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Chapter 1
Introdu
tion
Many spe
ta
ular advan
es in 
onvex optimization have been a
hievedin the last two de
ades [1℄ [2℄: the theoreti
al dis
overy of algorithms witha polynomial 
omplexity (interior point methods1), and the pra
ti
al imple-mentation of reliable and fast solvers su
h as SeDuMi [4℄ and SDPT3 [5℄, havedrawn the attention of the engineering 
ommunity on 
onvex optimization.Re
ently, also the radar 
ommunity has started to pro�t by the 
onvexoptimization framework, to solve the new 
hallenging opportunities in this�eld, su
h as radar 
ode design [6℄ [7℄, robust radar dete
tion [8℄ [9℄ [10℄, and
onstrained estimation of typi
al radar parameters [11℄ [12℄.In parti
ular, radar waveform design has been promoted by the huge ad-van
es in high-speed signal pro
essing hardware. Thus, the ability to adaptand diversify dynami
ally the waveform to the operating environment en-sures a performan
e gain over nonadaptive systems. In this �eld, 
onvex1Interior point methods are iterative algorithms whi
h terminate on
e a prespe
i�eda

ura
y is rea
hed. The number of iterations ne
essary to a
hieve 
onvergen
e usuallyranges between 10 and 100 [3℄. 1



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - INTRODUCTIONoptimization 
an be su

essfully applied, evaluating the best 
ode for a givens
enario.In this thesis, we propose some original examples of radar waveformdesign via 
onvex optimization theory [13℄ [14℄ [15℄. After an initialse
tion introdu
ing some basi
 
on
epts about waveform design (
hapter 2),we analyze in detail 
ode design for a stand-alone radar in 
ase of temporal(
hapter 3) or spatial-temporal pro
essing (
hapter 4), and for a networkedradar with 
onstraints on the indu
ed interferen
e (
hapter 5). Finally, some
on
luding remarks are presented (
hapter 6).

2



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - INTRODUCTION1.1 NotationWe adopt the notation of using boldfa
e for ve
tors a (lower 
ase), andmatri
es A (upper 
ase). a(i) for i = 0, . . . , N − 1 is the i-th element ofthe N−dimensional ve
tor a, while A(n,m) for (n,m) ∈ {0, . . . , N − 1} ×

{0, . . . ,M − 1} is the (n,m)-th entry of the N×M matrixA. The 
onjugateoperator, the transpose operator and the 
onjugate transpose operator aredenoted by the symbols (·)∗, (·)T and (·)† respe
tively. tr(·), rank(·), λmin(·),and λmax(·) are respe
tively the tra
e, the rank, the minimum eigenvalue andthe maximum eigenvalue of the square matrix argument. I, 0 and eh denotethe identity matrix, the matrix with zero entries, and the ve
tor 
ontainingall zeros ex
ept 1 in the h-th position (their size is determined from the
ontext). The letter j represents the imaginary unit (i.e. j = √
−1). RN and

C
N are the set of N-dimensional real and 
omplex ve
tors, while H

N is theset of N × N hermitian matri
es. For any 
omplex number x, we use ℜ(x)and ℑ(x) to denote respe
tively the real and the imaginary parts of x, |x|and arg(x) represent the modulus and the argument of x, and x∗ stands forthe 
onjugate of x. The Eu
lidean norm of the ve
tor x is denoted by ‖x‖.
E[·] denotes statisti
al expe
tation. The symbols ⊙ and ⊗ represent theHadamard element-wise and the Krone
ker produ
t, respe
tively. For any
A ∈ HN , the 
urled inequality symbol � (and its stri
t form ≻) is used todenote generalized inequality: A � 0 means that A is a positive semide�nitematrix (A ≻ 0 for positive de�niteness).

3



Chapter 2
Design Prin
iples
A

ura
y, resolution, and ambiguity of the target range and radial ve-lo
ity measurements, depend on the waveform exploited by the radar. Whilerange is asso
iated with the delay of the re
eived signal, radial velo
ity de-pends on the Doppler frequen
y shift.If a mat
hed �lter is used at the re
eiver, the ambiguity fun
tion repre-sents a suitable tool to study the response of the �lter in two dimensions:delay and Doppler. The 
onstant volume underneath the squared ambigu-ity fun
tion involves some trade-o�s in signal design. Pre
isely, a narrowresponse in one dimension is a

ompanied by a poor response in the otherdimension or by additional ambiguous peaks. Moreover, if we prefer ambigu-ous peaks to be well spa
ed in delay, we have to a

ept them 
losely spa
edin Doppler (and vi
eversa). If we want a good Doppler resolution, we needlong 
oherent signal durations.Several signals are used for di�erent radar appli
ations and systems. Mod-ern pulsed radars generally use pulse 
ompression waveforms 
hara
terized4



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESby high pulse energy (with no in
rease in peak power) and large pulse band-width. As a 
onsequen
e, they provide high range resolution without sa
ri-�
ing maximum range whi
h depends on the pulse energy.Unfortunately, there are not easily-handled mathemati
al te
hniques to
al
ulate a signal with a pres
ribed ambiguity fun
tion. It follows that thedesign of a radar signal with desirable 
hara
teristi
s of the ambiguity fun
-tion is mainly based on the designer's prior knowledge of radar signatures aswell as on �trial and 
he
k � pro
edures.In this 
hapter, we �rst present (Se
tion 2.1) the mathemati
al de�ni-tion of the ambiguity fun
tion and des
ribe its relevant properties. Then, weexplore, in Se
tion 2.2, the ambiguity fun
tion of some basi
 radar signals:single-frequen
y re
tangular pulse and 
oherent pulse train. Hen
e, in Se
-tion 2.3, radar 
oding is presented as a suitable mean to a
hieve ambiguityfun
tion shaping: the ultimate goal is to segregate the volume of the ambi-guity fun
tion in regions of the delay-Doppler plane where it 
eases to be apra
ti
al embarrassment [16℄.2.1 Ambiguity Fun
tion: De�nition and Prop-ertiesThis fun
tion was introdu
ed in signal analysis by Ville [17℄ and in theradar 
ontext by Woodward [16℄. However, it was known in thermodynami
,sin
e 1932, due to the Nobel prize winner Eugene Wigner, who studied quan-tum 
orre
tions to 
lassi
al statisti
al me
hani
s [18℄.The ambiguity fun
tion of a signal whose 
omplex envelope is denoted by5



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES
u(t) is de�ned as

|χ(τ, ν)| =
∣∣∣∣
∫ ∞

−∞

u(t)u∗(t+ τ) exp(j2πνt)dt

∣∣∣∣ ,where τ and ν are the in
remental delay and Doppler frequen
y shift respe
-tively. Otherwise stated, it is the modulus of a mat
hed �lter output whenthe input is a Doppler shifted version of the original signal to whi
h the �lteris a
tually mat
hed. It follows that |χ(0, 0)| 
oin
ides with the output whenthe input signal is mat
hed to the nominal delay and Doppler of the �lter;nonzero values of τ and ν indi
ate a target from other range and/or velo
ity.Assuming that u(t) has unitary energy, |χ(τ, ν)| 
omplies with the follow-ing four relevant properties.1. Maximum Value Property.
|χ(τ, ν)| ≤ |χ(0, 0)| = 1 ,the maximum value of the ambiguity fun
tion is rea
hed for (τ, ν) =

(0, 0) and is equal to 1.2. Unitary Volume Property.
∫ ∞

−∞

∫ ∞

−∞

|χ(τ, ν)|2 dτdν = 1 ,the volume underneath the squared ambiguity fun
tion is unitary.3. Symmetry.
|χ(τ, ν)| = |χ(−τ,−ν)| ,6



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESthe ambiguity fun
tion shares a symmetry property about the origin.4. Linear Frequen
y Modulation Property.Given the ambiguity fun
tion |χ(τ, ν)| of signal u(t), the ambiguityfun
tion |χ(τ, ν − kτ)| 
orrespond to u(t) exp(jπkt2).A more 
on
ise way of representing the ambiguity fun
tion 
onsists ofexamining the one-dimensional zero-delay and zero-Doppler 
uts. The 
ut of
|χ(τ, ν)| along the delay axis is

|χ(τ, 0)| =
∣∣∣∣
∫ ∞

−∞

u(t)u∗(t + τ)dt

∣∣∣∣ = |R(τ)| ,where R(τ) is the auto
orrelation fun
tion of u(t). The 
ut along the Doppleraxis is
|χ(0, ν)| =

∣∣∣∣
∫ ∞

−∞

|u(t)|2 exp(j2πνt)dt
∣∣∣∣ ,whi
h is independent of any phase or frequen
y modulation of the inputsignal. Further interesting properties of the ambiguity fun
tion 
an be foundin Riha
zek's 
lassi
 book Prin
iples of High Resolution Radar [19℄.2.2 Basi
 Radar SignalsIn this se
tion, we present the ambiguity fun
tion of some basi
 signals(single frequen
y re
tangular pulse and 
oherent pulse train) [20, 
h. 8℄ anddis
uss their suitability for radar appli
ations.

7



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES2.2.1 Re
tangular PulseThe re
tangular pulse of length tp and unitary energy is given by1
u(t) =

1√
tp
re
t( t

tp

)
,and the 
orresponding pulse ambiguity fun
tion is

|χ(τ, ν)| =





∣∣∣∣
(
1− |τ |

tp

) sin
 [tp(1− |τ |/tp)ν]
∣∣∣∣ , if |τ | ≤ tp ,

0 elsewhere, (2.1)
In Figures 2.1-2.2-2.3, (2.1) is plotted together with the 
ontours and the
uts along the delay and Doppler axes. Noti
e that (2.1) is limited to anin�nite strip whose size on the delay axis is 2tp. As to the 
ut at τ = 0, itexhibits the �rst nulls at νnull = ± 1

tp
and, sin
e the sin
(·) fun
tion has apeak sidelobe at −13.5 dB, the pra
ti
al extension of the ambiguity fun
tionalong the Doppler axis 
an be 
onsidered 2/tp.In general, the square pulse is not a desirable waveform from a pulse
ompression standpoint, be
ause the auto
orrelation fun
tion is too wide intime, making it di�
ult to dis
ern multiple overlapping targets.

1The fun
tion re
t(x) is equal to 1, if |x| ≤ 1/2, and is equal to 0 elsewhere. Thefun
tion sin
(x) is de�ned as sin
(x) = sin(πx)

πx
.8



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES

Figure 2.1: Ambiguity fun
tion of a 
onstant frequen
y re
tangular pulse oflength tp.

τ

ν

Figure 2.2: Ambiguity fun
tion 
ontours of a 
onstant frequen
y re
tangularpulse of length tp.
9



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES

τ

χ
τ

ν

χ
ν

Figure 2.3: Ambiguity fun
tion of a 
onstant frequen
y re
tangular pulse oflength tp. a) Zero-Doppler 
ut. b) Zero-delay 
ut.

10



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES2.2.2 Pulse TrainThe 
omplex envelope of a 
oherent pulse train, 
omposed by N equallyspa
ed pulses, 
an be written as
u(t) =

1√
N

N∑

n=1

pn(t− (n− 1)TR) , (2.2)where TR is the pulse repetition period and pn(t) is the 
omplex envelope ofthe n-th unitary energy pulse. Assuming that the pulse train is uniform (i.e.
pn(t) = p(t), n = 1, . . . , N) and that TR/2 is greater than the pulse duration
tp, the ambiguity fun
tion of (2.2) 
an be expressed as

|χ(τ, ν)| = 1

N

N−1∑

p=−(N−1)

|χp(τ − pTR, ν)|
∣∣∣∣
sin[πν(N − |p|)TR]

sin(πνTR)

∣∣∣∣ , (2.3)where |χp(τ, ν)| is the (pulse) ambiguity fun
tion of p(t).In Figure 2.4, we assume single-frequen
y re
tangular pulses, N = 6,
TR = 5tp and plot (2.3) in the range-Doppler domain2. Due to its shape (2.3)is often referred to as bed of nails. The zero-Doppler 
ut shows that thereare multiple triangular windows: the separation between two 
onse
utivepeaks is equal to the pulse repetition period TR. Moreover, all the triangularwindows have the same width 2tp, but their height de
reases as the distan
efrom the origin in
reases.As to the 
ut for τ = 0, there are multiple peaks spa
ed apart 1/TR and
N−2 smaller sidelobes between them. The �rst nulls o

ur at ν = ±1/NTR,2In the following, the Matlab 
© toolbox of Levanon and Mozeson [21℄ is used to plotthe ambiguity fun
tions. 11



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESnamely the width of the main peak (in Doppler) is ruled by the length of the
oherent pro
essing interval.

Figure 2.4: Ambiguity fun
tion of a 
oherent train of uniform pulses with
N = 6, pulse length tp, and pulse repetition period TR = 5tp.
2.3 Linearly Coded Pulse TrainThe ambiguity fun
tion of a 
oherent pulse train allows a main peaknarrow both in range and in Doppler, but exhibits some peaks with almostthe same amplitude as the main peak. These might be deleterious and 
anlead to range/Doppler ambiguities very di�
ult to resolve.If we wish to maintain a very narrow main peak but 
annot a

ept theadditional peaks typi
al of the bed of nails, we 
an spread the volume in a lowbut wide pedestal around the main peak. This kind of ambiguity fun
tionis referred to as thumbta
k shape and 
an be obtained 
onsidering linearly

12



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES
oded pulse train, i.e.
u(t) =

N−1∑

i=0

c(i)p(t− iTr) ,where [c(0), c(1), . . . , c(N−1)] = c ∈ C
N is the radar 
ode, and, as usual, u(t)is the signal's 
omplex envelope and p(t) is the signature of the transmittedpulse. In this 
ase, the ambiguity fun
tion 
an be evaluated as

χ(λ, f) =

∫ ∞

−∞

u(β)u∗(β − λ)ej2πfβdβ =

N−1∑

l=0

N−1∑

m=0

c(l)c∗(m)χp (λ− (l −m)Tr, f) ,where χp(λ, f) is the (pulse) ambiguity fun
tion of p(t). Ea
h 
odeword c(i)modulates both in amplitude and phase a di�erent pulse (see Figure 2.5).Doing so, many advantages 
an be a
hieved, as for example better dete
tionperforman
e, redu
tion in range or Doppler, or rapid de
ay of the spe
traltails [22℄.Before pro
eeding, we remaind that waveform design algorithms usuallyanti
ipated their implementation by many years, due to 
omplexity and hard-ware limitations [22℄. For instan
e, the 
on
ept of pulse 
ompression, de-veloped during the Se
ond World War, gained renewed interest only whenhigh-power Klystrons be
ame available [23℄. In other words, what seems un-pra
ti
al today, may not be de�nitely ruled out in the near future. The la
kof signal 
oheren
e, whi
h pre
luded the appli
ation of signal 
ompressionduring the last World War, is today easy. Maybe, the linear power am-13



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES

Figure 2.5: Coded pulse train, with length N = 4, re
tangular pulse p(t),and Tr = 2tp.pli�ers, required to implement amplitude modulated radar signals, will notrepresent a te
hnologi
al limitation tomorrow.
In the following 
hapters, we present some original examples of linearpulse 
oding. First, we propose a 
oding te
hnique for stand-alone radars,maximizing the dete
tion performan
e under an a

ura
y 
onstraint, in the
ase of temporal (
hapter 3) or spatial-temporal pro
essing (
hapter 4).Then, we analyze the 
ase of networked radar, evaluating a 
ode whi
h limitthe interferen
e indu
ed on other networks elements (
hapter 5).

14



Chapter 3
Coding for Temporal Pro
essing
Radar 
oding for temporal pro
essing is presented in this 
hapter. Wedetermine the optimum radar 
ode a

ording to the following 
riterion: maxi-mization of the dete
tion performan
e under a 
ontrol on the region of a
hiev-able Doppler estimation a

ura
ies, and imposing a similarity 
onstraint witha pre�xed radar 
ode. This last 
onstraint is tantamount to requiring a sim-ilarity between the ambiguity fun
tions of the devised waveform and of thepulse train en
oded with the pre�xed sequen
e. The resulting optimizationproblem is non
onvex. In order to solve it, we propose a te
hnique (withpolynomial 
omputational 
omplexity) based on the relaxation of the orig-inal problem into a Semide�nite Programming (SDP) problem. Thus, thebest 
ode is determined through a rank-one de
omposition of an optimalsolution of the relaxed problem. At the analysis stage, we assess the per-forman
e of the new en
oding te
hnique in terms of dete
tion 
apabilities,region of a
hievable Doppler estimation a

ura
ies, and ambiguity fun
tion.The 
hapter is organized as follows. In Se
tion 3.1, we present the model15



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGfor both the transmitted and the re
eived 
oded signal. In Se
tion 3.2, wedis
uss some relevant guidelines to formulate the 
ode design problem. InSe
tion 3.3, we introdu
e the algorithm whi
h solves the presented problem,exploiting SDP relaxation and de
omposition. Finally, in Se
tion 3.4, weassess the performan
e of the proposed en
oding method also in 
omparisonwith a standard radar 
ode.3.1 System ModelWe 
onsider a radar system whi
h transmits a 
oherent burst of pulses
s(t) = atu(t) exp[j(2πf0t + φ)] ,where at is the transmit signal amplitude,

u(t) =
N−1∑

i=0

c(i)p(t− iTr) ,is the signal's 
omplex envelope, p(t) is the signature of the transmitted pulse,
Tr is the pulse repetition time, [c(0), c(1), . . . , c(N − 1)]T = c ∈ CN is theradar 
ode (assumed without loss of generality with unit norm), f0 is the
arrier frequen
y, and φ is a random phase. Moreover, the pulse waveform
p(t) is of duration Tp ≤ Tr and has unit energy, i.e.

∫ Tp

0

|p(t)|2dt = 1 .

16



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGThe signal ba
ks
attered by a target with a two-way time delay τ and re
eivedby the radar is
r(t) = αre

j2π(f0+fd)(t−τ)u(t− τ) + n(t) ,where αr is the 
omplex e
ho amplitude (a

ounting for the transmit ampli-tude, phase, target re�e
tivity, and 
hannels propagation e�e
ts), fd is thetarget Doppler frequen
y, and n(t) is additive disturban
e due to 
lutter andthermal noise.This signal is down-
onverted to baseband and �ltered through a linearsystem with impulse response h(t) = p∗(−t). Let the �lter output be
v(t) = αre

−j2πf0τ

N−1∑

i=0

c(i)ej2πifdTrχp(t− iTr − τ, fd) + w(t) ,where χp(λ, f) is the pulse waveform ambiguity fun
tion, and w(t) is thedown-
onverted and �ltered disturban
e 
omponent. The signal v(t) is sam-pled at tk = τ + kTr, k = 0, . . . , N − 1, providing the observables1
v(tk) = αc(k)ej2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,where α = αre

−j2πf0τ . Assuming that the pulse waveform time-bandwidthprodu
t and the expe
ted range of target Doppler frequen
ies are su
h thatthe single pulse waveform is insensitive to target Doppler shift2, namely1We negle
t range straddling losses and also assume that there are no target rangeambiguities.2Noti
e that this assumption might be restri
tive for the 
ases of very fast movingtargets su
h as �ghters and ballisti
 missiles.17



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSING
χp(0, fd) ∼ χp(0, 0) = 1, we 
an rewrite the samples v(tk) as

v(tk) = αc(k)ej2πkfdTr + w(tk), k = 0, . . . , N − 1 .Moreover, denoting by p = [1, ej2πfdTr , . . . , ej2π(N−1)fdTr ]T the temporal steer-ing ve
tor, by v = [v(t0), v(t1), . . . , v(tN−1)]
T the 
olle
ted re
eived samples,and by w = [w(t0), w(t1), . . . , w(tN−1)]

T the down-
onverted and �ltered dis-turban
e ve
tor, we get the following ve
torial model for the ba
ks
atteredsignal
v = αc⊙ p+w . (3.1)3.2 Problem FormulationIn this se
tion, we introdu
e some key performan
e measures to be op-timized or 
ontrolled during the sele
tion of the radar 
ode: they permit toformulate the design of the 
ode as a non
onvex optimization problem. Themetri
s 
onsidered in this 
hapter are:3.2.1 Dete
tion ProbabilityThis is one of the most important performan
e measures whi
h radarengineers attempt to maximize. We just remind that the problem of dete
tinga target in the presen
e of observables des
ribed by the model (3.1) 
an be

18



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGformulated in terms of the following binary hypotheses test




H0 : v = w

H1 : v = αc⊙ p+w .

(3.2)
Assuming that the disturban
e ve
tor w is a zero-mean 
omplex 
ir
ularGaussian ve
tor with known positive de�nite 
ovarian
e matrix E[ww†] =

M , the Generalized Likelihood Ratio Test (GLRT) dete
tor for (3.2), whi
h
oin
ides with the optimum test (a

ording to the Neyman-Pearson 
riterion)if the phase of α is uniformly distributed in [0, 2π[ [24℄, is given by
|v†M−1(c⊙ p)|2

H1
>
<
H0

G , (3.3)where G is the dete
tion threshold set a

ording to a desired value of the falsealarm Probability (Pfa). An analyti
al expression of the dete
tion Probabil-ity (Pd), for a given value of Pfa, is available both for the 
ases of non�u
-tuating target (NFT) and Rayleigh �u
tuating target (RFT). In the former
ase,
Pd = Q

(√
2|α|2(c⊙ p)†M−1(c⊙ p),

√
−2 lnPfa

)
,while, for the 
ase of RFT with E[|α|2] = σ2

a,
Pd = exp

(
lnPfa

1 + σ2
a(c⊙ p)†M−1(c⊙ p)

)
,

19



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGwhere Q(·, ·) denotes the Mar
um Q fun
tion of order 1. These last expres-sions show that, given Pfa, Pd depends on the radar 
ode, the disturban
e
ovarian
e matrix and the temporal steering ve
tor only through the SNR,de�ned as SNR =





|α|2(c⊙ p)†M−1(c⊙ p) NFT
σ2
a(c⊙ p)†M−1(c⊙ p) RFTMoreover, Pd is an in
reasing fun
tion of SNR and, as a 
onsequen
e, themaximization of Pd for a given α 
an be obtained maximizing the SNR overthe radar 
ode, i.e.
maximize

c
c†Rc , (3.4)with R = M−1 ⊙ (pp†)∗.3.2.2 Doppler Frequen
y Estimation A

ura
yThe Doppler a

ura
y is bounded below by Cramér-Rao bound (CRB),whi
h provide a lower bound for the varian
e of unbiased estimate. Con-straining the CRB is tantamount to 
ontrolling the region of a
hievableDoppler estimation a

ura
ies, referred to in the following as A. We justhighlight that a reliable measurement of the Doppler frequen
y is very im-portant in radar signal pro
essing be
ause it is dire
tly related to the targetradial velo
ity useful to speed the tra
k initiation, to improve the tra
k a
-
ura
y [25℄, and to 
lassify the dangerousness of the target.

20



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGThe CRB for known α is given by
∆CR(fd) =

Ψ

2
∂h†

∂fd
M−1 ∂h

∂fd

, (3.5)
where h = c⊙ p, and Ψ =

1

|α|2 . Noti
ing that
∂h

∂fd
= Tr c⊙ p⊙ u ,with u = [0, j2π, . . . , j2π(N − 1)]T , (3.5) 
an be rewritten as

∆CR(fd) =
Ψ

2T 2
r (c⊙ p⊙ u)†M−1(c⊙ p⊙ u)

.As already stated, for
ing an upper bound to CRB, for a spe
i�ed Ψvalue, results in a lower bound on the size of A. Hen
e, a

ording to thisguideline, we fo
us on the 
lass of radar 
odes 
omplying with the 
ondition
∆CR(fd) ≤

Ψ

2T 2
r δa

,whi
h 
an be equivalently written as
c†R1c ≥ δa , (3.6)where R1 = M−1 ⊙ (pp†)∗ ⊙ (uu†)∗, and the parameter δa rules the lowerbound on the size of A. Otherwise stated, suitably in
reasing δa, we ensurethat new points fall in the region A, namely new smaller values for the21



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGestimation varian
e 
an be theoreti
ally rea
hed by estimators of the targetDoppler frequen
y (see Figure 3.1 for a pi
torial des
ription).

Figure 3.1: Lower bound to the size of the region A for two di�erent valuesof δa (δ′a < δ′′a).
3.2.3 Similarity ConstraintDesigning a 
ode whi
h optimizes the dete
tion performan
e does notprovide any kind of 
ontrol to the shape of the resulting 
oded waveform.Pre
isely, the un
onstrained optimization of Pd 
an lead to signals with sig-ni�
ant modulus variations, poor range resolution, high peak sidelobe levels,and more in general with an undesired ambiguity fun
tion behavior. Thesedrawba
ks 
an be partially 
ir
umvented imposing a further 
onstraint tothe sought radar 
ode. Pre
isely, it is required the solution to be similar to aknown unitary norm 
ode c0 (i.e. ‖c0‖2 = 1), whi
h shares 
onstant modu-lus, reasonable range resolution and peak sidelobe level. This is tantamount22



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGto imposing that [6℄
‖c− c0‖2 ≤ ǫ , (3.7)where the parameter ǫ ≥ 0 rules the size of the similarity region. In otherwords, (3.7) permits to indire
tly 
ontrol the ambiguity fun
tion of the 
on-sidered 
oded pulse train: the smaller ǫ, the higher the degree of similaritybetween the ambiguity fun
tions of the designed radar 
ode and of c0.Reminding the obje
tive fun
tion (5.10) and the 
onstraints (3.6) and(3.7), for an unitary norm 
ode c (i.e. ‖c‖2 = 1), the design problem 
an beformulated as follows

QP1





maximize
c

c†Rc

subject to c†c = 1

c†R1c ≥ δa

‖c− c0‖2 ≤ ǫ3.3 Problem SolutionIn this se
tion, we propose a te
hnique for the sele
tion of the radar 
odewhi
h attempts to maximize the dete
tion performan
e but, at the sametime, provides a 
ontrol both on the target Doppler estimation a

ura
y andon the similarity with a given radar 
ode.Noti
e that the non
onvex optimization problem QP1 
an be equivalenty
23



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGwritten as QP1





maximize
c

c†Rc

subject to c†c = 1

c†R1c ≥ δa

ℜ
(
c†c0

)
≥ 1− ǫ/2

(3.8)
The feasibility of the problem3 depends not only on the parameters δa and
ǫ, but also on the pre�xed 
ode c0.Now, we show that an optimal solution of (3.8) 
an be obtained from anoptimal solution of the following Enlarged Quadrati
 Problem (EQP1):

EQP1





maximize
c

c†Rc

subject to c†c = 1

c†R1c ≥ δa

ℜ2
(
c†c0

)
+ ℑ2

(
c†c0

)
= c†c0c

†
0c ≥ δǫwhere δǫ = (1− ǫ/2)2. Sin
e the feasibility region of EQP1 is larger than thatof QP1, every optimal solution of EQP1, whi
h is feasible for QP1, is also anoptimal solution for QP1 [3℄. Thus, assume that c̄ is an optimal solution ofEQP1 and let φ = arg (c̄†c0). It is easily seen that c̄ejφ is still an optimalsolution of EQP1. Now, observing that (c̄ejφ)†c0 = |c̄†c0|, c̄ejφ is a feasiblesolution of QP1. In other words, c̄ej arg (c̄†c0) is optimal for both QP1 andEQP1.Now, we have to �nd an optimal solution of EQP1 and, to this end, we3The interested reader 
an refer to a re
ent work of De Maio et al. [13℄ for a moredetailed dis
ussion on feasibility.

24



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGexploit the equivalent matrix formulation
EQP1





maximize
C

tr(CR)

subject to tr(C) = 1tr(CR1) ≥ δatr(CC0) ≥ δǫ

C = cc†

(3.9)
where C0 = c0c0

†.Problem (3.9) 
an be relaxed into a SDP, negle
ting the rank-one 
on-straint [26℄. By doing so we obtain a Relaxed Enlarged Quadrati
 Problem(REQP1)
REQP1





maximize
C

tr(CR)

subject to tr(C) = 1tr(CR1) ≥ δatr(CC0) ≥ δǫ

C � 0

(3.10)
The dual problem of (3.10), REQP1 Dual (REQPD1), is

REQPD1





minimize
y1, y2, y3

y1 − y2δa − y3δǫ

subject to y1I − y2R1 − y3C0 � 0

y2 ≥ 0

y3 ≥ 0This problem is bounded below and is stri
tly feasible, so the optimal valueis the same as the primal [27℄ and the 
omplementary 
onditions are satis�ed25



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGat the optimal point, due to the stri
t feasibility of the primal problemIn the following, we prove that a solution of EQP1 
an be obtained from asolution of REQP1 C̄, and from a solution of REQPD1 (ȳ1, ȳ2, ȳ3). Pre
isely,we show how to obtain a rank-one feasible solution of REQP1 that satis�esoptimality 
onditions (
omplementary 
onditions)tr [(ȳ1I − ȳ2R1 − ȳ3C0 −R) C̄
]
= 0 (3.11)

[tr(C̄R1)− δa
]
ȳ2 = 0 (3.12)

[tr(C̄C0)− δǫ
]
ȳ3 = 0 (3.13)Su
h rank-one solution is also optimal for EQP1. The proof we propose, isbased on the following proposition.Proposition I. Suppose that X ∈ HN is a positive semide�nite matrixof rank R, while A,B ∈ HN . There is a rank-one de
omposition of X(syntheti
ally denoted as D1(X,A,B)),

X =

R∑

r=1

xrx
†
rsu
h that

x†
rAxr =

tr(XA)

R
and x†

rBxr =
tr(XB)

RProof. See Huang and Zhang de
omposition theorem [28℄.Moreover, we have to distinguish four possible 
ases:1. tr (C̄R1

)
− δa > 0 and tr (C̄C0

)
− δǫ > 02. tr (C̄R1

)
− δa = 0 and tr (C̄C0

)
− δǫ > 026



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSING3. tr (C̄R1

)
− δa > 0 and tr (C̄C0

)
− δǫ = 04. tr (C̄R1

)
− δa = 0 and tr (C̄C0

)
− δǫ = 0Case 1: Using the de
omposition D1(C̄, I,R1) of Proposition I, we 
anexpress C̄ as

C̄ =
R∑

r=1

crcr
†Now, we show that there exists a k ∈ {1, . . . , R} su
h that √

Rck is anoptimal solution of EQP1. Spe
i�
ally, we �rst prove that (√Rck)(
√
Rck)

† isa feasible solution of REQP1, and then that (√Rck)(
√
Rck)

† and (ȳ1, ȳ2, ȳ3)
omply with the optimality 
onditions, i.e. (
√
Rck)(

√
Rck)

† is a rank-oneoptimal solution of REQP1 and, hen
e, √Rck is an optimal solution of EQP1.The de
omposition D1(C̄, I,R1) implies that every (
√
Rcr)(

√
Rcr)

†, r =
1, . . . , R satis�es the �rst and the se
ond 
onstraints in REQP1. Moreover,there must be a k ∈ {1, . . . , R} su
h that (√Rck)

†
C0(

√
Rck) ≥ δǫ. In fa
t,if (√Rcr)

†
C0(

√
Rcr) < δǫ for every r, then

R∑

r=1

(
√
Rcr)

†
C0(

√
Rcr) < Rδǫtr[( R∑

r=1

√
Rcrc

†
r

√
R

)
C0

]
< Rδǫtr(C̄C0) < δǫwhi
h is in 
ontrast with the feasibility of C̄. This proves that there exists atleast one k ∈ {1, . . . , R} for whi
h (

√
Rck)(

√
Rck)

† is feasible for REQP1. Asto ful�llment of the optimality 
onditions, tr (C̄R1

)
−δa > 0 and tr (C̄C0

)
−

δǫ > 0 imply ȳ2 = 0 and ȳ3 = 0, namely (3.12) and (3.13) are veri�ed for27



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGevery (
√
Rcr)(

√
Rcr)

†, with r = 1, . . . , R. Therefore, (3.11) 
an be re
ast astr [(ȳ1I −R)C̄
]
= tr[(ȳ1I −R)

(
R∑

r=0

crc
†
r

)]
= 0whi
h, sin
e crc

†
r � 0, r = 1, . . . , R, and ȳ2I − R � 0 (from the �rst 
on-straint of REQPD1), impliestr [(ȳ2I −R)

(√
Rcrcr

†
√
R
)]

= 0It follows that there exists one k ∈ {1, . . . , R} su
h that (
√
Rck)(

√
Rck)

†is an optimal solution of REQP1, and thus, √Rck is an optimal solution ofEQP1.Cases 2 and 3: The proof is very similar to Case 1, hen
e we omit it.Case 4: In this 
ase, all the 
onstraints of REQP1 are a
tive, namelytr(C̄) = 1, tr(C̄R1) = δa, and tr(C̄C0) = δǫ. It follows thattr[C̄ (R1/δa − I)] = 0and tr[C̄ (C0/δǫ − I)] = 0A

ording to D1(C̄,R1/δa − I,C0/δǫ − I), we de
ompose C̄ as
C̄ =

R∑

r=1

crcr
† ,

28



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGand observe that tr (crcr†) = 1

γr
, r = 1, . . . , R , (3.14)with γr > 1 su
h that ∑R

r=1 1/γr = 1.We now prove that ea
h (
√
γrcr)(

√
γrcr)

† is an optimal solution of REQP1.Pre
isely, we �rst show that (
√
γrcr)(

√
γrcr)

† is in the feasible region ofREQP1 and then we prove that (
√
γrcr)(

√
γrcr)

† satis�es the optimality
onditions. Equation (3.14) implies that the �rst 
onstraint in REQP1 issatis�ed. From the feasibility of C̄ and from the used de
omposition, we 
analso 
laim that (√γrcr)(
√
γrcr)

† satis�es the se
ond and the third 
onstraintsof REQP1. In fa
t, with referen
e to the se
ond 
onstraint we havetr[C̄ (R1/δa − I)] = 0tr[C̄ (R1/δa − I)]

R
= 0

cr
† (R1/δa − I) cr = 0

cr
†(R1/δa)cr = cr

†cr

cr
†(R1/δa)cr = tr (crcr†)

cr
†(R1/δa)cr = 1/γr

√
γrcr

†(R1/δa)
√
γrcr = 1

√
γrcr

†R1
√
γrcr = δa

29



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGAs to the third 
onstraint, we observe thattr[C̄ (C0/δǫ − I)] = 0tr[C̄ (C0/δǫ − I)]

R
= 0

cr
† (C0/δǫ − I) cr = 0

cr
†(C0/δǫ)cr = cr

†cr

cr
†(C0/δǫ)cr = tr (crcr†)

cr
†(C0/δǫ)cr = 1/γr

√
γrcr

†(C0/δǫ)
√
γrcr = 1

√
γrcr

†C0
√
γrcr = δǫIt remains to prove that (√γrcr)(

√
γrcr)

† 
omplies with the three optimality
onditions. As to the �rst, we note thattr [(ȳ1I − ȳ2R1 − ȳ3C0 −R) C̄
]

=tr [(ȳ1I − ȳ2R1 − ȳ3C0 −R)
∑R

r=1 crcr
†
]

= 0whi
h, sin
e crcr
† � 0 and ȳ1I − ȳ2R1 − ȳ3C0 −R � 0, implies thattr [(ȳ1I − ȳ2R1 − ȳ3C0 −R) (

√
γrcr

√
γrcr

†)
]
= 0 ,proving the �rst optimality 
ondition. The 
omplian
e with the se
ond op-

30



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGtimality 
ondition 
an be shown as follows
cr

† (R1/δa − I) cr = 0

(
√
γrcr)

† (R1/δa − I)
√
γrcr = 0

[√
γrcr

† (R1/δa − I)
√
γrcr

]
ȳ2 = 0tr [(R1/δa − I)

(√
γrcrc

†
r

√
γr
)
ȳ2
]
= 0As to the third optimality 
ondition, we have

cr
† (C0/δǫ − I) cr = 0

√
γrcr

† (C0/δǫ − I)
√
γrcr = 0

[√
γrcr

† (C0/δǫ − I)
√
γrcr

]
ȳ3 = 0tr [(C0/δǫ − I)

(√
γrcr

√
γrc

†
r

)
ȳ3
]
= 0and the proof is 
ompleted.In 
on
lusion, using the de
omposition of Proposition I, we have shownhow to 
onstru
t a rank-one optimal solution of REQP1, whi
h is tantamountto �nding an optimal solution of EQP1. Summarizing, the optimum 
ode 
anbe 
onstru
ted a

ording to the pro
edure reported in Algorithm 1.The 
omputational 
omplexity 
onne
ted with the implementation of thealgorithm is polynomial as both the SDP problem and the de
omposition ofProposition I 
an be performed in polynomial time. In fa
t, the amount ofoperations, involved in solving the SDP problem, is O (N3.5) [27, p. 250℄ andthe rank-one de
omposition requires O(N3) operations.31



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGAlgorithm 1 Temporal Pro
essing (TiP) CodingInput: M , p, c0, δa, δǫ;Output: c
TiP

;1: solve the SDP problem REQP1 �nding an optimal solution C̄;2: if tr(C̄R1)− δa = 0 and tr(C̄C0)− δǫ = 0 then3: de
ompose ∑R

r=1 crc
†
r = D1(C̄,R1/δa − I,C0/δǫ − I);4: 
ompute c̄ =

√
γ1c1, with γ1 = 1/‖c1‖25: else6: de
ompose ∑R

r=1 crc
†
r = D1(C̄,R1, I);7: Find k su
h that c†kC0ck ≥ δǫ/R and 
ompute c̄ =

√
Rck;8: end9: c

TiP
= c̄ejφ, with φ = arg(c̄†c0)3.4 Performan
e AnalysisThe present se
tion is aimed at analyzing the performan
e of the proposeden
oding s
heme. To this end, we assume that the disturban
e 
ovarian
ematrix is exponentially shaped with one-lag 
orrelation 
oe�
ient ρ = 0.8,i.e.

M (i, j) = ρ|i−j| ,and �x Pfa of the re
eiver (5.5) to 10−6. The analysis is 
ondu
ted in terms of
Pd, region of a
hievable Doppler estimation a

ura
ies, and ambiguity fun
-tion of the 
oded pulse train whi
h results exploiting the proposed algorithm,i.e.

χ(λ, f) =
N−1∑

l=0

N−1∑

m=0

c
TiP

(l)c∗
TiP

(m)χp[λ− (l −m)Tr, f ] ,where [c
TiP

(0), . . . , c
TiP

(N − 1)]T = c
TiP

is an optimum 
ode. As to the tem-poral steering ve
tor p, we set the normalized Doppler frequen
y4 f
d
Tr = 0.The 
onvex optimization Matlab 
© toolbox SeDuMi [4℄ is exploited for solv-4We have also 
onsidered other values for the target normalized Doppler frequen
y.The results, not reported here, 
on�rm the performan
e behavior showed in this se
tion.32



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGing the SDP relaxation. The de
omposition D1(·, ·, ·) of the SeDuMi so-lution is performed using the te
hnique des
ribed by Huang and Zhang[28℄. As similarity 
ode, we set c0 as a generalized Barker Code: gener-alized Barker 
odes are polyphase sequen
es whose auto
orrelation fun
tionhas minimal peak-to-sidelobe ratio ex
luding the outermost sidelobe. Ex-amples of su
h sequen
es were found for all N ≤ 45 [29℄ [30℄ using nu-meri
al optimization te
hniques. In the simulations of this subse
tion, weassume N = 7 and set the similarity 
ode equal to the generalized Barkersequen
e c0 = [0.3780, 0.3780,−0.1072−0.3624j,−0.0202−0.3774j, 0.2752+

0.2591j, 0.1855− 0.3293j, 0.0057 + 0.3779j]T .In Figure 3.2, we plot Pd of the optimum 
ode (a

ording to the proposed
riterion) versus |α|2 for several values of δa, δǫ = 0.01, and for non�u
tuatingtarget. In the same �gure, we also represent both the Pd of the similarity
ode as well as the ben
hmark performan
e, namely the maximum a
hievabledete
tion rate (over the radar 
ode), given by
Pd = Q

(√
2|α|2λmax (R),

√
−2 lnPfa

)
.The 
urves show that in
reasing δa we get lower and lower values of Pdfor a given |α|2 value. This was expe
ted sin
e the higher δa the smallerthe feasibility region of the optimization problem to be solved for �nding the
ode. Nevertheless the proposed en
oding algorithm usually ensures a betterdete
tion performan
e than the original generalized Barker 
ode.In Figure 3.3, the normalized CRB (CRBn = T 2

r CRB) is plotted versus
|α|2 for the same values of δa as in Figure 3.2. The best value of CRBn is33
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α

δ

Figure 3.2: Pd versus |α|2 for Pfa = 10−6, N = 7, δǫ = 0.01, non�u
tuatingtarget, and several values of δa ∈ {10−6, 6165.5, 6792.6, 7293.9}. GeneralizedBarker 
ode (dashed 
urve). Code whi
h maximizes the SNR for a given δa(solid 
urve). Ben
hmark 
ode (dotted-marked 
urve). Noti
e that the 
urvefor δa = 10−6 perfe
tly overlaps with the ben
hmark Pd.

α

δ

Figure 3.3: CRBn versus |α|2 for N = 7, δǫ = 0.01 and several values of
δa ∈ {10−6, 6165.5, 6792.6, 7293.9}. Generalized Barker 
ode (dashed 
urve).Code whi
h maximizes the SNR for a given δa (solid 
urve). Ben
hmark
ode (dotted-marked 
urve). Noti
e that the 
urve for δa = 7293.9 perfe
tlyoverlaps with the ben
hmark CRBn. 34
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1

2|α|2λmax (R1)
.The 
urves highlight that in
reasing δa better and better CRB values 
anbe a
hieved. This is in a

ordan
e with the 
onsidered 
riterion, be
ausethe higher δa the larger the size of the region A. Summarizing, the jointanalysis of Figures 3.2-3.3 shows that a trade-o� 
an be realized between thedete
tion performan
e and the estimation a

ura
y. Moreover, there exist
odes 
apable of outperforming the generalized Barker 
ode both in terms of

Pd and size of A.The e�e
ts of the similarity 
onstraint are analyzed in Figure 3.4. Therein,we set δa = 10−6 and 
onsider several values of δǫ. The plots show that in-
reasing δǫ worse and worse Pd values are obtained; this behavior 
an beexplained observing that the smaller δǫ the larger the size of the similarityregion. However, this dete
tion loss is 
ompensated for an improvement ofthe 
oded pulse train ambiguity fun
tion. This is shown in Figures 3.6−3.7,where the modulus of that fun
tion is plotted assuming re
tangular pulses,
Tr = 5Tp and the same values of δa and δǫ as in Figure 3.4. Moreover, for
omparison purposes, the ambiguity fun
tion modulus of c0 is plotted too(Figure 3.5). The plots highlight that the 
loser δǫ to 1 the higher the de-gree of similarity between the ambiguity fun
tions of the devised and of thepre�xed 
odes. This is due to the fa
t that in
reasing δǫ is tantamount toredu
ing the size of the similarity region. In other words, we for
e the devised
ode to be similar and similar to the pre�xed one and, as a 
onsequen
e, weget similar and similar ambiguity fun
tions.35
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α

δ
ε

Figure 3.4: Pd versus |α|2 for Pfa = 10−6, N = 7, δa = 10−6, non�u
tuatingtarget, and several values of δǫ ∈ {0.01, 0.6239, 0.8997, 0.9994}. GeneralizedBarker 
ode (dashed 
urve). Code whi
h maximizes the SNR for a given δǫ(solid 
urve). Ben
hmark 
ode (dotted-marked 
urve). Noti
e that the 
urvefor δǫ = 0.01 perfe
tly overlaps with the ben
hmark Pd.Finally, Table 5.1 provides the average number of iterations Nit and CPUtime (in se
onds) whi
h are required to solve the SDP problem (3.10). The
omputer used to get these results is equipped with a 3 GHz Intel XEONpro
essor.

36



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGTable 3.1: Average Nit and CPU time in se
onds required to solve problem(3.10). Generalized Barker 
ode as similarity sequen
e.
δa δǫ Average Nit Average CPU time (se
)

10−6 0.01 21 0.30
6165.5 0.01 11 0.15
6792.6 0.01 11 0.15
7293.9 0.01 16 0.19
10−6 0.6239 22 0.28
10−6 0.8997 19 0.24
10−6 0.9994 17 0.23

Figure 3.5: Ambiguity fun
tion modulus of the generalized Barker
ode c0 = [0.3780, 0.3780,−0.1072 − 0.3624j,−0.0202 − 0.3774j, 0.2752 +
0.2591j, 0.1855− 0.3293j, 0.0057 + 0.3779j]T .3.5 Con
lusionsIn this 
hapter, we have 
onsidered the design of 
oded waveforms inthe presen
e of 
olored Gaussian disturban
e. We have devised and assessedan algorithm whi
h attempts to maximize the dete
tion performan
e undera 
ontrol both on the region of a
hievable values for the Doppler estima-tion a

ura
y, and on the similarity with a given radar 
ode. The proposed37
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Figure 3.6: Ambiguity fun
tion modulus of 
ode whi
h maximizes the SNRfor N = 7, δa = 10−6, c0 generalized Barker 
ode, and several values of δǫ:(up) δǫ = 0.9994, (down) δǫ = 0.8997.te
hnique, whose implementation requires a polynomial 
omputational 
om-plexity, is based on the SDP relaxation of non
onvex quadrati
 problemsand on a suitable rank-one de
omposition of a positive semide�nite Hermi-tian matrix. The analysis of the algorithm has been 
ondu
ted in terms of38
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Figure 3.7: Ambiguity fun
tion modulus of 
ode whi
h maximizes the SNRfor N = 7, δa = 10−6, c0 generalized Barker 
ode, and several values of δǫ:(up) δǫ = 0.6239, (down) δǫ = 0.01.the following performan
e metri
s:
• dete
tion performan
e,
• region of a
hievable Doppler estimation a

ura
ies,39
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• ambiguity fun
tion of the 
oded pulse waveform.Hen
e, the trade-o� among the three 
onsidered performan
e measures hasbeen thoroughly studied and 
ommented.Possible future resear
h tra
ks might 
on
ern the possibility to makethe algorithm adaptive with respe
t to the disturban
e 
ovarian
e matrix,namely to devise te
hniques whi
h jointly estimate the 
ode and the 
o-varian
e. Moreover, it should be investigated the introdu
tion in the 
odedesign optimization problem of knowledge-based 
onstraints, ruled by theapriori information that the radar has about the surrounding environment.
In the next 
hapter, we will extend the proposed framework to the general
ase of spatial-temporal pro
essing. It implies that we will add anothera

ura
y 
onstraint. As a 
onsequen
e, a perfe
t equivalen
e between thenon
onvex formulation and the relaxed 
onvex formulation5 is not possible.However, in the following 
hapter, we will identify most 
ases where theequivalen
e is valid, proposing appliable algorithms.

5This 
ase is usually referred as hidden 
onvexity.40



Chapter 4
Coding for Spa
e-Time Pro
essing
In this 
hapter, we deal with the problem of 
onstrained 
ode opti-mization for radar Spa
e-Time Adaptive Pro
essing (STAP) in the presen
eof 
olored Gaussian disturban
e. At the design stage, we devise a 
ode designalgorithm 
omplying with the following optimality 
riterion: maximization ofthe dete
tion performan
e under a 
ontrol on the regions of a
hievable valuesfor the temporal and spatial Doppler estimation a

ura
y, and on the degreeof similarity with a pre�xed radar 
ode. The resulting quadrati
 optimizationproblem is solved resorting to a 
onvex relaxation that belongs to the SDP
lass. An optimal solution of the initial problem is then 
onstru
ted througha suitable rank-one de
omposition of an optimal solution of the relaxed one.At the analysis stage, we assess the performan
e of the new algorithm bothon simulated data and on the standard 
hallenging Knowledge-Aided SensorSignal Pro
essing and Expert Reasoning (KASSPER) data
ube.The 
hapter is organized as follows. In Se
tion 4.1, we present the modelfor both the transmitted and the re
eived 
oded signal. In Se
tion 4.2, we41
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ode design optimization problem. In Se
tion 4.3, we intro-du
e the algorithm whi
h exploits SDP relaxation and provides a solutionto the aforementioned problem. In Se
tion 4.4, we assess the performan
eof the proposed en
oding method also in 
omparison with a standard radar
ode. Finally, in Se
tion 4.5, we draw 
on
lusions and outline possible futureresear
h tra
ks.4.1 System ModelThe STAP signal model adopted in this 
hapter is that developed byWard [31, 
h. 1℄, with the addition of a temporal 
oding on the transmitted
oherent burst of pulses. Spe
i�
ally, data are 
olle
ted by a narrowbandantenna array with M spatial 
hannels whi
h, for simpli
ity, we assume 
ol-inear, omnidire
tional, and equally spa
ed. Ea
h 
hannel re
eives N e
hoes
orresponding to the returns of a 
oherent 
oded pulse train 
omposed of Npulses. It is assumed that the 
omplex envelope of the transmitted signal is
u(t) = ate

jΦt

N−1∑

i=0

c(i)p(t− iTr)where Tr is the Pulse Repetition Time (PRT), [c(0), c(1), . . . , c(N − 1)]T =

c ∈ C
N is the radar 
ode (assumed without loss of generality with unit norm),

p(t) is the pulse waveform of duration Tp and with unit energy, at and Φt arerespe
tively the amplitude and the random phase of u(t).FollowingWard's model [31℄, we formulate the problem of dete
ting a tar-get in the presen
e of observables in terms of the following binary hypothesis42
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


H0 : r = i + n

H1 : r = αp+ i + nwhere r is the MN × 1 spa
e-time snapshot at the range of interest, i and ndenote respe
tively the 
lutter/interferen
e and re
eiver noise ve
tors whi
hare assumed statisti
ally independent zero-mean 
omplex 
ir
ular Gaussianve
tors, α is the 
omplex amplitude a

ounting for both the target as well asthe 
hannel propagation e�e
ts, and p the target spa
e-time steering ve
tor,i.e p = (c ⊙ pt) ⊗ ps, with pt ∈ CN and ps ∈ CM being respe
tively thetemporal and the spatial steering ve
tors. More pre
isely [31℄,
pt =

1√
N
[1, exp(j2πft), . . . , exp(j2π(N − 1)ft)]

T ,

ps =
1√
M

[1, exp(j2πfs), . . . , exp(j2π(M − 1)fs)]
T ,with ft and fs the normalized temporal and spatial Doppler frequen
ies,respe
tively.4.2 Problem FormulationA 
ommon measure of a STAP pro
essor performan
e is the outputSignal-to-Interferen
e-plus-Noise Ratio (SINR) [31, pp. 62-69℄, whi
h, forthe optimum �lter, is given bySINR = |α|2[(c⊙ pt)⊗ ps]

†M [(c⊙ pt)⊗ ps] , (4.1)43
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i,n
≻ 0 and Ri,n = E[(i + n)(i + n)†] is the MN ×

MN-dimensional disturban
e spa
e-time 
ovarian
e matrix (due to 
lut-ter/interferen
e and thermal noise). Indeed, due to the Gaussian assumption,maximizing the SINR is tantamount to maximizing the dete
tion perfor-man
e. The following proposition will be useful in simplifying some of thesubsequent expressions and derivations.Proposition II. Let M ∈ HMN , a ∈ CN , and b ∈ CM . Then,
[(c⊙ a)⊗ b]†M [(c⊙ a)⊗ b] = c†Rc,where R ∈ HN is given by
R = [(I ⊗ b)†M(I ⊗ b)]⊙ (aa†)∗ .Furthermore,1. if M is positive semide�nite, then R is positive semide�nite,2. if M is positive de�nite, all the entries of a are nonzero, and b 6= 0,then R is positive de�nite, and3. if M is positive de�nite, and a has at least a zero entry, then R ispositive semide�nite.Proof. See De Maio et al. [14℄.The goal of this 
hapter is to design the 
ode c that maximizes the out-put SINR (4.1), under some 
onstraints that allow 
ontrolling the region ofa
hievable temporal and spatial Doppler estimation a

ura
ies and for
e a44



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGsimilarity with a given radar 
ode c0 (assumed with unit norm). This last
onstraint is ne
essary in order to 
ontrol the ambiguity fun
tion of the trans-mitted 
oded pulse train (as c0 has a good ambiguity fun
tion); it 
an beformalized as ‖c− c0‖2 ≤ ǫ, where the parameter ǫ (with 0 < ǫ < 2 for unitnorm ve
tors c and c0) rules the size of the similarity region [13, Se
tion IIIC℄. Con
erning the region of a
hievable temporal and spatial Doppler estima-tion, the most natural 
hoi
e would be for
ing upper bounds on the CRB's on
ft and fs for known α and unknown temporal and spatial Doppler frequen-
ies. Unfortunately, this approa
h leads to intra
table non
onvex 
onstraints.However, this drawba
k 
an be 
ir
umvented 
onstraining the CRB on ft forknown α and fs, and the CRB on fs for known α and ft. As we will see, thisformulation still leads to non
onvex 
onstraints whi
h, despite the previous
ase, are quadrati
. Further developments require spe
ifying that:

• the CRB, for known α and fs, with respe
t to the estimation of ft isgiven by [32, Se
tion 8.2.3.1℄
∆CR(ft) = Ψ

{[(
c⊙ ∂pt

∂ft

)
⊗ ps

]†
M

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]}−1

,(4.2)with Ψ =
1

2|α|2 ;
• the CRB, for known α and ft, with respe
t to the estimation of fs isgiven by

∆CR(fs) = Ψ

{[
(c⊙ pt)⊗

∂ps

∂fs

]†
M

[
(c⊙ pt)⊗

∂ps

∂fs

]}−1

. (4.3)45



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGAs to the regions of a
hievable temporal and spatial Doppler estimationa

ura
ies (denoted by At and As, respe
tively), they 
an be 
ontrolled for
-ing upper bounds on the respe
tive CRB's. To this end, for
ing upper boundsto (4.2) and (4.3), for a spe
i�ed Ψ value, results in lower bounds on the sizesof At and As. Hen
e, a

ording to this guideline, we fo
us on radar 
odes
omplying with
∆CR(ft) ≤

Ψ

δt
and ∆CR(fs) ≤

Ψ

δs
,or equivalently

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]†
M

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]
≥ δt , (4.4)

[
(c⊙ pt)⊗

∂ps

∂fs

]†
M

[
(c⊙ pt)⊗

∂ps

∂fs

]
≥ δs , (4.5)where δt and δs are two positive real numbers ruling the upper bounds onCRB's.Exploiting Proposition II, the SINR in (4.1) and the Left Hand Side (LHS)of (4.4) and (4.5) 
an be rewritten as

[(c⊙ pt)⊗ ps]
†M [(c⊙ pt)⊗ ps] = c†Rc,

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]†
M

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]
= c†Rtc,

[
(c⊙ pt)⊗

∂ps

∂fs

]†
M

[
(c⊙ pt)⊗

∂ps

∂fs

]
= c†Rsc,

46
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R = [(I ⊗ ps)

†M(I ⊗ ps)]⊙ (ptp
†
t)

∗ ≻ 0,

Rt = [(I ⊗ ps)
†M(I ⊗ ps)]⊙ (

∂pt

∂ft

∂pt

∂ft

†

)∗ � 0,

Rs = [(I ⊗ ∂ps

∂fs
)†M(I ⊗ ∂ps

∂fs
)]⊙ (ptp

†
t)

∗ ≻ 0.It follows that the problem of devising the STAP 
ode, under (4.4) and(4.5), the similarity and the energy 
onstraints, 
an be formulated as thefollowing non
onvex quadrati
 optimization problem (QP2)
QP2





maximize
c

c†Rc

subject to c†c = 1

c†Rtc ≥ δt

c†Rsc ≥ δs

‖c− c0‖2 ≤ ǫwhi
h 
an be equivalently written as
QP2





maximize
c

c†Rc

subject to c†c = 1

c†Rtc ≥ δt

c†Rsc ≥ δs

ℜ
(
c†c0

)
≥ 1− ǫ/2

(4.6)
Evidently, problem (5.21) requires the spe
i�
ation of ft and fs; as a
onsequen
e, the solution 
ode depends on these preassigned values. It is thus47
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essary to provide some guidelines on the importan
e and the appli
abilityof the proposed framework. To this end, we highlight that:
• the performan
e level whi
h 
an be obtained through the optimal so-lution of (5.21), in 
orresponden
e of the design ft and fs, representsan upper bound to that a
hievable by any pra
ti
ally implementablesystem;
• the en
oding pro
edure might be applied in a waveform diversity 
on-text, where more 
oded waveforms on di�erent 
arriers are transmitted[33℄. These waveforms are 
hosen frequen
y orthogonal and ea
h ofthem is optimized for the dete
tion in a given spatial-temporal fre-quen
y bin. At the re
eiver end, the dete
tor tuned to the spe
i�
 binpro
esses its mat
hed waveform [34℄.
• a single 
oded waveform designed for the 
hallenging 
ondition of slowlymoving target on the 
lutter ridge [31℄ 
an be transmitted.
• a single 
oded waveform optimized to an average s
enario 
an be se-le
ted. Otherwise stated, the 
ode might be 
hosen as the solution tothe problem (5.21) with R, Rt, and Rs repla
ed by E [R], E [Rt], and
E [Rs], where the expe
tation operator is over ft and fs. If these lastquantities are modeled as independent random variables, the expe
ta-

48
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an be evaluated after some algebra, i.e.
E [R(h, k)] = tr [M ⊙ (ehe

T
k ⊗B)

]
A(h, k),

E [Rt(h, k)] = 4π2h k tr [M ⊙ (ehe
T
k ⊗B)

]
A(h, k),

E [Rs(h, k)] = 4π2tr{M ⊙
[
ehe

T
k ⊗ (B ⊙U)

]}
A(h, k),where B = E[psp

†
s] and A = E[ptp

†
t ], while U is the M ×M matrixwith entries U(m,n) = mn. In parti
ular, if ft and fs modeled asindependent random variables uniformly distributed in [−∆t,∆t] and

[−∆s,∆s] respe
tively, we have B(h, k) =
1

M
sin
 (2∆s(h− k)) and

A(h, k) =
1

N
sin
 (2∆t(h− k)).

• assume that, after an un
oded (or a possibly standard 
oded) trans-mission, a dete
tion is de
lared in a given spatial-temporal Dopplerbin. Our 
oding pro
edure 
an be thus employed to shape the wave-form for the next transmission in order to 
on�rm the dete
tion in thepreviously identi�ed bin.

49



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSING4.3 Problem SolutionIn this se
tion, we demonstrate how to obtain an optimal solution of QP2.Toward this, we 
onsider the following Enlarged Quadrati
 Problem (EQP2):
EQP2





maximize
c

c†Rc

subject to c†c = 1

c†Rtc ≥ δt

c†Rsc ≥ δs

ℜ2
(
c†c0

)
+ ℑ2

(
c†c0

)
= c†c0c0

†c ≥ δǫwhere δǫ = (1− ǫ/2)2. As in the previous 
hapter, we 
an obtain anoptimal solution of QP2 from an optimal solution of EQP2. Thus, if c̄ isoptimal for EQP2, then c̄ej arg(c̄
†c0) is optimal for QP2. Now, we are goingto �nd an optimal solution of EQP2. To this end, we exploit the equivalentmatrix formulation

EQP2





maximize
C

tr (CR)

subject to tr (C) = 1tr (CRt) ≥ δttr (CRs) ≥ δstr (CC0) ≥ δǫ

C = cc†

(4.7)
where C0 = c0c0

†.Problem (4.7) 
an be relaxed into a SDP problem negle
ting the rank-one 
onstraint [26℄. By doing so, we obtain a Relaxed Enlarged Quadrati
50
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REQP2





maximize
C

tr (CR)

subject to tr (C) = 1tr (CRt) ≥ δttr (CRs) ≥ δstr (CC0) ≥ δǫ

C � 0 .

(4.8)
The dual problem of REQP2 (REQPD2) is

REQPD2





minimize
y1,y2,y3,y4

y1 − y2δt − y3δs − y4δǫ

subject to y1I − y2Rt − y3Rs − y4C0 � R

y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.Throughout the paper, we assume that QP2 is stri
tly feasible, namelythere is c1 su
h that ‖c1‖ = 1, c†1Rtc1 > δt, c†1Rsc1 > δs, and ℜ
(
c1

†c0
)
>

1 − ǫ/2 (to this end, it is su�
ient to suppose that the initial 
ode c0 is astri
tly feasible solution of QP2). We 
laim that both REQP2 and REQPD2are stri
tly feasible1. It follows, by the weak duality theorem, that REQP2is bounded above and REQPD2 is bounded below. Also, it follows, by thestrong duality theorem of SDP [27, Theorem 1.7.1℄, that the optimal valuesof REQP2 and REQPD2 are equal and attainable at some optimal points.Moreover, the 
omplementary sla
kness 
onditions are satis�ed at the opti-mal points of the primal and the dual problems. Denote by v(·) the optimal1Further details on the stri
t feasibility of REQP2 and REQPD2 
an be found in thework of De Maio et al. [14℄. 51



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGvalue of the problem (·). It is known from optimization theory that REQPD2is also the dual problem of EQP2. So far, we have established the followingrelationships:
v(REQP2) = v(REQPD2) (from strong duality theorem of SDP)

≥ v(EQP2) (from the weak duality theorem)
= v(QP2).As a 
onsequen
e, solving the SDP problem REQP2 provides an upper boundto EQP2 (or the original problem QP2). Furthermore, as long as we 
an geta rank-one optimal solution of REQP2 in some way, the upper bound istight; in other words, the SDP relaxation of EQP2 is exa
t, or equivalently,strong duality for the non
onvex problem EQP2 holds (i.e., v(REQPD2) =

v(EQP2)). Therefore, to solve EQP2 (or QP2), it su�
es for us to �nd arank-one optimal solution of the SDP problem, whi
h is our fo
us in theremainder of the 
hapter.Before pro
eeding, let us 
ompare the optimization problem solved inthe previous 
hapter with that we are fa
ed with in the present one. In
hapter 3, we have shown that strong duality hold for problem (3.9): inother words, (3.9) has been proven to be a hidden 
onvex program. Themost signi�
ant di�eren
e between (3.9) and (4.7) is that the former in
ludesonly three homogeneous quadrati
 
onstraints, while the latter has four. Asa 
onsequen
e, strong duality for problem EQP2 may or may not hold. Inwhat follows, we identify most 
ases where the strong duality is valid, andpropose solution pro
edures, resorting to the de
omposition method used in52
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hapter [28℄, or a new rank-one de
omposition theorem proposedin a more re
ent paper [35℄. We expli
itly highlight that the te
hniquesused in this 
hapter is far tri
kier and more involved than those exploited inprevious one.The analysis of the relaxed problem REQP2 and its dual REQPD2 is easyas REQP2 is a 
onvex problem. Indeed, denote by C̄ an optimal solutionof REQP2, and by (ȳ1, ȳ2, ȳ3, ȳ4) an optimal solution of REQPD2. Then,the primal-dual optimal solution pair (C̄, ȳ1, ȳ2, ȳ3, ȳ4) satis�es the Karush-Kuhn-Tu
ker optimality 
onditions (whi
h are su�
ient and ne
essary, sin
eSDP is a 
onvex optimization problem and 
onstraint quali�
ation 
onditionsare satis�ed) [3℄. In parti
ular, the 
omplementary sla
kness 
onditions aretr [(ȳ1I − ȳ2Rt − ȳ3Rs − ȳ4C0 −R) C̄
]
= 0 (4.9)

(tr (C̄Rt

)
− δt

)
ȳ2 = 0 (4.10)

(tr (C̄Rs

)
− δs

)
ȳ3 = 0 (4.11)

(tr (C̄C0

)
− δǫ

)
ȳ4 = 0. (4.12)Further developments require introdu
ing the new rank-one de
ompositionpropositions.Proposition III. Let X ∈ HN be a nonzero positive semide�nite ma-trix (N ≥ 3), and suppose that (tr (Y A1) , tr (Y A2) , tr (Y A3) , tr (Y A4)) 6=

(0, 0, 0, 0) for any nonzero positive semide�nite matrix Y ∈ HN . Then,
• if rank(X) ≥ 3, one 
an �nd, in polynomial time, a rank-one matrix
xx† (syntheti
ally denoted as D2(X,A1,A2,A3,A4)) su
h that x is53
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x†Aix = tr (XAi) , i = 1, 2, 3, 4;

• if rank(X) = 2, for any z not in the range spa
e of X, one 
an �nd arank-one matrix xx† su
h that x is in the linear subspa
e spanned by
{z} ∪ range(X), and

x†Aix = tr (XAi) , i = 1, 2, 3, 4.Proof. See the re
ent work of Ai et al. [35, Theorem 2.3℄.The 
omputational 
omplexity of ea
h rank-one de
omposition theoremrequires O(N3) [28℄ [35℄. In fa
t, the 
omputation involves both a Choleskyfa
torization and suitable rotations. Hen
e, the required amount of opera-tions is dominated by that ne
essary for the Cholesky de
omposition, whi
his known to be O(N3).As already pointed out, on
e a rank-one positive semide�nite matrix Csatisfying (4.9)-(4.12) and feasible to (4.8) has been found, we 
an 
laim that
C = cc† is an optimal solution of (4.8), or equivalently, c is an optimalsolution of (5.21). Now, we aim at �nding a pro
edure to 
onstru
t a rank-one optimal solution of REQP2 from a general rank optimal solution C̄ ofREQP2, whi
h 
an always be found by an SDP solver. We 
laim the followingtwo main propositions:Proposition IV. Let C̄ be an optimal solution of REQP2 with rank(C̄) ≥

3. Then, we 
an �nd a rank-one optimal solution of REQP2 in polynomial54



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGtime.Proof. See De Maio et al. [14℄.Proposition V. Let C̄ be an optimal solution of REQP2 with rank(C̄) =

2. Then, if one of the inequalities is satis�ed: tr (C̄Rt

)
> δt, tr (C̄Rs

)
> δs,or tr (C̄C0

)
> δǫ, we 
an �nd a rank-one optimal solution of REQP2 inpolynomial time.Proof. See De Maio et al. [14℄.We remark that in Proposition IV the assumption rank(C̄) ≥ 3 impliesthat the size N of C̄ is greater than or equal to 3, i.e., the length of radar
ode is not smaller than 3, whi
h is pra
ti
al. Note that in Proposition V,the size N of C̄ 
ould be greater than or equal to 2.In the following, we summarize the pro
edure that leads to an optimalsolution of EQP2, by distinguishing among three possible 
ases:Case 1: rank (C̄) = 1. In this 
ase, a ve
tor c with C̄ = cc† is anoptimal solution of EQP2.Case 2: rank (C̄) ≥ 3. Exploiting Proposition IV, we 
an obtain arank-one optimal solution of REQP2.Case 3: rank (C̄) = 2. Let tr (C̄Rt

)
= δ2, tr (C̄Rs

)
= δ3 and tr (C̄C0

)
=

δ4. We have to 
onsider two possible situations:Case 3.1: One of the inequalities δ2 > δt, δ3 > δs, or δ4 > δǫ holds. Inthis 
ase, we invoke Proposition V to output a rank-one optimal solution ofREQP2.Case 3.2: δ2 = δt, δ3 = δs, δ4 = δǫ. In this 
ase, we are not able to judgewhether the strong duality is valid for (4.8). Nevertheless, we 
an still provide55
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edure aimed at 
onstru
ting feasible solutions for (4.8). Pre
isely,a

ording to the last 
laim of Proposition III, for any ve
tor z /∈ range(C̄),we 
an obtain a ve
tor cz su
h thattr (czc†z) = tr (C̄) = 1tr (czc†zRt

)
= tr (C̄Rt

)
= δttr (czc†zRs

)
= tr (C̄Rs

)
= δstr (czc†zC0

)
= tr (C̄C0

)
= δǫnamely feasible for EQP2. Hen
e, given H di�erent ve
tors z /∈ range(C̄),whi
h 
an be randomly generated so that rank(C̄ + zz†) = 3, we 
an get

H feasible solutions of EQP2 and, then, we 
an sele
t the one whi
h has thelargest obje
tive fun
tion value. Besides the randomized way to generatefeasible solutions, whi
h is suboptimal, we 
an also 
onsider a deterministi
approa
h. In parti
ular, the following method provides a feasible solutionwith a loss of optimality by ȳ4
(tr(C0cc

†)− δǫ
):1. Perform the rank-one de
omposition [c1, c2] = D1(C̄, δtI − Rt, δsI −

Rs);2. Choose a sub-optimal solution c from c1/||c1|| or c2/||c2||, say c =

c1/||c1||, su
h that tr(C0cc
†) ≥ δǫ.As our simulation shows, the sub
ase 3.2 happens in less than 0.1% ofthe experiments (see Figure 4.19, and we report the details of the simulationin Se
tion 4.4.3).Summarizing, the STAP 
ode, whi
h is optimum for problem QP2 (ex
eptfor 
ase 3.2), 
an be 
onstru
ted a

ording to Algorithm 2.56
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e-Time En
oding Pro
edure (STEP)Input: M , ps, pt, c0, δs, δt, δǫ;Output: c
STEP

;1: solve the SDP problem REQP2 �nding an optimal solution C̄;2: evaluate R = rank(C̄);3: if R = 1 then4: evaluate c̄ su
h that C̄ = c̄c̄†;5: else if R ≥ 3 then6: evaluate c̄ = D2(C̄, I,Rs,Rt,C0);7: else if R = 2 then8: c̄ = Algorithm 3 (C̄,Rs,Rt,C0, δs, δt, δǫ
);9: end10: c

STEP
= c̄ejφ, with φ = arg(c̄†c0).The 
omputational 
omplexity, 
onne
ted with the implementation of thealgorithm, is polynomial, sin
e O (N3.5) is the amount of operations involvedin solving the SDP problem, and O (N3) is the 
omplexity required by thede
ompositions D1(·, ·, ·) and D2(·, ·, ·, ·, ·).4.4 Performan
e AnalysisThe present se
tion is aimed at analyzing the performan
e of the pro-posed en
oding s
heme. The analysis is 
ondu
ted in terms of Pd, regions ofa
hievable Doppler estimation a

ura
ies (At and As), and ambiguity fun
-tion of the pulse train modulated through the proposed 
ode c̄. To pro
eedfurther, we re
all that, for a spe
i�ed value of Pfa and for non�u
tuatingtarget [24℄, Pd 
an be evaluated as

Pd = Q

(√
2|α|2c̄†Rc̄,

√
−2 lnPfa

)
.
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Algorithm 3 EQP2 feasible solution for R = 2Input: C̄, Rs, Rt, C0, δs, δt, δǫOutput: c̄1: evaluate δ2 = tr (C̄Rt

), δ3 = tr (C̄Rs

) and δ4 = tr (C̄C0

);2: if δ2 > δt then3: evaluate [c1, c2] = D1(C̄, δ3I −Rs, δ4I −C0);4: if c
†
1Rtc1/||c1||2 > δt then5: evaluate c̄ = c1/||c1||;6: else7: evaluate c̄ = c2/||c2||;8: end9: else if δ3 > δs then10: evaluate [c1, c2] = D1(C̄, δ2I −Rt, δ4I −C0);11: if c
†
1Rsc1/||c1||2 > δs then12: evaluate c̄ = c1/||c1||;13: else14: evaluate c̄ = c2/||c2||;15: end16: else if δ4 > δǫ then17: evaluate [c1, c2] = D1(C̄, δ2I −Rt, δ3I −Rs);18: if c
†
1C0c1/||c1||2 > δǫ then19: evaluate c̄ = c1/||c1||;20: else21: evaluate c̄ = c2/||c2||;22: end23: else if δ2 = δt, δ3 = δs and δ4 = δǫ then24: determine, using Proposition III, H feasible solutions ci, i = 1, . . . , H;25: sele
t c̄ from {c1, . . . , cH} su
h that c̄†Rc̄ ≥ c

†
iRci for all i = 1, . . . , H.26: end

58
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hmark 
ode for the dete
tion probability, we 
onsider the un
on-strained unitary 
ode
cbenchmark = argmax

c

{
c†Rc | ‖c‖2 = 1

}
,whi
h does not ne
essarily satisfy the similarity 
onstraints or spatial/temporalDoppler a

ura
y 
onstraints. Sin
e that c†benchmarkRcbenchmark = λmax (R),the ben
hmark Pd 
an be expressed as

P benchmark
d = Q

(√
2|α|2λmax (R),

√
−2 lnPfa

)
.Analogously, we 
onsider a ben
hmark CRB for both spatial and temporalDoppler frequen
ies, i.e.CRBbenchmark

l =
Ψ

λmax (Rl)
, l ∈ {s, t} .Noti
e that, in general, the three values P benchmark

d , CRBbenchmark
s , andCRBbenchmark

t are not obtained in 
orresponden
e of the same unitary norm
ode. Besides, the ambiguity fun
tion of the 
oded pulse train 
an be evalu-ated as
χ(τ, ν) =

N−1∑

m=0

N−1∑

n=0

c
STEP

(m)c∗
STEP

(n)χp(τ − (m− n)Tr, ν) ,where [c
STEP

(0), . . . , c
STEP

(N − 1)]T = c
STEP

, and χp(·, ·) is the ambiguityfun
tion of an unmodulated pulse [22℄.In our s
enario, we 
onsider a STAP system with M = 11 
hannels and59
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N = 32 pulses. Moreover, we �x Pfa to 10−6. As to the temporal steeringve
tor pt, we set the normalized temporal Doppler frequen
y ft = 0.25,while we use the normalized spatial Doppler frequen
y fs = 0.15 for thespatial steering ve
tor ps. As similarity 
ode c0, we resort to a generalizedBarker sequen
e [22, pp. 109-113℄: su
h 
odes are polyphase sequen
es whoseauto
orrelation fun
tion has minimal peak-to-sidelobe ratio ex
luding theoutermost sidelobe. Examples of these sequen
es have been found for allN ≤

45 [29℄ [30℄, using numeri
al optimization te
hniques. In our simulations, we
hoose a unitary norm version of the generalized Barker 
ode c0 of length 32[22, p. 111℄.In order to 
ompare the performan
e of our algorithm with that of thesimilarity 
ode, we have also evaluated Pd and CRBs obtained using c0, i.e.
P 0
d = Q

(√
2|α|2c†0Rc0,

√
−2 lnPfa

)
,and CRB0

l =
Ψ

c
†
0Rlc0

, l ∈ {s, t} .Con
erning the inverse disturban
e 
ovarian
e matrix M , we 
onsiderthe two following s
enarios:
• simulated 
ovarian
e, a

ording to the disturban
e model des
ribed byWard [31℄;
• 
ovarian
e, from the KASSPER database [36℄.Regarding the parameters δt and δs, in general, what 
an be assignedis the interval of δs and δt values whi
h 
an be exploited. Evidently, they60



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGdepend on M , fs, and ft and must be smaller than the maximum eigenvalueof Rs and Rt respe
tively. From a pra
ti
al point of view, the sele
tionof the quoted parameters depend on the desired a

ura
y region (providedit is 
ompatible with stri
t feasibility). In the numeri
al examples, we have
onsidered a wide variation range for the parameters so as to better highlightthe performan
e trade-o� due to di�erent parameters 
ombinations.Finally, in the numeri
al simulations, we have exploited the Matlab 
©toolbox SeDuMi [4℄ for solving the SDP relaxation.4.4.1 Simulated Covarian
eThe disturban
e 
ovarian
e matrix M−1 has been simulated a

ordingto Ward's model [31, 
h. 2℄, as the sum of a 
lutter term plus a thermalnoise 
ontribution, i.e. M−1 = Rclutter + σ2I, where Rclutter is the 
lutter
ovarian
e and σ2 is the thermal noise level. More pre
isely, Rclutter 
an beobtained using the general 
lutter model des
ribed by Ward [31, par. 2.6.1℄.It a

ounts for the e�e
ts of velo
ity misalignment (due to air
raft 
rab) andintrinsi
 
lutter motion [31℄. A syntheti
 des
ription of the prin
ipal radarsystem parameters, used in the simulations, is reported in Table 4.1 (for amore exhaustive list, please refer to the 
lassi
 Ward's book [31℄).In Figure 4.1, we plot Pd of the optimum 
ode (a

ording to the proposed
riterion) versus |α|2 for non�u
tuating target, δs = 3.8, δǫ = 0.001, and forseveral values of δt. In the same �gure, we also represent both the P 0
d andthe P benchmark

d . The 
urves show that, in
reasing δt, we get lower and lowervalues of Pd for a given |α|2 value. This was expe
ted sin
e the higher δtthe smaller the feasibility region of the optimization problem to be solved61



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGTable 4.1: Radar System Parameters.Peak power 200 kW Transmit Gain 21 dBPulse width 0.2 ms Re
eiver Gain 10 dBSystem Losses 4 dB Instantaneous Bandwidth 4 MHzOperating frequen
y 300 MHz Noise Figure 3 dBPRF 300 Hz Clutter-to-Noise Ratio 30 dBDuty Fa
tor 6% Number of 
lutter foldovers β = 1Platform Velo
ity 50 m/s Platform Altitude 9000 m

α

δ

Figure 4.1: Pd versus |α|2 for non�u
tuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, δs = 3.8, δǫ = 0.001, andseveral values of δt ∈ {494.4, 516.0, 543.0}. Generalized Barker 
ode (solid
urve). Pd of the proposed 
ode for a given δt (dashed 
urves). Ben
hmark
Pd (o-marked dashed 
urve).for �nding the 
ode. Nevertheless, the proposed en
oding algorithm usuallyensures a better dete
tion performan
e than the original generalized Barker
ode.In Figure 4.2, ∆CR(ft) is plotted versus |α|2 for the same values of δtas in Figure 4.1. The ben
hmark CRBt and CRB0

t are plotted too. The
urves highlight that, in
reasing δt, better and better ∆CR(ft) values 
an be62
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α

∆

δ

Figure 4.2: ∆CR(ft) versus |α|2 for non�u
tuating target, simulated data,
ft = 0.25, fs = 0.15, N = 32, M = 11, δs = 3.8, δǫ = 0.001, and severalvalues of δt ∈ {494.4, 516.0, 543.0}. Generalized Barker 
ode (solid 
urve).
∆CR(ft) of the proposed 
ode for a given δt (dashed 
urves). Ben
hmark
∆CR(ft) (o-marked dashed 
urve).a
hieved. This is in a

ordan
e with the 
onsidered 
riterion, be
ause thehigher δt the larger the size of the region At.In Figure 4.3, we plot Pd versus |α|2 for non�u
tuating target, δt = 0.5,
δǫ = 0.001, and for several values of δs. Also in this 
ase, we 
an noti
ea gain of the proposed en
oding s
heme over the 
lassi
 generalized Barker
ode. However, the gain slightly redu
es as the parameter δs in
reases, sin
ethe feasibility region be
omes smaller and smaller.In Figure 4.4, we plot CRBbenchmark

s , CRB0
s and ∆CR(fs) versus |α|2 forthe same values of the parameters 
onsidered in the previous �gure. Weobserve that in
reasing δs, we slightly enlarge the region of a
hievable spatialDoppler a

ura
y. Moreover, the proposed en
oding te
hnique assures alarger As than the generalized Barker 
ode.Summarizing, the joint analysis of Figures 4.1÷4.4 shows that a trade-o�63
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α

δ

Figure 4.3: Pd versus |α|2 for non�u
tuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, δt = 0.5, δǫ = 0.001, andseveral values of δs ∈ {656.7, 658.9, 669.9}. Generalized Barker 
ode (solid
urve). Pd of the proposed 
ode for a given δs (dashed 
urves). Ben
hmark
Pd (o-marked dashed 
urve).

∆

α

δ

Figure 4.4: ∆CR(fs) versus |α|2 for non�u
tuating target, simulated data,
N = 32, M = 11, ft = 0.25, fs = 0.15, δt = 0.5, δǫ = 0.001, and severalvalues of δs ∈ {656.7, 658.9, 669.9}. Generalized Barker 
ode (solid 
urve).
∆CR(fs) of the proposed 
ode for a given δs (dashed 
urves). Ben
hmark
∆CR(fs) (o-marked dashed 
urve).
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α

δ
ε

Figure 4.5: Pd versus |α|2 for non�u
tuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, δt = 0.5, δs = 3.8, and severalvalues of δǫ ∈ {0, 0.9811, 0.9918, 0.9957}. Generalized Barker 
ode (solid
urve). Pd of the proposed 
ode for a given δǫ (dashed 
urves). Ben
hmark
Pd (o-marked dashed 
urve).
an be realized between the dete
tion performan
e and the estimation a

u-ra
y of both the temporal and the spatial Doppler frequen
ies. Additionally,there exist 
odes 
apable of outperforming the generalized Barker 
ode bothin terms of Pd and sizes of At and As.The e�e
ts of the similarity 
onstraint are analyzed in Figure 4.5. Therein,we set δt = 0.5, δs = 3.8, and 
onsider several values of δǫ. The plots showthat in
reasing δǫ worse and worse Pd values are obtained; this behavior 
anbe explained observing that the smaller δǫ the larger the size of the similar-ity region. However, this dete
tion loss is 
ompensated for an improvementof the 
oded pulse train ambiguity fun
tion, as we 
an see in Figures 4.7and 4.8, where the modulus of that fun
tion is plotted assuming re
tangu-lar pulses, and Tr = 3Tp. For 
omparison purposes, the ambiguity fun
tionmodulus of c0 is plotted in Figure 4.8. The plots highlight that the 
loser δǫ65
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Figure 4.6: Ambiguity fun
tion modulus of the generalized Barker 
ode c0with Tr = 3Tp.to 1 the higher the degree of similarity between the ambiguity fun
tions ofthe devised and pre�xed 
odes. This is due to the fa
t that in
reasing δǫ istantamount to redu
ing the size of the similarity region. In other words, wefor
e the devised 
ode to be similar and similar to the pre�xed one and, as a
onsequen
e, we get 
loser and 
loser ambiguity fun
tions.In the previous �gures, we have �xed two parameters, and have 
hangedthe other in order to analyze the impa
t on the performan
e of a parti
-ular 
onstraint. In Figures 4.9 ÷ 4.11, we analyze the joint e�e
t of thethree parameters, so as to show that there are situations where the pro-posed en
oding method 
an outperform the generalized Barker 
oding interms of Pd, ∆CR(ft), and ∆CR(fs). In parti
ular, in Figure 4.9 we plot
Pd, in Figure 4.10 ∆CR(ft), and in Figure 4.11 ∆CR(fs) versus |α|2, assum-ing (δt, δs, δǫ) = (325.7, 403.2, 0.8). Evidently, for the 
onsidered values ofthe parameters, the proposed 
ode, whose ambiguity fun
tion is plotted in66
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Figure 4.7: Ambiguity fun
tion modulus of 
ode whi
h maximizes the SINRfor N = 32, Tr = 3Tp, δt = 0.5, δs = 3.8, c0 generalized Barker 
ode, and(up) δǫ = 0.9957, (down) δǫ = 0.9918.Figure 4.12, outperforms the generalized Barker in terms of Pd, CRBt, andCRBs.As to the robustness of the proposed method, we study the behaviourof the algorithm when a mismat
h on the temporal or spatial Doppler ispresent. In parti
ular, we design two 
odes, one assuming ft = 0.25 and67
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Figure 4.8: Ambiguity fun
tion modulus of 
ode whi
h maximizes the SINRfor N = 32, Tr = 3Tp, δt = 0.5, δs = 3.8, c0 generalized Barker 
ode, and(up) δǫ = 0.9811, (down) δǫ = 0.
fs = 0.15, and another where ft and fs are modeled as random parameteruniformly distributed in the interval [−1/3; 1/3], i.e. ft ∼ U (−1/3; 1/3) and
ft ∼ U (−1/3; 1/3). We analyze the performan
e when ft (left 
olumn) or fs(right 
olumn) ranges in the interval [−1/2; 1/2]. In Figure 4.13, we plot the
Pd versus ft in the left 
olumn (versus fs in the right one) for |α|2 = 14 dB68
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αFigure 4.9: Pd versus |α|2 for non�u
tuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, and (δt, δs, δǫ) =
(325.7, 403.2, 0.8). Pd of the proposed 
ode (dashed 
urves). Ben
hmark
Pd (o-marked dashed 
urve).

∆

αFigure 4.10: ∆CR(ft) versus |α|2 for non�u
tuating target, simulated data,
ft = 0.25, fs = 0.15, N = 32, M = 11, and (δt, δs, δǫ) = (325.7, 403.2, 0.8).
∆CR(ft) of the proposed 
ode (dashed 
urves). Ben
hmark ∆CR(ft) (o-marked dashed 
urve).and (δt, δs, δǫ) = (53.4, 15.6, 0.5). We 
an noti
e that the proposed methodoutperforms the generalized Barker 
ode almost everywhere for the 
ase of a69
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∆

αFigure 4.11: ∆CR(fs) versus |α|2 for non�u
tuating target, simulated data,
N = 32, M = 11, ft = 0.25, fs = 0.15, and (δt, δs, δǫ) = (325.7, 403.2, 0.8).
∆CR(fs) of the proposed 
ode (dashed 
urves). Ben
hmark ∆CR(fs) (o-marked dashed 
urve).

Figure 4.12: Ambiguity fun
tion modulus of proposed 
ode for N = 32,
Tr = 3Tp, c0 generalized Barker 
ode, and (δt, δs, δǫ) = (325.7, 403.2, 0.8).spatial or temporal Doppler mismat
h. In other words, simulations indi
atethat the novel en
oding method shares an intrinsi
 robust behaviour.

70
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∆

∆

∆
∆

Figure 4.13: Robustness analysis for |α|2 = 14 dB, non�u
tuating target,simulated data, N = 32, M = 11, (δt, δs, δǫ) = (53.4, 15.6, 0.5), ft = 0.25 and
fs ∈ [−1/2; 1/2] (left 
olumn), fs = 0.15 and ft ∈ [−1/2; 1/2] (right 
olumn).Proposed 
ode for ft = 0.25 and fs = 0.15 (dashed 
urves), GeneralizedBarker 
ode (solid 
urves), Proposed 
ode for ft ∼ U (−1/3; 1/3) and fs ∼
U (−1/3; 1/3) (dash-dotted 
urves). (top left) Pd versus ft; (top right) Pdversus fs; (middle left) ∆CR(ft) versus ft; (middle right) ∆CR(ft) versus fs;(bottom left) ∆CR(fs) versus ft; (bottom right) ∆CR(fs) versus fs.4.4.2 Covarian
e from the KASSPER DatabaseIn this subse
tion, we use the ground 
lutter 
ovarian
e matrix from therange 
ell number 10 of the KASSPER [36℄ data
ube. This dataset 
ontainsmany real-world e�e
ts in
luding heterogeneous terrain, sub-spa
e leakage,array errors, and many ground targets. It refers to a California site 
hara
ter-ized by large mountains and moderate density of roads. The 
hosen matrix isloaded with the thermal noise 
ovarian
e matrix and then the sum is invertedto get M−1. As in the previous s
enario, we set the Clutter-to-Noise Ratio71
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α

δ

Figure 4.14: Pd versus |α|2 for non�u
tuating target, real data, Pfa = 10−6,
ft = 0.25, fs = 0.15, δs = 30.6, δǫ = 0.001, and several values of δt ∈
{873.3, 1036.0, 1059.5}. Generalized Barker 
ode (solid 
urve). Pd of theproposed 
ode for a given δt (dashed 
urves). Ben
hmark Pd (o-markeddashed 
urve).to 30 dB.

α

∆

δ

Figure 4.15: ∆CR(ft) versus |α|2 for non�u
tuating target, real data,
ft = 0.25, fs = 0.15, δs = 30.6, δǫ = 0.001, and several values of
δt ∈ {873.3, 1036.0, 1059.5}. Generalized Barker 
ode (solid 
urve). ∆CR(ft)of the proposed 
ode for a given δt (dashed 
urves). Ben
hmark ∆CR(ft)(o-marked dashed 
urve). 72



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGIn Figures 4.14 and 4.15, we study the e�e
t of the parameter δt on
Pd and ∆CR(ft). In parti
ular, in Figure 4.14, we plot Pd of the optimum
ode versus |α|2 for non�u
tuating target, δs = 30.6, δǫ = 0.001, and forseveral values of δt. In the same �gure, we also represent both P 0

d and
P benchmark
d . We 
an observe a similar behavior as in the simulated 
ase ofsubse
tion 4.4.1: in
reasing δt, we get lower and lower values of Pd for agiven |α|2 value. Moreover, our proposed en
oding s
heme 
an a
hieve abetter dete
tion performan
e than the 
lassi
 generalized Barker 
ode. InFigure 4.15, ∆CR(ft) is plotted versus |α|2 for the same values of δt as inFigure 4.14. The ben
hmark CRBt and CRB0

t are plotted too. As expe
ted,the 
urves show that in
reasing δt better and better ∆CR(ft) values 
an beobtained.

α

δ

Figure 4.16: Pd versus |α|2 for non�u
tuating target, real data, ft =
0.25, fs = 0.15, δt = 1.1, δǫ = 0.001, and several values of δs ∈
{29.3, 1351.6, 1381.7}. Generalized Barker 
ode (solid 
urve). Pd of the pro-posed 
ode for a given δs (dashed 
urves). Ben
hmark Pd (o-marked dashed
urve).In Figure 4.16, we plot Pd versus |α|2 for non�u
tuating target, δt = 1.1,73
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δǫ = 0.001, and for several values of δs. It is evident that an in
rease of theparameter δs leads to a slight deterioration of dete
tion performan
es. This
an be explained observing that the feasibility region be
omes smaller andsmaller as δs in
reases.

α

∆

δ

Figure 4.17: ∆CR(fs) versus |α|2 for non�u
tuating target, real data,
ft = 0.25, fs = 0.15, δt = 1.1, δǫ = 0.001, and several values of
δs ∈ {29.3, 1351.6, 1381.7}. Generalized Barker 
ode (solid 
urve). ∆CR(fs)of the proposed 
ode for a given δs (dashed 
urves). Ben
hmark ∆CR(fs)(o-marked dashed 
urve).In Figure 4.17, we plot CRBbenchmark

s , CRB0
s, and ∆CR(fs) versus |α|2 forthe same values of the parameters 
onsidered in the previous �gure. The
urves highlight that in
reasing δs lower and lower ∆CR(fs) values 
an bea
hieved.Finally, in Figure 4.18, we plot Pd versus |α|2 for non�u
tuating target,

δt = 1.1, δs = 30.6, and for several values of δǫ. We 
an noti
e that the 
loser
δǫ to 1, the 
loser Pd to P 0

d , namely the performan
es of the proposed 
odeand the generalized Barker 
ode end up 
oin
ident.In 
on
lusion, Pd, ∆CR(ft), and ∆CR(fs) exhibit a similar behavior both74
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α

δ
ε

Figure 4.18: Pd versus |α|2 for non�u
tuating target, real data, Pfa = 10−6,
ft = 0.25, fs = 0.15, δt = 1.1, δs = 30.6, and several values of δǫ ∈
{0, 0.9792, 0.9974}. Generalized Barker 
ode (solid 
urve). Pd of the pro-posed 
ode for a given δǫ (dashed 
urves). Ben
hmark Pd (o-marked dashed
urve).with simulated and KASSPER 
ovarian
e data. Moreover, the proposedanalysis shows that it is possible to realize a trade-o� among the three pa-rameters δt, δs, and δǫ to in
rease the dete
tion performan
e, or to improvethe Doppler estimation a

ura
y, or to shape the ambiguity fun
tion.4.4.3 O

urren
e of Sub
ase 3.2In this subse
tion, we analyze the typi
al rank of an optimal solution
C̄ of the SDP problem REQP2. First of all, we have to deal with the �nitepre
ision of Matlab 
© implementation of the en
oding algorithm. To this end,we introdu
e the Rankγ (A) fun
tion, namely the number of eigenvalue of thematrix A greater than the positive threshold γ. For a positive semide�nitematrix A, Rankγ (A) represents a good numeri
al estimation of the rank of75
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A, as γ → 0. Moreover, we have to distinguish a tight 
onstraint from a stri
t
onstraint. In this 
ase, we 
onsider the 
onstraint as pra
ti
ally tight if thedi�eren
e of the two sides of the inequality is less than γ. Performing 10000instan
es of the problem REQP2 (with 
lutter 
ovarian
e matrix from therange 
ell number 10 of the KASSPER data
ube,M = 11, N = 32, ft = 0.25,
fs = 0.15, c0 generalized Barker sequen
e, δt, δs, and δǫ randomly 
hosen2), inless than 1% of the 
ases, we get an optimal solution C̄ with Rankγ (C̄) = 2.For those parti
ular situations, we have also 
ontrolled the 
onstraints, andin less than 10% of the 
ases, we have all the three 
onstraints pra
ti
allytight (namely, 
ase 3.2 des
ribed at page 55). Summarizing, in less than
0.1% of the instan
es, we have a suboptimal solution of the original QP2problem. This trend holds for all the 
onsidered values3 of the parameter
γ. Furthermore, most of the instan
es presents a Rankγ (C̄) = 1, even ifthe number de
reases as the pre
ision γ tends to 0 (and 
onsequently theo

urren
e of the event Rankγ (C̄) ≥ 3 in
reases). Thus, we 
an 
on
ludeobserving that a duality gap between the original problem QP2 and therelaxed problem REQP2 (namely an optimal solution of rank 2 and all the
onstraints tight) is very rare, and even for high pre
ision (i.e. γ = 10−8), ithappens in less than 0.1% of the 
ases. The analysis is summarized in Figure4.19.2δt is a uniformly distributed random variable in the interval [λmin (Rt) ;λmax (Rt)],
δs in [λmin (Rs) ;λmax (Rs)], and δǫ in [0; 1].3Noti
e that additional results obtained 
hanging M and c0 randomly in the 10000experiments also agrees with the aforementioned behavior.

76



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSING
γ

γ

γ

γ

Figure 4.19: Rankγ (C̄), over 10000 random experiments, for di�erent valuesof γ ∈ {10−2, 10−4, 10−6, 10−8}.4.5 Con
lusionsIn this 
hapter, we have addressed the problem of 
ode design for radarSTAP, assuming that the overall disturban
e 
omponent, whi
h 
ontami-nates the useful signal, is a 
olored 
omplex 
ir
ular Gaussian ve
tor. Wehave 
onsidered the 
lass of linearly 
oded pulse trains and have determinedthe radar 
ode whi
h maximizes the dete
tion performan
e under a 
onstrainton the region of a
hievable values for the temporal and spatial Doppler esti-mation a

ura
y and for
ing a similarity 
onstraint with a given radar 
odeexhibiting some desirable properties.The optimization problem, we have been fa
ed with, is non
onvex andquadrati
. In order to solve it, we have �rst performed a relaxation into a
onvex SDP problem. Then, applying appropriately rank-one de
ompositiontheorems [28℄ [35℄ to an optimal solution of the relaxed problem, we have de-termined an optimal 
ode. Remarkably, the proposed 
ode design pro
edure77
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omputational 
omplexity.At the analysis stage, we have assessed the performan
e of the new al-gorithm both on simulated data and on the KASSPER referen
e STAP dat-a
ube. The analysis has been 
ondu
ted in terms of dete
tion performan
e,regions of estimation a

ura
ies that unbiased estimators of the temporaland the spatial Doppler frequen
ies 
an theoreti
ally a
hieve, and ambiguityfun
tion. The results have highlighted the trade-o� existing among the afore-mentioned performan
e metri
s. Otherwise stated, dete
tion 
apabilities 
anbe traded with desirable properties of the 
oded waveform and/or with en-larged regions of a
hievable temporal/spatial Doppler estimation a

ura
ies.Possible future resear
h tra
ks might 
on
ern the possibility to make thealgorithm adaptive with respe
t to the disturban
e 
ovarian
e matrix, namelyto devise te
hniques whi
h jointly estimate the 
ode and the 
ovarian
e.Moreover, it should be investigated the introdu
tion in the 
ode design op-timization problem of 
onstraints related to the probability of 
orre
t target
lassi�
ation as well as of knowledge-based 
onstraints, ruled by the aprioriinformation that the radar has about the surrounding environment.
In the next 
hapter, we further extend the proposed en
oding framework.In fa
t, starting from 
hapter 3, where we have shown a single transmitter-single re
eiver example, in this 
hapter we have analyzed the STAP 
ase(namely, a single transmitter-multiple re
eivers situation), arriving to 
hapter5, where we will fa
e with a radar network s
enario (multiple transmitters-78
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eivers). As we will see, in this 
ontext we have a Nondeterministi
Polynomial (NP) problem. Nevertheless, 
onvex optimization wil be useful,evaluating a quasi-optimal solution in polynomial time, through a relaxationand randomization te
hnique [26℄.
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Chapter 5
Coding for Networked Radar
N etworked radar sensors are 
onsidered in this 
hapter. In the lastde
ade, the importan
e of radar has grown progressively with the in
reasingdimension of the system: from a single 
olo
ated antenna to a large sensornetwork [37℄. The 
on
ept of heterogeneous radars working together has beenthoroughly studied, opening the door to the the 
on
ept of Multiple-Input-Multiple-Output (MIMO) radar [38℄ [39℄, Over-The-Horizon (OTH) radarnetworks [40℄, and Distributed Aperture Radar (DAR) [41℄ [42℄. These threes
enarios are examples of 
ooperative radar networks, in the sense that everysingle element 
ontributes to the overall dete
tion pro
ess. Unfortunately, inmany pra
ti
al situations, it is not possible to design the network apriori.As su
h, the elements are just simply added to the already existing network(plug and �ght), and ea
h sensor exhibits its own dete
tion s
heme. This isthe 
ase in non
ooperative radar networks [43℄ [44℄. In this s
enario, it be-
omes extremely important that ea
h additional sensor interferes as little aspossible with the pre-existing elements, and, to this end, some te
hniques are80
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hes rely upon the employment of spatialand/or frequen
y diversity: the former resorts to forming multiple orthog-onal beams, while the latter uses separated 
arrier frequen
ies to redu
einterferen
e [45℄ [46℄. Another possibility is to exploit waveform diversity[47℄: in whi
h the basi
 
on
ept is to suitably modulate the waveform ofthe new sensor so as to optimize the dete
tion 
apabilities of a spe
i�
 sen-sor, but, at the same time, 
ontrolling the interferen
e introdu
ed into thenetwork. Noti
e that this is di�erent from the approa
h employed in 
oop-erative sensor network, where one must design waveforms so as to optimizethe joint performan
e of the system [48℄ [49℄. In the non
ooperative 
ase,the optimization of radar waveforms has been dis
ussed in two papers [50℄[51℄. In the former, the design is based upon the maximization of the globalSignal-to-Interferen
e-Plus-Noise Ratio (SINR), and 
lassi
 
onstraints su
has phase-only or �nite energy are 
onsidered [50℄. In the latter, the prob-lem of parameter estimation (e.g. dire
tion of arrival) for a non
ooperativeradar is analyzed [51℄. In this 
hapter, we propose a di�erent approa
h: wemaximize the Signal-to-Noise Ratio (SNR), but at the same time, we 
ontrolthe interferen
e indu
ed by our sensor on the other elements of the network.Furthermore, we apply a 
onstraint to the transmitted signal, limiting theenergy to a spe
i�
 maximum value. The resulting problem is Nondetermin-isti
 Polynomial (NP) hard, namely an optimal solution 
an not be found inpolynomial time. Sin
e a traditional approa
h is not possible for real-timeappli
ations, we propose a new algorithm, referred to as WILD (WaveformInterferen
e Limiting Design), to generate a suboptimal solution with a poly-nomial time 
onstraint due to 
omputational 
omplexity. The pro
edure is81



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARbased on the relaxation and randomization theory [26℄: �rst we relax thefeasible set of the problem, obtaining a solution; then we use this solution togenerate a waveform that is feasible for our original problem. The quality ofthe solution is guaranteed by the approximation bound that ensures that theWILD te
hnique a
hieves at least a fra
tion R ∈ (0, 1] of the optimal valueof the relaxed problem [52℄.
The 
hapter is organized as follows. In Se
tion 5.1, we present a modelfor the generi
 signal re
eived by an element of the network. In Se
tion 5.2,we dis
uss some relevant guidelines for waveform design and formulate theproblem. In Se
tion 5.3, we introdu
e the optimization pro
edure. In Se
tion5.4, we analyze via simulation the performan
e of the proposed en
odingmethod. Finally, in Se
tion 5.5, we draw 
on
lusions and outline possiblefuture resear
h tra
ks.5.1 System ModelWe 
onsider a network of L non
ooperative monostati
 radar systems,where ea
h sensor transmits a 
oherent burst of pulses

sl(t) = atxl ul(t) exp[j(2πft+ φl)] , l = 0, . . . , L− 1 ,
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARwith atxl the transmit signal amplitude,
ul(t) =

N−1∑

i=0

cl(i)p(t− iTr)the signal's 
omplex envelope, p(t) the single pulse shape of the transmittedsignal and assumed of duration Tp, and with unit energy, i.e.
∫ Tp

0

|p(t)|2dt = 1 ,

Tr (Tr ≥ Tp) is the pulse repetition period, cl = [cl(0), cl(1), . . . , cl(N−1)]T ∈

CN the radar 
ode asso
iated with the l-th sensor, f is the 
arrier frequen
y,and φl a random phase asso
iated with the l-th transmitted waveform. Inother words, we are 
onsidering a network of non
ooperative homogeneoussensors, whi
h do not 
ooperate in the dete
tion pro
ess, yet exploit thesame kind of waveform, namely a linearly 
oded pulse train with possiblydi�erent 
odes. Assume that the 0-th sensor is the radar of interest: there
eived signal under the alternative hypothesis (target presen
e) is the sumof L transmitted signals s
attered by the target. Ea
h term of this sum has a
hara
teristi
 amplitude, delay and Doppler shift (whi
h depend both on the
l-th transmitter and the 0-th re
eiver), so we 
an express the signal re
eivedby the radar sensor of interest as

r0(t) =

L−1∑

l=0

αrx
0,le

j2π(f+f0,l)(t−τ0,l)ul(t− τ0,l) + n0(t) , (5.1)where n0(t) is an additive disturban
e due to 
lutter and thermal noise, αrx
0,l,

τ0,l, and f0,l, l ∈ {0, . . . , L− 1} are respe
tively the 
omplex e
ho amplitude83
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ounting for the transmit amplitude, phase, target re�e
tivity, and 
han-nel propagation e�e
ts), the delay, and the target Doppler frequen
y relativeto the l-th transmitter and the 0-th re
eiver. No syn
hronization is assumedamong the sensors, namely τ0,l, l = 1, . . . , L−1, is 
onsidered unknown to the
0-th radar system. To simplify the notation, we use the symbol γ0 instead of
γ0,0 when the index of the re
eiver (�rst index) is equal to the index of thetransmitter (se
ond index), where γ0,l 
an be one of the parameters αrx

0,l, τ0,l,or f0,l. We 
an separate in the Right Hand Side (RHS) of equation (5.1) theterm due to the 0-th transmitter:
r0(t) = αrx

0 ej2π(f+f0)(t−τ0)u0(t− τ0)+

L−1∑

l=1

αrx
0,le

j2π(f+f0,l)(t−τ0,l)ul(t− τ0,l) + n0(t) .

(5.2)
This signal is down-
onverted to baseband and �ltered through a linear sys-tem with impulse response h(t) = p∗(−t). Let the �lter output be

v0(t) = αrx
0 e−j2πfτ0

N−1∑

i=0

c0(i)e
j2πif0Trχp (t− iTr − τ0, f0) +

L−1∑

l=1

αrx
0,le

−j2πfτ0,l

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (t− iTr − τ0,l, f0,l) + w0(t)where χp(λ, ν) is the (pulse waveform) ambiguity fun
tion [22℄, i.e.

χp(λ, ν) =

∫ +∞

−∞

p(β)p∗(β − λ)ej2πνβdβ,

84



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARand w0(t) is the down-
onverted and �ltered disturban
e. The signal v0(t) issampled at tk = τ0 + kTr, k = 0, . . . , N − 1, providing the observables
v0(tk) = α0c0(k)e

j2πkf0Trχp(0, f0)+

L−1∑

l=1

α0,l

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(k − i), f0,l) + w0(tk) ,where α0,l = αrx

0,le
−j2πfτ0,l , with l ∈ {0, . . . , L−1} (again, we use the simpli�ednotation α0 = α0,0), and ∆τ0,l(h) = hTr−τ0,l+τ0, l = 1, . . . , L−1. Moreover,denoting by
p0,l = [1, ej2πf0,lTr , . . . , ej2π(N−1)f0,lTr ]Tthe temporal steering ve
tor (with p0 = p0,0),
v0 = [v0(t0), v0(t1), . . . , v0(tN−1)]

T ,

w0 = [w0(t0), w0(t1), . . . , w0(tN−1)]
T ,and

i0,l =

[
N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(−i), f0,l) , . . . ,

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(N − 1− i), f0,l)

]T
,we get the following ve
torial model for the s
attered signal

v0 = α0χp(0, f0)c0 ⊙ p0 +

L−1∑

l=1

α0,li0,l +w0 . (5.3)85



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARIn (5.3), we 
an distinguish the �rst term due to the 0-th radar (α0χp(0, f0)c0⊙

p0), the se
ond term due to the interferen
e indu
ed by the other radars
(
∑L−1

l=1
α0,li0,l), and, �nally, the disturban
e (w0) a

ounting for 
lutter andthermal noise.Moreover, sin
e χp(t, ν) = 0 , for |t| ≥ Tp , the ve
tor i0,l shares a stru
turewhi
h belongs to the �nite set A0,l (of 
ardinality 2N) whose elements are




cl(N − 1)ej2π(N−1)f0,lTr

0...
0



χp (∆τ0,l(−N + 1), f0,l) ,




cl(N − 2)ej2π(N−2)f0,lTr

cl(N − 1)ej2π(N−1)f0,lTr

0...
0




χp (∆τ0,l(−N + 2), f0,l) ,

...



cl(0)

cl(1)e
j2πf0,lTr...

cl(N − 1)ej2π(N−1)f0,lTr



χp (∆τ0,l(0), f0,l) ,

...
86
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


0...
0

cl(0)

cl(1)e
j2πf0,lTr




χp (∆τ0,l(N − 2), f0,l) ,




0...
0

cl(0)



χp (∆τ0,l(N − 1), f0,l) ,

and the N-dimensional ve
tor 0. De�ning ĩ0,l

ĩ0,l =
[
cl(0), cl(1)e

j2πf0,lTr . . . , cl(N − 1)ej2π(N−1)f0,lTr
]T

= (cl ⊙ p0,l)
T ,and

i0,l(h) = Jhĩ0,lχp (∆τ0,l(h), f0,l) , (5.4)with Jh the N ×N matrix whose entries are
Jh(i, j) =





1 i− j = h

0 elsewherewith −N + 1 ≤ h ≤ N − 1, the set A0,l 
an be 
ompa
tly written as
A0,l =

{
i0,l(h)

}

−N+1≤h≤N−1

⋃
0 .87
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tion, we formulate the problem of designing the 
ode usedby the sensor of interest. The design prin
iple is the maximization of theSNR for the sensor of interest (the 0-th), mitigating the mutual interferen
eindu
ed by the sensor of interest on other sensors in the network, and for
ingan energy 
onstraint. To this end, it is ne
essary to introdu
e expli
itlythe de�nition of SNR and the 
onstraints whi
h are required to 
ontrol themutual interferen
e and the transmitted energy.5.2.1 Signal-to-Noise RatioAssuming that the disturban
e wm, for m = 0, . . . , L− 1, is a zero-mean
omplex 
ir
ular Gaussian ve
tor with known positive de�nite 
ovarian
ematrix
E[wmw

†
m] = M ,it is known that the GLRT for the dete
tion of a target 
omponent c0 ⊙ p0with unknown 
omplex amplitude in the presen
e of w0 only (i.e. in theabsen
e of mutual interferen
e among the sensors), is given by

|v†
0g0|2 = |v†

0M
−1(c0 ⊙ p0)|2

H1
>
<
H0

G , (5.5)where g0 = M−1 (c0 ⊙ p0) is the 0-th pre-pro
essed steering ve
tor, and G isthe dete
tion threshold, set a

ording to a desired value of Pfa. This de
isionrule also 
oin
ides with the optimum test (a

ording to the Neyman-Pearson88
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riterion) if the phase of α0 is uniformly distributed in [0, 2π[ [24℄. From ageometri
 point of view it is tantamount to proje
ting the re
eived ve
tor onthe pre-pro
essed steering dire
tion and then 
omparing the energy of theproje
tion with a threshold. An analyti
al expression of Pd, for a given valueof Pfa, is available. Pre
isely, for non�u
tuating targets,
Pd = Q

(√
2|α0χp(0, f0)|2(c0 ⊙ p0)

†M−1(c0 ⊙ p0),Ψ

)
,where Ψ =

√
−2 lnPfa. This last expression shows that, given Pfa, Pd de-pends on the radar 
ode, the disturban
e 
ovarian
e matrix, and the temporalsteering ve
tor only through the SNR, de�ned asSNR = |α0χp(0, f0)|2(c0 ⊙ p0)

†M−1(c0 ⊙ p0) . (5.6)Moreover, Pd is an in
reasing fun
tion of SNR and, as a 
onsequen
e, themaximization of Pd 
an be obtained maximizing
(c0 ⊙ p0)

†M−1(c0 ⊙ p0) = c
†
0Rf0c0 (5.7)over the radar 
ode c0, with

Rf0 = M−1 ⊙ (p0p
†
0)

∗ . (5.8)Evidently, (5.8) requires the spe
i�
ation of f0; as a 
onsequen
e, thesolution depends on this pre-assigned value. It is thus ne
essary to providesome guidelines on the importan
e and the appli
ability of the proposed89
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• the mat
hed performan
e (namely when the a
tual Doppler is exa
tly
f0) whi
h 
an be obtained through the optimal solution of (5.7), rep-resents an upper bound to that a
hievable by any pra
ti
al system;

• a single 
oded waveform designed for the 
hallenging 
ondition of slowlymoving targets (i.e. f0 ≃ 0) 
an be devised;
• a single 
oded waveform optimized over an average s
enario may bedesigned. Otherwise stated, this 
ode might be 
hosen so as to maxi-mize (5.7) with Rf0 repla
ed by Ra = M−1 ⊙

(
E
[
p0p

†
0

])∗, where theexpe
tation operator is over the normalized Doppler frequen
y. If thislast quantity is modeled as a uniformly distributed random variable,i.e. f0Tr ∼ U (−ǫ, ǫ), with 0 < ǫ < 1/2, the expe
tation 
an be readilyevaluated, leading to
Ra = M−1 ⊙Σǫ , (5.9)where Σǫ(m,n) = sin
 [2ǫ(m− n)].Summarizing, we 
an express the obje
tive fun
tion as

c
†
0Rc0 , (5.10)with R equal to Ra or Rf0 a

ording to the 
hosen design 
ontext.
90
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e ConstraintsTo mitigate interferen
e indu
ed by the 0-th sensor, we for
e our 
ode toprodu
e a small energy level when proje
ted on the l-th pre-pro
essed steeringve
tor, namely on the re
eiving dire
tion of the l-th sensor. Otherwise stated,we impose the design 
onstraints
E
[
|i†l,0gl|2

]
≤ δ̂l, l = 1, . . . , L− 1 , (5.11)where δ̂l > 0 are parameters ruling the a

eptable levels of interferen
e: thesmaller δ̂l, the smaller the interferen
e of the radar of interest on the l-thsensor.As indi
ated in (5.4), il,0 depends on the parti
ular shift h; hen
e, inorder to 
ir
umvent this drawba
k, we 
an resort to an average approa
h,imposing the 
onstraint on the average of all the admissible nonzero il,0(h)(assumed equiprobable), i.e. (5.11) be
omes

E

[
N−1∑

h=−N+1

|i†l,0(h)gl|2
]
≤ δ̂l(2N − 1), l = 1, . . . , L− 1 . (5.12)As to the expe
tation operator, it a
ts over the parameters τl,0, τl, fl,0 and fl,for l = 1, . . . , L − 1, whi
h are pra
ti
ally unknown, and 
an be reasonablymodeled as random variables. Now,

E

[
N−1∑

h=−N+1

|i†l,0(h)gl|2
]
= E

[
N−1∑

h=−N+1

|i†l,0(h)M−1(cl ⊙ pl)|2
]
≤ δ̂l(2N − 1) ,(5.13)
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E

[
N−1∑

h=−N+1

i
†
l,0(h)M

−1(cl ⊙ pl)(cl ⊙ pl)
†M−1il,0(h)

]
≤ δl,for l = 1, . . . , L − 1, with δl = δ̂l(2N − 1). Hen
e, denoting by Sl =

M−1diag(cl)plp
†
ldiag(c∗l )M−1 , the 
onstraints 
an be re
ast as

E

[
N−1∑

h=−N+1

i
†
l,0(h)Slil,0(h)

]
≤ δl, l = 1, . . . , L− 1 . (5.14)A

ording to (5.4),

il,0(h) = Jh(c0 ⊙ pl,0)χp(∆τl,0(h), fl,0) = (Jhc0 ⊙ Jhpl,0)χp(∆τl,0(h), fl,0) ,so (5.14) be
omes
E

[
N−1∑

h=−N+1

c
†
0J

†
hSl,hJhc0

]
≤ δl, l = 1, . . . , L− 1 , (5.15)with Sl,h = |χp(∆τl,0(h), fl,0)|2Sl ⊙
(
Jhpl,0p

†
l,0J

†
h

)∗
. Moreover, denoting by

Rl =

N−1∑

h=−N+1

J
†
hE [Sl,h]Jh, the mutual interferen
e 
onstraint (5.12) 
an beexpressed as

c†0Rlc0 ≤ δl , l = 1, . . . , L− 1 . (5.16)Noti
e that the 
onstraints in (5.16) 
an be evaluated, assuming a suitablemodel for the random variables fl,0, fl, τl,0 and τl, with l = 1, . . . , L − 1.Assuming fl, fl,0, τl and τl,0 statisti
ally independent, we 
an fa
torize E [Sl,h]92
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E [Sl,h] = C l ⊙Hh , (5.17)where the term C l depends on the 
ode cl, while the term Hh depends onthe shift h. In parti
ular,

C l = E [Sl] = M−1diag(cl)E [plp
†
l

] diag(c∗l )M−1 , (5.18)and
Hh = E

[
|χp(∆τl,0(h), fl,0)|2

(
Jhpl,0p

†
l,0J

†
h

)∗]
. (5.19)Moreover, assuming the normalized Doppler frequen
ies flTr uniformly dis-tributed in the interval [−∆,∆], i.e. flTr ∼ U (−∆,∆), with 0 < ∆ < 1/2,we get

E
[
plp

†
l

]
= Σ∆ .5.2.3 Energy ConstraintIt remains to for
e a 
onstraint on the transmitted energy by the radarof interest, namely we suppose that the normalized 
ode energy is less thanor equal to N , i.e.

‖c0‖2 ≤ N . (5.20)

93



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR5.3 Problem SolutionNow, a

ording to (5.10), (5.16), and (5.20), we 
an formulate the 
odedesign in terms of the following Quadrati
 optimization Problem (QP3)
QP3





maximize
c0

c0
†Rc0

subject to c0
†Rlc0 ≤ δl, l = 1, . . . , L− 1

c0
†c0 ≤ N .

(5.21)
Letting Rδl = δ−1

l Rl, for l = 1, . . . , L − 1, problem (5.21) 
an be re
astas QP3





maximize
c0

c0
†Rc0

subject to c0
†Rδlc0 ≤ 1, l = 0, . . . , L− 1

(5.22)with Rδ0 = N−1I. Now, we have a homogeneous quadrati
 optimizationproblem de�ned in 
omplex �eld CN . Moreover, Rδl are positive semide�nitematri
es. The equivalent matrix formulation of QP3 is
QP3





maximize
C0

Tr (C0R)

subject to Tr (C0Rδl) ≤ 1, l = 0, . . . , L− 1

C0 = c0c
†
0

(5.23)
Unfortunately, this problem is NP-hard [52℄. One approa
h to approximat-ing the solution to the NP-hard quadrati
 programs is the relaxation andrandomization te
hnique [26℄: �rst relax the feasible solution set of the prob-lem, obtaining a Convex Problem (CP) that 
an be solved in polynomialtime through the interior point methods; then use the optimal solution of94
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e a feasible solution for the original problem.In the following, we present the WILD pro
edure to obtain a near optimalsolution of the original problem (5.23), and give the approximate bound inthe proposed problem.5.3.1 Relaxation and RandomizationA possible relaxation of (5.23) is the following SDP problem
CP maximize

C0

Tr (C0R)

subject to Tr (C0Rδl) ≤ 1, l = 0, . . . , L− 1

C0 � 0

(5.24)
where we have removed the rank-one 
onstraint. An SDP is a 
onvex problemwhi
h 
an be solved using interior point methods [3℄, so CP 
an be easilysolved in polynomial time, obtaining the optimal solution C.Fa
torize the optimal solution C su
h that C = UU †, with U a 
omplex
N × r matrix1, where r = rank (C). Evaluate the orthogonal r×N 
omplexmatrix Q su
h that Q†U †RUQ is a diagonal matrix.The next step is to generate a random ve
tor that is feasible (with prob-ability one) for the problem QP3. Let us de�ne x as a real normal ve
tor,i.e. x ∼ N (0, I), and

ξ = sign (x) = [sign (x(0)) , . . . , sign (x(N − 1))]T ,1Noti
e that in the parti
ular 
ase of r = 1, U is an optimal solution of QP3.
95
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−1 x(i) < 0 .Now, we 
an de�ne a feasible solution of QP3, say cξ, in the following way
cξ =

UQξ√
max

0≤l≤L−1
ξT R̂δlξ

, (5.25)
where R̂δl = Q†U †RδlUQ.5.3.2 Approximation BoundA �measure of goodness� of the randomization algorithm is provided bythe approximate bound whi
h 
hara
terizes the quality of the produ
ed solu-tions. In the literature, a randomized approximation method for a maximiza-tion problem has a bound (or performan
e guarantee, or worst 
ase ratio)
R ∈ (0, 1], if for all instan
es of the problem, it always delivers a feasiblesolution whose expe
ted value is at least R times the maximum value of therelaxed problem [26℄.With referen
e to the WILD algorithm, we have

R× v(CP) ≤ v
WILD

(QP3) ≤ v(CP) ,where R is the approximate bound, v(CP) is the optimal value of CP, and
v
WILD

(QP3) is the obje
tive value of QP3 a
hieved by the WILD algorithm.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARIt has been proven [52℄ that the approximate bound for this te
hnique is
R =

1

2 ln (2Lµ)
,where µ = min {L,N}.For example, if N = L = 2, R = 0.24; if N = L = 3, R = 0.17; if

N = L = 4, R = 0.14. However, we remark that the approximate boundis a worst-
ase result [26℄, and, in pra
ti
e, the a
tual performan
e v
WILDis substantially better than the lower bound R × v(CP) (see Se
tion 5.4.1):su
h behavior is quite 
ommon for randomized te
hniques [54℄ [7℄.Summarizing, the WILD 
an be formulated as reported in Algorithm 4.Algorithm 4 Waveform Interferen
e Limiting Design (WILD)Input: R, Rδl for l = 0, . . . , L− 1;Output: c

WILD
;1: solve CP �nding an optimal solution C;2: evaluate U su
h that C = UU †;3: evaluate Q su
h that Q†U †RUQ is diagonal;4: generate ξ with ξ(i) ∈ {−1, 1} independent, with Pr (ξ(i) = 1) = 0.5, for

i = 0, . . . , N − 1;5: 
al
ulate
c

WILD
=

UQξ√
max

0≤l≤L−1
ξT R̂δlξwhere R̂δl = Q†U †RδlUQ.
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e AnalysisThe present se
tion dis
usses the performan
e of the proposed en
odings
heme. The analysis is 
ondu
ted in terms of normalized average2 SNR,SNRnorm (Subse
tion 5.4.1) and average normalized interferen
e level indu
edby the m-th sensor on the l-th one I lm (Subse
tion 5.4.2), respe
tively de�nedas SNRnorm =
E
ξ

[
c
†
0Rc0

]

Nλmax (R)
,and

I lm =
E
ξ

[
c†mRlcm

]

Nλmax (Rl)
.Noti
e that Nλmax (R) 
an be viewed as the optimal value of the Un
on-strained Problem (UP),UP maximize

c0

c
†
0Rc0

subject to c0
†c0 ≤ N

(5.26)where the 
onstraints on the interferen
e have been removed. Obviously, theoptimal value v(UP) is greater than the optimal value of the problem QP3,i.e. v(UP) ≥ v(QP3), and, as a 
onsequen
e, SNRnorm ≤ 1. Subse
tion 5.4.3illustrates the 
omputational 
omplexity of the proposed algorithm.We assume that the disturban
e 
ovarian
e matrix is exponentially shapedwith one-lag 
orrelation 
oe�
ient ρ = 0.8, i.e.
M(m,n) = ρ|m−n| , (m,n) ∈ {0, . . . , N − 1}2.2The average is performed over ξ's as to make the result independent of the spe
i�
randomization. 98



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARMoreover, we 
hoose the pulse p(t) with re
tangular shape, and duty 
y-
le Tp/Tr = 1/3. Finally, we model the normalized delay ∆τm,l(h)/Tr andthe normalized Doppler shift fm,lTr as independent random variables, uni-formly distributed in the interval [−1, 1] and [−1/3, 1/3] respe
tively, i.e.
∆τm,l(h)/Tr ∼ U (−1, 1) and fm,lTr ∼ U (−1/3, 1/3). The 
onvex optimiza-tion Matlab 
© toolbox SeDuMi [4℄ is exploited to solve the SDP relaxation.5.4.1 Maximization of the SNRIn this subse
tion, we analyze the e�e
t of three di�erent parameters onthe SNRnorm : normalized Doppler shift on the referen
e sensor, length of the
ode, number of interfering sensors. We 
onsider the 
ase of a WILD 
ode
c0 of length N , and temporal steering ve
tor p0 with a known normalizedDoppler shift fd = f0Tr, i.e.

p0 =
[
1, ej2πfd, . . . , ej2πfd(N−1)

]T
.All the a

eptable interfering levels δl with l = 1, . . . , L− 1, are set equal to

δ, de�ned as
δ = δnorm (Λmax − Λmin) + Λmin ,where
Λmax = min

l=1,...,L−1
{Nλmax (Rl)} ,

Λmin = max
l=1,...,L−1

{Nλmin (Rl)} ,and δnorm ∈ (0, 1).Finally, the operating environment has L− 1 = 3 interfering sensors. All99



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARthe interfering radars use a phase 
ode with the same length and the sameenergy3 as our WILD 
ode. In parti
ular, the �rst radar uses a Barker 
ode,the se
ond one a generalized Barker 
ode, and the third a Zado� 
ode [22℄.In Figure 5.1, we plot SNRnorm versus δnorm for N = 5, L = 4, and fourdi�erent values of fd. For 
omparison purpose, we also plot the SNRnorm of aBarker 
ode of length 5. As expe
ted, the higher δnorm the higher SNRnorm:this 
an be easily explained observing that in
reasing δnorm is tantamount toenlarging the feasibility region, so higher and higher optimal values 
an befound. It is also noti
eable that the WILD 
ode outperforms the 
lassi
alBarker 
ode for δnorm ≥ 0.03. Finally, the performan
e of the proposeden
oding te
hnique depends on the Doppler shift for small values of δnorm,but for δnorm ≥ 0.6 at any Doppler frequen
y the SNRnorm of the WILDalgorithm is very 
lose to the maximum (i.e. SNRnorm = 0 dB).In Figure 5.2, we illustrate the e�e
t of the length N on the 
ode. Inparti
ular, we 
onsider the normalized Doppler frequen
y fd = 0.30, L = 4sensors in the network, while the length N of the 
ode c0 
an be 4, 7, 11, or13. For 
omparison purpose, we plot the SNRnorm of a Barker 
ode of length13. In parti
ular, we plot SNRnorm versus δnorm for the 
onsidered values of
N ; evidently, in
reasing N leads to higher values of SNRnorm. This 
an beexplained observing that the parameter N governs the energy 
onstraint: thehigher N , the higher the maximum energy. Moreover, in
reasing N enlargesthe number of degrees of freedom. Finally, we 
an observe that the WILD
ode of length 13 outperforms the Barker 
ode of the same length for almost3We re
all that the maximum 
ode energy of our WILD 
ode is equal to N , as requiredby (5.20). 100
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δFigure 5.1: SNRnorm versus δnorm for N = 5, L = 4, and some normalizedDoppler shifts fd, i.e. fd ∈ {0.15; 0.20; 0.25; 0.30} (solid 
urves). Barker 
odeof length 5 (dotted line).all values of δnorm.

δFigure 5.2: SNRnorm versus δnorm for L = 4, normalized Doppler shift fd =
0.30, and some values of N , i.e. N ∈ {4; 7; 11; 13} (solid 
urves). Barker
ode of length 13 (dotted line).In Figure 5.3, we analyze the e�e
t of the size L of the network. We101



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARplot SNRnorm versus δnorm with normalized Doppler frequen
y fd = 0.30,length N = 13, and di�erent values of L: when L = 2 there is just oneinterfering 
ode (Barker), L = 3 two interfering 
odes (Barker and general-ized Barker), L = 4 three interfering 
odes (Barker, generalized Barker, andZado�). In this �gure, we also plot the SNRnorm of a Barker 
ode of length13. The 
urves show that in
reasing the dimension of the network, leads todegraded performan
e. In fa
t, in
reasing L redu
es feasibility, so lower andlower optimal values may be a
hieved. It 
an also be observed that for highvalues of δnorm, the algorithm rea
hes the maximum value of SNRnorm (i.e.
v(UP) = v

WILD
(QP3)), and even for small values of δnorm (i.e. δnorm = 0.1)the WILD 
ode exhibits a gain of at least 1 dB over the 
lassi
 Barker 
ode.Summarizing, there is a trade-o� between the SNRnorm of the sensor of in-terest and the interferen
e in the remaining sensors: δnorm is the se
ondaryparameter that rules this relationship.

δFigure 5.3: SNRnorm versus δnorm for N = 13, normalized Doppler shift
fd = 0.30, and some values of L, i.e. L ∈ {2; 3; 4} (solid 
urves). Barker 
odeof length 13 (dotted line). 102



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARNow, we study the robustness of the proposed algorithm, 
onsidering amismat
h between the nominal steering ve
tor p0 with fd = 0 (assumed todesign the 
ode) and the a
tual steering ve
tor
pF =

[
1, ej2πF , . . . , ej2πF (N−1)

]T
,with F representing the a
tual normalized Doppler frequen
y. We also an-alyze the WILD version of the 
ode with R = Ra, as indi
ated in (5.9),assuming ǫ = 0.3. To evaluate the performan
e of the algorithm, we 
onsiderthe a
tual average normalized SNR, de�ned asSNRF =

E
ξ

[
c
†
0RFc0

]

Nλmax (RF )
,where RF = M−1 ⊙

(
pFp

†
F

)∗.In Figure 5.4, we plot SNRF versus F for two di�erent values of δnorm, andfor L = 4 (Barker, generalized Barker, and Zado�). For 
omparison purpose,we plot the Barker 
ode of length 5. The 
lassi
 version of the proposed 
odeoutperforms the Barker 
ode only when the e�e
tive normalized Dopplerfrequen
y F is 
lose to the nominal value fd. On the 
ontrary, the averageversion of WILD a
hieves an higher value of SNRF than the Barker 
ode inthe interval [−0.3;+0.3]. As expe
ted, this robustness has a pri
e: a loss of
3 dB in the 
ase of perfe
t knowledge of the steering ve
tor (i.e. F = fd).
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δ

δ

δ

δFigure 5.4: SNRF versus F for N = 5, L = 4. Barker 
ode of length 5 (dotted
urve). Average (Ra) WILD 
ode (dashed 
urves). Classi
 (Rf0) WILD 
odefor fd = 0.30 (solid 
urves). WILD 
odes for δnorm = 0.2 (o-marked 
urves).WILD 
odes for δnorm = 0.8 (+-marked 
urves).5.4.2 Control of the indu
ed interferen
eIn this subse
tion, we analyze the behavior of the indu
ed interferen
e
I lm for di�erent network s
enarios. In the �rst 
ase, we study the sameoperating environment as in Subse
tion 5.4.1, i.e. three pre-existing radarsensors, whi
h use a Barker 
ode (c1), a generalized Barker 
ode (c2), and aZado� 
ode (c3) respe
tively.In Figure 5.5, we plot the interferen
e indu
ed on the Barker 
ode c1 (i.e.
I1m, with m ∈ {0, 2, 3}) versus δnorm, for normalized Doppler frequen
y fd =

0.30, and lengthN = 5. In parti
ular, we plot the interferen
e indu
ed by our
ode (I10 ), and, for 
omparison purpose, we plot the interferen
e indu
ed bythe generalized Barker 
ode and by the Zado� 
ode (I12 and I13 respe
tively).We noti
e that the interferen
e level in
reases as δnorm in
reases, be
ause theparameter δnorm rules the a

eptable amount interferen
e. For δnorm = 0.7the interferen
e indu
ed by the WILD 
ode be
omes higher than I12 and I13 .In Figure 5.6, we 
onsider the interferen
es indu
ed on the generalized Barker104
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ode c2 and on the Zado� 
ode c3 respe
tively. Analogous 
onsiderations 
anbe done in these two 
ases.
δFigure 5.5: I1m versus δnorm for N = 5, L = 4, and normalized Doppler shift

fd = 0.30: I10 (solid 
urves); I12 (dashed lines); I13 (dotted-dashed lines).In the se
ond s
enario, des
ribed in Figure 5.7, we 
onsider an operatingenvironment with only one pre-existing 
ode. This allows us to analyze thee�e
t of a parti
ular 
ode on the algorithm. We sele
ted �ve possible 
odes,all of them with energy N = 7: four phase 
odes (Barker, generalized Barker,Zado� and P4 
odes) [22℄, and an amplitude-phase modulated 
ode (Hu�man
ode) [55℄. In Figure 5.7, we plot I10 versus δnorm for normalized Dopplerfrequen
y fd = 0.15, network dimension L = 2, and di�erent interfering 
odes
c1. We observe that our 
ode indu
e almost the same value of interferen
eover all the proposed 
odes: for δnorm > 0.8, there is less than 1 dB between
I10 of the P4 
ode and of the Hu�man 
ode.Finally, in the third s
enario, we 
onsider a network with L− 1 = 3 pre-existing radar sensors, all of them with a 
ode of length and energy N = 4.Moreover, the �rst 
ode (c1) is a Barker 
ode, while the other two 
odes (c2and c3) belong to a 
ertain 
lass: phase 
odes, Gold 
odes, orthogonal PN105
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δ

δFigure 5.6: I lm versus δnorm for N = 5, L = 4, and normalized Doppler shift
fd = 0.30: I2m (up) and I3m (down). I l0 (solid 
urves); I l1 (dotted lines); I l2(dashed lines); I l3 (dotted-dashed lines).
odes, or WILD 
odes. When the sensors use phase 
odes, we set c2 and
c3 as generalized Barker and Zado� 
odes, respe
tively. In the 
ase of Gold
odes [56℄, the two 
odes are generated a

ording to the pro
edure des
ribedby Levanon and Mozeson [22℄, while the PN sequen
es [57℄ are generated sothat they are orthogonal. Finally, in the last 
ase, we have an initial Barker
ode c1, a WILD 
ode c2 devised assuming L = 2 and δnorm = δ0, and aWILD 
ode c3, with L = 3 and δnorm = δ0 (see Figure 5.8 for a pi
torialdes
ription of the di�erent s
enarios).In Figure 5.9, we plot the normalized overall indu
ed interferen
e on the
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δFigure 5.7: I10 (c1) versus δnorm for N = 7, L = 2, normalized Doppler shift
fd = 0.15, and di�erent 
odes c1: Hu�man 
ode (point-marked 
urve), Zado�
ode (dotted-dashed 
urve), Barker 
ode (dotted 
urve), generalized Barker
ode (dashed 
urve), P4 
ode (solid 
urve).

Figure 5.8: Some s
enarios where WILD 
an be applied.radar sensor whi
h uses the Barker 
ode c1, i.e. I1TOT , de�ned as
I1TOT =

I10 + I12 + I13
L− 1

,versus δnorm, for normalized Doppler frequen
ies fd = 0.30, and di�erent107
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lasses of 
odes. The last 
lass WILD is also parameterized on three di�er-ent values of δ0. First of all, we noti
e that 
lasses of 
odes with good 
ross-
orrelation properties, su
h as Gold 
odes and orthogonal PN sequen
es,a
hieve lower values of indu
ed interferen
e than phase 
odes. Moreover,WILD 
odes 
an a
hieve the same performan
e as PN orthogonal sequen
esfor δ0 = 0.5, while the overall indu
ed interferen
e 
an in
rease in 
orrespon-den
e of higher values of δ0, or de
rease for smaller δ0 values. This behavior
on�rms that there is a trade-o� between the SNR and the indu
ed interfe-ren
e. It is also noti
eable that for a 
ertain range of δnorm, our proposedalgorithm 
an a
hieve both higher values of SNR and lower values of indu
edinterferen
e than other 
odes.
δ

δ

δ

δFigure 5.9: I1TOT versus δnorm for N = 4, L = 4, normalized Dopplershift fd = 0.30, and di�erent 
lasses of 
odes c2 and c3: phase 
odes(dashed 
urve), Gold 
ode (dotted 
urve), orthogonal PN 
odes (dotted-dashed 
urve), WILD 
odes with δ0 = 0.2 (solid 
urve), WILD 
odes with
δ0 = 0.5 (square-marked 
urve), WILD 
odes with δ0 = 0.8 (star-marked
urve).
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARTable 5.1: Average Nit and average TCPU required to solve problem (5.24).
δnorm N L Average Nit Average TCPU

0.2 4 4 8 0.46
0.5 4 4 9 0.51
0.8 4 4 10 0.56
0.2 13 4 13 0.71
0.5 13 4 14 0.80
0.8 13 4 15 0.835.4.3 Computational 
omplexityAmong the �ve steps of the WILD algorithm, the most bundersome interms of 
omputational 
omplexity, is the �rst step. In fa
t, the resolutionof CP has a 
omputational 
omplexity O (N3.5) [27℄. We re
all that the
omplexity is based on a worst-
ase analysis, and usually the interior pointmethods are mu
h faster [3℄. In Table I, we report the number of iterations

Nit and the CPU time TCPU in se
onds required to solve CP using the toolboxSeDuMi [4℄. We have indi
ated also the 
orresponding value of δnorm usedin the simulation, the dimension N of the problem, and the number L of
onstraints. The reported averaged values have been evaluated over 100trials. Finally, the 
omputer used to obtain these results is equipped with a
3 GHz Intel XEON pro
essor.5.5 Con
lusionsIn this 
hapter, we have 
onsidered the problem of 
ode design for a singleradar that operates in a non
ooperative network. We try to maximize theSNR of the radar, 
ontrolling, at the same time, the interferen
e indu
ed109



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARby our sensor on the others sensors of the network, and for
ing a 
onstrainton the transmitted energy by our radar. The resulting problem is NP-hard.Using the well established relaxation and randomization theory [52℄, we havepresented a new 
oding pro
edure (referred to as WILD), whi
h in polynomialtime generates a suboptimal solution of the original problem. Numeri
alsimulations 
on�rm that the WILD te
hnique 
an in
rease the dete
tionperforman
e of the network. Possible future resear
h tra
ks might 
on
ernthe extension of the WILD: for istan
e, it might be interesting to add a
onstraint on the resulting ambiguity fun
tion of the 
ode [6℄, or on thea
hievable region of Doppler estimation a

ura
y. Moreover, it will be ofinterest to study this pro
edure applied to a real s
enario.
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Chapter 6
Con
lusions
An extensive dis
ussion about radar waveform design has been pre-sented. In 
hapter 1 we introdu
e the 
on
ept of optimization theory appliedto signal pro
essing. Some examples in the radar �eld are proposed. Thus, in
hapter 2 we explain some basi
 
on
epts about 
ode design and ambiguityfun
tion. In fa
t, 
ode design is the main tool to a
hieve ambiguity fun
-tion shaping. The following 
hapters present original works about waveformdesign. In 
hapter 3, we start with the problem of pulse 
ode design fora single radar. We determine the optimum radar 
ode, in the sense that itmaximizes the dete
tion performan
e under a 
ontrol on the region of a
hiev-able Doppler estimation a

ura
ies, and under a similarity 
onstraint with apre�xed radar 
ode. In 
hapter 4, the en
oding pro
edure is extended to aSTAP s
enario. We look for the best 
ode under parti
ular a

ura
ies andsimilarity 
onditions. Using a relaxation and de
omposition te
hnique, weevaluate the desired 
ode in polynomial time. Finally, in 
hapter 5, we applythe 
oding design to a networked radar. In parti
ular, we try to maximize the111



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - CONCLUSIONSSNR, 
ontrolling, at the same time, the interferen
e indu
ed by the radar onthe others sensors of the network, and for
ing a 
onstraint on the transmit-ted energy by our radar. We �nd a quasi-optimal solution with polynomial
omplexity.
Summarizing, in this thesis we have demonstrated how 
onvex optimiza-tion theory 
an be su

essfully applied to radar waveform design (and, ingeneral, to radar pro
essing). Remarkably, all the proposed algorithms pos-sess polynomial 
omplexity, so they 
ould be adopted in real s
enarios.
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Waveform Design via Convex Optimization   
 

In this thesis, we propose some original examples of radar 
waveform design via convex optimization theory. After an 
initial section introducing some basic concepts about waveform 
design (chapter 2), we analyze in detail code design for a stand-
alone radar in case of temporal (chapter 3)  or spatial-temporal 
processing (chapter 4), and for a networked radar with 
constraints on the induced interference (chapter 5). Finally, 
some concluding remarks are presented (chapter 6). 
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