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Introduction 
 
Recently, filter bank multicarrier (FBMC) systems 
have received considerable attention for wired and 
wireless high-data-rate transmissions in frequency 
selective channels. Conventional multicarrier 
systems, know as orthogonal frequency division 
multiplexing (OFDM) systems, provide robustness 
to multipath channels, thanks to the introduction of a 
cyclic prefix (CP) that efficiently combats the 
intersymbol interference (ISI) in dispersive 
channels. However, the insertion of CP is pure 
redundancy, that decreases the spectral efficiency. 
Moreover, in OFDM systems the adopted pulse-
shaping filter is a rectangular function, which 
exhibits poor frequency-decay. On the contrary, 
FBMC systems employ band limited pulse-shaping 
filters that overlap in time. This involves several 
advantages such as reduced sensitivity to 
narrowband interference, high flexibility to allocate 
group of subchannels to different users and a high 
spectral containment. The computational complexity 
of FBMC systems is higher than that of CP-OFDM 
systems. However, since the subchannel filters are 
obtained by complex modulation of a single filter, 
efficient polyphase implementations are possible [1].  
FMBC systems referred to as Filtered Multitone 
(FMT) systems have been proposed for high-speed 
digital subscriber line (VDSL) standards [2] and are 
under investigation also for broadband wireless 
applications [3], [4]. FBMC systems based on offset 
quadrature amplitude modulation (OQAM), known 
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as OFDM/OQAM systems, have been considered by 
the 3GPP standardization forum for improved 
downlink UTRAN interfaces [5].  
As all the multicarrier modulation schemes, one of 
the major disadvantages of FBMC systems is their 
sensitivity to carrier frequency and symbol timing 
errors. Specifically, as investigated in [6] and in [7], 
phase noise and misalignments in time and 
frequency can considerably degrade the performance 
of FMT and OFDM/OQAM systems, giving rise to 
interference between successive symbols and 
adjacent subcarriers. Therefore, reliable and accurate 
symbol timing and carrier-frequency offset (CFO) 
synchronization schemes must be implemented for 
these systems. Several studies have been focused on 
parameter estimation for FBMC systems based on 
data-aided or blind techniques. In the first case it is 
in demand the transmission of known sequences or 
the use of a training symbol with a known structure 
while blind estimation algorithms use exclusively 
the statistic properties of the transmitted signal. For 
example, in [8] and [9], blind CFO and symbol 
timing estimators based on the maximum likelihood 
(ML) principle and obtained under the hypothesis of 
low signal-to-noise ratio (SNR), have been 
considered. Moreover in [10], it has been derived a 
blind joint symbol timing and frequency offset 
synchronization scheme for FMT systems. In [11], a 
blind joint CFO and symbol timing estimator based 
on the unconjugate cyclostationarity property of the 
OFDM signal with pulse shaping filters has been 
also proposed. In [12], it is claimed that accurate 
CFO estimation algorithms robust to dispersive 
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channels can be obtained by using the conjugate 
cyclostationarity property of the received signal. 
However, the derived estimator assures a 
satisfactory performance only when a large number 
of OFDM/OQAM symbols is considered. The 
conjugate correlation function of the received signal 
has been also used in [13] to derive a CFO estimator 
for multipath channels exploiting the insertion of 
weighted subcarriers. Moreover, in [14] the authors 
derived data-aided joint symbol timing and 
frequency offset synchronization schemes in the 
time-domain for FMT systems, while in [15] the 
problem of data-aided synchronization and channel 
estimation in the frequency domain for 
OFDM/OQAM systems has been considered.  
In this thesis the problem of CFO and symbol timing 
synchronization is examined and new data-aided and 
blind estimation techniques are proposed (see [16], 
[17], [18], [19], [20], [21]). Specifically, it is 
presented a new joint symbol timing and CFO 
synchronization algorithm based on the least squares 
(LS) approach, which exploits the known structure 
of a training sequence made up of identical parts. 
This method, as illustrated by numerical simulations, 
can assure in a multipath channel sufficiently 
accurate symbol timing and CFO estimates [16]. 
Moreover, the joint ML phase offset, CFO and 
symbol timing estimator for a multiple access (MA) 
OFDM/OQAM system is considered. The derived 
estimator exploits a short known preamble 
embedded in the burst of each of U users. Under the 
assumption that the CFO of each user is sufficiently 
small, the considered approach leads to U different 
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approximate ML (AML) joint phase offset, CFO and 
symbol timing estimators. In particular, the phase 
and CFO estimators are in closed form, while the 
AML symbol timing estimator requires a one-
dimensional maximization procedure [17].  
As regards blind synchronization techniques, it is 
proposed a closed-form CFO estimator based on the 
best linear unbiased (BLU) estimation principle for 
FMT systems [18]. Although the BLU estimator is 
derived under the hypothesis of additive white 
Gaussian noise (AWGN) channel, it demonstrates a 
remarkable robustness against multipath fading. 
Moreover, it does not require the knowledge of the 
symbol timing. Numerical results show that the BLU 
estimator outperforms the ones proposed in [10], 
[11] and [22] and can outperform the ML algorithm 
for weak signal proposed in [8] in the presence of 
large values of the timing offset. Blind CFO 
estimators based on the ML principle and obtained 
under the hypothesis of low SNR are also 
considered. Specifically, the proposed CFO 
estimators can exploit both the conjugate and the 
unconjugate properties of the received 
OFDM/OQAM signal. Moreover, due to the 
significant computational complexity of the derived 
ML estimators, a closed-form CFO synchronization 
algorithm based on the LS method is considered 
[19]. It is also derived, under the assumption of low 
SNR, the joint ML symbol timing and phase offset 
estimator for AWGN channel. Since the phase 
estimate is in closed form, by substituting its 
expression in the likelihood function, a blind symbol 
timing estimator that requires only a one-
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dimensional maximization procedure is obtained. 
The ML symbol timing estimator exploits both the 
conjugate and the unconjugate cyclostationarity 
properties of the OFM/OQAM signal that are related 
to the bandwidth of the adopted pulse-shaping filter 
[20].  
The thesis is organized as follows. In Chapter I, an 
introduction to FBMC systems is provided. The 
transmitter and receiver for both FMT and 
OFDMOQAM systems are presented and it is put in 
evidence the central role of prototype filters very 
well localized in time and frequency. In Chapter II, 
the sensitivity of FBMC systems to the presence of 
synchronization errors is analyzed. Chapter III deals 
with data-aided synchronization techniques for 
FBMC systems both in downlink and up-link 
scenarios. The joint LS CFO and symbol timing 
estimator for FMT and OFDM/OQAM systems is 
derived. The joint CFO and symbol timing estimator 
in multi-user OFDM/OQAM systems is also 
proposed. In Chapter IV, it is looked at blind 
synchronization algorithms for FBMC systems. 
Blind CFO estimator for noncritically sampled FMT 
systems is proposed. Moreover, non data-aided CFO 
estimators for low SNR conditions for OFDM/QAM 
systems are presented. The ML symbol timing 
estimator for low SNR conditions for 
OFDM/OQAM systems is also derived. Finally, 
conclusions are drawn in Chapter V.
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Chapter 1 
 

FBMC Systems 
 
In this chapter, two kinds of FBMC systems, FMT 
and OFDM/OQAM, are presented. In the first part 
FMT system is introduced and the description of its 
transmitter and receiver is considered. In the second 
part, OFDM/OQAM system is analyzed, by 
describing the structure of both transmitter and 
receiver. Finally, it is put in evidence the important 
role of the prototype filter. 

1  

1.1 FMT Systems 

 
FMT is a filter-bank modulation technique where the 
N-branch filters are frequency-shifted versions of a 
baseband filter, referred to as prototype filter, that 
achieves a high level of spectral containment, such 
as the ICI is negligible compared to other noise 
signals [2].  
The FMT time-continuous transmitted signal is 
given by 

     
1

2

0

- i

N
j f t

i
i k

x t A kT h t kT e 
 

 

                   (1.1) 

where,  indicates the prototype filter,  is the 

number of subcarriers,  denotes the data 

symbol transmitted on the  subcarrier of the  

( )h t N

( )iA k

thl thk
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FMT symbol and T KN  represents the symbol 
period, being  the oversampling factor.  K
Two different implementations of FMT systems are 
possible: 

 critical sampling filter bank, when K N ; 
 noncritical sampling filter bank, 

when K N .  
Commonly, filter characteristics are chosen to 
satisfy the perfect reconstruction constraint in order 
to ensure that transmission is free of ISI within a 
subchannel as well as free of ICI. The perfect 
reconstruction conditions are expressed in the time-
domain as [1] 

 '

,

i i

l

 

 

   *
'( ) ( )

0 , ' 1,0,1,
k

i ih

i i N

k h k l

  1,

lN







                    (1.2) 

where . It is generally not 

practical to include the characteristics of the 
nonideal transmission channel in the perfect 
reconstruction conditions. Therefore, at the receiver 
the orthogonality between subchannels is destroyed 
with the consequence of unacceptable performance 
degradation. The FMT modulation technique 
follows another approach, whereby spectral overlap 
between the subchannels is avoided by resorting to 
noncritically sampled filter-bank systems and 
employing per-branch filter characteristics that 
achieve tight subchannel spectral containment. Since 
the transmission medium does not destroy the 
orthogonality realized in the described mode, the 
insertion of cyclic extension is not necessary.  

2 /( ) j ki Nk e ( )ih k h
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The length of the prototype filter, under the 
hypothesis of critical sampling, is an integer 
multiple of the number of subcarriers. This 
parameter is called overlap parameter and it is 
indicated by  . Typical values of   are between 8  

and .  20
In Figure 1 and Figure 2, spectral characteristics of 
the first five subcarriers of FMT system with 

 are reported. Note that the spectral energy 
outside of a subchannel is suppressed by more than 

dB, and this suppression increases as the length 
of the prototype filter becomes higher.  

128N 
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Figure 1: Spectral characteristics of the FMT signal for 

8  . 
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Figure 2: Spectral characteristics of the FMT signal for 

16  . 

 
 

1.2  FMT Transmitter Model  

 
In this section it is analyzed the realization of the 
FMT transmitter in the case of both critical sampled 
and noncritical sampled system. It is first presented 
the direct implementation and then due to its 
computational complexity it is derived the efficient 
implementation.  
 

1.2.1 Critical Sampled FMT System 

 
The direct implementation of a critical sampled 
FMT system is illustrated in Figure 3 [22]. 
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Figure 3: Direct implementation of FMT transmitter 
 
After upsampling by a factor of , each modulation 

symbol   is filtered at a rate , where  is 

the FMT symbol period, by the subchannel filter  

N

( )iA k /N T T

   

( )

2( ) (0)

-

,

0,..., 0,..., 1

i

DTFT

i
j ni N

DTFT

i
H H f

T

h n e

n N



(0)

1,

h n

i N 

   
 

 

 

 

                             (1.3) 

centered at the frequency . The transmitted 

signal 

/if i T

N
(1.1) is obtained at the transmission rate 

 by adding together the  filter output signals 
that have been appropriately frequency shifted. Due 
to the impossibility of a physical implementation of 
a sharp filter, a spectral overlapping is present, as 
shown in 

/N T

Figure 4.  
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Figure 4: Subdivision in contiguous bands with overlapping 
 
An efficient implementation of the system reported 
in  
Figure 3 can be obtained by exploiting the polyphase 
representation of the filter responses [1]. 
Let us introduce the Z-transform of the prototype 
filter  

( ) ( ) n

n

H z h n z






                                            (1.4) 

 For any integer ,  can be decomposed in  N ( )H z

 

 

 

1

( 1)

( )

1 ...

1

nM

n

nM

n

M nM

n

H z h nM z

z h nM z

z h nM M z







 




  





 

 







                            (1.5) 

Therefore, the  phase of  is defined as thk ( )h n

 N k( ) ( )kh m h m                                            (1.6) 

By sampling the transmitted signal (1.1) at a rate 
1 1

2c
c

T
T

f W N
    , we get  

f  

Transmit Signal 
Spectrum

0f  
N

T
 

…

T

1
f1  T

2
f2   
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   

   
-1 2

0 -

.

c

iN j n
N

i
i k

x n x nT

A kT h n kN e


  



 
                       (1.7) 

By considering a change of variables 
, it is possible to introduce 

the polyphase components of the prototype filter  

, 0 1n lN m m N    

 

   
1 2

0

mN j i
N

i
k i

x lN m

h l k N m A kT e
 

 



     
          (1.8) 

or a in more synthetic form  

 

   
1 2

0

[ ]

[ ]

m

mN j i
N

im
k i

x l

h l k A kT e
 

 

 
   

 
 

                   (1.9) 

The quantity  
1 2

0

mN j i
N

i
i

A kT e



  represents the IDFT 

of the symbol sequence , for   kTA i  0,..., 1i N   

and evaluated for 0,m ..., 1.N   Hence, we obtain  

    
-

[ ] [ ] mm m
k

x l h l k a k


 

  T                           (1.10) 

The  output of the IFFT is filtered by the  
polyphase component of  and this filtering 

operation is performed at rate 1/  and not . 
From 

thm thm

/N T

( )h n

T
(1.10), we can derive the efficient 

implementation of a critical sampled FMT system, 
shown in Figure 5. 
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Figure 5: Efficient implementation of a critical sampled 
FMT transmitter 
 
 

1.2.2 Noncritical Sampled FMT System 

 
For a noncritical sampled filter bank, the bandwidth 
for each subcarrier is equal to , that is larger 
of that used in the case of critical sampling, since 

. The number of subcarriers is , therefore 
the subdivision of the transmit signal into contiguous 
bands is obtained without overlapping, as shown in 

/K NT

K N N

Figure 6 
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Figure 6: Subdivision in contiguous bands without 
overlapping 
 
In the case of noncritical sampled filter banks, 
modulation with an excess bandwidth of 
1

1
2 2

K

T NT N

K 
     within each subcarrier 

is feasible and ensures total spectral containment 
within a subcarrier. As  tends to , the loss in 
bandwidth efficiency becomes vanishingly small at 
the price of an increase in implementation 
complexity because filters with increasingly sharper 
spectral roll-off must the be realized. 

K N

Figure 7 shows the direct implementation of a non  
critical sampled FMT system with  subcarriers.  N

 
Figure 7: Direct implementation of a non critical sampled 
FMT transmitter 
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The complex-valued modulation symbols 

  , 0,..., 1mA nT m N   are provided at the symbol 

rate of 
1

T
. After upsampling by a factor K , each 

symbol stream is filtered by a proper shifted 
frequency version of the same prototype filter. The 

transmitted signal 
T

x k
K



 


  is obtained at the 

transmission rate of   by adding the  filter-
output signals. By exploiting the polyphase 
decomposition, it is possible to derive an efficient 
implementation for the scheme in 

/K T N

Figure 7. At time 

T
k

K
, the signal 

T
x k

K
 
 
 

 input to the channel is 

given by  

 

   

   

1

0

2

1

0

2

( )

( )

N

m
m n

K Tj m kNT K

N

m
n m

K Tj m kNT K

T T
x k A nT h k nK

K K

e

T
A nT h k nT

K

e





 

 

 

 

    


   



    



 

 



        (1.11) 

 
By considering the change of variables 

  , 0,..., 1
T T

k lN i i N
K K
    , we get  

 i
n

T T
x lN i

K K

T T
a nT h lN i nT

K K





  
 

    
 

                    (1.12) 

  



Chapter 1 16 
 
 

where 

       1
2

0

, 0,..., 1
N K Tj m iNT K

i m
m

a nT A nT e i N




   

are the IDFT of . Moreover, by adopting the 

general expression for signal interpolation where 
three indices are introduced 

( )mA nT

“filter index”    
lN i

q n
K

    
 

“basepoint index”     ,l i

lN i

K
     

 

“fractional index” , ,l i l i

lN i

K
 

   

we obtain 

   

  ,

, ,

, ( ),

0,..., 1

l i

i l i l i
q

K
i l i

q

T T
x lN i

K K

a q T h q

a q T h qT

i N



 











  
 

T        

   

 





                  (1.13) 

where ,0 l i 1   and ,l i mod K
K lN i  , 

the transmit signal at time 

 . Therefore

T
k

K
 is computed by 

convolving the signal samples stored in the 
( mk olyphase component with respect to 

K  the prototype filter. The integer number ,l i K

od )K th p

of   

des the address of the polyphase component 
that needs to be applied at the ( mod )k N th output of 

 to generate the transmitted signal 

provi

the IDFT
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T
x k

K
 
 
 

. Hence, each element of the IDFT output 

frame is filtered by a periodically time-varying filter 

with period equal to  , /lcm N K T K   , where 

 ,lcm N K    stands for leas ltiple of 

N  and K  

t common mu

[2].  

 
Figure 8: Efficient implementation of  a noncritical 

mpled FMT transmitter sa
 
 

1.3 FMT Receiver Model  

 
In the presence of AWGN 

received signal is give

( )w t , the time-continuous 

n by  
( ) ( )y t x t w( )t                                         (1.14) 
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In the receiver filter bank architecture (shown in 

Figure 9) the receiving filters  ( ) ( )ig n

   

 are designed 

to be matched to the corresponding ones in the 

transmitter i.e.,      *,i iH fG f   

 0,..., 1.i N 

 
Figure 9: Direct implementation of a FMT receiver (critical 
sampling) 
 
By using the fact that the inverse Fourier Transform 

of  is      *
iH f *

( ) ( )ih n , we get  

        ' ,

0,..., 1, 1,..., 1,0

i ig n h n

i N n N


 

     
                  (1.15) 

However, this filter is not causal. Since  is 

defined for 

'( )g n

1,..., 1,0n N   
1N

, we need to apply a 

minimum delay of    samples to make it causal. 

Specifically, we delay it of N  samples and we call 

this response . This delay is what will allow 

us to define the efficient implementation. We should 

( ) ( )ig n
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note that since we are using multirate blocks, this 
difference of one sample makes a change to the 
overall response of the filter. In the efficient 
implementation, it will also allow us to take blocks 
of  samples in a different way, otherwise, there 
will be an offset in the way we take the blocks of 
samples in the transmitter and in the receiver. 
Applying the delay to the receiver filters in 

N

 

(1.15) 
we obtain 

  '
( )ig n N ig n                                (1.16) 

 

1.3.1 Critical Sampled FMT System 

 
The time-continuous received signal is given by  

 
2 ij f

   

 

1

0

-
N

i
i k

t

y t A kT h t

e w t

 

 

 

  kT




                         (1.17) 

By sampling at a rate c

T
T

N
  and taking into 

account that i

i
f

T
 ,  we get  

     
1

0

2j n
[ ]

N

i
i k

i

N

y n A kT h n k N

e w n

 

 

 

 

 


                    (1.18) 

From (1.15) and (1.16), we can derive the expression 
of the filter on the receiver side  
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        
   

 

2

2

,

0,..., 1 1,...,

i i

j n N i
N

j ni
N

g n h n N

h n N e

h N n e

i N n N

 














    

    

 

  

                           (1.19) 

Since  is symmetric, then the receiver filter at 

the  subcarrier is  

( )h n

thi

     
2

1 , 1,...,
ni

j
N

ig n h n e n N


                   (1.20) 

By applying (1.19), at the output of the  
subcarrier in 

thi
Figure 9, we obtain  

     

   

( )
1

2

1

( )

1

N

ii
n

niN j
N

n

B kT y kN n g n

y kN n h n e



 





 

  




                        (1.21) 

To introduce the polyphase components of 
defined in ( )h n

n l

(1.6), we decompose  as 

, 

n

N t  0,1,..., 1l    and 1,2,...,t N  to yield 

     

 
 

   

1

1 0

2

1

1 0

2

1

1

N

i
t l

lN t i
j

N

N

t l

t i
j

N

B kT y kN lN t

h lN t e

y k l N t h lN t

e











 





 

  

  

     





 

             (1.22) 

If we make a change of variable 1m t  , the 
equation (1.22) becomes  
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       

 
 

11

0 0

1
2

1
N

i
m l

m i
j

N

B kT y k l N m

h lN m e







 



     

 


          (1.23) 

By applying  

   2 2
1j m i j N m i

N Ne e
 

   


1
                             (1.24) 

we get 

     

 
 

11

0 0

1
2

( )

1
N

i
m l

N m i
j

N
m

B kT y k l N m

h l e







 

 


     




           (1.25) 

From (1.25), we are able to derive the efficient 
implementation shown in Figure 10 where we apply 
the DFT operation (efficiently implemented with the 
FFT) to the outputs of the  polyphase filters.  N N

 
Figure 10: Efficient implementation of a critical sampled 
FMT receiver 
 

We can make some comments about (1.25) to see 
how the efficient implementation is derived.  

 Since the receiving filters are defined as in 
(1.20), and due to the downsampler in Figure 
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10, the first output in the receiver filter bank 
will be at 1k   ( N samples at rate /N T ) 
and not at 0k  . 

 If we analyze (1.25), we will see that for 

1k  , we need the inputs  (0),..., ( 1)y y N  . 

This is consistent with what we do in the 
efficient implementation shown in Figure 10.  

 The polyphase components of ( )h n  are in 

reverse order with respect the DFT. That is 
why the first polyphase component in Figure 
10 is in the last branch of the filter bank. 

We can also see from (1.25) that the implementation 
in Figure 10 is mirrored (matched) to the 
implementation in Figure 5. Since the prototype is 
symmetric and has N  samples, for each of the 

polyphase components      ih n h nN i  , the 

matched filter is actually  

     11 , 0,1,... 1M ih nM M i h n i M       . 

That is why they are in reverse order to the ones in 
Figure 5, since the whole implementation is matched 
to that of  Figure 5 [22]. 
 

1.3.2 Noncritical Sampled FMT System 

 
In figure, it is reported the direct implementation of 
a noncritical sampled FMT receiver. The main 
difference with respect to the case of critical 
sampling is the fact that the downsampling factor is 

.  K N
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Figure 11: Direct implementation of a noncritical sampled 
FMT receiver 
 
In the following it will be derived the efficient 
implementation of a noncritical sampled FMT 
receiver. We assume for the received signal the same 
sampling rate as for the transmitted signal and 
consider in general a downsampling factor  

(i.e. in 

L K
Figure 11 replace  with ). The 

received signal 

K L
T

y k
K



 


  and the filtering elements 

on the  branches are given by the polyphase 
components with respect to  of a prototype filter 

N
N

  g k T K  with -spaced coefficients, defined 

as  

/T K

      ,

0,..., 1

m

T
g l g lN m

K

m N

        
 

                         (1.26) 
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The  output signal of the FMT demodulator at 

time 

thi

 K T'n L  is given by  

 

 

'

2
'

i
k

K T
j i k

NT K

L T
B n T y k

K K

T
e g Ln k

K







   
 

    
  





    


                            (1.27) 

By letting   , 0,1,... 1
T T

k lN m m N
K K
    , 

(1.27) becomes  

   

 

1
'

0

2'

N

i
m l

im
j

N

T T
B n L y lN m

K K

T
g Ln lN m e

K



 

 



     
  

     

 



             (1.28) 

(1.28) can be simplified as  

 

1 2' '

0

imM j
N

mi
m

T T
B n L u n L e

K K

 



      
   

                  (1.29) 

where 

 

 

'

' , 0,..., 1

m
l

T T
u n L y lN m

K

T
g Ln lN m m N

K





      
   
      

 K


            (1.30) 

It is evident that     KTLnB '
i , 0,..., 1i N   are 

obtained from   '
mu n L T K , 0,..., 1m N 

N

, via 

discrete Fourier transform. Moreover, if we define 
the polyphase components with respect to  of the 
received signal as  

 ( ) ,

0,..., 1

m

NT T
y l y lN m

K

m N

      K    
 

                        (1.31) 
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and introduce  

 “filter index”   
'

' Ln m
q l

N

 
  
 

 

 “basepoint index”      '

'
'

,n m

Ln m

N


 
  
 

  

 “fractional index”  
'

' '
', ',n m n m

Ln m

N
 

   

we obtain 

   

   '
',

' '
', '

'
n m

m nm
l

N

T
u n L y q
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g q







   
 



 m

                     (1.32) 

Note that if the receive prototype filter is causal and 
matched to the transmit prototype filter, i.e. 

'
T

g n h N n
K K

     
  

'
T 



                             (1.33) 

where N  denotes the length of the filter , ( )h n

(1.32) becomes  

   '
',

*

' '

'
,
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m nm
l

T
u n L y q

K

m Ln NT
h l

N K

m N









   
 
         

 

 m

                    (1.34) 

In general, a new DFT output frame at time 

'k T K n LT K  is obtained by the following 

method (see Figure 12): the commutator is circularly 

rotated  steps from its position at time L  ' 1n T , 

allowing a set of  consecutive received signals L

 Ky k T  to be input into the  delay lines. The 

content of each delay line is then convolved with a 

N
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polyphase component (with respect to ) of the 

receive prototype filter. The integer number 

N
'
',n m N  

provides the address of the polyphase component 
that needs to be applied at the  branch. The 
resulting signals are then input to the DFT to finally 

yield the signals 

thm

  '
( )iB n L T K , 0,1,..., 1i N  . 

Note that the DFT output frames are obtained at the 

rate of    TL/K . Clearly, it is possible to consider 

in general a FMT system where the sampling rate of 
the analog-to-digital (A/D) converter is given by 

'K T , with . In this case a digital 

interpolation filter is first employed to convert the 

rate of the received signal samples from 

'K K

TK'  to 

TK . The obtained signal is then input to the FMT 

demodulator [2]. 

 
Figure 12: Efficient implementation of a noncritical 
sampled FMT receiver 
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1.4 OFDM/OQAM Systems 

 
The main idea of OFDM/OQAM systems is to 
transmit the real and imaginary part of QAM symbol 
shifted of half a symbol period by exploiting filters 
that guarantee the orthogonality between subcarriers. 
In Figure 13 it is shown an OFDM/OQAM system 
with  subcarriers frequency-separated of 1/ , 
where  is the symbol period. The time-continuous 
transmitted signal is given by  

N
T

T

 
21

0

2 ( )( )

( )
2

N j t k
T

k n

R
k

I
k

n g t nT

T

s

j

t e a

a n g t nT

     
 

 





 

     





 
           (1.35) 

where  is the prototype filter,  and  

denote the real and imaginary part of the complex 
data symbol transmitted on the  subcarrier of the 

 OFDM/OQAM symbol. 

( )g t ( )R
ka n ( )k

Ia n

thk
thn
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Figure 13: OFDM/OQAM system model 

1.5 OFDM/OQAM Transmitter  
Model 

 
By sampling the transmitted signal (1.35) at a rate of 

, we get  /cT T N
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where  ( ) /s l s lT N .  

Note that (1.36) can be written as  

)( ) ( (R Ils )js ll s                                          (1.37) 

where  
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IN
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



 
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By exploiting the same procedure as seen in the case 
of FMT transmitter, it is possible to derive an 
efficient implementation of the OFDM/OQAM 
transmitter. Let us take into account first the 
contribute (1.38). By considering a change of 
variables ,l qN m   0 m N 1   , it is possible to 

introduce the polyphase components of the 
prototype filter  
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s q
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and consequently 
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Therefore, the efficient implementation of the 
OFDM/OQAM system can be obtained as follows 
[23] 

 
 

IDFT 

 
Figure 14: Efficient implementation of the kth subcarrier of 
the OFDM/OQAM transmitter 
 
 
In Figure 15 it is shown the filter bank 
implementation of the OFDM/OQAM transmitter. 
We can note that the oversampling factor is equal to 

.  / 2N
 

 
Figure 15: Filter bank implementation of the OFDM 
OQAM transmitter 
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1.6 OFDM/OQAM Receiver Model 

 
In order to derive an efficient implementation of the 
OFDM/OQAM receiver, we consider the received 
signal after a LTI channel with impulse response 

. The impulse response of the equivalent 

channel made up of the  transmitted subcarrier 
and the  received subcarrier is given by 

( )h l

thm
thk

2

2

,

( )
( )

( ) ( ).

( )
j mm k
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j kl
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 
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                           (1.42) 

The received sequence on the  subcarrier is  thk
2
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,
0

,

( ) ( ) ( )
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where ( )f l  is the matched filter to . ( )g l

In order to derive a filter bank implementation, it is 
useful to define the impulse response of the 
equivalent filter of the  subcarrier as  thk

2

( )( ) ( )
klk N

j

kf f el lj



                               (1.44) 

Therefore, (1.43) becomes  
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Down-sampling by N/2 times the received 

subchannel sequence  and taking the real and 

imaginary parts alternately, we get the received 
symbols 
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Figure 16: Efficient implementation of the OFDM/OQAM 
receiver 
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1.7 Prototype Filter Design  

 
In the FBMC modulation, the prototype filter 
completely defines the system. The choice of the 
prototype filter for the realization of the polyphase 
filter bank allows various tradeoffs among the 
number of subcarriers, the level of spectral 
containment, the complexity of implementation and 
signal latency to be made. These tradeoffs are 
possible because the number of subcarriers can be 
reduced without incurring a transmission efficiency 
loss, whereas in OFDM the minimum number of 
subcarriers is constrained by efficiency requirements 
owing to the use of the cyclic prefix. The prototype 
filter has to demonstrate a good time-frequency 
localization to increase spectral efficiency and, 
moreover, it has to satisfy orthogonality conditions 
(see Appendix A for further details) to destroy, at 
least in the case of ideal channel, ISI and ICI.  
The orthogonality conditions, in the case of ideal 
channel, can be written as 
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It is possible to shown that the orthogonality 
conditions are both satisfied if  
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 ( )g t  and ( )f t  are bound limited in the range 

 1/ ,1/T T . 

 ( ) ( )g t f t  are symmetric real-valued filters. 

 ( ) ( ) ( )t g t f t    satisfies Nyquist criterion. 

A possible choice for the prototype filter is 
represented by the SRRC filter whose frequency 
response is given by 
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     (1.49) 

where 0 1   is the roll-off factor. 
To design the prototype filter is also possible to 
exploit the so-called frequency sampling technique, 
which is presented with the following parameters 

 2048,L  512N  ,   4K  [24]. 

The design starts with the determination of L desired 
values ( / ) , 0 1H k L k L    in the frequency 

domain by  

2

(0) 1

(1/ ) 0.971960

(2 / ) 1/ 2
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
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               (1.50) 

Then, the prototype filter coefficients are obtained 
by IDFT as 
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In fact, the condition (0) 0h   determines the 

desired values (1/ )H L  and (3 / )H L . It is useful to 

make the number of coefficients an odd number, in 
which case the filter delay can be adjusted to be an 
integer number of sample periods. The frequency 
response obtained is shown in Figure 17. In this 

figure, the sub-channel spacing f is taken as unity 

(f =1). It is important to notice that the filter 
attenuation exceeds 60 dB for the frequency range 
above 2 sub-channel spacing.  
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Figure 17: Frequency response of the prototype filter 
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Chapter 2 
 

Sensitivity of FBMC Systems 
to Synchronization Errors 
 
In this chapter the sensitivity of FBMC systems to 
synchronization errors in both the uplink and the 
downlink scenarios is investigated. In particular, the 
performance degradation caused by synchronization 
errors is evaluated analytically and with numerical 
simulations and compared with that of OFDM 
systems. It is shown that, as all multicarrier systems, 
FBMC systems are very sensitive to synchronization 
errors, since timing errors and carrier frequency 
offsets produce intercarrier interference and 
interference between successive symbols, which can 
lead to a severe performance degradation. However, 
in an asynchronous multi-user scenario FBMC 
systems are more robust than OFDM systems to 
time and frequency misalignments among the users. 

2  

2.1 Downlink Synchronization 
Tasks 

 
In this section the effects of time and frequency 
synchronization errors in an FBMC-based downlink 
transmission are investigated. From a physical layer 
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perspective, the multiuser FBMC downlink is 
equivalent to a single user FBMC system. The only 
difference is that in a multiuser system the 
transmitted signal conveys the information for 
multiple users while in a single user scenario the 
transmitted block carries information data for only 
one subscriber. 
 

2.1.1 OFDM/OQAM System Model with 

Synchronization Errors 

 
Let us consider an OFDM/OQAM system with  

subcarriers of which  are modulated by data 

symbols and 

N

uN

v uN N N   remain unmodulated 

(virtual subcarriers). As indicated in Figure 18, the 
real and imaginary parts of the transmitted complex 

data symbol ( )l
Ra p  and ( )R

la p  are separated in time 

by  and transmitted in parallel on the  
subchannels. Each subchannel is then shaped by a 
prototype filter with impulse response  and 

successively the  contributes are summed up 

giving the  sampled multicarrier signal 
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In (2.1),  denotes the set of indices of data 
subcarriers,  is the signalling interval and  is 

the real pulse shaping filter with unit energy and 
assumed to be a SRRC Nyquist filter with roll-off 

factor 



T ( )g t

   0 1  .  

The transmitted sequence  ss kT  feeds a digital-to-

analog converter (DAC) and propagates trough a 
physical channel characterized by AWGN noise 

 with a power spectral density ( )n t 2( )n nfS  . The 

received signal  is filtered with an ideal low pass 

filter with a bandwidth of 1

( )r t

/ sT  and sampled with 

frequency 1/s sf T , yielding the sequence  

       2 sfT k
s

j
s sr kT e s kT n kT                     (2.2) 

where   is the timing offset, f the CFO and   the 

carrier phase offset, moreover  sn kT  denotes the 

zero-mean circular complex white Gaussian noise 

with a variance .   2 /n T s

In subchannel  at the receiver side, the received 

sequence 

m

 sr kT  is first down-converted by 

multiplying with 
2

2sj kT m
Te
 

   
  , then filtered by the 

matched filter  sg k T  to generate the signal  
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2sj kT m

m s s
T sy kT r kT e g kT
    
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

               (2.3) 

Down-sampling by  times the received 

subchannel sequence 

/ 2N

 smy kT  and taking the real 

and imaginary parts alternately, we get the received 
symbols:  
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Substituting (2.3) in (2.4) and (2.5) and accounting 
for the expression of the received signal we obtain  
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and 
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From (2.6) and (2.7) we can note that in the presence 
of frequency and timing synchronization errors, the 
useful term is subject to an attenuation and a phase 
rotation related to the subchannel index m , the 
timing offset  , the phase offset  , the CFO f  

and the index of the information symbol k . 
Furthermore, intercarrier interference, intersymbol 
interference and interference between real and 
imaginary part of data symbols are present. 
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Figure 18: OFDM/OQAM System 
 
 

2.1.2 FMT System Model with 

Synchronization Errors 

 
Into the case of an FMT system, as shown in Figure 
19, the baseband discrete-time transmitted signal 
obtained by sampling the continuous-time signal 
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with a sampling frequency 1/ /s sTf K T   is 

given by  
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where  T  is the signalling interval, ( )1K N   is 

the oversampling factor, ( )la p  is the data symbol 

transmitted on the  subcarrier of the thl thp  FMT 

symbol and  is the real prototype filter with unit 

energy and assumed to be an SRRC Nyquist filter 

with a roll-off factor 

( )g t

  / NK N    0 1  . 

We can note that, differently from OFDM/OQAM 
systems, for FMT systems the frequency spacing 
between adjacent subcarriers is given by 

/ ( ) /K N )T (1 T   and, thus, it depends on the 

oversampling factor. Precisely, if the oversampling 
factor is equal to the number of subcarriers , 
the system is referred to as critically sampled FMT 
system and the frequency spacing is equal to 1/ . 
Otherwise when 

K N

T
0  , the system is referred to as 

non-critically sampled FMT system and the 
frequency spacing increases minimizing the amount 
of ICI at the price of an increment in the 
implementation complexity and of a reduction of 
bandwidth efficiency.  
Let us suppose now that the FMT signal is 
transmitted trough an AWGN channel. The received 
signal in the presence of a CFO f , a carrier phase 

offset   and a timing offset  , is given by  
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At the receiver side the FMT signal is filtered with a 
bank of matched filters and downsampled of the 
factor , thus, we obtain  K
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Therefore, in the presence of synchronization errors 
and in the case of a non dispersive channel, the 
useful term is subject to the attenuation and the 
phase rotation due to the term  
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and moreover it is affected by ICI, ISI and additive 
noise.  

 
Figure 19: FMT System  
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2.1.3 Numerical Results 

 
In this section the sensitivity of FBMC systems to 
synchronization errors is assessed via computer 

simulations. A number of  Monte Carlo trials has 
been performed under the following conditions: 

410

 The prototype filter is obtained by truncating 
the sampled version of an SRRC Nyquist 
filter with a roll-off factor  . Specifically, it 

is a FIR filter of length 8gN K  for FMT 

systems and 4g N  for OFDM/OQAM 

systems. 

N

 The values of the number of subcarriers and 
of the roll-off factor parameter for the 
considered FMT system are 64N   and 

0.125  , respectively. 
 The values of the number of subcarriers and 

of the roll-off factor parameter for the 
considered OFDM/OQAM system are 

64N   and 0.6  , respectively. 
 The multipath channel has been modelled to 

consist of 1 5mN    independent Rayleigh-

fading taps with an exponentially decaying 
power delay profile. Specifically, 

/4 ,lCe2
( )E h l 

    0, , ml  N , where C 

is a constant such that 
0

2
( ) 1

mN

l

E h l


    . 

Moreover, the channel is fixed in each run 
but independent from one run to another. 
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 The complex data symbols ( )pa l , when the 

FMT system is considered, belong to a 
QPSK constellation. 

 The data symbols ( )R
pa l  and ( )I

pa l , when the 

OFDM/OQAM system is considered, belong 
to a BPSK constellation. 

In Figure 20 the sensitivity of the FBMC signals in 
terms of bit error rate (BER) on the digital data is 
reported in the case of 64N   subcarriers and 

 as a function of the timing offset 
normalized to the sampling interval. The BER of the 
same FBMC systems as a function of the normalized 
CFO is shown in 

SNR 10dB



Figure 21. Note that in the 
presence of frequency and timing synchronization 
errors at the output of each subchannel is observed 
an attenuation and a phase rotation of the useful data 
related to the subchannel index, the timing offset, 
the phase offset, the CFO and the index of 
information symbol. The phase rotation incorporated 
in the channel gain should be compensated by the 
subcarrier equalizer. It is assumed that on each 
subchannel it is exploited a one-tap equalizer with 
perfect channel knowledge and of the timing offset 
and of the CFO. The results reported in Figure 20 
show that the sensitivity to a timing offset is lower 
in multipath channel and, moreover, in this case an 
accuracy of  samples (6 10%  of FBMC symbol 
interval) is sufficient to assure a contained 
performance degradation with respect to the case of 
perfect synchronization. Moreover, as shown in 
Figure 21, in multipath channel the absolute value of 
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the CFO should be less than 5%  to assure a reduced 
performance degradation.  
 

 
Figure 20: BER of the considered FBMC systems as a 
function of the timing offset in AWGN (solid lines) and 
multipath channel (dashed lines) for SNR=10dB 
 

 
Figure 21: BER of the considered FBMC systems as a 
function of the CFO in AWGN (solid lines) and multipath 
channel (dashed lines) for SNR=10dB 
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2.2 Uplink Synchronization Tasks 

 
In this section we analyze the effects of 
synchronization errors in the case of FBMC uplink 
transmission.  
 

2.2.1 OFDM/OQAM Multiple Access 

System Model with Synchronization 

Errors 

 
In the uplink of an OFDM/OQAM system each 
block conveys information of several subscribers. 
Let us consider a system with U  users with equal 

power 2
s  and  subcarriers, the transmitted signal 

takes the form  

N

1 1

( ) ( ) ( )( ) R I
m s m m
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m m

t t js t ts s
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where  is the subcarrier set of the user of 

size U . 

m

m

thm
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The received signal in the presence of 

synchronization errors mf , m  and m  is given by  
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m
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Let the  user be the user of interest, we will 
assume that the base station can perfectly estimate 

and compensate its time offset 

thm

m , its CFO mf  and 

its phase offset m  but the remaining 1U   users are 

completely asynchronous to each other. In this case 
the compensated  signal  thm

   2( ) m mj f t
m mt er t r                                   (2.19) 

is filtered with a bank of matched filters and  

times downsampled to generate for l
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and 
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From (2.21) and (2.22) we can note that in the 
considered scenario, under the assumption of a pulse 
filter satisfying the orthogonality conditions [25], the 
received signal does not present ISI, ICI and 
interference between imaginary and real part but 
presents multiple access interference.  
 

2.2.2 FMT Multiple Access System Model 

with Synchronization Errors 

 
Let us consider a multiuser FMT system with U  
users, the expression of the received signal in the 
presence of synchronization errors is that reported in 
(2.18) where  
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Let the  user be the use of interest, with a 
perfect time and frequency synchronization, the 

received signal 
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filtered with a bank of matched filters satisfying the 
condition of perfect reconstruction and  times 
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From (2.24) we can note that in the considered 
asynchronous scenarios the received signal is 
affected uniquely by multiple access interference.  
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2.2.3 Numerical Results  

 
In this section the sensitivity of FBMC-MA systems 
to synchronization errors is assessed via computer 
simulations and compared with that of OFDMA 

systems. A number of  Monte Carlo trials has 
been performed under the following conditions 
(unless otherwise stated) 

410

 The length of the prototype filter is L N , 

where the overlap parameter   is fixed at 

4  . Specifically, the so-called frequency 

sampled technique is used to design the 
prototype filter [24]. The desired values of 
the filter in the frequency domain are 

(0) 1G  , (1/G L) 0.971960 , 

(2 /G L) 1 2 , 2 LG(3 / )G L

4 1k L

1  (1/ ) , 

) 0L   for ( /G k    .  

 The number of subcarriers is fixed at 
1024N  . 

 The number of users is equal to 4U  . 
 The modulation format on all subcarriers is 

QPSK. 
 The considered multipath channel model is 

the ITU Vehicular A, which has six 
independent Rayleigh fading taps with delays 
0, 0.31, 071, 1.09, 1.73 and 2.51 s  and 

relative power 0, -1, -9, -10, -15 and -20dB 
[26]. Moreover, the channel is fixed in each 
run but it is independent from one run to 
another. 
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In our simulation analysis, we have considered three 
different allocations schemes: blockwise, interleaved 
and interleaved b assignment schemes. In particular, 
as illustrated in Figure 22, in the blockwise and 
interleaved b allocation schemes group of adjacent 
subcarriers are allocated to the same user or different 
users, respectively, while in the interleaved 
allocation scheme one subcarrier is dropped between 
two adjacent users. 

 
Figure 22: Allocation scheme 

 
In Figure 23 it is shown that, in the case of a multi-
user system in which the user of interest is perfectly 
synchronized to the base station (BS), the FBMC-
MA systems are much more robust with respect to 
misalignments between different users than CP-
OFDMA systems, assuring in the case of the 
blockwise assignment a performance practically 
coincident with that obtained in the case of perfect 
synchronization. We have considered the case of an 
asynchronous scenario with 4U   users, where 
three of them have normalized frequency offsets 
uniformly distributed in the range 0.125  and 
timing offsets uniformly distributed within 

 , 2/ 2, / 1T T   . The BER depicted in Figure 23 

corresponds to the perfect synchronized user, who is 
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suffering from the multiple access interference of the 
three asynchronous users. Figure 23(a), (b) and (c) 
show always the same performance for the FBMC 
system while comparing it with CP-OFDM with 
different CP-length. It is obvious, that FBMC with 
blockwise allocation of subcarriers per user is 
always the best choice and the performance 
advantage over CP-OFDM is higher as longer is the 
CP. 
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Figure 23: Comparison between FBMC-MA and OFDMA 

 
Furthermore, we have studied the sensitivity of the 
FBMC system in terms of BER to timing inaccuracy 
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for the user of interest, under the hypothesis of ideal 
carrier frequency recovery. The other users are 
supposed asynchronous with normalized frequency 
offsets uniformly distributed in the range 0.5  and a 
timing offset uniformly distributed within 

 , 2/ 2, / 1T T   . In Figure 24, we report the 

BER of the user of interest with 0/s NE 20dB  as a 

function of the RTO normalized to the sampling 

interval  ˆ / sT 

4U

 in AWGN channel (solid line) 

and ITU-Vehicular A channel (dashed line) and 

  users. The  of the other users is equal 

to 

0/E Ns

 0/ 20dBs i
NE  , 2,3,4i  . Note that the effect 

of the RTO on the digital data at the output of each 
subcarrier is an attenuation and a phase rotation 
proportional to the RTO and to the subcarrier index 
(see (2.20), (2.21) and (2.24)). This phase rotation 
incorporated in the channel gain should be 
compensated by the subcarrier equalizer. It is 
assumed that on each subcarrier a one-tap equalizer 
with perfect knowledge of the channel and of the 
RTO is used. The results show that the interleaved 
allocation scheme assures the lowest sensitivity to 
the presence of a RTO, both in AWGN and 
multipath channel, but on the other hand, it presents 
a loss of spectral efficiency, since one subcarrier is 
dropped between two adjacent users. Instead, with 
the blockwise assignment scheme, an accuracy of 

100  samples ( 10%  of the FBMC symbol 
interval) is sufficient to assure an acceptable 
performance degradation with respect to the case of 
perfect synchronization (RTO=0). (Note that the 
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BER corresponding to the interleaved scheme in 

AWGN is lower than ). We have also analyzed 
the effect of the presence of a RCFO for the user of 
interest, for whom RTO is zero, with the other users 
completely asynchronous. In 

510

Figure 25, we report 

the BER of the user of interest with 0/ 20dBs NE   

as a function of the RCFO normalized to the 

subcarrier spacing  Tf̂ f   in AWGN channel 

(solid line) and ITU-Vehicular A channel (dashed 
line) for an FBMC-MA system with 4U   users. 

The  of the other users is also 20 dB. Note 

that the effect of the RCFO on the digital data at the 
output of each subcarrier is an attenuation and a 
phase rotation proportional to the RTO and to the 
symbol index (see 

0/sE N

(2.20), (2.21) and (2.24)). This 
phase rotation incorporated in the channel gain 
should be compensated by the subcarrier equalizer. 
It is assumed that on each subcarrier a one-tap 
equalizer with perfect knowledge of the channel and 
of the RCFO is used. For blockwise and interleaved 
allocation schemes an accuracy of 15%  of the 
subcarrier spacing can provide an acceptable 
performance degradation with respect to the case of 
perfect synchronization (RCFO=0).  
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Figure 24: BER as a function of the RTO normalized to the 
sampling interval for 0/ 20ds NE B  

 

 
Figure 25: BER as a function of the RCFO normalized to 
the subcarrier spacing for 0/ 20ds NE B  



Chapter 3 60 
 

Chapter 3 
 

Data-aided Synchronization 
Algorithms for FBMC 
Systems  
 
This chapter deals with the problem of data-aided 
joint symbol timing and CFO estimation for FBMC 
systems, both in downlink and uplink transmission. 
Since FBMC systems are very sensitive to 
synchronization errors, as shown in chapter 2, 
accurate synchronization algorithms must be 
designed. As regards the downlink, it is proposed a 
new joint symbol timing and CFO synchronization 
algorithm based on the least squares approach and 
exploiting the transmission of a training sequence 
made up of identical parts. Moreover, for the up-link 
of a multiple access FBMC system, the joint ML 
phase offset, CFO and symbol timing estimator 
exploiting a short know preamble embedded in the 
burst of each of U  users is considered. The 
performance of the derived estimators is assessed by 
computer simulations both in AWGN and multipath 
channel. 

3  
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3.1 Joint Symbol Timing and CFO 
LS Estimator  

 
In this section we derive a data-aided joint CFO and 
symbol timing estimator based on the LS approach 
which exploits the transmission of a training 
sequence made up of identical blocks. Precisely, by 
considering the notations introduced in (2.1) and 
(2.10) for OFDM/OQAM and FMT systems 
respectively, the training sequence can be obtained 
by transmitting the sequence of data symbols 

  and ( ) TR
l lpa a l   0, , 1TRp N    . In this 

way, if we assume that the pulse shaping filter  

is different from zero for 

( )g t

  ,0, , 1s g sTt T N  , 

where /g sT TN  , with   the overlapping factor, 

we obtain the training burst  

 
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
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 

 





 (3.1) 
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After a transient of  samples and, in particular 

for 

1gN 

 1, 1R Nk ,g TN N P     , the training 

sequence in (3.1) satisfies the following relationship 

   sTR sRs TPTs kT s kT                                    (3.2) 

with  ,P lcm N K  for FMT systems and P N  

for OFDM/OQAM systems. Thus, the number of 
identical blocks contained in the training sequence is 

/OQAM
TRN NOFDM

rip    for OFDM/OQAM systems, 

while, for FMT systems, the number of identical 

blocks is FMT
ripN  TRN N

P

K 
  

. Accounting for the 

relationship (3.2), a joint symbol timing and CFO 
estimator can be obtained by considering the 
minimization problem  

   

  2

, 1

2

1

argˆ ˆ min,
TR

g

s

N N

s
f

fT P

P

k N

j
s s

r kT

r kT P

f

T e





 





 



 

 





  


 







                  (3.3) 

where f  and   are trial values for CFO and 

symbol timing, respectively and  sr kT  is the 

received signal, defined in (2.2). The minimization 
in (3.3) (see the algebraic details reported in 
Appendix B) leads to the following joint CFO and 
symbol timing estimator referred to as LS estimator  

      1 2ˆ arg max 2LS R Q Q


    


               (3.4) 

   1ˆ ˆ arg
2LS LS LS

s

f
PT




  ˆR                           (3.5) 

with 
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     
1

*

1

TR

g

N N P

s s s
k N

r kT rR TkT P  
 

 

             (3.6) 

and 

    
1

2

1

1
TR

g

i s

N N P

k N

Q r kT i PT s 


 



                  (3.7) 

Let us observe that if we divide the timing metric in 

(3.4) by the term      1 2Q Q Q      we obtain 

the modified LS (MLS) joint symbol timing and 
CFO estimator  

 
 

ˆ arg maxMLS

R

Q






   
  


                                 (3.8) 

   1ˆ ˆ arg
2MLS MLS MLS

s

f
PT




  ˆR                     (3.9) 

that can be used to reduce the false detection 
probability [27]. The performance of the LS and 
MSL estimators will be compared with that of the 
two joint estimators proposed by Tonello and Rossi 
in [14] and referred in the following as TR1 and 
TR2. specifically, the joint estimator  

 
 

2

1 2

2

ˆ arg maxTR

R

Q






    
  






                             (3.10) 

   1 1 1

1ˆ ˆ arg
2T TTR R

s

f
PT




  ˆ RR                      (3.11) 

exploits only the periodicity of the training burst in 
(3.1), while the joint estimator   

 
 

2

2 2
ˆ arg maxTR

S

T






  
  







                              (3.12) 
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   2 2 2

1ˆ ˆ arg
2T TTR R

s

f
PT




  ˆ RR 



                   (3.13) 

with 
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  

1
*

*

1

TR

g

N N P

s TR s
k N

s s TR s s

r kT s kT

r kT s kT

S

PT PT

 



 



 

    

 


                 (3.14) 

and  

     2
1

1g

TRN N P

TR TR
k

s
N

sT s kT PT s
 

 

 
2

skT        (3.15) 

exploits also the knowledge of the periodic training 
burst. It is worthwhile to note that the considered 
LS, MLS, TR1 and TR2 CFO estimators in (3.5), 
(3.9), (3.11) and (3.13), respectively, provide a 
closed form solution for the CFO estimate and do 
not require the knowledge of the SNR. Moreover, in 
the case of OFDM/OQAM systems, they can assure 

unambiguous CFO estimates if 1/ (2 )sfT N  , 

while in the case of FMT systems their acquisition 

range is reduced to 1/ (2 )sfT P  . On the other 

hand, the considered LS, MLS, TR1 and TR2 
symbol timing estimators in (3.4), (3.8), (3.10) and 
(3.12), respectively, do not present a closed form 
solution but they require a maximization procedure. 
We underline that in the case of FMT systems the 
amount of redundancy needed to transmit the 
training sequence is greater than that exploited in the 
case of OFDM/OQAM systems. In fact, in the case 
of OFDM/OQAM systems the training sequence is 

composed by /OFDM OQAM
rip TRN N  

N

 identical 

OFDM/OQAM symbols of length  while, in the 
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case of FMT systems, it is necessary to transmit a 

training sequence such that TR PN N K  , where 

 ,P lcm N K  can be much greater than . N

3.2 Cramér – Rao Bound 

 
In this section we derive the expression of  the 
CRVB for joint CFO, phase offset and symbol 
timing estimation for FBMC systems. Let 

 , ,
T

f  v

TRW N

 the set of parameters to be estimated 

and let us consider the observations vector of total 

length 1gN N   

  , ,

)

s TRr N 
T

s sNT T

 , (

g sr N T T

f  

   

 
T

TR s sNT T



r

ψ



( )

g s ss N T T
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           (3.16) 

with  


  , , s N 



     

s
   (3.17) 

the vector of the transmitted training sequence 

 
2 (

,

diag
j N

f  



ψ

n

  2 ( 1)R sTj N N T f   1)
,...,g sT f

e e
     

      (3.18) 

and  the noise vector with zero mean and 

covariance matrix 
2
n

sT


n WIC . The  , thi l  entry of 

the Fisher Information Matrix (FIM) is equal to  
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where  ln p r v  is the logarithm of the probability 

density function of  whose expression (up to 
irrelevant additive factors) is given by  
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               (3.20) 

Substituting (3.19) in (3.20) and taking the statistical 
expectation we obtain the elements of the FIM   
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with 

 2 1,i 1d ,agf s g TRNj T N N   D               (3.27) 

and  

Wj D I                                                     (3.28) 
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In the case of FMT systems by following the 
algebraic manipulations reported in Appendix C the 
CRVBs for symbol timing, CFO and phase offset 
estimation are given by  

 

 
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with 

2 22 4 5

3

7TR TRTR g ggN NN N N N NN N



   


    (3.32) 

From (3.29), (3.30) and (3.31) we can note that the 
derived CRBVs are inversely proportional to the 
SNR and depend on the size of the observations 
window. In particular, the CRVB( )  is inversely 

proportional to W  and depends on the number and 
the position of virtual subcarriers while, from (3.30), 

we can note that the  CRVB f  is inversely 

proportional to . Into the case of OFDM/OQAM 3W
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systems substituting the transmitted signal model 
(2.1) in the FIM and following the same reasoning 
reported in Appendix C, we obtain that the 

 CRVB  ,  CRVB f  and CRVB( )  coincide 

with (3.29), (3.30) and (3.31), respectively. 

3.3 Numerical Results  

 
In this section the performance of the proposed joint 
LS and MLS symbol timing and CFO estimators is 
compared with that of the data-aided 
synchronization algorithms TR1 and TR2 proposed 
by Tonello and Rossi in [14]. As stated in section 
3.2, all the considered symbol timing estimators 
require a maximization procedure. In our 
simulations this maximization is performed in two 
steps: in the first it is performed a coarse search with 

a step-size sT

410

 followed, in the second step, by a 

parabolic interpolation. 

A number of  Monte Carlo trails has been 
performed under the following conditions: 

 The prototype filter is obtained by truncating 
the sampled version of an SRRC Nyquist 
filter with a roll-off factor  . Specifically, it 

is a FIR filter of length 8gN K  for FMT 

systems and 4g N  for OFDM/OQAM 

systems. 

N

 The value of the normalized CFO 

sfT N  , of the normalized timing offset 
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/ sT  and of the carrier phase   are 

uniformly distributed in 

 ,  / (4 ),..., / (4 )N P N P  / 2,..., / 2N N  

and  ,.,  , respectively. 

 The values of the number of subcarriers and 
of the roll-off factor parameter for the 
considered FMT system are 64N   and 

0.125 , respectively.  
 The values of the number of subcarriers and 

of the roll-off factor parameter for the 
considered OFDM/OQAM system are 

64N   and 0.6  , respectively. 
 The multipath channel has been modelled to 

consist of 1 5mN    independent Rayleigh-

fading taps with an exponentially decaying 
power delay profile. Specifically, 

/42
( ) ,lE h l Ce      0,l , mN , where C 

is a constant such that 
0

mN

l

E h


2
( ) 1l    . 

Moreover, the channel is fixed in each run 
but independent from one run to another. 

 The complex data symbols ( )pa l , when the 

FMT system is considered, belong to a 
QPSK constellation. 

 The data symbols ( )R
pa l  and ( )I

pa l , when the 

OFDM/OQAM system is considered, belong 
to a BPSK constellation. 
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3.3.1 OFDM/OQAM System 

 
In the first set of simulations we tested the 
performance of the considered algorithms for an 
OFDM/OQAM system in AWGN (solid lines) and 
multipath channel (dashed lines). Precisely Figure 
26 and Figure 27, show the root mean squared error 
(RMSE) of the considered joint timing and CFO 
estimators, respectively, as a function of the SNR, 

for a training sequence with / 2OFDM OQAM
ripN   

identical bocks each of length . In N Figure 27 we 
have also shown the theoretical normalized RMSE 
of the LS CFO estimator whose derivation details 
are reported in Appendix D. Moreover, in Figure 26 
and Figure 27 we have included the previously 
obtained Cramér-Rao bounds. As shown in Figure 
26 the TR2 symbol timing estimator exhibits the 
best performance for all the considered SNR values 
both in AWGN and multipath channel. However, in 
multipath channel and for sufficiently high SNR 
values, the proposed LS and MLS symbol timing 
estimators assure an RMSE nearly equal to that 
achieved by the TR2 estimator. On the other hand, 
as shown in Figure 27, the TR2 CFO estimator 
provides the highest RMSE in multipath channel. 
Specifically, in Figure 28 it is reported the BER of 
the perfectly synchronized system and that obtained 
when the considered algorithms are exploited as a 
function of the SNR. The results show that in 
AWGN channel the adoption of TR2 
synchronization algorithm assures a performance 
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quite similar to that obtained with perfect 
synchronization while, in multipath channel, and for 
sufficiently high SNR values, the proposed LS and 
MLS algorithms can provide the best performance 
nearly coincident with that obtained in the absence 
of synchronization errors. Specifically, the 
performance cross-over is observed for 

 and is due to the fact that for 
 the performance of the timing 

estimators is quite similar while the LS and MLS 
CFO estimators outperform the TR2 estimator. It is 
worthwhile to emphasize that the considered LS and 
MLS estimators exploit only the periodicity of the 
training burst while the TR2 estimator exploits also 
the knowledge of the periodic training burst.  

SNR 20dB
SNR 20dB

 
Figure 26: Performance of the considered symbol timing 
estimators in AWGN channel and multipath channels as a 
function of SNR for an OFDM/OQAM system. 
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Figure 27: Performance of the considered CFO estimators 
in AWGN channel and multipath channels as a function of 
SNR for an OFDM/OQAM system. 

 
Figure 28: BER of the considered CFO and symbol timing 
estimators in AWGN and multipath channel as a function 
of SNR for an OFDM/OQAM system. 
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3.3.2 FMT System 

 
In this subsection we present the performance of the 
considered algorithms for an FMT system in AWGN 
(solid lines) and multipath channel (dashed lines). 
Precisely, Figure 29 and Figure 30 show the RMSE 
of the considered symbol timing and CFO 
estimators, respectively, as a function of the SNR for 
a training sequence containing two identical blocks 

of length P K  where  64,72 576P lcm 

10dB
0.1%

. We 

can note that both in AWGN and multipath channel 
the TR2 symbol timing estimator exhibits the best 
performance. In particular, in multipath channel the 
LS and MLS symbol timing estimators are expected 
to outperform the TR2 estimator only for very high 
values of SNR. In regard to the performance of the 
CFO estimators we can note that the LS and MLS 
estimators assure the lowest RMSE both in AWGN 
and multipath channel. Moreover, in multipath 
channel the TR2 CFO estimator provides the highest 
RMSE. However for SNR  the RMSE of the 
TR2 CFO estimator is lower then  and this 
accuracy is sufficient to assure a BER practically 
coincident with that of the perfectly synchronized 
system and lower than that obtained when the other 
considered synchronization algorithms are exploited 
(see Figure 31). 
 
 

  



Chapter 3 74 
 

 
Figure 29: Performance of the considered symbol timing 
estimators in AWGN and multipath channel as a function 
of the SNR for an FMT system.  
 

 
Figure 30: Performance of the considered CFO estimators 
in AWGN and multipath channel as a function of the SNR 
for an FMT system. 
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Figure 31: BER of the considered CFO and symbol timing 
estimators in AWGN and multipath channel as a function 
of SNR for an FMT system. 
 

3.4 Joint Symbol Timing and CFO 
Estimation in Multiple Access 
OFDM/OQAM Systems 

 
In this section, we consider the problem of data-
aided synchronization in the up-link of a MA 
OFDM/OQAM system. In particular, we derive the 
joint ML symbol timing, CFO and phase offset 
estimator exploiting a short know preamble 
embedded in the burst received from each of  U  
users. Let us consider the received signal in the up-
link of an AWGN channel, when the information-

bearing signal of the user thi  sis kT  presents a 

timing offset i , a CFO normalized to the subcarrier 
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spacing i if T   , a carrier phase offset i  and an 

attenuation i  can be written as  

    s
2

i ij k
N

i s ir kT e n kT
 

 
  
  

1

U

s i
i

s kT

     (3.33) 

 where 

 

  

21

,
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, 
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S jl k
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i s
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p l l s

p l

p

s kT e

pTa g k ja g pT TkT

   


 




 



 


2

s

N

N

T / 2  

 (3.34) 

 

where sT NT  is the OFDM/OQAM symbol 

interval,  denotes the number of information-

bearing symbols in the burst, while  is the set of 

subcarriers of size  allocated to the  user. 

S

i

thiiN

The known preamble of the  user is given by  thi

 

  

21

,

2

0

, 
i

L jl k
N

i s
i

R I
p l l s

p l

p

z kT e

pTa g k ja g pT TkT

   


 




 



 


2

s

N

N

T

a

/ 2  

 (3.35) 

where , , ,
R
p la ,

I
p l 0 1p L   , il   denote the 

known pilot symbols of the  user. By considering 
an observations window of total length 

thi
N  

containing the non-zero support of the preamble 
received from each user, the likelihood function in 

AWGN channel for the unknown parameters i , i  

and i , 1,i ...,U , is given by (up to irrelevant 

multiplicative factor)  
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where 

  1 1 1,..., , ,..., , ,...,U U

T T T  U       ε τ        (3.37) 
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                           (3.38) 

and the notation of the type x  indicates trial value of 
x . By replacing (3.38) in (3.36) and dropping 
irrelevant multiplicative and additive factors we get  

  
1

ln , , , ,i i i i

U

i

Z  


    ε τ                         (3.39) 

 where 
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 
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In the derivation of (3.39) we have neglected the 
quantity  

 
2

1

1

2

0 1

i
i i

U

i i

N j kj N

k
s

i

z k Ce Te


 









2C 

               (3.41) 

Since it is weakly dependent on the parameters to be 
estimated under the assumptions that the 
observations window contains the non-zero support 
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of the preamble received from each user and that the 
CFO of each user is sufficiently small. In fact, in this 
case the first contribution in the right hand side 
(RHS) of (3.41)  

 
1 22

1
1 0

i

NU

i i s
i k

zC





 

   kT                              (3.42) 

is independent of the phase offset and of the CFO 
and, moreover, it is weakly dependent on the symbol 
timing. Furthermore, the second term in the RHS of 
(3.41) 
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is negligible since it depends on the scalar product 
between the signals of the different users whose 
spectra essentially do not overlap. By substituting 
(3.38) in (3.40), we get  
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    (3.44) 

 Hence, (3.44) can be written as  
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e
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where 
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with 
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From (3.39) and (3.45), it immediately follows that  

 ˆ , 1,,ML
i i ic i         ,U                      (3.48) 

and, moreover, 
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Therefore, for the  user, the derived joint ML 
estimator evaluates, for each trial value of the 

symbol timing 

thi

i  and of the CFO i , the response of 

the filter matched to the pulse shaping filter  to 

the CFO compensated and down-converted signal 

 g 

 
2 2

e
ij k j

s
Nr kT e
 kl

N

 
 

 at the time instants i pT   and 

/ 2i pT T   , 0 1p L   . Specifically, the 

down-conversion is performed by considering all the 
frequencies of the subcarrier assigned to the user of 
interest. Then, exploiting the know pilot symbols, 
these quantities are combined according to (3.46). 
The joint ML estimate for the  user is obtained 

by considering the value of 

thi

 i,i    that maximizes 

the magnitude of the statistic in (3.46).  
The two-dimensional maximization required by the 
joint ML estimator in (3.49) undertakes heavy 
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computational burden. Therefore, to obtain a more 
feasible synchronization scheme, let us exploit the 
assumption that the CFO of each user is sufficiently 
small. Specifically, if each CFO is sufficiently small 
that within a time Q , comparable with the length 

of the prototype filter,  /2 1iN Qje     ,  for 
, it follows that  , ,1i   U
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where N  is the length of the prototype filter and 

the integer i  is the  timing offset normalized to 

the sampling interval 

thi

/i i Ts  . Moreover,  
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Therefore, under the assumption that the CFO of 
each user is sufficiently small it results that 
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Hence, under the assumption /i QN   and in 

the case of a training sequence with  
OFDM/OQAM symbol, the approximate ML 
(AML) estimator of the CFO of the  user, 

obtained by maximizing the magnitude of 

1L 

thi

 ,i ic     

in (3.52), is given by  
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By substituting the closed form AML CFO estimate 
(3.53) in (3.52), the AML estimator of the timing 
offset of the  user results to be  thi
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In Figure 33 we report the AML cost function of the 
symbol timing estimator of the first user in AWGN. 
An MA OFDM/OQAM system with 1024N   
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subcarriers and  users, each with 4U 

0 1/ 3s NE dB  and with delays 1 0  , 2 20 sT  , 

3 50 sT   and 4 100 sT  , is considered. Moreover, 

three different kinds of allocation schemes, 
blockwise, interleaved and interleaved b, are taken 
into account. As shown in Figure 32, in the 

blockwise scheme, a block of N 256i  , , 41,i    

adjacent subcarriers is assigned to the  user. On 
the contrary, in the interleaved and interleaved b 
schemes, groups of adjacent subcarriers are allocated 
to different users and in particular, in the former 
case, one subcarrier is dropped between two users. 
The results show that the behaviour of the cost 
function depends on the adopted allocation scheme. 
In particular, in the cases of interleaved and 
interleaved b allocation schemes, the cost function 
presents local maxima that can interfere with the 

absolute maximum especially for low  

values, while in the case of blockwise allocation the 
considered ML cost function exhibits only one sharp 
peak at the actual value of the symbol timing of the 

first user 

thi

0/sE N

1 0  .  
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Figure 32: Subcarrier allocation schemes 
 

 
Figure 33: Cost function of the proposed AML symbol 
timing estimator in AWGN for 1024N  . 
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3.5 Numerical Results  

 
In this section the performance of the proposed joint 
AML estimator in (3.53) and (3.54) is assessed via 
computer simulations. A number of 500  Monte 
Carlo trials has been performed under the following 
conditions (unless otherwise stated)  
 

 The considered MA OFDM/OQAM system 

has a bandwidth  and a 

number of subcarriers 1024

1/ 11.2MHzsB T 

N  . 

 The data symbols ,
R
p la  and ,

I
p la  are the real 

and imaginary part of QPSK symbols.  
 The number of users is 4U   each with 256  

subcarriers. 
 The prototype filter is obtained by truncating 

a SRRC Nyquist filter with a roll-off 
parameter 0.75   and a length N , where 

the overlap parameter   is fixed at 4  . 

Specifically, the filter ( )g t  is truncated in the 

interval ,
2 2s sT T

NN   
 and it is delayed 

by 
1

2 sT
N 

 time units to get a causal 

prototype filter [28]. 

 The value of 0/sE N  for users 2,3 and 4 has 

been fixed at 20dB . Moreover, the 

carrier phase, the CFO and the symbol 
timing (assumed to be an integer multiple of 

the sampling period 

0/s NE

sT ) of each user are 
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uniformly distributed in  ,  ,  0.5,0.5  

and  / 2, / 2 1s sNT NT  , respectively. 

 The length of the training sequence is 1  
OFDM/OQAM symbol. 

L 

 The considered multipath channel is the ITU 
Vehicular A [26], which has six independent 
Rayleigh fading taps with delays 0, 0.31, 
071, 1.09, 1.73 and 2.51 s  and relative 

power 0, -1, -9, -10, -15 and -20dB. 
Moreover, the channel is fixed in each run 
but it is independent from one run to another. 

 
Notice that although the proposed estimator has been 
derived by considering only the preamble of each 
user, in the simulations the burst of each user 
contains the exploited preamble and the information 
bearing data.  
In the simulations, we have tested the performance 
of the derived joint estimator both in AWGN (solid 
line) and multipath channel (dashed line) when the 
three considered allocation schemes are adopted.  
Figure 34 displays the RMSE, normalized to the 
OFDM/OQAM symbol interval , of the AML 
symbol timing estimator for the first user as a 

function of . In AWGN channel and, for 

sufficiently high  values , the interleaved and 

interleaved b schemes assure better estimates than 
blockwise scheme. However, the presence of the 
local maxima in the cost functions for the 
interleaved and interleaved b schemes leads to a 

severe performance degradation as  

T

0/sE N

0/sE N

0/sE N
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decreases. The effect of local maxima in the cost 
function is also evident from the performance of the 
interleaved b scheme in multipath channel.  Figure 
35 shows the RMSE, normalized to the intercarrier 
spacing , of the AML CFO estimator for the 

first user as a function of . Both in AWGN 

and multipath, for sufficiently high  values, 

the lowest RMSE is obtained when the interleaved b 
scheme is adopted. Finally, in 

1/ T

0/sE N

0/sE N

Figure 36 it is 
reported the BER obtained in multipath channel by 
exploiting the proposed joint AML algorithm 
followed by a one-tap equalizer with perfect 
knowledge of the channel and of the residual 
synchronization errors. For all considered allocation 
schemes, a contained performance loss is observed 
with respect to the case of one-tap equalization with 
perfect channel knowledge and perfect 
synchronization.  
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Figure 34: Performance of the proposed AML symbol 
timing estimator in AWGN and multipath channel.  
 

 
Figure 35: Performance of the proposed AML CFO 
estimator in AWGN and multipath channel. 
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Figure 36: BER of the proposed joint estimator in 
multipath channel. 



Chapter 4 89 
 

Chapter 4 
 

Blind Synchronization 
Algorithms for FBMC 
Systems  
 
 
In this chapter the problem of blind CFO and symbol 
timing estimation for FBMC systems is considered. 
Specifically, by exploiting the statistical properties 
of the received FMT signal in the presence of 
multipath channels, a closed-form blind CFO 
estimator is derived. Moreover as regards 
OFDM/OQAM systems, under the assumptions of 
low SNR values, three ML CFO estimators for non 
dispersive channels are derived. Due to their 
significant computational complexity a more 
feasible CFO synchronization algorithm is proposed. 
Finally, under the assumptions of low SNR values, 
the joint ML symbol timing and phase offset 
estimator for AWGN channel is considered. The 
performance of the derived estimators is assessed via 
computer simulations both in AWGN and multipath 
channel.  

4  
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4.1 Blind CFO Estimation for 
Noncritically Sampled FMT 
Systems  

 
Let us consider a lightly modified version of the 
digitalized FMT system model described in (2.10) 

 

 
2

( )n
n

s
u

j lk
N

k

K
s

k g e

l
N

a l nK






 







 


                    (4.1) 

where  ( ) ss l s lT

( )g l

. It is assumed that the data 

symbols are statistically independent and identically 
distributed (i.i.d.) random variables with zero mean 
and unit variance (assumption A1). Moreover in 
(4.1),  is the unit energy prototype filter 

assumed to be a SRRC Nyquist filter with a roll-off 
factor  , 0 1   (assumption A2) and 

22 ( )s l E s    . Therefore, the expression of the 

received signal in the presence of CFO   
(normalized to the intercarrier spacing), a carrier 
phase   and a timing offset  , is given by  

2

) (( ) (
j l

N le s nr l l
 


  
    )                                (4.2) 

where the additive noise  is zero-mean, circular 

white Gaussian process with variance  

( )n l

22 ( )n E n l      and statistically independent of the 

transmitted signal  (assumption A3). Let us ( )s l
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observe that from assumptions (A1) and (A2) we 
can easily derive the following result. 
Result 1: The unconjugate correlation function of the 
transmitted FMT signal is equal to  

*

2
2

( ) ( ) ( )

1
( )

s

j k

s
u

g

m
N

k

m E s l s l m

R m e

R

N






   

 


                           (4.3) 

where  ( ) ( ) ( )g m g m g mR     is the autocorrelation 

function of the prototype filter.  
Proof: Accounting for the expression of the 
transmitted FMT signal (4.1)  and by exploiting the 
assumptions (A1) and (A2), it can be shown that 

*

22
*

22

1
*

0

22

( ) ( )

( ) (

1
( ) ( )

( )

j km
s N

k nu

j km
s N

ku

K

l n

j km
s N

g
ku

K

K

E s l s l m

e g l nK g l m n
N

e
N

g l nK g l m nK
K

R m e
N















 



 

 



  

 



   



 













)K 

(4.4) 

From Result 1, we can note that the unconjugate 
correlation function of the received FMT signal 
depends on the autocorrelation function of the 

prototype filter and, on the number  and of the 

position of the useful subcarriers. In particular if 
uN

K N  (critical sampling) the roll-off factor   of 
the prototype filter  is zero,  ( )g n
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   /
sinc

sin1 1
( ) /

/

n N
n N

N
g

n NN
n




         (4.5) 

and then ( ) sinc( / )gR m m N . Hence, in the case of 

critical sampling, Result 1 can be written as  
Result 1b: 

22

( ) sinc
j km

s N
s

ku

m
R m e

N N




   
 




                          (4.6) 

 

4.1.1 Proposed Best Linear Unbiased 

Algorithm 

In this subsection, by exploiting the Result 1 
presented in the section 4.1, we derive a new blind 
closed-form CFO synchronization algorithm for the 
considered multicarrier system. 
Let us consider an observation window of length 

 and let us estimate the autocorrelation function 

of the received signal at 

QN

m N  

   

     
 

*
1

0

1

ˆ
r

N Q

k

R N

k

B

r
N

r N k
Q



 




 









          (4.7) 

 1 2, 1,L L   , with 1 21 L L Q   . 

Substituting the expression of the received signal 
(4.2) into (4.7) and neglecting the noise   noise 

term    N*n k n k  , we have  
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   

  
 

 
   

   



   
 

    

2

1

2

1

*

0

*

*

*

0

*

( )

1

1

j

N Q

j

N Q

k

k

s s

w k s N

B e
N Q

k k

k

k ks w N

w s N

s w N

e
N Q

k k

k k












  

 

 




 







 









 

 






  



  
  

 




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





N

              (4.8) 

where, under the hyphotesis of a zero mean circular 

noise, the random variable  2 /( ) ( ) j N kw k n k e      
( )n k

 

is statistically coincident with . Moreover, the 

quantity     in (4.8), defined as  

   

  
  1

*

0

1

N Q

k

N Q

s k s k N


 


  
 






   
                (4.9) 

 for  can be approximated by   1N Q   [29] 

     2
s gsNR R   N                            (4.10) 

 Let us now consider the vector  2 1 1L L y   whose 

elements are defined as  

      
 1 2

arg s

1

gn

, ,

,g Ny R

L

B

L

 



 

 
 



 
                (4.11) 
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At high SNR values and under the constraint 

 2 11/ 2 L     , the quantity  y   can be 

approximated by  

   
 

 

1
arcta

1
2

2

ny
 

 
 

  

       
   

   




                (4.12) 

with 

     


 

   

1
*

0

*

1

( )
N Q

k

N Q

w k s k N

s k w k N



 
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 

 

 





 

   





               (4.13) 

Using a vectorial notation, the scalar equation (4.12) 
can be rewritten as  

2 1
2 L L y η μ                                         (4.14) 

where 

 
2 1 1 2, , 1

T

L L L L  η                               (4.15) 

while 

   21 1, ,
T

L L           μ                   (4.16) 

is the noise-related vector with zero mean and 

covariance matrix    2 1 2 1L L L L


  C  . Then, by the 

Gauss-Markov theorem (see [31, p.136]), the linear 
unbiased CFO estimator with minimum variance is 
given by  

2 1

2 1 2 1

1

1

1
ˆ

2

T
L L

BLU T
L L L L










 

 
  

  

η C y

η C η
                             (4.17) 
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 where the  element of the matrix  , thm l C , 

defined as  

 

   
   

,

1 1

2 1

1

, 1, ,

m l

E L m L l

m l L L



 

  

          
   

C

1 



          (4.18) 

is equal to (see Appendix E for derivation details) 
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C
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2

 (4.19) 

where 2SNR /s n   is the signal-to-noise-ratio. 

The considered BLU CFO estimator, whose 

acquisition range is given by  2 11/ 2 L     , 

provides an explicit expression for the estimate ̂  
and it is independent of the knowledge of the timing 

parameter. Moreover, its variance for  

and under the assumption of high SNR is given by  
1 2LQ L 

 
2 1 2 1

2 1

1
ˆvar

4 TB
L

U
L L

L
L


 

 


η C η

                 (4.20) 

It is important to note that in the case of critical 
sampling (i.e. ), accounting for Result 1b, the 
autocorrelation function of the transmitted FMT 
signal evaluated at m

K N

N  results to be  

       2 2 2sincgs s s sR RN N            (4.21) 

  



96 Synchronization Algorithms for FBMC Systems 
 

In this case, accounting for (4.7) the term  B   

does not depend on the CFO  . Thus, it follows that 
the proposed BLU algorithm does not work for 

0   and its performance degrades with small roll-
off factors.  

In the case of  and , the BLU estimator 

is equal to  
1 1L  2 2L 

1
ˆ arg (1)

2MAT B


                                           (4.22) 

while for  1 2L   and  we obtain  2 3L 

23

1
ˆ arg (2)

4BLU B


   

2

                             (4.23) 

The estimator in (4.22) is labelled as modified 
Assalini and Tonello (MAT) estimator, since it is a 
modified version of the joint symbol timing and 
CFO algorithm proposed in [10], while the estimator 
in (4.23), referred to as BLU23, has been proposed 
in [21]. Accounting for (4.20), we can obtain, for 

1Q L L  and under the assumption of high SNR 

values, the theoretical variance of the MAT and the 
BLU23 estimators, in particular  

  2 2

(0) (2 )
ˆvar

4 SNR (MA
g

T
g

g )

R N

NQ

R

R N






                       (4.24) 

 B U 223 2L

(0) (
ˆvar

1

4 )

SNR (2 )6
g g

g

R R N

NQ R N



                  (4.25) 

From (4.24) and (4.25), for the considered prototype 

filter, it follows that    BLU23ˆ ˆvar varMAT  .  

In the next section, the performance of the closed-
form estimators (4.17), (4.22) and (4.23) is 

  



Chapter 4 97 
 

compared with that of the estimator derived in [8], 
labelled as LLSS estimator, whose expression is  

 
1

2( )
LLSS

0

ˆ arg max
Q

k
q

q k

z


 


 

 
 

 







                      (4.26) 

where   is a trial value of the CFO,  

     21
( ) *

0

( )
N j n lN knk N

q l l
n l

z r n g n qK e
 


     






   (4.27) 

 is the DFT of     2*( ) j N n lN
l l

l

r n g n qK e      , 

with  and  ( )lr n r n lN  ( )lg n g n lN . 

Note that the LLSS estimator (4.26) requires, unlike 
the considered closed-form estimators (4.17), (4.22) 
and (4.23), a maximization procedure with respect to 
the continuous variable  .  
 

4.1.2 Numerical Results and Comparisons  

 
In this subsection, the performance of the proposed 
BLU estimator (4.17) is assessed via computer 
simulations and compared with that of the MAT 
estimator (4.22), the BLU23 estimator (4.23), the 
LLSS estimator (4.26) and the synchronization 
algorithm proposed by Bölcskei in [11]. A number 

of  Monte Carlo trails has been performed under 
the following conditions (unless otherwise stated)  

410

 The prototype filter  g n  is obtained by 

truncating an SRRC Nyquist filter. 
Specifically, it is a FIR filter of length K  
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(see [2] for implementation details), where 
the overlap parameter   is fixed at 8  . 

 The values of the normalized CFO and of the 
carrier phase are fixed at 0.1   and 

/ 8  , respectively. 

 The multipath channel has been modelled to 

consist of 1 15mN    independent Rayleigh-

fading taps with a maximum delay spread 

14mN   and an exponentially decaying 

power delay profile. Specifically, 
2 /4( ) lE h l 

  Ce ,  0, , ml  N , where C  

is a constant such that 
0

2
( )

mN

l

E h l


1    . 

Moreover, either a static channel or a time-
varying channel with normalized Doppler 

bandwidth 0.1d  have been considered. B T 

 The data symbols ( )na k  belong to a QPSK 

constellation. 
 The size of the set of subcarriers of the 

considered FMT system is 128N   while 

the number of virtual subcarriers is 16vN  . 

 The parameters 1L  and 2L  of the proposed 

BLU estimator (4.17) are equal to 1 1L   and 

2 3L  . 
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Figure 37: MSE of the BLU estimator in AWGN channel as 
a function of the parameter , in the case of ideal timing 

for SN
2L

R 5dB ,  subcarriers and 128N  0.125  . 

 
In Figure 37, we compare numerical and theoretical 
performance of the proposed BLU estimator for 

1 1L   as a function of the parameter . In 

particular, the results have been obtained in the case 
of AWGN channel with 

2L

SNR 5dB , 0.125  , 
0.01   and . We can note that, accounting  

for 

40Q 

(4.18), the value of the parameter  is limited 

by the overlap factor 

2L

 , in fact, for 2L   the 

covariance matrix C  is singular and the derived 

BLU estimator cannot be exploited. For this reason 

in Figure 37 we take 22 L   . From Figure 37, we 

can see that for  theoretical and numerical 

performance of the proposed BLU estimator do not 
improve significantly. 

2L 4
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Figure 38 and Figure 39 display the mean-squared 
error (MSE) of the proposed BLU estimator for 

 and 1 1L   2 2,3, 4L 



 as a function of the 

parameter , in the case of AWGN channel with 

 and SNR , respectively. In 
particular, the results have been obtained for 

Q

SNR 

0.25

5dB 20dB

  , 0.05   and in the case of perfect timing 
synchronization. In the figure, it is also included for 
comparison the theoretical performance of the 
considered estimator. We can note that the 
performance of the proposed BLU estimator 

improves as the values of the parameter  and Q  

increase. Moreover, as the SNR value increases, the 
gap between numerical and theoretical variance 
increases since the actual performance of the BLU 
estimator presents a floor (see 

2L

Figure 40). Figure 40 
shows the MSE of the considered CFO estimators as 
a function of SNR. Precisely, the results are obtained 
in the case of perfect timing recovery for Q 40 , 

0.125   and 0.25  . In the figure are also 
included the theoretical variance of the BLU 
estimator, whose expression is reported in (4.20) and 
the modified Cramér-Rao bound [31] for CFO 
estimation, derived in Appendix F. The results show 
that the LLSS estimator provides the lowest MSE 
while the proposed BLU estimator assures the best 
performance among the considered closed-form 
estimators. In Figure 41, we compare the 
performance of the considered estimators in the case 
of QPSK and 16-QAM constellations. As indicated 
in the figure, by varying the signal constellation, the 
performance of all considered estimators is 
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practically the same. Figure 42 shows the MSE of 
the considered CFO estimators as a function of the 
SNR in the case of perfect timing recovery for 

40Q  , 0.125   and 0.25  . We can note that, 

although all the considered estimators have been 
derived in AWGN channel, in the presence of 
multipath channel they assure a performance nearly 
equal to that obtained in the case of a non dispersive 
channel (see Figure 40). In Figure 43, we report the 
performance of the considered estimators in the case 
of a non ideal timing recovery. Specifically, we 
evaluate the MSE of the considered CFO estimators 
as a function of the normalized timing offset / K  
for SNR 10dB , 40Q  , 128N   subcarriers and 

for 0.125   and 0.25  . The results show that 
the LLSS estimator, derived under the assumption of 
ideal timing, assures the best performance for 

/ K 0.25  , while its accuracy rapidly deteriorates 
in the presence of larger timing offsets. Moreover, 
its sensitivity to the timing offset is higher for larger 
values of the roll-off factor  . On the other hand, 
the MSE of the BLU, BLU23, MAT and Bölcskei’s 
estimators is practically independent of the actual 
value of the timing offset. Finally, in Figure 44, we 
compare the MSE of the considered CFO estimators 
as a function of the SNR in the case of perfect 

timing recovery for 40Q  , 0.25  ,  

and 

0.0dB T

0.1dB T  . We can note that, in the presence of 

a time varying scenario, all considered estimators 
exhibit for low and moderate SNR values a 
performance loss with respect to the case of static 
channel. However, the BLU, BLU23 and MAT 
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estimators attain for  and high SNR values 

the same floor exhibited in the case of 

0.1dB T 

0.0dB T  .       

 
 
 

 
Figure 38: MSE of the considered CFO estimators in 
AWGN channel as a function of the parameter Q , in the 

case of ideal timing for , SNR 5dB 128N   subcarriers 
and for 0.25  . 
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Figure 39: MSE of the considered CFO estimators in 
AWGN channel as a function of the parameter , in the 

case of ideal timing for SN

Q

R 20dB , 128N   subcarriers 
and for 0.25  .  
  

 
Figure 40: MSE of the considered CFO estimators in 
AWGN channel as a function of the SNR, in the case of 
ideal timing for 40Q  , 128N   subcarriers and for 

0.125   and 0.25  . 
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Figure 41: MSE of the considered CFO estimators in 
AWGN channel as a function of the SNR, in the case of 
ideal timing for 40Q  ,  subcarriers, 128N  0.25  and 

for 16QAM and QPSK constellation. 
 

 
Figure 42: MSE of the considered CFO estimators in 
multipath channel as a function of the SNR, in the case of 
ideal timing for ,  subcarriers and for 40Q  128N 

0.125   and 0.25  . 
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Figure 43: MSE of the considered CFO estimators in 
multipath channel as a function of the timing offset / K  
for SNR 10dB , 40Q  , 128N   subcarriers, for 

0.125   and 0.25  . 

 

 
Figure 44: MSE of the considered CFO estimators in 
multipath channel as a function of the SNR, in the case of 
ideal timing for , 40Q  128N   subcarriers, 0.25   and 

for  and 0dB T  0.1dB T  . 
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4.2 Non Data-Aided CFO 
Estimation for Pulse Shaping 
OFDM/OQAM Systems 

 
Let us consider the transmitted OFDM/OQAM 
signal described in (2.1). In particular, by assuming 

that 
2 2( )s sE s kT     , (2.1) can be written as  

 

 
 
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( ) 2
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p k p
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g k

ja g N

 




 

   
 











 

 


                    (4.28) 

where  ( ) ss k s kT .  

In the following we assume that 

AS1) The data symbols  ( )R
l p

a p





 and 

 ( )I
l p

a p





, l   belonging to a PAM 

constellation, are statistically independent 
and identically distributed random variables 
with zero mean and unit variance. 

AS2) The pulse-shaping filter ( )g k  is an 
unit energy SRRC pulse, with a roll-of 
parameter  , satisfying the orthogonality 
condition (see [11], [26]) 

   

 

/ 2 / 2

2

p

g k pN g k pN

N

N

 







  




             (4.29) 

From Assumptions (AS1) and (AS2) we can easily 
derive the following results: 
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Result 1. The unconjugate correlation function of 
the transmitted OFDM/OQAM signal  at time 

 and lag  is equal to  
( )s k

k m

 

*

22

1/222
2 2

1/2

( ; ) ( ) ( )

2 2

2

d

s
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                  (4.30) 

where the last inequality follows from AS2 on the 
pulse-shaping filter and, moreover  

  2( )
k

kjG g k e   




                                      (4.31) 

is the DFT of the real pulse-shaping filter .  ( )g k
 
Result 2. The relation function (or the conjugate 
correlation function) of the transmitted signal  
is given by  
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           (4.32) 

From Result 1 we can deduce that for the considered 
pulse-shaping filter, the OFDM/OQAM signal is 
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stationary with respect to its unconjugate correlation 
function. On the other hand, from Result 2 we can 
note that the conjugate correlation function results to 
be conjugate second-order cyclostationary with 
period . N
In the absence of virtual subcarriers (that is for 

) the unconjugate correlation function of the 

transmitted OFDM/OQAM signal  at time k  
and lag m  is equal to (see 

uN N
( )s k

[32]) 
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                    (4.33) 

Moreover, the conjugate correlation function results 
to be  

2 1
( ; ) 2
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          (4.34) 

 
 

4.2.1 ML CFO Estimators for Low SNR 

Conditions 

In this subsection, we derive three ML CFO 
estimators for OFDM/OQAM systems under the 
assumption of low SNR conditions.  
The discrete-time received signal in AWGN 
channel, in the presence of a CFO normalized to the 
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intercarrier spacing   and a carrier phase offset   

can be written as  
2

( ) ( ) ( )
j k

Nr k e s k n k
   

                                (4.35) 

where  is the transmitted OFDM/OQAM signal 

and  denotes the zero-man circular complex 

white Gaussian noise with 

( )s k

( )n k
2 2( ) nE n k      and 

statistically independent of .  ( )s k

Let us consider an observations window of total 
length W N , the likelihood function in AWGN 

channel, for the transmitted symbol sequence 

 ( ); ,R R
la p l p  a                               (4.36) 

 ( ); ,I I
la p l p  a                               (4.37) 

and for the two unknown parameters   and   is 

given by (up to irrelevant multiplicative factor) 
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where 
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is the transmitted OFDM/OQAM signal and the 
notation of type x  indicates trial value of x . 
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Replacing (4.39) in (4.38) and dropping factors 
independent of the unknown parameters we get  
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By developing in series the likelihood function until 
the second-order we obtain  
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with 
2 / ( )
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
. Moreover, by 

averaging function (4.41) with respect to the data 
symbols and accounting for assumption AS1, we 
obtain the marginal likelihood function  
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We can note that the marginal likelihood function 
(4.42) depends on both the conjugate and 
unconjugate correlation functions of the 
OFDM/OQAM signal. Moreover, accounting for 
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Result 1 and Result 2, likelihood function (4.42) can 
be rewritten as  
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 and  
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can be interpreted as the DFT of the response of the 

receiver polyphase filterbanks  kg m  and 

 / 2kg m N  to the input signal 

   /2 N
k pr m e  


j m kN p  N . 

The joint ML estimator is obtained by searching the 
values of the parameters   and   that maximize 

likelihood function (4.42). To proceed we keep the 
parameter   fixed and let   vary. Under these 
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conditions the function  ,    in (4.42) achieves a 

maximum for  
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Hence, accounting for (4.42) and (4.47), the ML 
CFO estimator for low SNR values is given by  
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Note that if we consider the carrier phase as random 

nuisance parameter uniformly distributed in  0, 2  

and average (4.40) with respect to   we obtain  
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 
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and  0I   is the modified Bessel function of the first 

kind and order zero. Under the assumption of low 
SNR values the Bessel function can be approximated 
as  

 
2

0 1
4

I


                                          (4.51) 
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Moreover, under the assumption AS1, by averaging 
function (4.51) with respect to the data symbols and 
neglecting additive and multiplicative parameters 
independent of the CFO  , we obtain  
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           (4.52) 

and the corresponding blind ML CFO estimator is 
given by 

   

    
   

1 2

1 1 2 2

1 2

1 11 1

1

*
1

1
2 2

, ,

UMLLS

*
2

0 0 0 0

2

0

ˆ

arg max

arg max

N N

k m k m

k k

R I
p

k

l p
p

k

l
l

s

y m y m

m s mE

z z

 









 

  



 

   



  

 


  

   
  

   







 

 


        (4.53) 

Thus, ML estimator (4.53) is coincident with the 
second term of the cost function in (4.48), depending 
on the unconjugate correlation function. Therefore, 
it is referred to as unconjugate MLLS estimator 
(UMLLS estimator). However, as demonstrated in 
Appendix G, it cannot be used in the case of a fully 

loaded OFDM/OQAM system ( uN N ).  

If  we do not consider the second term of the cost 
function in (4.48), we obtain the CFO estimator 
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          (4.54)         

 
Note that in the case of a fully loaded 
OFDM/OQAM system the CFO estimator in (4.54), 
exploiting the conjugate correlation function of the 
OFDM/OQAM signal, is coincident with the ML 
estimator for low SNR, then in the following it will 
be referred to as conjugate MLLS estimator 
(CMLLS estimator).  
 

4.2.2 LS CFO Estimator 

 
Let us consider the following statistics: 

1
*

0

1ˆ( ) ( ) ( )
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 
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and 
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                     (4.56) 

Under assumptions AS1 and AS2, for 1 1m N   , 
it follows that  
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where 

1
ˆ ˆ( ) ( ) ( )m R m Ee R m                                (4.58) 

and 
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is a real function since  
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                              (4.60) 

is an even function. Specifically, accounting for 
assumption AS2,  is the raised cosine pulse. 

Moreover, for 1 , we have  
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where  

2
ˆ ˆ( ) ( ) (m R N m Ee )R N m                         (4.62) 

It is shown in Appendix H that, under assumptions 
AS1 and AS2, the zero mean “noise” terms in (4.58) 

and (4.62) have a variance   1
N m

  and 

 1m

1 m N

, respectively. Moreover, it is worthwhile to 

emphasize that, since under assumption AS2  is 

the raised cosine pulse (see 

(z l)

(4.59)), for 
1   , it follows that  

( ) 0z m                                                      (4.63) 

and 
( )z N m 0                                                      (4.64) 
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Taking into account (4.55), (4.61), (4.63) and (4.64) 
it follows that a CFO estimate can be obtained by 
minimizing the norm  
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                (4.65) 

where  and  are design parameters selected so 

that the conditions  and  are 
satisfied. The minimization of the least square error 
in 

1L 2L

1N m  1m

(4.65) with respect to   leads to the proposed 
closed-form LS CFO estimator  
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It is worthwhile to emphasize that the CFO estimator 

in (4.66), whose acquisition range is 1/ 2  , does 

not require the knowledge of the SNR. Moreover, in 
the case of an observations window composed by   

OFDM/OQAM symbols, estimator (4.66) can be 
generalized as 

2

1

1 1

LS
0

1
ˆ ar ˆ ˆ(

2
)g ) (

L

p m
p p

L

R m R N m







 

    
  

           (4.67) 
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and 
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4.2.3 Simulation Results 

 
In this subsection the performance of the proposed 
MLLS, UMLLS, CMLLS and LS CFO estimators in 
(4.48), (4.53), (4.54) and (4.67) respectively, is 
assessed via computer simulations and compared 
with that of the blind algorithm proposed in [12], 
labelled as CS estimator. Note that the blind CFO 
estimator based on the unconjugate cyclostationary 
proposed in [11] is not considered in the following 
experiments since, as previously stated, under 
assumptions AS1 and AS2 the OFDM/OQAM 
signal is stationary with respect to its unconjugate 
correlation function.  

A number of  Monte Carlo trials has been 
performed under the following conditions (unless 
otherwise stated): 

310

 The prototype filter ( )g k  is obtained by 

truncating a SRRC Nyquist filter with a roll-
off parameter 0.6  . Specifically, it is a 
FIR filter of length N , where the overlap 

parameter   is fixed at 8  . 

 The values of the normalized CFO and of the 
carrier phase are uniformly distributed in 

 and in  41/ 4,1/  ,  , respectively. 
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 The multipath channel has been modelled to 

consist of 1 5mN    independent Rayleigh-

fading taps with a maximum delay spread 

4mN   and an exponentially decaying 

power delay profile. Specifically, 
2 /4lE ( )h l 

  Ce ,  0, , ml  N , where C  

is a constant such that 
0

2
( ) 1

mN

l

E h


l    . 

Moreover, the channel is fixed in each run 
but it is independent from one run to another. 

 The size of the set of subcarriers of the 
considered OFDM/OQAM system is 64N   
while the number of virtual subcarriers is 

16vN  . 

 The parameters 1L  and 2L  of the proposed 

LS estimator (4.67) are equal to 1 / 4L N  

and 2 / 2L N .  

 The signal-to-noise ratio is defined as 
2 2NR /S s n  .  

Note that the considered MLLS, UMLLS, CMLLS 
and CS estimators require a maximization procedure 
with respect a continuous parameter  . This 
maximization is performed exploiting a two step 
procedure. In the first step it is performed a coarse 

search with a step size 1/ 16   followed, in the 

second step, by a parabolic interpolation. 
To obtain some insights about the acquisition range 
of the considered CFO estimators, Figure 45 shows 
the behaviour in a single run of the MLLS, UMLLS 
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and CMLLS cost functions for  / 2, / 2N N    

and in the case of a fully loaded OFDM/OQAM 
system. By  investigating these results, we can 
deduce that in this case the acquisition range of the 

MLLS and CMLLS estimators is 1/ 2   and, 

moreover, the UMLLS cost function is weakly 
dependent on the CFO (see Appendix G).  

 
Figure 45: Cost functions of the considered ML CFO 
estimators in a single run and in AWGN channel with 
SNR 10dB , 16  , 64N   and 0vN  .  

 
In Figure 46 we present the MLLS, CMLLS and 
UMLLS cost functions in the case of an 

OFDM/OQAM system with 16vN   virtual 

subcarriers. As illustrated in the figure, by inserting 
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virtual subcarriers, the acquisition range of the 
MLLS, CMLLS and UMLLS estimators is 

/ 2N  . However, the MLLS, UMLLS and 

ost functions present local maxima located 
at / 2k  k
CMLLS c

   that can interfere with the absolute 
ma m cially at low SNR values or in 
dispersive channels leading to outliers. This 
observation is corroborated by numerical results 
shown in 

ximu  espe

Figure 47. Precisely, in Figure 47 we 

report the outlier probability  ˆ 1/ 2eP P     

for the MLLS, UMLLS and CM  
AWGN channel (solid line) and multipath channel 
(dashed line) as a function of the SNR. As indicated 
in the figure, in AWGN channel the MLLS, UMLLS 
and CMLLS estimators provide, for SNR 5dB , 
CFO estimates without ambiguity,  
dispersive channel the outlier probability is quite 
high in the whole range of SNR values.  

LLS estimators in

while in
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Figure 46: Cost functions of the considered ML CFO 
estimators in a single run and in AWGN channel with 
SNR 10dB , 16  , 64N   and 16vN  .   

     
 
In this first set of simulations we have tested the 
performance of the proposed algorithms in AWGN 
channel. Precisely, Figure 48 shows the RMSE of 
the considered CFO estimators as a function of the 
actual value of the normalized CFO   in AWGN 
channel for 16   OFDM/OQAM symbols. As 

indicated in the figure, the performance of the 
MLLS, UMLLS and CMLLS estimators is nearly 
the same for almost all the considered CFO values, 
while the RMSE of the CS and LS synchronization 
algorithms depend on the actual value of the 
normalized CFO. Figure 49 and Figure 50 show the 
RMSE of the considered CFO estimators as a 
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function of the SNR in AWGN channel for 16   

OFDM/OQAM symbols. In particular, in Figure 49 
we consider the performance of the considered 
estimators in the case of perfect timing 
synchronization while in Figure 50 we report 
numerical results in the presence of timing errors 

uniformly distributed in  10, , sN 

10dB

T . Moreover, 

in Figure 49 we also include the MCRB [31] for 
CFO estimation, derived in Appendix F. The results 
show that in the case of perfect timing 
synchronization the MLLS and CMLLS estimators 
provide the lowest RMSE, while the closed-form LS 
synchronization algorithm outperforms the much 
more complex UMLLS and CS estimators. 
Moreover, the UMLLS, LS and CS estimators are 
particularly robust to the presence of timing errors, 
while the MLLS and CMLLS estimators present a 
severe performance degradation in the presence of 
timing errors. In Figure 51 we report the RMSE of 
the considered blind CFO estimators as a function of 
the number of observed OFDM/OQAM symbols for 
an SNR value fixed at SNR  and in the case 
of perfect timing synchronization. As indicated in 
the figure, the MLLS and CMLLS estimators assure 
the best performance among all the considered 
estimators.  
Figure 52 displays the RMSE of the MLLS, 
UMLLS, CMLLS, LS and CS algorithms as a 
function of the observed OFDM/OQAM symbols 
and in the presence of multipath channel. As we can 
see, the MLLS and CMLLS algorithms in multipath 
channel present a performance degradation with 
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respect to that achieved in AWGN channel, due to 
the poor estimate in the coarse search caused by the 
model mismatch. Instead, the CS, UMLLS and LS 
estimators exhibit a contained performance loss with 
respect to the AWGN channel case. However, the 
closed form LS algorithm assures the best 
performance among all the considered estimators for 
a low number of observed OFDM/OQAM symbols. 
Finally, the results reported in Figure 53 show the 
RMSE of the considered CFO estimators as a 
function of the SNR. We can note that for the 
considered number of OFDM/OQAM symbols 

16   the feasible-computational LS CFO estimator 

provides the most accurate estimates in the whole 
range of the considered SNR values.    

 
Figure 47: Outlier probability for the considered ML CFO 
estimators in AWGN (solid lines) and multipath channel 
(dashed lines) as a function of the SNR for 16  ,  

and . 

64N 
16vN 
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Figure 48: Performance of the considered CFO estimators 
in AWGN channel as a function of the normalized CFO 
value   for SNR 10dB , 16  , 64N   and 16vN  . 

 

 
Figure 49: Performance of the considered CFO estimators 
in AWGN channel as a function of the SNR for 16  , 

 and 64N  16vN  .  
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Figure 50: Performance of the considered CFO estimators 
in AWGN channel as a function of the SNR in the presence 
of timing errors for 16  , 64N   and 16vN  .   

 
Figure 51: Performance of the considered CFO estimators 
in AWGN channel as a function of the logarithm of 
OFDM/OQAM symbols   for SNR 10dB , 64N   and 

16vN  .   
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Figure 52: Performance of the considered CFO estimators 
in multipath channel as a function of the logarithm of 
OFDM/OQAM symbols   for SNR 10dB , 64N   and 

.   16vN 

 
Figure 53: Performance of the considered CFO estimators 
in AWGN channel as a function of the SNR in the presence 
of timing errors for 16  ,  and 64N  16vN  .   
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4.3 Blind Symbol Timing Estimation 
for OFDM/OQAM Systems 

 
In this section we derive the ML symbol timing 
estimator for OFDM/OQAM systems with perfect 
CFO synchronization and under the assumptions of 
low SNR values.  
Let us consider an OFDM/OQAM system with  
subcarriers and no virtual subcarriers, the digitalized 
received signal in AWGN channel, in the presence 
of a timing offset 

N

 ,  a CFO f , a carrier phase 

offset   and an attenuation   can be written as  

       2 sk fT
s s

j
sr kT kT e n kTs                    (4.70) 

where  ss kT  is the transmitted OFDM/OQAM 

signal, while  sn kT  denotes the zero-mean circular 

complex white Gaussian noise with a variance 

.   2 /n T s

In the following we assume that 

ASS1) The data symbols   R
l p

a p





 and 

  I
l p

a p





,  0, ,l 1N     belonging to 

a PAM constellation are statistically 
independent and identically distributed 
random variables with zero mean and 
variance 2a .   

ASS2) The real-valued and unit-energy 
pulse-shaping filter ( )g t  is bandlimited 

within  1/ ,1/T T .   
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Under the assumptions ASS1 and ASS2 we can 
rewrite the results (4.33) and (4.34) as 
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    (4.72) 

respectively. Moreover, it is worthwhile to 
emphasize that in the presence of a CFO, the 
unconjugate correlation function of the signal 

    2 sfT
s s

js kT s kT e   is equal to  

    2; ; sfT
s s s s s s

jR kT mT R kT mT e   m                (4.73) 

while the conjugate correlation function is given by 

    2 (2; ; sfTj k
s s s s s s

mC kT mT C kT mT e   )           (4.74) 

From (4.73) and (4.74) it follows that the presence 
of the CFO does not change the unconjugate 
cyclostationarity period while it affects the 
conjugate cyclostationarity period. In fact, the term 

2 sj mfTe   in (4.73) is a constant for each lag value 

smT  while the term  in 2 (2s mTj kfe   ) (4.74) is a 

periodic function for each lag value smT . For 
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example, in the presence of a CFO normalized to the 
intercarrier spacing fixed at 0.1fT  , the conjugate 

cyclostationarity period is changed from T  to 5 . T
 

4.3.1 ML Symbol Timing Estimator for 

Low SNR Conditions 

 
By considering an observations window of length 
N , the likelihood function in AWGN channel, for 

the transmitted symbol sequences 

  ( ); 0, 1 ,R R
la p l N  a p  

and 

  ( ); 0, 1 ,I I
la p l N  a p  

and for the two unknown parameters  and   is 

given by (up to irrelevant multiplicative factors)  
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             (4.76) 

By replacing (4.76) in (4.75) and dropping irrelevant 
factors we get   

  



130 Synchronization Algorithms for FBMC Systems 
 

   

  

1 1

2
0 0

*

2
, , , exp

N
R I s

k
k mn

j
k

s

s

T
r mT

e s mT



 

 


 

 



 
   



 

a a

 

  


  (4.77) 

since the quantity  
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   is weakly 

dependent on the parameter  . By developing in 
series the likelihood function until the second-order, 
by averaging with respect to the data symbols and, 
finally, by using the relationship 
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irrelevant additive terms) 
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         (4.78) 

The joint MLLS estimator is obtained by searching 
the values of the parameters   and   that maximize 

the likelihood function in (4.78). To proceed we 
keep the parameter   fixed and let   vary. Under 

these conditions the function  ,   in  (4.78) 

achieves a maximum for  
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Hence, accounting for (4.78) and (4.79), the MLLS 
symbol timing estimator is given by  
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From (4.81) and (4.82), it follows that the term 

 uc   is the contribution to the cost function 

exploiting the unconjugate correlation function of 
the transmitted OFDM/OQAM signal, while the 

term  c   is the contribution exploiting the 

conjugate correlation function. Since under the 
assumption ASS2 on the pulse-shaping filter the 
transmitted OFDM/OQAM signal results to be 
stationary with respect to its unconjugate correlation 

function, the term  uc   in (4.81) does not depend 

on the symbol timing and, then in this case we 
obtain   
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 MLLSˆ arg max c


    
                              (4.83) 

Therefore, the conjugate correlation function can 
bring additional information which can be used for 
bind symbol timing estimation.  
By substituting (4.72) in (4.82) and putting 

ii i mq k N  , 1, 2i  , we get     
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Hence, (4.84) becomes  
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From (4.85) it follows that    / 2c T c    

/ 2T

 and, 

then, the MLLS symbol timing cost function in 
(4.83) is a periodic function of period , that is 

the acquisition range is / 4T . To obtain some 
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insight about the lower bound on the performance of 
the considered estimator in Appendix F and with 
reference to a SRRC Nyquist filter it is derived the 
MCRB [31]. Specifically, the MCRB for symbol 
timing normalized to the OFDM/OQAM  symbol 
interval, for CFO normalized to the intercarrier 
spacing and for phase, is given by   


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where 
2

2
2

SNR
n

a


 . From (4.88), (4.89) and (4.90) 

it follows that the MCRB for symbol timing 
normalized to the OFDM/OQAM symbol interval 
and for phase decrease at the rate 1/ , while the 

MCRB for CFO normalized to the intercarrier 
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spacing decreases at the rate 31/ . Moreover, for 

large values of the number of subcarriers the MCRB 
for normalized CFO and for phase decrease at the 
rate 1/ , while the MCRB for normalized symbol 

timing decreases at the rate 1/ .  

N
3N

3

 

4.3.2 Numerical Results 

 
The performance of the MLLS estimator in (4.83) 
has been assessed via computer simulations by 

performing a number of 10  Monte Carlo trials 
under the following conditions (unless otherwise 
stated): 
The considered OFDM/OQAM system has a 

bandwidth 1/ 11.2sB T MHz  . 

 The data symbols ( )R
la p  and ( )I

la p  are the 

real and imaginary part of QPSK symbols. 
 The prototype filter is obtained by truncating 

an SRRC Nyquist filter with a roll-off 
parameter 0.75   and a length N  where 

the overlap parameter   is fixed at 4  . 

Moreover, the prototype filter  g t  is 

truncated in the interval ,
2 2s s

N N
T T

    
 

and is delayed by 
1

2 sT
N 

 time units to get 

a causal prototype filter [28]. 
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 The carrier phase is uniformly distributed in 

 ,  . 

 The symbol timing in uniformly distributed 

in  / 4, / 4 1 sN N T  . 

 The considered multipath channel is the ITU 
Vehicular A [26], which has six independent 
Rayleigh fading taps with delays 0, 0.31, 
071, 1.09, 1.73 and 2.51 s  and relative 

power 0, -1, -9, -10, -15 and -20dB. 
Moreover, the channel is fixed in each run 
but it is independent from one run to another. 

Figure 54 displays the RMSE (normalized to the 
OFDM/OQAM interval ) of the considered 
symbol timing estimator as a function of the 
logarithm of the number of subcarriers  and for 
one OFDM/OQAM symbol. It results that in AWGN 
channel (solid line) the proposed estimator provides 
accurate estimates and, moreover, the asymptotic 
( ) performance presents a slope similar to that 
predicted by the MCRB. In the considered multipath 
channel (dashed line), the ML estimator exhibits a 
performance degradation due to the mismatch with 
respect to the considered model. However, the 
estimates result to be quite accurate for a sufficiently 
large number of subcarriers. In 

T

N

1N 

Figure 55 we report 
the RMSE of the proposed symbol timing estimator 
as a function of the logarithm of the number of 
OFDM/OQAM symbols in the case of  
subcarriers. In this case the multipath channel has 
been modelled to consist of two independent 

Rayleigh fading taps with delays 

8N 

 0,1 sT  and relative 
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power  0, 8.7 dB . The numerical results show that 

in AWGN channel the performance of the proposed 
estimator presents, for a sufficiently large number of 
OFDM/OQAM symbols, the same asymptotic 
( 1  ) slope as the MCRB. However, for the 

considered number of subcarriers the performance in 
multipath is satisfactory only for a relatively high 
number of OFDM/OQAM symbols. Therefore, the 
proposed algorithm should be exploited in a 
multipath channel when the number of subcarriers is 
much higher than the maximum delay spread of the 
channel. In fact, in this case the proposed algorithm 
can provide accurate estimates also when only one 
OFDM/OQAM symbol is used. This statement is 
corroborated by the results reported in Figure 56 
where it is shown the performance of the proposed 
estimator s a function of the SNR for 2048N   
subcarriers and, moreover, only one OFDM/OQAM 
symbol is exploited. As shown in Figure 57, the 
adoption of the proposed symbol timing estimator 
assures a negligible performance degradation with 
respect to the case of one-tap channel equalization 
with perfect channel knowledge and perfect 
synchronization. Finally, in Figure 58 we have 
analyzed the performance of the MLLS estimator as 
a function of the CFO. It results that in the case of a 
low number of subcarriers and a large number of 
OFDM/OQAM symbols, the presence of the CFO 
leads to a severe performance degradation, while 
when a large number of subcarriers is used and only 
one symbol OFDM/OQAM is exploited, the 
accuracy of the estimates is not affected by the CFO. 
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The high sensitivity of the proposed estimation 
algorithm to the presence of a CFO when a large 
number of OFDM/OQAM symbols is used can be 
explained by considering that in this case the symbol 
timing estimator exploits the second-order conjugate 
cyclostationarity of the OFDM/OQAM signal and, 
moreover, the period of the conjugate 
cyclostationarity is changed by the presence of a 
CFO (see (4.74)). Therefore, in this case the problem 
of joint CFO, symbol timing and phase estimation 
should be considered to obtain accurate estimates. 
Of course, the joint ML estimator for low SNR 
values results to be highly complex since, as it can 
be easily shown, it requires a two-dimensional 
maximization procedure with respect to two 
continuous parameters. On the other hand, when 
only one OFDM/OQAM symbol is exploited, the 
estimator does not exploit the conjugate 
cyclostationarity and its performance is essentially 
unaffected by the CFO.  
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Figure 54: RMSE of the MLLS estimator as a function of 
the logarithm of the number of subcarriers for 

 and SNR 20dB 1  . 

 

 
Figure 55: RMSE of the MLLS estimator as a function of 
the logarithm of the number of OFDM/OQAM symbols for 

 and .  SNR 20dB 8N 
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Figure 56: RMSE of the MLLS estimator as a function of 
the SNR for 1   and 2048N  .  

 
Figure 57: BER as a function of the SNR for 2048N  . 
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Figure 58: RMSE of the MLLS estimator as a function of 
the CFO for SNR 20dB . 
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Chapter 5 
 

Conclusions 
 
 
In this thesis, issues related to symbol timing and 
CFO synchronization for FBMC systems are 
discussed. After the description of FMT and 
OFDM/OQAM system models, we have 
investigated their sensitivity to synchronization 
errors. We have shown that the considered filter-
bank based multicarrier systems are very sensitive to 
synchronization errors, in fact as proved 
analytically, ISI and ICI can arise at the output of the 
subchannel matched filters at the receiver. 
Moreover, it has been shown that in asynchronous 
uplink FMT and OFDM/OQAM systems are more 
robust than OFDMA systems to misalignments 
among users. Successively new data-aided and blind 
synchronization algorithm have been derived and 
analyzed.  
A synchronization scheme based on a training 
sequence made up of identical parts has been 
considered. The proposed method is based on the LS 
approach, it operates in the time domain before 
running the receiver filter bank, and, moreover, it 
does not require the knowledge of the channel 
impulse response and of the SNR. The performance 
of the derived estimator has been assessed via 
computer simulation and compared with that of two 
joint symbol timing and CFO estimators previously 
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proposed by Tonello and Rossi in [14] and referred 
to as TR1 and TR2. Specifically, the proposed 
estimators and the TR1 estimator exploit only the 
periodicity of the training burst while the TR2 joint 
estimator exploits also the knowledge of the periodic 
training burst. The numerical results have shown 
that the LS CFO estimator can outperform the TR2 
estimator while the knowledge of the shape of the 
periodic training burst can be exploited by the TR2 
to provide more accurate symbol timing estimates. 
We have also considered the problem of data-aided 
synchronization for MA OFDM/OQAM systems. In 
particular, we have derived the joint ML estimator 
for the phase offset, the CFO and the symbol timing 
of each of U  users and, moreover, we have shown 
that this approach, when the CFO of each user is 
sufficiently small leads to U  different AML joint 
phase offset, CFO and symbol timing estimators. 
Specifically, for each user the phase estimate and the 
CFO estimate are in closed form while the symbol 
timing estimate requires a one-dimensional 
maximization procedure. The performance of the 
proposed AML joint estimator has been assessed via 
computer simulations both in AWGN and in 
multipath channel, and for three different allocation 
schemes. The numerical results have shown that 
with only one training symbol and for all the 
considered allocation schemes, the adoption of the 
AML estimation scheme can assure a contained 
performance degradation with respect to the case of 
one tap equalization with perfect channel knowledge 
and perfect synchronization.  
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Afterwards, we have considered the problem of 
blind feed forward CFO estimation for noncritically 
sampled FMT systems. In particular, a closed-form 
CFO estimator based on the statistical properties of 
the received FMT signal in the presence of non 
dispersive channel is derived. The performance of 
the proposed estimator has been compared with that 
of the ML-based LLSS estimator proposed in [8], 
that of a modified version of the estimators proposed 
in [10] and with the estimators considered in [11] 
and [21]. Computer simulation results have shown 
that the proposed BLU CFO estimator outperforms 
the MAT estimator and those derived in [11] and 
[21] and these present a remarkable robustness in the 
presence of non ideal timing recovery. In particular, 
the proposed estimator can outperform the LLSS 
estimator for large values of the timing offset.  
As regards OFDM/OQAM systems, we have dealt 
with the problem of blind CFO and symbol timing 
estimation. Specifically, under the hypothesis of low 
SNR values, the joint ML CFO and carrier phase 
estimator (MLLS estimator) and its particularization 
to the case of fully loaded OFDM/OQAM system 
(CMLLS estimator) have been derived. Moreover, 
the ML CFO estimator for low SNR values and a 
carrier phase modeled as a random nuisance 

parameter uniformly distributed in  0, 2  (UMLLS 

estimator) has been obtained. Since their 
implementation complexity is high, a simpler 
estimation algorithm termed LS estimator has been 
proposed. The performance of the considered 
synchronization algorithms has been compared with 
that of the CS estimator derived in [12]. As 
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illustrated by computer simulations, in AWGN 
channel the MLLS and CMLLS estimators can 
assure the lowest RMSE, however, they are 
particularly sensitive to the presence of timing 
errors. Moreover, in multipath channel the closed-
form LS CFO estimator can provide the best 
performance for a relatively low number of 
OFDM/OQAM symbols.  
Finally, the ML phase offset and symbol timing 
estimator for OFDM/OQAM systems in AWGN 
channel and under the hypothesis of low SNR values 
has been proposed. Since the phase estimate is in 
closed form, the symbol timing estimate requires 
only a one-dimensional maximization procedure. 
Specifically, the derived proposed estimator presents 

an acquisition range equal to / 4T  . The 

numerical results show that the ML estimator can 
assure accurate estimates both in AWGN and 
multipath channel in the case of sufficiently large 
number of subcarriers and only one OFDM/OQAM 
symbol. Furthermore, in this case its performance is 
essentially unaffected by the CFO and, then, it can 
be exploited before CFO correction. On the other 
hand, when a large number of OFDM/OQAM 
symbols is exploited, the proposed estimator 
demonstrates a severe performance degradation 
when a CFO is present. This is due to the fact that 
the ML symbol timing estimator exploits the second-
order conjugate cyclostationarity of the 
OFDM/OQAM signal and, moreover, the period of 
conjugate cyclostationarity is changed by the 
presence of the CFO.   
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Appendix A 

 
Orthogonality Conditions 
 
 
In this Appendix we derive the conditions that the 
prototype filter has to satisfy in order to verify the 
orthogonality conditions (1.47) and (1.48).  
At the receiver side, the filter ( )f t

( )f t

 is matched to the  

transmission filter , that is ( )g t *( )g t . Under 

the hypothesis that  is even and real, then it 

results 

(g t)

( ) ( )f t g t . Therefore (1.47) and (1.48) can 

be rewritten as  
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respectively.  
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After the change of variables     , where 
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Let us consider now the change of variables 
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By analyzing the term for k odd, we obtain  
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Therefore, the only condition to be imposed in order 
to verify the orthogonality conditions (1.47) and 
(1.48) is given by (A.4) for k even 
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Appendix B 
 

Derivation of the Joint 
Symbol Timing and CFO LS 
Estimator  
 
In this Appendix, we illustrate how to derive the 
expression of the joint symbol timing and CFO LS 
estimator in (3.4) and (3.5). Let us consider the 
minimization problem in (3.3)  
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 after simple algebraic manipulation, we obtain 
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and 
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The maximum with respect to the CFO is obtained 
when the cosine term in (B.2) is equal to one. This 
yields the CFO estimator 
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In this case the cost function in (B.2) can be written 
as  
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 the joint LS symbol timing and CFO estimator is 
given by  
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Appendix C 
 

CRVB of Joint Symbol 
Timing, CFO and Phase 
Offset Estimation for FMT 
Systems 
 
In this Appendix, we present some algebraic details 
to derive the expression of the CRVB of joint 
symbol timing, CFO and phase offset estimation for 
FMT systems shown in (3.29), (3.30) and (3.31). 
Accounting for the expression of the transmitted 
FMT signal (2.10), the  entry of FIM can be 

rewritten as  
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Under the assumption of a pulse shaping filter 
assumed to be an SRRC Nyquist filter with a 
signalling interval T, we obtain  
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Therefore, we have  
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By exploiting the following result [33] 
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Analogously, we obtain  
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The CRVB for symbol timing, CFO and phase is 
given by the corresponding diagonal element of 

of FIM, that is  inverse 

 

 

1

(1,1)

2

2

2 1 1
8 SNR




  
 
  

 

s

u l

NT

W l l
N 

                (C.12) 

CRVB  



   


u lN

F



 
 (2,2

1
2 3)

3
CRVB

2 SNR
     

s

f
T W

F      (C.13) 

1

(3,3)

2

2 2

2

3

)

1
3 4

2

CRVB(

1

1 1
SNR

 

 

 

 
 
 

   

 
 
  

 
 


 





 

 

 

l lu u

l lu u

l W l
N

W l

N

N N
l

F

 

 

                  (C.14) 

 
where   is defined in (3.32). 
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Appendix D 
 

Theoretical Variance of the 
LS, MLS, TR1 and TR2 CFO 
Estimators 
 
 
In this Appendix, we derive the theoretical variance 
of the LS, MLS, TR1 and TR2 CFO estimators 
reported in (3.5), (3.9), (3.11) and (3.13), 
respectively, in the case of perfect symbol timing 
synchronization. Let us observe that in the case of 
perfect symbol timing synchronization the LS and 
the TR1 CFO estimators are coincident and, 

moreover, for  1ˆ 2  LS sf f PT  we can 

approximate their estimation as (see [34])  

 

   

   

2 *
1

1

1

2 *

1

1

2
ˆ






 

 

 

 

 

 

   

 
     

     









TR

s

g

TR

s

g

LS
s

N
j fPT

s s
k N

N
j fPT

s s
k

N P

N

s

N P

s

PT

P

f f
PT

e r kT r kT

e r kT Tr kT

   (D.1) 

Substituting the signal model (2.2) in (D.1), under 
the assumption of high SNR conditions, we obtain 
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where, under the hypothesis of a zero-mean circular 
noise, the random variable  
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 is statistically coincident with  sn kT  and has a 

variance   2 2  
  n ssE w kT T . 

From (D.1) we obtain ˆ 0     LSE f f , that is, for 

high SNR values, the CFO LS estimate is unbiased. 
Moreover, the mean squared error is given by  
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Note that, using the result (C.2) and the 
approximation (C.5), we have  
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Therefore, the MSE in (D.4) can be approximated by 
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From (D.6) we can observe that, into the case of 
AWGN channel and perfect symbol timing 
synchronization the TR1 and LS CFO estimators 
have the same theoretical variance, whose 
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expression depends on the length  of the 

training sequence and it is inversely proportional to 

the SNR and . 

TRN N

2P
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Appendix E 
 

Derivation of the Matrix C  
 
 
In this Appendix, we report some details to derive 

the  , thm l  element of the covariance matrix (4.19). 

Substituting the expression of the received signal in 
(4.18) and accounting for the result (4.3), we obtain  

    

     

  
 

 

  

  
 

 

  

  

1

1

1

1

1

2
1 1

1 1

1

1
1

1

1

1
1

1

max

1

,

1

1

0

1 1

1

2

S1 1

1

1

R

1

1

N

1

g g

m

n
k l n

n

m l

Q L

m

n
k l n

N

L N

Q L N

L N

Q

nk

n

n

L

K

N Q L Q L

L N L m N

k L N

k L N nK

k L N

k L N

k L

l m

R l R

g

N

l

g m

g l

g m

g l



 



 







  

  

  

  

 



  


 


  


 



 



     

 

 

  

  

 

  

 

 



C










  

  

  
  

  

1

, 1

1

1
max ,

1

1

1

1

1

1

1

l m

n

n
nl m

n

N

QN

k L N

k L N

k L N

g m

g l

g mk L N









 





  

  


   







 









  (E.1) 

  



158 Synchronization Algorithms for FBMC Systems 
 

  

with  ( )ng k g k nK  

1 2k Kk 

. Moreover, taking into 

account that for  
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the  element of the covariance matrix for  , thm l

1 2Q L L  can be approximated as  
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Appendix F 
 

Derivation of the MCRB 
 
 
In this Appendix, we derive the expression of the 
MCRB for FMT and OFDM/OQAM systems. As 
regards FMT systems, we analyze the case of perfect 
timing synchronization, while for OFDM/OQAM 
systems we report the MCRB for timing, CFO and 
phase. 

F.1 MCRB for FMT Systems 

 
Let  the observation vector and r  ,

T ν  the 

vector of the parameters to be estimated in the 
presence of random nuisance vector 

1( ), , ( ) Ta n a n   a  , the ( ,  entry of the 

MFIM under the assumptions 

)thi l

A1, A2 and A3 (see 
section 4.1) and in the case of perfect timing 
synchronization is equal to  
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where 
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After some calculations, we obtain  
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The MCRB for CFO and the carrier phase 
estimation is given by the corresponding diagonal 
element of the inverse of MFIM, whose expression 
is
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F.2 MCRB for OFDM/OQAM 
 Systems 
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where (up to irrelevant additive factors) 
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It results that  
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Note that under the assumption ASS2 (see section 
4.3) 
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where  2G f  is the Fourier transform of . 

Then, by considering an SRRC Nyquist prototype 

filter it follows that 
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The MCRB for normalized symbol timing, for 
normalized CFO and for phase is obtained by 
evaluating the corresponding diagonal element of 
inverse of MFIM and is given by  
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Finally it is interesting to note that the MCRB for 
the symbol timing does not change if the CFO does 
not belong to the parameters to be estimated. In fact 
the MFIM for the symbol timing and the carrier 
phase offset is given by the following minor of  (F.8) 
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F F
F

F F
                            (F.27) 

and by considering (F.18), (F.20) and (F.23) the 
same result as that in (F.24) is obtained. Moreover, 
the MCRB for the CFO is the same as (F.25) also if 
the symbol timing is not included in the parameters 
to be estimated. In fact, the MFIM for the CFO and 
the carrier phase is given by 

  (2,2) (2,3)

(3,2) (3,3)

,f 
 

  
 

F F
F

F F                              (F.28) 

and by considering (F.22), (F.21) and (F.23) the 
same result as that in (F.25) is obtained.     
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Appendix G 
 

Expression of the UMLLS 
Cost Function in the Absence 
of Virtual Subcarriers 
 
In this Appendix, we demonstrate that the UMLLS 
estimator in (4.53) cannot be used in the absence of 
virtual subcarriers. To such end, we consider an 
observations window of infinite length and 
substitute (4.45) and (4.46) into (4.52)  
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After simple algebraic manipulations we obtain  
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Exploiting the relationship  
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it follows that  
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Accounting for the orthogonality condition on the 
pulse-shaping filter (4.29), we obtain  
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It must be observed that in the case of an 
observations window of finite length the likelihood 
function in (4.52) is weakly dependent on the 
unknown parameter  , see Figure 45. 
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Appendix H 
 

Derivation of the Variance of 
the Noise Terms  and 

  
1( )e m

2 ( )e m
 
In this Appendix, we show that under assumptions 
AS1 and AS2 (see section 4.2) the “noise” term 

 ( ) in 1( )e m



2 ( )e m

  1
N m


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is characterized by the statistical expectation  
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and the variance 
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By  assuming that the number of subcarriers is 
sufficiently large, the OFDM/OQAM signal is 
modelled as a zero-mean complex Gaussian random 
signal. Thus, by using the Isserlis identity  
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where , ,  and  are zero-mean complex-
valued jointly Gaussian random variables, the 
statistical expectation of the second term in the RHS 
of 

a b c d

(H.3) can be written as  
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where  ;C    and  ;R  

( )r k

 are the conjugate and 

the unconjugate correlation functions of the received 
OFDM/OQAM signal  (4.35) at time   and lag 

 , whose expressions, under assumptions AS1 and 

AS2, are given by  
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and 
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where  is defined in ( )z l (4.59). Plugging result 

(H.5) back into (H.3), it follows that  
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Under assumptions AS1 and AS2 and accounting for 
(H.7) we obtain  
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Accounting for (H.6) and using the inequalities  
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and 

( ) 1z l                                                     (H.12) 

we obtain 
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Substituting (H.7) and (H.14) in (H.13), after some 
algebraic manipulations, it follows that  
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From (H.15) we can note that the random variable 

 R̂   has a variance   1
N  

1(e m

. Clearly, this 

implies that the “noise” term  ( ) in ) 2 ( )e m

 (4.58) (in (4.62)) has a variance  1
N m  

  1m .      



172 Synchronization Algorithms for FBMC Systems 
 

References 
 
 

[1].       P.P. Vaidyanathan, Multirate Systems 
and Filter Banks, Prentice Hall, 
Englewood Cliffs, NJ, 1993. 

[2].       G. Cherubini, E. Eleftheriou, S. Ölçer and 
J. M. Cioffi, “Filter bank modulation 
technique for very high-speed digital 
subscriber lines,” IEEE Commun. Mag., 
vol. 38, pp. 98-104, May 2000. 

[3].       N. Benvenuto, S. Tomasin and L. Tomba, 
“Equalization methods in OFDM and 
FMT systems for broadband wireless 
communications,” IEEE Trans. 
Commun., vol. 50, no. 5, p. 1016-1028, 
June 2002. 

[4].        T. Ihalainen, T. Hidalgo Stitz, M. Rinne 
and M. Renfors, “Channel equalization in 
filter bank based multicarrier modulation 
for wireless communications,” EURASIP 
J. Applied Signal Processing, vol 2007. 

[5].       D. Lacroix, N. Goudard and M. Alard, 
“OFDM with guard interval versus 
OFDM/offsetQAM for high data rate 
UMTS downlink transmission,” in Proc. 
VTC’01 Fall, Atlantic City, NJ, USA, 
October 2001. 

[6].       P. K. Remvik and N. Holte, “Carrier 
frequency offset robustness for OFDM 
systems with different pulse shaping 

  



References 173 
 

filters,” in Proc. GLOBECOM 1997, vol. 
1, pp. 11-15, November 1997. 

[7].       T. Fusco, A. Petrella and M. Tanda, 
“Sensitivity of multi-user filter-bank 
multicarrier systems to synchronization 
errors,” in Proc. ISCCSP 2008, Malta, 
March 2008. 

[8].       V. Lottici, M. Luise, C. Saccomando and 
F. Spalla, “Blind carrier frequency 
tracking for filterbank multicarrier 
wireless communications,” IEEE Trans. 
Commun., vol. 53, no. 9, pp.1762-1772, 
September 2005. 

[9].       V. Lottici, M. Luise, C. Saccomando and 
F. Spalla, “Non data-aided timing 
recovery for filter bank multicarrier 
wireless communications,” IEEE Trans. 
Commun., vol. 54, no. 11, pp. 4365-4375, 
November 2006. 

[10]. A. Assalini and A. M. Tonello, “Time-
frequency synchronization in filtered 
multitone modulation based systems,” 
presented at the IEEE WPMC’03, 
Yokosuka, Kanagawa, Japan, October 19-
22, 2003. 

[11]. H. Bölcskei, “Blind estimation of symbol 
timing and carrier frequency offset in 
wireless OFDM systems,” IEEE Trans. 
Commun., vol. 49, no. 6, pp. 988-999, 
June 2001. 

[12]. P. Ciblat, E. Serpedin, “A fine blind 
frequency offset estimator for 
OFDM/OQAM systems,” IEEE Trans. 

  



174 Synchronization Algorithms for FBMC Systems 
 

Signal Processing, vol. 52, pp. 291-296, 
January 2004. 

[13]. G. Lin, L. Lundheim and N. Holte, “New 
methods for blind fine estimation of 
carrier frequency offset in OFDM/OQAM 
systems,” in Proc. of SPAWC 2006, 
Cannes, France, 2-5 July, 2005.  

[14]. A. Tonello and M. Rossi, 
“Synchronization and channel estimation 
for filtered multitone modulation,” in 
Proc. WPMC 2004, Abano Terme, pp-
590-594, September 2004. 

[15]. T.H. Stitz, T. Ihalainen and M. Renfors, 
“Practical issues in frequency domain 
synchronization for filter bank based 
multicarrier transmission,” in Proc. 
ISCCSP 2008, Malta, Mar. 2008. 

[16]. T. Fusco, A. Petrella and M. Tanda, 
“Data-aided symbol timing and CFO 
synchronization for filter bank 
multicarrier systems,” IEEE Trans. on 
Wireless Commun., vol. 8, no. 4, April 
2009. 

[17]. T. Fusco, A. Petrella and M. Tanda, 
“Joint symbol timing and CFO estimation 
in multiuser OFDM/OQAM systems,” in 
Proc. of SPAWC 2009, Perugia, June 
2009. 

[18]. T. Fusco, A. Petrella and M. Tanda, 
“Blind CFO estimation for noncritically 
sampled FMT systems,” IEEE Trans. on 
Signal Proc., vol. 56, no. 6, June 2008. 

  



References 175 
 

[19]. T. Fusco, A. Petrella and M. Tanda, “Non 
data-aided carrier frequency offset 
estimation for pulse shaping 
OFDM/OQAM systems,” Signal 
Processing, vol. 88, pp. 1958-1970, 
August 2008. 

[20]. T. Fusco, A. Petrella and M. Tanda, 
“Blind symbol timing estimation for 
OFDM/OQAM systems,” accepted for 
publication on IEEE Trans. on Sign. 
Proc.  

[21]. T. Fusco, A. Petrella and M. Tanda, 
“Blind carrier frequency offset estimation 
for non-critically sampled FMT systems 
in multipath channels,” in Proc. of 
SPAWC 2007, Helsinki, Finland, June 
2007. 

[22]. I. Berenguer, Filtered Multitone (FMT) 
Modulation for Broadband Fixed 
Wireless System, PhD Thesis, Laboratory 
for Communications Engeenering, 
Department of  Engeenering, University 
of Cambridge. 

[23]. N. Benvenuto, G. Cherubini, Algorithms 
for Communications Systems and their 
Applications, Wiley, 2003. 

[24]. M. Bellanger, “Specification and design 
of a prototype filter for filter bank based 
multicarrier transmission,” Proc. of 2001 
IEEE International Conference on 
Acoustics, Speech and Signal Processing, 
ICASSP’01, Salt Lake City, May 2001.   

  



176 Synchronization Algorithms for FBMC Systems 
 

[25]. H. Bölcksei, P. Duhamel and R. Hleiss, 
“Orthogonalization of OFDM/OQAM 
pulse shaping filters using the discrete 
Zak transform,” Signal Processing, vol. 
83, pp. 1379-1391, July 2003.  

[26]. Document: IEEE 802.22-06/017r0, 
September 2006. 

[27]. H. Minn, V.K. Bhargava, and K. B. 
Letaief, “A robust timing and frequency 
synchronization for OFDM systems”, 
IEEE Trans. Wireless Commun., vol. 2, 
pp. 822-839, July 2003.  

[28]. P. Sihoan, C. Siclet and N. Lacaille, 
“Analysis and design of OFDM/OQAM 
systems based on filterbank theory,” in  
IEEE Trans, Signal Processing, vol. 50, 
no.5, pp. 1170-1174, May 2002.   

[29]. A. V. Dandawaté and G. B. Giannakis, 
“Asymptotic theory of mixed time 
averages and thk - order cyclic-moment 
and cumulant statistics, ” IEEE Trans. 
Inf. Theory, vol. 41, no. 1, pp. 216-232, 
January  1995. 

[30]. S. M. Kay, Fundamentals of Statistical 
Signal Processing: Estimation Theory, 
Englewood Cliffs, NJ: Prentice-Hall, 
1993.  

[31]. F. Gini, R. Reggianini and U. Mengali, 
“The modified Cramér-Rao bound in 
vector parameter estimation,” IEEE 
Trans. Commun., vol. 46, no. 1, pp. 52-
60, January 1998. 

  



References 177 
 

  

[32]. T. Fusco, M. Tanda, “Blind frequency 
offset estimation for OFDM/OQAM 
systems,” IEEE Trans. Signal Proc., vol. 
55, pp. 1828-1838, May 2007. 

[33]. P. Stoica, T. Söerström, and F. N. Ti, 
“Asymptotic propoerties of the high-order 
Yule-Walker estimates of sinusoidal 
frequencies,” IEEE Trans. Acoustic 
Speech Signal Processing, vol. 37, pp. 
1721-1734, November 1989.  

[34]. P. H. Moose, “A technique for orthogonal 
frequency division multiplexing 
frequency offset correction,” IEEE Trans. 
Commun., vol. 42, pp. 2908-2914, 
October 1994. 

 
 


	Index
	List of Figures
	Notations
	Introduction
	FBMC Systems
	1.1 FMT Systems
	1.2 FMT Transmitter Model 
	Critical Sampled FMT System
	Noncritical Sampled FMT System

	1.3 FMT Receiver Model 
	Critical Sampled FMT System
	1.3.2 Noncritical Sampled FMT System

	1.4 OFDM/OQAM Systems
	1.5 OFDM/OQAM Transmitter  Model
	1.6 OFDM/OQAM Receiver Model
	1.7 Prototype Filter Design 

	Sensitivity of FBMC Systems to Synchronization Errors
	2.1 Downlink Synchronization Tasks
	2.1.1 OFDM/OQAM System Model with Synchronization Errors
	2.1.2 FMT System Model with Synchronization Errors
	2.1.3 Numerical Results

	2.2 Uplink Synchronization Tasks
	2.2.1 OFDM/OQAM Multiple Access System Model with Synchronization Errors
	2.2.2 FMT Multiple Access System Model with Synchronization Errors
	2.2.3 Numerical Results 


	Data-aided Synchronization Algorithms for FBMC Systems 
	3.1 Joint Symbol Timing and CFO LS Estimator 
	3.2 Cramér – Rao Bound
	3.3 Numerical Results 
	3.3.1 OFDM/OQAM System
	3.3.2 FMT System

	3.4 Joint Symbol Timing and CFO Estimation in Multiple Access OFDM/OQAM Systems
	3.5 Numerical Results 

	Blind Synchronization Algorithms for FBMC Systems 
	4.1 Blind CFO Estimation for Noncritically Sampled FMT Systems 
	4.1.1 Proposed Best Linear Unbiased Algorithm
	4.1.2 Numerical Results and Comparisons 

	4.2 Non Data-Aided CFO Estimation for Pulse Shaping OFDM/OQAM Systems
	4.2.1 ML CFO Estimators for Low SNR Conditions
	4.2.2 LS CFO Estimator
	4.2.3 Simulation Results

	4.3 Blind Symbol Timing Estimation for OFDM/OQAM Systems
	4.3.1 ML Symbol Timing Estimator for Low SNR Conditions
	4.3.2 Numerical Results


	Conclusions
	Orthogonality Conditions
	Derivation of the Joint Symbol Timing and CFO LS Estimator 
	CRVB of Joint Symbol Timing, CFO and Phase Offset Estimation for FMT Systems
	Theoretical Variance of the LS, MLS, TR1 and TR2 CFO Estimators
	Derivation of the Matrix 
	Derivation of the MCRB
	F.1 MCRB for FMT Systems
	F.2 MCRB for OFDM/OQAM  Systems

	Expression of the UMLLS Cost Function in the Absence of Virtual Subcarriers
	Derivation of the Variance of the Noise Terms  and  
	References

