

pathway, by the direct or indirect interaction with Shp2. 
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