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Chapter 1
Introdution
Many spetaular advanes in onvex optimization have been ahievedin the last two deades [1℄ [2℄: the theoretial disovery of algorithms witha polynomial omplexity (interior point methods1), and the pratial imple-mentation of reliable and fast solvers suh as SeDuMi [4℄ and SDPT3 [5℄, havedrawn the attention of the engineering ommunity on onvex optimization.Reently, also the radar ommunity has started to pro�t by the onvexoptimization framework, to solve the new hallenging opportunities in this�eld, suh as radar ode design [6℄ [7℄, robust radar detetion [8℄ [9℄ [10℄, andonstrained estimation of typial radar parameters [11℄ [12℄.In partiular, radar waveform design has been promoted by the huge ad-vanes in high-speed signal proessing hardware. Thus, the ability to adaptand diversify dynamially the waveform to the operating environment en-sures a performane gain over nonadaptive systems. In this �eld, onvex1Interior point methods are iterative algorithms whih terminate one a prespei�edauray is reahed. The number of iterations neessary to ahieve onvergene usuallyranges between 10 and 100 [3℄. 1



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - INTRODUCTIONoptimization an be suessfully applied, evaluating the best ode for a givensenario.In this thesis, we propose some original examples of radar waveformdesign via onvex optimization theory [13℄ [14℄ [15℄. After an initialsetion introduing some basi onepts about waveform design (hapter 2),we analyze in detail ode design for a stand-alone radar in ase of temporal(hapter 3) or spatial-temporal proessing (hapter 4), and for a networkedradar with onstraints on the indued interferene (hapter 5). Finally, someonluding remarks are presented (hapter 6).
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - INTRODUCTION1.1 NotationWe adopt the notation of using boldfae for vetors a (lower ase), andmatries A (upper ase). a(i) for i = 0, . . . , N − 1 is the i-th element ofthe N−dimensional vetor a, while A(n,m) for (n,m) ∈ {0, . . . , N − 1} ×

{0, . . . ,M − 1} is the (n,m)-th entry of the N×M matrixA. The onjugateoperator, the transpose operator and the onjugate transpose operator aredenoted by the symbols (·)∗, (·)T and (·)† respetively. tr(·), rank(·), λmin(·),and λmax(·) are respetively the trae, the rank, the minimum eigenvalue andthe maximum eigenvalue of the square matrix argument. I, 0 and eh denotethe identity matrix, the matrix with zero entries, and the vetor ontainingall zeros exept 1 in the h-th position (their size is determined from theontext). The letter j represents the imaginary unit (i.e. j = √
−1). RN and

C
N are the set of N-dimensional real and omplex vetors, while H

N is theset of N × N hermitian matries. For any omplex number x, we use ℜ(x)and ℑ(x) to denote respetively the real and the imaginary parts of x, |x|and arg(x) represent the modulus and the argument of x, and x∗ stands forthe onjugate of x. The Eulidean norm of the vetor x is denoted by ‖x‖.
E[·] denotes statistial expetation. The symbols ⊙ and ⊗ represent theHadamard element-wise and the Kroneker produt, respetively. For any
A ∈ HN , the urled inequality symbol � (and its strit form ≻) is used todenote generalized inequality: A � 0 means that A is a positive semide�nitematrix (A ≻ 0 for positive de�niteness).
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Chapter 2
Design Priniples
Auray, resolution, and ambiguity of the target range and radial ve-loity measurements, depend on the waveform exploited by the radar. Whilerange is assoiated with the delay of the reeived signal, radial veloity de-pends on the Doppler frequeny shift.If a mathed �lter is used at the reeiver, the ambiguity funtion repre-sents a suitable tool to study the response of the �lter in two dimensions:delay and Doppler. The onstant volume underneath the squared ambigu-ity funtion involves some trade-o�s in signal design. Preisely, a narrowresponse in one dimension is aompanied by a poor response in the otherdimension or by additional ambiguous peaks. Moreover, if we prefer ambigu-ous peaks to be well spaed in delay, we have to aept them losely spaedin Doppler (and vieversa). If we want a good Doppler resolution, we needlong oherent signal durations.Several signals are used for di�erent radar appliations and systems. Mod-ern pulsed radars generally use pulse ompression waveforms haraterized4



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESby high pulse energy (with no inrease in peak power) and large pulse band-width. As a onsequene, they provide high range resolution without sari-�ing maximum range whih depends on the pulse energy.Unfortunately, there are not easily-handled mathematial tehniques toalulate a signal with a presribed ambiguity funtion. It follows that thedesign of a radar signal with desirable harateristis of the ambiguity fun-tion is mainly based on the designer's prior knowledge of radar signatures aswell as on �trial and hek � proedures.In this hapter, we �rst present (Setion 2.1) the mathematial de�ni-tion of the ambiguity funtion and desribe its relevant properties. Then, weexplore, in Setion 2.2, the ambiguity funtion of some basi radar signals:single-frequeny retangular pulse and oherent pulse train. Hene, in Se-tion 2.3, radar oding is presented as a suitable mean to ahieve ambiguityfuntion shaping: the ultimate goal is to segregate the volume of the ambi-guity funtion in regions of the delay-Doppler plane where it eases to be apratial embarrassment [16℄.2.1 Ambiguity Funtion: De�nition and Prop-ertiesThis funtion was introdued in signal analysis by Ville [17℄ and in theradar ontext by Woodward [16℄. However, it was known in thermodynami,sine 1932, due to the Nobel prize winner Eugene Wigner, who studied quan-tum orretions to lassial statistial mehanis [18℄.The ambiguity funtion of a signal whose omplex envelope is denoted by5



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES
u(t) is de�ned as

|χ(τ, ν)| =
∣∣∣∣
∫ ∞

−∞

u(t)u∗(t+ τ) exp(j2πνt)dt

∣∣∣∣ ,where τ and ν are the inremental delay and Doppler frequeny shift respe-tively. Otherwise stated, it is the modulus of a mathed �lter output whenthe input is a Doppler shifted version of the original signal to whih the �lteris atually mathed. It follows that |χ(0, 0)| oinides with the output whenthe input signal is mathed to the nominal delay and Doppler of the �lter;nonzero values of τ and ν indiate a target from other range and/or veloity.Assuming that u(t) has unitary energy, |χ(τ, ν)| omplies with the follow-ing four relevant properties.1. Maximum Value Property.
|χ(τ, ν)| ≤ |χ(0, 0)| = 1 ,the maximum value of the ambiguity funtion is reahed for (τ, ν) =

(0, 0) and is equal to 1.2. Unitary Volume Property.
∫ ∞

−∞

∫ ∞

−∞

|χ(τ, ν)|2 dτdν = 1 ,the volume underneath the squared ambiguity funtion is unitary.3. Symmetry.
|χ(τ, ν)| = |χ(−τ,−ν)| ,6



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESthe ambiguity funtion shares a symmetry property about the origin.4. Linear Frequeny Modulation Property.Given the ambiguity funtion |χ(τ, ν)| of signal u(t), the ambiguityfuntion |χ(τ, ν − kτ)| orrespond to u(t) exp(jπkt2).A more onise way of representing the ambiguity funtion onsists ofexamining the one-dimensional zero-delay and zero-Doppler uts. The ut of
|χ(τ, ν)| along the delay axis is

|χ(τ, 0)| =
∣∣∣∣
∫ ∞

−∞

u(t)u∗(t + τ)dt

∣∣∣∣ = |R(τ)| ,where R(τ) is the autoorrelation funtion of u(t). The ut along the Doppleraxis is
|χ(0, ν)| =

∣∣∣∣
∫ ∞

−∞

|u(t)|2 exp(j2πνt)dt
∣∣∣∣ ,whih is independent of any phase or frequeny modulation of the inputsignal. Further interesting properties of the ambiguity funtion an be foundin Rihazek's lassi book Priniples of High Resolution Radar [19℄.2.2 Basi Radar SignalsIn this setion, we present the ambiguity funtion of some basi signals(single frequeny retangular pulse and oherent pulse train) [20, h. 8℄ anddisuss their suitability for radar appliations.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES2.2.1 Retangular PulseThe retangular pulse of length tp and unitary energy is given by1
u(t) =

1√
tp
ret( t

tp

)
,and the orresponding pulse ambiguity funtion is

|χ(τ, ν)| =





∣∣∣∣
(
1− |τ |

tp

) sin [tp(1− |τ |/tp)ν]
∣∣∣∣ , if |τ | ≤ tp ,

0 elsewhere, (2.1)
In Figures 2.1-2.2-2.3, (2.1) is plotted together with the ontours and theuts along the delay and Doppler axes. Notie that (2.1) is limited to anin�nite strip whose size on the delay axis is 2tp. As to the ut at τ = 0, itexhibits the �rst nulls at νnull = ± 1

tp
and, sine the sin(·) funtion has apeak sidelobe at −13.5 dB, the pratial extension of the ambiguity funtionalong the Doppler axis an be onsidered 2/tp.In general, the square pulse is not a desirable waveform from a pulseompression standpoint, beause the autoorrelation funtion is too wide intime, making it di�ult to disern multiple overlapping targets.

1The funtion ret(x) is equal to 1, if |x| ≤ 1/2, and is equal to 0 elsewhere. Thefuntion sin(x) is de�ned as sin(x) = sin(πx)

πx
.8



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES

Figure 2.1: Ambiguity funtion of a onstant frequeny retangular pulse oflength tp.

τ

ν

Figure 2.2: Ambiguity funtion ontours of a onstant frequeny retangularpulse of length tp.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES

τ

χ
τ

ν

χ
ν

Figure 2.3: Ambiguity funtion of a onstant frequeny retangular pulse oflength tp. a) Zero-Doppler ut. b) Zero-delay ut.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES2.2.2 Pulse TrainThe omplex envelope of a oherent pulse train, omposed by N equallyspaed pulses, an be written as
u(t) =

1√
N

N∑

n=1

pn(t− (n− 1)TR) , (2.2)where TR is the pulse repetition period and pn(t) is the omplex envelope ofthe n-th unitary energy pulse. Assuming that the pulse train is uniform (i.e.
pn(t) = p(t), n = 1, . . . , N) and that TR/2 is greater than the pulse duration
tp, the ambiguity funtion of (2.2) an be expressed as

|χ(τ, ν)| = 1

N

N−1∑

p=−(N−1)

|χp(τ − pTR, ν)|
∣∣∣∣
sin[πν(N − |p|)TR]

sin(πνTR)

∣∣∣∣ , (2.3)where |χp(τ, ν)| is the (pulse) ambiguity funtion of p(t).In Figure 2.4, we assume single-frequeny retangular pulses, N = 6,
TR = 5tp and plot (2.3) in the range-Doppler domain2. Due to its shape (2.3)is often referred to as bed of nails. The zero-Doppler ut shows that thereare multiple triangular windows: the separation between two onseutivepeaks is equal to the pulse repetition period TR. Moreover, all the triangularwindows have the same width 2tp, but their height dereases as the distanefrom the origin inreases.As to the ut for τ = 0, there are multiple peaks spaed apart 1/TR and
N−2 smaller sidelobes between them. The �rst nulls our at ν = ±1/NTR,2In the following, the Matlab © toolbox of Levanon and Mozeson [21℄ is used to plotthe ambiguity funtions. 11



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESnamely the width of the main peak (in Doppler) is ruled by the length of theoherent proessing interval.

Figure 2.4: Ambiguity funtion of a oherent train of uniform pulses with
N = 6, pulse length tp, and pulse repetition period TR = 5tp.
2.3 Linearly Coded Pulse TrainThe ambiguity funtion of a oherent pulse train allows a main peaknarrow both in range and in Doppler, but exhibits some peaks with almostthe same amplitude as the main peak. These might be deleterious and anlead to range/Doppler ambiguities very di�ult to resolve.If we wish to maintain a very narrow main peak but annot aept theadditional peaks typial of the bed of nails, we an spread the volume in a lowbut wide pedestal around the main peak. This kind of ambiguity funtionis referred to as thumbtak shape and an be obtained onsidering linearly

12



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLESoded pulse train, i.e.
u(t) =

N−1∑

i=0

c(i)p(t− iTr) ,where [c(0), c(1), . . . , c(N−1)] = c ∈ C
N is the radar ode, and, as usual, u(t)is the signal's omplex envelope and p(t) is the signature of the transmittedpulse. In this ase, the ambiguity funtion an be evaluated as

χ(λ, f) =

∫ ∞

−∞

u(β)u∗(β − λ)ej2πfβdβ =

N−1∑

l=0

N−1∑

m=0

c(l)c∗(m)χp (λ− (l −m)Tr, f) ,where χp(λ, f) is the (pulse) ambiguity funtion of p(t). Eah odeword c(i)modulates both in amplitude and phase a di�erent pulse (see Figure 2.5).Doing so, many advantages an be ahieved, as for example better detetionperformane, redution in range or Doppler, or rapid deay of the spetraltails [22℄.Before proeeding, we remaind that waveform design algorithms usuallyantiipated their implementation by many years, due to omplexity and hard-ware limitations [22℄. For instane, the onept of pulse ompression, de-veloped during the Seond World War, gained renewed interest only whenhigh-power Klystrons beame available [23℄. In other words, what seems un-pratial today, may not be de�nitely ruled out in the near future. The lakof signal oherene, whih preluded the appliation of signal ompressionduring the last World War, is today easy. Maybe, the linear power am-13



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - DESIGN PRINCIPLES

Figure 2.5: Coded pulse train, with length N = 4, retangular pulse p(t),and Tr = 2tp.pli�ers, required to implement amplitude modulated radar signals, will notrepresent a tehnologial limitation tomorrow.
In the following hapters, we present some original examples of linearpulse oding. First, we propose a oding tehnique for stand-alone radars,maximizing the detetion performane under an auray onstraint, in thease of temporal (hapter 3) or spatial-temporal proessing (hapter 4).Then, we analyze the ase of networked radar, evaluating a ode whih limitthe interferene indued on other networks elements (hapter 5).
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Chapter 3
Coding for Temporal Proessing
Radar oding for temporal proessing is presented in this hapter. Wedetermine the optimum radar ode aording to the following riterion: maxi-mization of the detetion performane under a ontrol on the region of ahiev-able Doppler estimation auraies, and imposing a similarity onstraint witha pre�xed radar ode. This last onstraint is tantamount to requiring a sim-ilarity between the ambiguity funtions of the devised waveform and of thepulse train enoded with the pre�xed sequene. The resulting optimizationproblem is nononvex. In order to solve it, we propose a tehnique (withpolynomial omputational omplexity) based on the relaxation of the orig-inal problem into a Semide�nite Programming (SDP) problem. Thus, thebest ode is determined through a rank-one deomposition of an optimalsolution of the relaxed problem. At the analysis stage, we assess the per-formane of the new enoding tehnique in terms of detetion apabilities,region of ahievable Doppler estimation auraies, and ambiguity funtion.The hapter is organized as follows. In Setion 3.1, we present the model15



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGfor both the transmitted and the reeived oded signal. In Setion 3.2, wedisuss some relevant guidelines to formulate the ode design problem. InSetion 3.3, we introdue the algorithm whih solves the presented problem,exploiting SDP relaxation and deomposition. Finally, in Setion 3.4, weassess the performane of the proposed enoding method also in omparisonwith a standard radar ode.3.1 System ModelWe onsider a radar system whih transmits a oherent burst of pulses
s(t) = atu(t) exp[j(2πf0t + φ)] ,where at is the transmit signal amplitude,

u(t) =
N−1∑

i=0

c(i)p(t− iTr) ,is the signal's omplex envelope, p(t) is the signature of the transmitted pulse,
Tr is the pulse repetition time, [c(0), c(1), . . . , c(N − 1)]T = c ∈ CN is theradar ode (assumed without loss of generality with unit norm), f0 is thearrier frequeny, and φ is a random phase. Moreover, the pulse waveform
p(t) is of duration Tp ≤ Tr and has unit energy, i.e.

∫ Tp

0

|p(t)|2dt = 1 .

16



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGThe signal baksattered by a target with a two-way time delay τ and reeivedby the radar is
r(t) = αre

j2π(f0+fd)(t−τ)u(t− τ) + n(t) ,where αr is the omplex eho amplitude (aounting for the transmit ampli-tude, phase, target re�etivity, and hannels propagation e�ets), fd is thetarget Doppler frequeny, and n(t) is additive disturbane due to lutter andthermal noise.This signal is down-onverted to baseband and �ltered through a linearsystem with impulse response h(t) = p∗(−t). Let the �lter output be
v(t) = αre

−j2πf0τ

N−1∑

i=0

c(i)ej2πifdTrχp(t− iTr − τ, fd) + w(t) ,where χp(λ, f) is the pulse waveform ambiguity funtion, and w(t) is thedown-onverted and �ltered disturbane omponent. The signal v(t) is sam-pled at tk = τ + kTr, k = 0, . . . , N − 1, providing the observables1
v(tk) = αc(k)ej2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,where α = αre

−j2πf0τ . Assuming that the pulse waveform time-bandwidthprodut and the expeted range of target Doppler frequenies are suh thatthe single pulse waveform is insensitive to target Doppler shift2, namely1We neglet range straddling losses and also assume that there are no target rangeambiguities.2Notie that this assumption might be restritive for the ases of very fast movingtargets suh as �ghters and ballisti missiles.17



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSING
χp(0, fd) ∼ χp(0, 0) = 1, we an rewrite the samples v(tk) as

v(tk) = αc(k)ej2πkfdTr + w(tk), k = 0, . . . , N − 1 .Moreover, denoting by p = [1, ej2πfdTr , . . . , ej2π(N−1)fdTr ]T the temporal steer-ing vetor, by v = [v(t0), v(t1), . . . , v(tN−1)]
T the olleted reeived samples,and by w = [w(t0), w(t1), . . . , w(tN−1)]

T the down-onverted and �ltered dis-turbane vetor, we get the following vetorial model for the baksatteredsignal
v = αc⊙ p+w . (3.1)3.2 Problem FormulationIn this setion, we introdue some key performane measures to be op-timized or ontrolled during the seletion of the radar ode: they permit toformulate the design of the ode as a nononvex optimization problem. Themetris onsidered in this hapter are:3.2.1 Detetion ProbabilityThis is one of the most important performane measures whih radarengineers attempt to maximize. We just remind that the problem of detetinga target in the presene of observables desribed by the model (3.1) an be

18



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGformulated in terms of the following binary hypotheses test




H0 : v = w

H1 : v = αc⊙ p+w .

(3.2)
Assuming that the disturbane vetor w is a zero-mean omplex irularGaussian vetor with known positive de�nite ovariane matrix E[ww†] =

M , the Generalized Likelihood Ratio Test (GLRT) detetor for (3.2), whihoinides with the optimum test (aording to the Neyman-Pearson riterion)if the phase of α is uniformly distributed in [0, 2π[ [24℄, is given by
|v†M−1(c⊙ p)|2

H1
>
<
H0

G , (3.3)where G is the detetion threshold set aording to a desired value of the falsealarm Probability (Pfa). An analytial expression of the detetion Probabil-ity (Pd), for a given value of Pfa, is available both for the ases of non�u-tuating target (NFT) and Rayleigh �utuating target (RFT). In the formerase,
Pd = Q

(√
2|α|2(c⊙ p)†M−1(c⊙ p),

√
−2 lnPfa

)
,while, for the ase of RFT with E[|α|2] = σ2

a,
Pd = exp

(
lnPfa

1 + σ2
a(c⊙ p)†M−1(c⊙ p)

)
,

19



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGwhere Q(·, ·) denotes the Marum Q funtion of order 1. These last expres-sions show that, given Pfa, Pd depends on the radar ode, the disturbaneovariane matrix and the temporal steering vetor only through the SNR,de�ned as SNR =





|α|2(c⊙ p)†M−1(c⊙ p) NFT
σ2
a(c⊙ p)†M−1(c⊙ p) RFTMoreover, Pd is an inreasing funtion of SNR and, as a onsequene, themaximization of Pd for a given α an be obtained maximizing the SNR overthe radar ode, i.e.
maximize

c
c†Rc , (3.4)with R = M−1 ⊙ (pp†)∗.3.2.2 Doppler Frequeny Estimation AurayThe Doppler auray is bounded below by Cramér-Rao bound (CRB),whih provide a lower bound for the variane of unbiased estimate. Con-straining the CRB is tantamount to ontrolling the region of ahievableDoppler estimation auraies, referred to in the following as A. We justhighlight that a reliable measurement of the Doppler frequeny is very im-portant in radar signal proessing beause it is diretly related to the targetradial veloity useful to speed the trak initiation, to improve the trak a-uray [25℄, and to lassify the dangerousness of the target.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGThe CRB for known α is given by
∆CR(fd) =

Ψ

2
∂h†

∂fd
M−1 ∂h

∂fd

, (3.5)
where h = c⊙ p, and Ψ =

1

|α|2 . Notiing that
∂h

∂fd
= Tr c⊙ p⊙ u ,with u = [0, j2π, . . . , j2π(N − 1)]T , (3.5) an be rewritten as

∆CR(fd) =
Ψ

2T 2
r (c⊙ p⊙ u)†M−1(c⊙ p⊙ u)

.As already stated, foring an upper bound to CRB, for a spei�ed Ψvalue, results in a lower bound on the size of A. Hene, aording to thisguideline, we fous on the lass of radar odes omplying with the ondition
∆CR(fd) ≤

Ψ

2T 2
r δa

,whih an be equivalently written as
c†R1c ≥ δa , (3.6)where R1 = M−1 ⊙ (pp†)∗ ⊙ (uu†)∗, and the parameter δa rules the lowerbound on the size of A. Otherwise stated, suitably inreasing δa, we ensurethat new points fall in the region A, namely new smaller values for the21



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGestimation variane an be theoretially reahed by estimators of the targetDoppler frequeny (see Figure 3.1 for a pitorial desription).

Figure 3.1: Lower bound to the size of the region A for two di�erent valuesof δa (δ′a < δ′′a).
3.2.3 Similarity ConstraintDesigning a ode whih optimizes the detetion performane does notprovide any kind of ontrol to the shape of the resulting oded waveform.Preisely, the unonstrained optimization of Pd an lead to signals with sig-ni�ant modulus variations, poor range resolution, high peak sidelobe levels,and more in general with an undesired ambiguity funtion behavior. Thesedrawbaks an be partially irumvented imposing a further onstraint tothe sought radar ode. Preisely, it is required the solution to be similar to aknown unitary norm ode c0 (i.e. ‖c0‖2 = 1), whih shares onstant modu-lus, reasonable range resolution and peak sidelobe level. This is tantamount22



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGto imposing that [6℄
‖c− c0‖2 ≤ ǫ , (3.7)where the parameter ǫ ≥ 0 rules the size of the similarity region. In otherwords, (3.7) permits to indiretly ontrol the ambiguity funtion of the on-sidered oded pulse train: the smaller ǫ, the higher the degree of similaritybetween the ambiguity funtions of the designed radar ode and of c0.Reminding the objetive funtion (5.10) and the onstraints (3.6) and(3.7), for an unitary norm ode c (i.e. ‖c‖2 = 1), the design problem an beformulated as follows

QP1





maximize
c

c†Rc

subject to c†c = 1

c†R1c ≥ δa

‖c− c0‖2 ≤ ǫ3.3 Problem SolutionIn this setion, we propose a tehnique for the seletion of the radar odewhih attempts to maximize the detetion performane but, at the sametime, provides a ontrol both on the target Doppler estimation auray andon the similarity with a given radar ode.Notie that the nononvex optimization problem QP1 an be equivalenty
23
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maximize
c

c†Rc

subject to c†c = 1

c†R1c ≥ δa

ℜ
(
c†c0

)
≥ 1− ǫ/2

(3.8)
The feasibility of the problem3 depends not only on the parameters δa and
ǫ, but also on the pre�xed ode c0.Now, we show that an optimal solution of (3.8) an be obtained from anoptimal solution of the following Enlarged Quadrati Problem (EQP1):

EQP1





maximize
c

c†Rc

subject to c†c = 1

c†R1c ≥ δa

ℜ2
(
c†c0

)
+ ℑ2

(
c†c0

)
= c†c0c

†
0c ≥ δǫwhere δǫ = (1− ǫ/2)2. Sine the feasibility region of EQP1 is larger than thatof QP1, every optimal solution of EQP1, whih is feasible for QP1, is also anoptimal solution for QP1 [3℄. Thus, assume that c̄ is an optimal solution ofEQP1 and let φ = arg (c̄†c0). It is easily seen that c̄ejφ is still an optimalsolution of EQP1. Now, observing that (c̄ejφ)†c0 = |c̄†c0|, c̄ejφ is a feasiblesolution of QP1. In other words, c̄ej arg (c̄†c0) is optimal for both QP1 andEQP1.Now, we have to �nd an optimal solution of EQP1 and, to this end, we3The interested reader an refer to a reent work of De Maio et al. [13℄ for a moredetailed disussion on feasibility.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGexploit the equivalent matrix formulation
EQP1





maximize
C

tr(CR)

subject to tr(C) = 1tr(CR1) ≥ δatr(CC0) ≥ δǫ

C = cc†

(3.9)
where C0 = c0c0

†.Problem (3.9) an be relaxed into a SDP, negleting the rank-one on-straint [26℄. By doing so we obtain a Relaxed Enlarged Quadrati Problem(REQP1)
REQP1





maximize
C

tr(CR)

subject to tr(C) = 1tr(CR1) ≥ δatr(CC0) ≥ δǫ

C � 0

(3.10)
The dual problem of (3.10), REQP1 Dual (REQPD1), is

REQPD1





minimize
y1, y2, y3

y1 − y2δa − y3δǫ

subject to y1I − y2R1 − y3C0 � 0

y2 ≥ 0

y3 ≥ 0This problem is bounded below and is stritly feasible, so the optimal valueis the same as the primal [27℄ and the omplementary onditions are satis�ed25



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGat the optimal point, due to the strit feasibility of the primal problemIn the following, we prove that a solution of EQP1 an be obtained from asolution of REQP1 C̄, and from a solution of REQPD1 (ȳ1, ȳ2, ȳ3). Preisely,we show how to obtain a rank-one feasible solution of REQP1 that satis�esoptimality onditions (omplementary onditions)tr [(ȳ1I − ȳ2R1 − ȳ3C0 −R) C̄
]
= 0 (3.11)

[tr(C̄R1)− δa
]
ȳ2 = 0 (3.12)

[tr(C̄C0)− δǫ
]
ȳ3 = 0 (3.13)Suh rank-one solution is also optimal for EQP1. The proof we propose, isbased on the following proposition.Proposition I. Suppose that X ∈ HN is a positive semide�nite matrixof rank R, while A,B ∈ HN . There is a rank-one deomposition of X(synthetially denoted as D1(X,A,B)),

X =

R∑

r=1

xrx
†
rsuh that

x†
rAxr =

tr(XA)

R
and x†

rBxr =
tr(XB)

RProof. See Huang and Zhang deomposition theorem [28℄.Moreover, we have to distinguish four possible ases:1. tr (C̄R1

)
− δa > 0 and tr (C̄C0

)
− δǫ > 02. tr (C̄R1

)
− δa = 0 and tr (C̄C0

)
− δǫ > 026
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)
− δa > 0 and tr (C̄C0

)
− δǫ = 04. tr (C̄R1

)
− δa = 0 and tr (C̄C0

)
− δǫ = 0Case 1: Using the deomposition D1(C̄, I,R1) of Proposition I, we anexpress C̄ as

C̄ =
R∑

r=1

crcr
†Now, we show that there exists a k ∈ {1, . . . , R} suh that √

Rck is anoptimal solution of EQP1. Spei�ally, we �rst prove that (√Rck)(
√
Rck)

† isa feasible solution of REQP1, and then that (√Rck)(
√
Rck)

† and (ȳ1, ȳ2, ȳ3)omply with the optimality onditions, i.e. (
√
Rck)(

√
Rck)

† is a rank-oneoptimal solution of REQP1 and, hene, √Rck is an optimal solution of EQP1.The deomposition D1(C̄, I,R1) implies that every (
√
Rcr)(

√
Rcr)

†, r =
1, . . . , R satis�es the �rst and the seond onstraints in REQP1. Moreover,there must be a k ∈ {1, . . . , R} suh that (√Rck)

†
C0(

√
Rck) ≥ δǫ. In fat,if (√Rcr)

†
C0(

√
Rcr) < δǫ for every r, then

R∑

r=1

(
√
Rcr)

†
C0(

√
Rcr) < Rδǫtr[( R∑

r=1

√
Rcrc

†
r

√
R

)
C0

]
< Rδǫtr(C̄C0) < δǫwhih is in ontrast with the feasibility of C̄. This proves that there exists atleast one k ∈ {1, . . . , R} for whih (

√
Rck)(

√
Rck)

† is feasible for REQP1. Asto ful�llment of the optimality onditions, tr (C̄R1

)
−δa > 0 and tr (C̄C0

)
−

δǫ > 0 imply ȳ2 = 0 and ȳ3 = 0, namely (3.12) and (3.13) are veri�ed for27
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√
Rcr)(

√
Rcr)

†, with r = 1, . . . , R. Therefore, (3.11) an be reast astr [(ȳ1I −R)C̄
]
= tr[(ȳ1I −R)

(
R∑

r=0

crc
†
r

)]
= 0whih, sine crc

†
r � 0, r = 1, . . . , R, and ȳ2I − R � 0 (from the �rst on-straint of REQPD1), impliestr [(ȳ2I −R)

(√
Rcrcr

†
√
R
)]

= 0It follows that there exists one k ∈ {1, . . . , R} suh that (
√
Rck)(

√
Rck)

†is an optimal solution of REQP1, and thus, √Rck is an optimal solution ofEQP1.Cases 2 and 3: The proof is very similar to Case 1, hene we omit it.Case 4: In this ase, all the onstraints of REQP1 are ative, namelytr(C̄) = 1, tr(C̄R1) = δa, and tr(C̄C0) = δǫ. It follows thattr[C̄ (R1/δa − I)] = 0and tr[C̄ (C0/δǫ − I)] = 0Aording to D1(C̄,R1/δa − I,C0/δǫ − I), we deompose C̄ as
C̄ =

R∑

r=1

crcr
† ,

28



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGand observe that tr (crcr†) = 1

γr
, r = 1, . . . , R , (3.14)with γr > 1 suh that ∑R

r=1 1/γr = 1.We now prove that eah (
√
γrcr)(

√
γrcr)

† is an optimal solution of REQP1.Preisely, we �rst show that (
√
γrcr)(

√
γrcr)

† is in the feasible region ofREQP1 and then we prove that (
√
γrcr)(

√
γrcr)

† satis�es the optimalityonditions. Equation (3.14) implies that the �rst onstraint in REQP1 issatis�ed. From the feasibility of C̄ and from the used deomposition, we analso laim that (√γrcr)(
√
γrcr)

† satis�es the seond and the third onstraintsof REQP1. In fat, with referene to the seond onstraint we havetr[C̄ (R1/δa − I)] = 0tr[C̄ (R1/δa − I)]

R
= 0

cr
† (R1/δa − I) cr = 0

cr
†(R1/δa)cr = cr

†cr

cr
†(R1/δa)cr = tr (crcr†)

cr
†(R1/δa)cr = 1/γr

√
γrcr

†(R1/δa)
√
γrcr = 1

√
γrcr

†R1
√
γrcr = δa
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGAs to the third onstraint, we observe thattr[C̄ (C0/δǫ − I)] = 0tr[C̄ (C0/δǫ − I)]

R
= 0

cr
† (C0/δǫ − I) cr = 0

cr
†(C0/δǫ)cr = cr

†cr

cr
†(C0/δǫ)cr = tr (crcr†)

cr
†(C0/δǫ)cr = 1/γr

√
γrcr

†(C0/δǫ)
√
γrcr = 1

√
γrcr

†C0
√
γrcr = δǫIt remains to prove that (√γrcr)(

√
γrcr)

† omplies with the three optimalityonditions. As to the �rst, we note thattr [(ȳ1I − ȳ2R1 − ȳ3C0 −R) C̄
]

=tr [(ȳ1I − ȳ2R1 − ȳ3C0 −R)
∑R

r=1 crcr
†
]

= 0whih, sine crcr
† � 0 and ȳ1I − ȳ2R1 − ȳ3C0 −R � 0, implies thattr [(ȳ1I − ȳ2R1 − ȳ3C0 −R) (

√
γrcr

√
γrcr

†)
]
= 0 ,proving the �rst optimality ondition. The ompliane with the seond op-
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGtimality ondition an be shown as follows
cr

† (R1/δa − I) cr = 0

(
√
γrcr)

† (R1/δa − I)
√
γrcr = 0

[√
γrcr

† (R1/δa − I)
√
γrcr

]
ȳ2 = 0tr [(R1/δa − I)

(√
γrcrc

†
r

√
γr
)
ȳ2
]
= 0As to the third optimality ondition, we have

cr
† (C0/δǫ − I) cr = 0

√
γrcr

† (C0/δǫ − I)
√
γrcr = 0

[√
γrcr

† (C0/δǫ − I)
√
γrcr

]
ȳ3 = 0tr [(C0/δǫ − I)

(√
γrcr

√
γrc

†
r

)
ȳ3
]
= 0and the proof is ompleted.In onlusion, using the deomposition of Proposition I, we have shownhow to onstrut a rank-one optimal solution of REQP1, whih is tantamountto �nding an optimal solution of EQP1. Summarizing, the optimum ode anbe onstruted aording to the proedure reported in Algorithm 1.The omputational omplexity onneted with the implementation of thealgorithm is polynomial as both the SDP problem and the deomposition ofProposition I an be performed in polynomial time. In fat, the amount ofoperations, involved in solving the SDP problem, is O (N3.5) [27, p. 250℄ andthe rank-one deomposition requires O(N3) operations.31



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGAlgorithm 1 Temporal Proessing (TiP) CodingInput: M , p, c0, δa, δǫ;Output: c
TiP

;1: solve the SDP problem REQP1 �nding an optimal solution C̄;2: if tr(C̄R1)− δa = 0 and tr(C̄C0)− δǫ = 0 then3: deompose ∑R

r=1 crc
†
r = D1(C̄,R1/δa − I,C0/δǫ − I);4: ompute c̄ =

√
γ1c1, with γ1 = 1/‖c1‖25: else6: deompose ∑R

r=1 crc
†
r = D1(C̄,R1, I);7: Find k suh that c†kC0ck ≥ δǫ/R and ompute c̄ =

√
Rck;8: end9: c

TiP
= c̄ejφ, with φ = arg(c̄†c0)3.4 Performane AnalysisThe present setion is aimed at analyzing the performane of the proposedenoding sheme. To this end, we assume that the disturbane ovarianematrix is exponentially shaped with one-lag orrelation oe�ient ρ = 0.8,i.e.

M (i, j) = ρ|i−j| ,and �x Pfa of the reeiver (5.5) to 10−6. The analysis is onduted in terms of
Pd, region of ahievable Doppler estimation auraies, and ambiguity fun-tion of the oded pulse train whih results exploiting the proposed algorithm,i.e.

χ(λ, f) =
N−1∑

l=0

N−1∑

m=0

c
TiP

(l)c∗
TiP

(m)χp[λ− (l −m)Tr, f ] ,where [c
TiP

(0), . . . , c
TiP

(N − 1)]T = c
TiP

is an optimum ode. As to the tem-poral steering vetor p, we set the normalized Doppler frequeny4 f
d
Tr = 0.The onvex optimization Matlab © toolbox SeDuMi [4℄ is exploited for solv-4We have also onsidered other values for the target normalized Doppler frequeny.The results, not reported here, on�rm the performane behavior showed in this setion.32



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGing the SDP relaxation. The deomposition D1(·, ·, ·) of the SeDuMi so-lution is performed using the tehnique desribed by Huang and Zhang[28℄. As similarity ode, we set c0 as a generalized Barker Code: gener-alized Barker odes are polyphase sequenes whose autoorrelation funtionhas minimal peak-to-sidelobe ratio exluding the outermost sidelobe. Ex-amples of suh sequenes were found for all N ≤ 45 [29℄ [30℄ using nu-merial optimization tehniques. In the simulations of this subsetion, weassume N = 7 and set the similarity ode equal to the generalized Barkersequene c0 = [0.3780, 0.3780,−0.1072−0.3624j,−0.0202−0.3774j, 0.2752+

0.2591j, 0.1855− 0.3293j, 0.0057 + 0.3779j]T .In Figure 3.2, we plot Pd of the optimum ode (aording to the proposedriterion) versus |α|2 for several values of δa, δǫ = 0.01, and for non�utuatingtarget. In the same �gure, we also represent both the Pd of the similarityode as well as the benhmark performane, namely the maximum ahievabledetetion rate (over the radar ode), given by
Pd = Q

(√
2|α|2λmax (R),

√
−2 lnPfa

)
.The urves show that inreasing δa we get lower and lower values of Pdfor a given |α|2 value. This was expeted sine the higher δa the smallerthe feasibility region of the optimization problem to be solved for �nding theode. Nevertheless the proposed enoding algorithm usually ensures a betterdetetion performane than the original generalized Barker ode.In Figure 3.3, the normalized CRB (CRBn = T 2

r CRB) is plotted versus
|α|2 for the same values of δa as in Figure 3.2. The best value of CRBn is33



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSING

α

δ

Figure 3.2: Pd versus |α|2 for Pfa = 10−6, N = 7, δǫ = 0.01, non�utuatingtarget, and several values of δa ∈ {10−6, 6165.5, 6792.6, 7293.9}. GeneralizedBarker ode (dashed urve). Code whih maximizes the SNR for a given δa(solid urve). Benhmark ode (dotted-marked urve). Notie that the urvefor δa = 10−6 perfetly overlaps with the benhmark Pd.

α

δ

Figure 3.3: CRBn versus |α|2 for N = 7, δǫ = 0.01 and several values of
δa ∈ {10−6, 6165.5, 6792.6, 7293.9}. Generalized Barker ode (dashed urve).Code whih maximizes the SNR for a given δa (solid urve). Benhmarkode (dotted-marked urve). Notie that the urve for δa = 7293.9 perfetlyoverlaps with the benhmark CRBn. 34



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGplotted too, i.e. CRBn =
1

2|α|2λmax (R1)
.The urves highlight that inreasing δa better and better CRB values anbe ahieved. This is in aordane with the onsidered riterion, beausethe higher δa the larger the size of the region A. Summarizing, the jointanalysis of Figures 3.2-3.3 shows that a trade-o� an be realized between thedetetion performane and the estimation auray. Moreover, there existodes apable of outperforming the generalized Barker ode both in terms of

Pd and size of A.The e�ets of the similarity onstraint are analyzed in Figure 3.4. Therein,we set δa = 10−6 and onsider several values of δǫ. The plots show that in-reasing δǫ worse and worse Pd values are obtained; this behavior an beexplained observing that the smaller δǫ the larger the size of the similarityregion. However, this detetion loss is ompensated for an improvement ofthe oded pulse train ambiguity funtion. This is shown in Figures 3.6−3.7,where the modulus of that funtion is plotted assuming retangular pulses,
Tr = 5Tp and the same values of δa and δǫ as in Figure 3.4. Moreover, foromparison purposes, the ambiguity funtion modulus of c0 is plotted too(Figure 3.5). The plots highlight that the loser δǫ to 1 the higher the de-gree of similarity between the ambiguity funtions of the devised and of thepre�xed odes. This is due to the fat that inreasing δǫ is tantamount toreduing the size of the similarity region. In other words, we fore the devisedode to be similar and similar to the pre�xed one and, as a onsequene, weget similar and similar ambiguity funtions.35
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α

δ
ε

Figure 3.4: Pd versus |α|2 for Pfa = 10−6, N = 7, δa = 10−6, non�utuatingtarget, and several values of δǫ ∈ {0.01, 0.6239, 0.8997, 0.9994}. GeneralizedBarker ode (dashed urve). Code whih maximizes the SNR for a given δǫ(solid urve). Benhmark ode (dotted-marked urve). Notie that the urvefor δǫ = 0.01 perfetly overlaps with the benhmark Pd.Finally, Table 5.1 provides the average number of iterations Nit and CPUtime (in seonds) whih are required to solve the SDP problem (3.10). Theomputer used to get these results is equipped with a 3 GHz Intel XEONproessor.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR TEMPORAL PROCESSINGTable 3.1: Average Nit and CPU time in seonds required to solve problem(3.10). Generalized Barker ode as similarity sequene.
δa δǫ Average Nit Average CPU time (se)

10−6 0.01 21 0.30
6165.5 0.01 11 0.15
6792.6 0.01 11 0.15
7293.9 0.01 16 0.19
10−6 0.6239 22 0.28
10−6 0.8997 19 0.24
10−6 0.9994 17 0.23

Figure 3.5: Ambiguity funtion modulus of the generalized Barkerode c0 = [0.3780, 0.3780,−0.1072 − 0.3624j,−0.0202 − 0.3774j, 0.2752 +
0.2591j, 0.1855− 0.3293j, 0.0057 + 0.3779j]T .3.5 ConlusionsIn this hapter, we have onsidered the design of oded waveforms inthe presene of olored Gaussian disturbane. We have devised and assessedan algorithm whih attempts to maximize the detetion performane undera ontrol both on the region of ahievable values for the Doppler estima-tion auray, and on the similarity with a given radar ode. The proposed37
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Figure 3.6: Ambiguity funtion modulus of ode whih maximizes the SNRfor N = 7, δa = 10−6, c0 generalized Barker ode, and several values of δǫ:(up) δǫ = 0.9994, (down) δǫ = 0.8997.tehnique, whose implementation requires a polynomial omputational om-plexity, is based on the SDP relaxation of nononvex quadrati problemsand on a suitable rank-one deomposition of a positive semide�nite Hermi-tian matrix. The analysis of the algorithm has been onduted in terms of38
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Figure 3.7: Ambiguity funtion modulus of ode whih maximizes the SNRfor N = 7, δa = 10−6, c0 generalized Barker ode, and several values of δǫ:(up) δǫ = 0.6239, (down) δǫ = 0.01.the following performane metris:
• detetion performane,
• region of ahievable Doppler estimation auraies,39
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• ambiguity funtion of the oded pulse waveform.Hene, the trade-o� among the three onsidered performane measures hasbeen thoroughly studied and ommented.Possible future researh traks might onern the possibility to makethe algorithm adaptive with respet to the disturbane ovariane matrix,namely to devise tehniques whih jointly estimate the ode and the o-variane. Moreover, it should be investigated the introdution in the odedesign optimization problem of knowledge-based onstraints, ruled by theapriori information that the radar has about the surrounding environment.
In the next hapter, we will extend the proposed framework to the generalase of spatial-temporal proessing. It implies that we will add anotherauray onstraint. As a onsequene, a perfet equivalene between thenononvex formulation and the relaxed onvex formulation5 is not possible.However, in the following hapter, we will identify most ases where theequivalene is valid, proposing appliable algorithms.

5This ase is usually referred as hidden onvexity.40



Chapter 4
Coding for Spae-Time Proessing
In this hapter, we deal with the problem of onstrained ode opti-mization for radar Spae-Time Adaptive Proessing (STAP) in the preseneof olored Gaussian disturbane. At the design stage, we devise a ode designalgorithm omplying with the following optimality riterion: maximization ofthe detetion performane under a ontrol on the regions of ahievable valuesfor the temporal and spatial Doppler estimation auray, and on the degreeof similarity with a pre�xed radar ode. The resulting quadrati optimizationproblem is solved resorting to a onvex relaxation that belongs to the SDPlass. An optimal solution of the initial problem is then onstruted througha suitable rank-one deomposition of an optimal solution of the relaxed one.At the analysis stage, we assess the performane of the new algorithm bothon simulated data and on the standard hallenging Knowledge-Aided SensorSignal Proessing and Expert Reasoning (KASSPER) dataube.The hapter is organized as follows. In Setion 4.1, we present the modelfor both the transmitted and the reeived oded signal. In Setion 4.2, we41



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGformulate the ode design optimization problem. In Setion 4.3, we intro-due the algorithm whih exploits SDP relaxation and provides a solutionto the aforementioned problem. In Setion 4.4, we assess the performaneof the proposed enoding method also in omparison with a standard radarode. Finally, in Setion 4.5, we draw onlusions and outline possible futureresearh traks.4.1 System ModelThe STAP signal model adopted in this hapter is that developed byWard [31, h. 1℄, with the addition of a temporal oding on the transmittedoherent burst of pulses. Spei�ally, data are olleted by a narrowbandantenna array with M spatial hannels whih, for simpliity, we assume ol-inear, omnidiretional, and equally spaed. Eah hannel reeives N ehoesorresponding to the returns of a oherent oded pulse train omposed of Npulses. It is assumed that the omplex envelope of the transmitted signal is
u(t) = ate

jΦt

N−1∑

i=0

c(i)p(t− iTr)where Tr is the Pulse Repetition Time (PRT), [c(0), c(1), . . . , c(N − 1)]T =

c ∈ C
N is the radar ode (assumed without loss of generality with unit norm),

p(t) is the pulse waveform of duration Tp and with unit energy, at and Φt arerespetively the amplitude and the random phase of u(t).FollowingWard's model [31℄, we formulate the problem of deteting a tar-get in the presene of observables in terms of the following binary hypothesis42



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGtest: 



H0 : r = i + n

H1 : r = αp+ i + nwhere r is the MN × 1 spae-time snapshot at the range of interest, i and ndenote respetively the lutter/interferene and reeiver noise vetors whihare assumed statistially independent zero-mean omplex irular Gaussianvetors, α is the omplex amplitude aounting for both the target as well asthe hannel propagation e�ets, and p the target spae-time steering vetor,i.e p = (c ⊙ pt) ⊗ ps, with pt ∈ CN and ps ∈ CM being respetively thetemporal and the spatial steering vetors. More preisely [31℄,
pt =

1√
N
[1, exp(j2πft), . . . , exp(j2π(N − 1)ft)]

T ,

ps =
1√
M

[1, exp(j2πfs), . . . , exp(j2π(M − 1)fs)]
T ,with ft and fs the normalized temporal and spatial Doppler frequenies,respetively.4.2 Problem FormulationA ommon measure of a STAP proessor performane is the outputSignal-to-Interferene-plus-Noise Ratio (SINR) [31, pp. 62-69℄, whih, forthe optimum �lter, is given bySINR = |α|2[(c⊙ pt)⊗ ps]

†M [(c⊙ pt)⊗ ps] , (4.1)43



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGwhere M = R−1

i,n
≻ 0 and Ri,n = E[(i + n)(i + n)†] is the MN ×

MN-dimensional disturbane spae-time ovariane matrix (due to lut-ter/interferene and thermal noise). Indeed, due to the Gaussian assumption,maximizing the SINR is tantamount to maximizing the detetion perfor-mane. The following proposition will be useful in simplifying some of thesubsequent expressions and derivations.Proposition II. Let M ∈ HMN , a ∈ CN , and b ∈ CM . Then,
[(c⊙ a)⊗ b]†M [(c⊙ a)⊗ b] = c†Rc,where R ∈ HN is given by
R = [(I ⊗ b)†M(I ⊗ b)]⊙ (aa†)∗ .Furthermore,1. if M is positive semide�nite, then R is positive semide�nite,2. if M is positive de�nite, all the entries of a are nonzero, and b 6= 0,then R is positive de�nite, and3. if M is positive de�nite, and a has at least a zero entry, then R ispositive semide�nite.Proof. See De Maio et al. [14℄.The goal of this hapter is to design the ode c that maximizes the out-put SINR (4.1), under some onstraints that allow ontrolling the region ofahievable temporal and spatial Doppler estimation auraies and fore a44



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGsimilarity with a given radar ode c0 (assumed with unit norm). This lastonstraint is neessary in order to ontrol the ambiguity funtion of the trans-mitted oded pulse train (as c0 has a good ambiguity funtion); it an beformalized as ‖c− c0‖2 ≤ ǫ, where the parameter ǫ (with 0 < ǫ < 2 for unitnorm vetors c and c0) rules the size of the similarity region [13, Setion IIIC℄. Conerning the region of ahievable temporal and spatial Doppler estima-tion, the most natural hoie would be foring upper bounds on the CRB's on
ft and fs for known α and unknown temporal and spatial Doppler frequen-ies. Unfortunately, this approah leads to intratable nononvex onstraints.However, this drawbak an be irumvented onstraining the CRB on ft forknown α and fs, and the CRB on fs for known α and ft. As we will see, thisformulation still leads to nononvex onstraints whih, despite the previousase, are quadrati. Further developments require speifying that:

• the CRB, for known α and fs, with respet to the estimation of ft isgiven by [32, Setion 8.2.3.1℄
∆CR(ft) = Ψ

{[(
c⊙ ∂pt

∂ft

)
⊗ ps

]†
M

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]}−1

,(4.2)with Ψ =
1

2|α|2 ;
• the CRB, for known α and ft, with respet to the estimation of fs isgiven by

∆CR(fs) = Ψ

{[
(c⊙ pt)⊗

∂ps

∂fs

]†
M

[
(c⊙ pt)⊗

∂ps

∂fs

]}−1

. (4.3)45



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGAs to the regions of ahievable temporal and spatial Doppler estimationauraies (denoted by At and As, respetively), they an be ontrolled for-ing upper bounds on the respetive CRB's. To this end, foring upper boundsto (4.2) and (4.3), for a spei�ed Ψ value, results in lower bounds on the sizesof At and As. Hene, aording to this guideline, we fous on radar odesomplying with
∆CR(ft) ≤

Ψ

δt
and ∆CR(fs) ≤

Ψ

δs
,or equivalently

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]†
M

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]
≥ δt , (4.4)

[
(c⊙ pt)⊗

∂ps

∂fs

]†
M

[
(c⊙ pt)⊗

∂ps

∂fs

]
≥ δs , (4.5)where δt and δs are two positive real numbers ruling the upper bounds onCRB's.Exploiting Proposition II, the SINR in (4.1) and the Left Hand Side (LHS)of (4.4) and (4.5) an be rewritten as

[(c⊙ pt)⊗ ps]
†M [(c⊙ pt)⊗ ps] = c†Rc,

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]†
M

[(
c⊙ ∂pt

∂ft

)
⊗ ps

]
= c†Rtc,

[
(c⊙ pt)⊗

∂ps

∂fs

]†
M

[
(c⊙ pt)⊗

∂ps

∂fs

]
= c†Rsc,

46



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGwhere
R = [(I ⊗ ps)

†M(I ⊗ ps)]⊙ (ptp
†
t)

∗ ≻ 0,

Rt = [(I ⊗ ps)
†M(I ⊗ ps)]⊙ (

∂pt

∂ft

∂pt

∂ft

†

)∗ � 0,

Rs = [(I ⊗ ∂ps

∂fs
)†M(I ⊗ ∂ps

∂fs
)]⊙ (ptp

†
t)

∗ ≻ 0.It follows that the problem of devising the STAP ode, under (4.4) and(4.5), the similarity and the energy onstraints, an be formulated as thefollowing nononvex quadrati optimization problem (QP2)
QP2





maximize
c

c†Rc

subject to c†c = 1

c†Rtc ≥ δt

c†Rsc ≥ δs

‖c− c0‖2 ≤ ǫwhih an be equivalently written as
QP2





maximize
c

c†Rc

subject to c†c = 1

c†Rtc ≥ δt

c†Rsc ≥ δs

ℜ
(
c†c0

)
≥ 1− ǫ/2

(4.6)
Evidently, problem (5.21) requires the spei�ation of ft and fs; as aonsequene, the solution ode depends on these preassigned values. It is thus47



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGneessary to provide some guidelines on the importane and the appliabilityof the proposed framework. To this end, we highlight that:
• the performane level whih an be obtained through the optimal so-lution of (5.21), in orrespondene of the design ft and fs, representsan upper bound to that ahievable by any pratially implementablesystem;
• the enoding proedure might be applied in a waveform diversity on-text, where more oded waveforms on di�erent arriers are transmitted[33℄. These waveforms are hosen frequeny orthogonal and eah ofthem is optimized for the detetion in a given spatial-temporal fre-queny bin. At the reeiver end, the detetor tuned to the spei� binproesses its mathed waveform [34℄.
• a single oded waveform designed for the hallenging ondition of slowlymoving target on the lutter ridge [31℄ an be transmitted.
• a single oded waveform optimized to an average senario an be se-leted. Otherwise stated, the ode might be hosen as the solution tothe problem (5.21) with R, Rt, and Rs replaed by E [R], E [Rt], and
E [Rs], where the expetation operator is over ft and fs. If these lastquantities are modeled as independent random variables, the expeta-

48



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGtions an be evaluated after some algebra, i.e.
E [R(h, k)] = tr [M ⊙ (ehe

T
k ⊗B)

]
A(h, k),

E [Rt(h, k)] = 4π2h k tr [M ⊙ (ehe
T
k ⊗B)

]
A(h, k),

E [Rs(h, k)] = 4π2tr{M ⊙
[
ehe

T
k ⊗ (B ⊙U)

]}
A(h, k),where B = E[psp

†
s] and A = E[ptp

†
t ], while U is the M ×M matrixwith entries U(m,n) = mn. In partiular, if ft and fs modeled asindependent random variables uniformly distributed in [−∆t,∆t] and

[−∆s,∆s] respetively, we have B(h, k) =
1

M
sin (2∆s(h− k)) and

A(h, k) =
1

N
sin (2∆t(h− k)).

• assume that, after an unoded (or a possibly standard oded) trans-mission, a detetion is delared in a given spatial-temporal Dopplerbin. Our oding proedure an be thus employed to shape the wave-form for the next transmission in order to on�rm the detetion in thepreviously identi�ed bin.

49



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSING4.3 Problem SolutionIn this setion, we demonstrate how to obtain an optimal solution of QP2.Toward this, we onsider the following Enlarged Quadrati Problem (EQP2):
EQP2





maximize
c

c†Rc

subject to c†c = 1

c†Rtc ≥ δt

c†Rsc ≥ δs

ℜ2
(
c†c0

)
+ ℑ2

(
c†c0

)
= c†c0c0

†c ≥ δǫwhere δǫ = (1− ǫ/2)2. As in the previous hapter, we an obtain anoptimal solution of QP2 from an optimal solution of EQP2. Thus, if c̄ isoptimal for EQP2, then c̄ej arg(c̄
†c0) is optimal for QP2. Now, we are goingto �nd an optimal solution of EQP2. To this end, we exploit the equivalentmatrix formulation

EQP2





maximize
C

tr (CR)

subject to tr (C) = 1tr (CRt) ≥ δttr (CRs) ≥ δstr (CC0) ≥ δǫ

C = cc†

(4.7)
where C0 = c0c0

†.Problem (4.7) an be relaxed into a SDP problem negleting the rank-one onstraint [26℄. By doing so, we obtain a Relaxed Enlarged Quadrati50



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGProblem (REQP2)
REQP2





maximize
C

tr (CR)

subject to tr (C) = 1tr (CRt) ≥ δttr (CRs) ≥ δstr (CC0) ≥ δǫ

C � 0 .

(4.8)
The dual problem of REQP2 (REQPD2) is

REQPD2





minimize
y1,y2,y3,y4

y1 − y2δt − y3δs − y4δǫ

subject to y1I − y2Rt − y3Rs − y4C0 � R

y2 ≥ 0, y3 ≥ 0, y4 ≥ 0.Throughout the paper, we assume that QP2 is stritly feasible, namelythere is c1 suh that ‖c1‖ = 1, c†1Rtc1 > δt, c†1Rsc1 > δs, and ℜ
(
c1

†c0
)
>

1 − ǫ/2 (to this end, it is su�ient to suppose that the initial ode c0 is astritly feasible solution of QP2). We laim that both REQP2 and REQPD2are stritly feasible1. It follows, by the weak duality theorem, that REQP2is bounded above and REQPD2 is bounded below. Also, it follows, by thestrong duality theorem of SDP [27, Theorem 1.7.1℄, that the optimal valuesof REQP2 and REQPD2 are equal and attainable at some optimal points.Moreover, the omplementary slakness onditions are satis�ed at the opti-mal points of the primal and the dual problems. Denote by v(·) the optimal1Further details on the strit feasibility of REQP2 and REQPD2 an be found in thework of De Maio et al. [14℄. 51



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGvalue of the problem (·). It is known from optimization theory that REQPD2is also the dual problem of EQP2. So far, we have established the followingrelationships:
v(REQP2) = v(REQPD2) (from strong duality theorem of SDP)

≥ v(EQP2) (from the weak duality theorem)
= v(QP2).As a onsequene, solving the SDP problem REQP2 provides an upper boundto EQP2 (or the original problem QP2). Furthermore, as long as we an geta rank-one optimal solution of REQP2 in some way, the upper bound istight; in other words, the SDP relaxation of EQP2 is exat, or equivalently,strong duality for the nononvex problem EQP2 holds (i.e., v(REQPD2) =

v(EQP2)). Therefore, to solve EQP2 (or QP2), it su�es for us to �nd arank-one optimal solution of the SDP problem, whih is our fous in theremainder of the hapter.Before proeeding, let us ompare the optimization problem solved inthe previous hapter with that we are faed with in the present one. Inhapter 3, we have shown that strong duality hold for problem (3.9): inother words, (3.9) has been proven to be a hidden onvex program. Themost signi�ant di�erene between (3.9) and (4.7) is that the former inludesonly three homogeneous quadrati onstraints, while the latter has four. Asa onsequene, strong duality for problem EQP2 may or may not hold. Inwhat follows, we identify most ases where the strong duality is valid, andpropose solution proedures, resorting to the deomposition method used in52



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGthe previous hapter [28℄, or a new rank-one deomposition theorem proposedin a more reent paper [35℄. We expliitly highlight that the tehniquesused in this hapter is far trikier and more involved than those exploited inprevious one.The analysis of the relaxed problem REQP2 and its dual REQPD2 is easyas REQP2 is a onvex problem. Indeed, denote by C̄ an optimal solutionof REQP2, and by (ȳ1, ȳ2, ȳ3, ȳ4) an optimal solution of REQPD2. Then,the primal-dual optimal solution pair (C̄, ȳ1, ȳ2, ȳ3, ȳ4) satis�es the Karush-Kuhn-Tuker optimality onditions (whih are su�ient and neessary, sineSDP is a onvex optimization problem and onstraint quali�ation onditionsare satis�ed) [3℄. In partiular, the omplementary slakness onditions aretr [(ȳ1I − ȳ2Rt − ȳ3Rs − ȳ4C0 −R) C̄
]
= 0 (4.9)

(tr (C̄Rt

)
− δt

)
ȳ2 = 0 (4.10)

(tr (C̄Rs

)
− δs

)
ȳ3 = 0 (4.11)

(tr (C̄C0

)
− δǫ

)
ȳ4 = 0. (4.12)Further developments require introduing the new rank-one deompositionpropositions.Proposition III. Let X ∈ HN be a nonzero positive semide�nite ma-trix (N ≥ 3), and suppose that (tr (Y A1) , tr (Y A2) , tr (Y A3) , tr (Y A4)) 6=

(0, 0, 0, 0) for any nonzero positive semide�nite matrix Y ∈ HN . Then,
• if rank(X) ≥ 3, one an �nd, in polynomial time, a rank-one matrix
xx† (synthetially denoted as D2(X,A1,A2,A3,A4)) suh that x is53



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGin range(X), and
x†Aix = tr (XAi) , i = 1, 2, 3, 4;

• if rank(X) = 2, for any z not in the range spae of X, one an �nd arank-one matrix xx† suh that x is in the linear subspae spanned by
{z} ∪ range(X), and

x†Aix = tr (XAi) , i = 1, 2, 3, 4.Proof. See the reent work of Ai et al. [35, Theorem 2.3℄.The omputational omplexity of eah rank-one deomposition theoremrequires O(N3) [28℄ [35℄. In fat, the omputation involves both a Choleskyfatorization and suitable rotations. Hene, the required amount of opera-tions is dominated by that neessary for the Cholesky deomposition, whihis known to be O(N3).As already pointed out, one a rank-one positive semide�nite matrix Csatisfying (4.9)-(4.12) and feasible to (4.8) has been found, we an laim that
C = cc† is an optimal solution of (4.8), or equivalently, c is an optimalsolution of (5.21). Now, we aim at �nding a proedure to onstrut a rank-one optimal solution of REQP2 from a general rank optimal solution C̄ ofREQP2, whih an always be found by an SDP solver. We laim the followingtwo main propositions:Proposition IV. Let C̄ be an optimal solution of REQP2 with rank(C̄) ≥

3. Then, we an �nd a rank-one optimal solution of REQP2 in polynomial54



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGtime.Proof. See De Maio et al. [14℄.Proposition V. Let C̄ be an optimal solution of REQP2 with rank(C̄) =

2. Then, if one of the inequalities is satis�ed: tr (C̄Rt

)
> δt, tr (C̄Rs

)
> δs,or tr (C̄C0

)
> δǫ, we an �nd a rank-one optimal solution of REQP2 inpolynomial time.Proof. See De Maio et al. [14℄.We remark that in Proposition IV the assumption rank(C̄) ≥ 3 impliesthat the size N of C̄ is greater than or equal to 3, i.e., the length of radarode is not smaller than 3, whih is pratial. Note that in Proposition V,the size N of C̄ ould be greater than or equal to 2.In the following, we summarize the proedure that leads to an optimalsolution of EQP2, by distinguishing among three possible ases:Case 1: rank (C̄) = 1. In this ase, a vetor c with C̄ = cc† is anoptimal solution of EQP2.Case 2: rank (C̄) ≥ 3. Exploiting Proposition IV, we an obtain arank-one optimal solution of REQP2.Case 3: rank (C̄) = 2. Let tr (C̄Rt

)
= δ2, tr (C̄Rs

)
= δ3 and tr (C̄C0

)
=

δ4. We have to onsider two possible situations:Case 3.1: One of the inequalities δ2 > δt, δ3 > δs, or δ4 > δǫ holds. Inthis ase, we invoke Proposition V to output a rank-one optimal solution ofREQP2.Case 3.2: δ2 = δt, δ3 = δs, δ4 = δǫ. In this ase, we are not able to judgewhether the strong duality is valid for (4.8). Nevertheless, we an still provide55



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGa proedure aimed at onstruting feasible solutions for (4.8). Preisely,aording to the last laim of Proposition III, for any vetor z /∈ range(C̄),we an obtain a vetor cz suh thattr (czc†z) = tr (C̄) = 1tr (czc†zRt

)
= tr (C̄Rt

)
= δttr (czc†zRs

)
= tr (C̄Rs

)
= δstr (czc†zC0

)
= tr (C̄C0

)
= δǫnamely feasible for EQP2. Hene, given H di�erent vetors z /∈ range(C̄),whih an be randomly generated so that rank(C̄ + zz†) = 3, we an get

H feasible solutions of EQP2 and, then, we an selet the one whih has thelargest objetive funtion value. Besides the randomized way to generatefeasible solutions, whih is suboptimal, we an also onsider a deterministiapproah. In partiular, the following method provides a feasible solutionwith a loss of optimality by ȳ4
(tr(C0cc

†)− δǫ
):1. Perform the rank-one deomposition [c1, c2] = D1(C̄, δtI − Rt, δsI −

Rs);2. Choose a sub-optimal solution c from c1/||c1|| or c2/||c2||, say c =

c1/||c1||, suh that tr(C0cc
†) ≥ δǫ.As our simulation shows, the subase 3.2 happens in less than 0.1% ofthe experiments (see Figure 4.19, and we report the details of the simulationin Setion 4.4.3).Summarizing, the STAP ode, whih is optimum for problem QP2 (exeptfor ase 3.2), an be onstruted aording to Algorithm 2.56



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGAlgorithm 2 Spae-Time Enoding Proedure (STEP)Input: M , ps, pt, c0, δs, δt, δǫ;Output: c
STEP

;1: solve the SDP problem REQP2 �nding an optimal solution C̄;2: evaluate R = rank(C̄);3: if R = 1 then4: evaluate c̄ suh that C̄ = c̄c̄†;5: else if R ≥ 3 then6: evaluate c̄ = D2(C̄, I,Rs,Rt,C0);7: else if R = 2 then8: c̄ = Algorithm 3 (C̄,Rs,Rt,C0, δs, δt, δǫ
);9: end10: c

STEP
= c̄ejφ, with φ = arg(c̄†c0).The omputational omplexity, onneted with the implementation of thealgorithm, is polynomial, sine O (N3.5) is the amount of operations involvedin solving the SDP problem, and O (N3) is the omplexity required by thedeompositions D1(·, ·, ·) and D2(·, ·, ·, ·, ·).4.4 Performane AnalysisThe present setion is aimed at analyzing the performane of the pro-posed enoding sheme. The analysis is onduted in terms of Pd, regions ofahievable Doppler estimation auraies (At and As), and ambiguity fun-tion of the pulse train modulated through the proposed ode c̄. To proeedfurther, we reall that, for a spei�ed value of Pfa and for non�utuatingtarget [24℄, Pd an be evaluated as

Pd = Q

(√
2|α|2c̄†Rc̄,

√
−2 lnPfa

)
.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSING
Algorithm 3 EQP2 feasible solution for R = 2Input: C̄, Rs, Rt, C0, δs, δt, δǫOutput: c̄1: evaluate δ2 = tr (C̄Rt

), δ3 = tr (C̄Rs

) and δ4 = tr (C̄C0

);2: if δ2 > δt then3: evaluate [c1, c2] = D1(C̄, δ3I −Rs, δ4I −C0);4: if c
†
1Rtc1/||c1||2 > δt then5: evaluate c̄ = c1/||c1||;6: else7: evaluate c̄ = c2/||c2||;8: end9: else if δ3 > δs then10: evaluate [c1, c2] = D1(C̄, δ2I −Rt, δ4I −C0);11: if c
†
1Rsc1/||c1||2 > δs then12: evaluate c̄ = c1/||c1||;13: else14: evaluate c̄ = c2/||c2||;15: end16: else if δ4 > δǫ then17: evaluate [c1, c2] = D1(C̄, δ2I −Rt, δ3I −Rs);18: if c
†
1C0c1/||c1||2 > δǫ then19: evaluate c̄ = c1/||c1||;20: else21: evaluate c̄ = c2/||c2||;22: end23: else if δ2 = δt, δ3 = δs and δ4 = δǫ then24: determine, using Proposition III, H feasible solutions ci, i = 1, . . . , H;25: selet c̄ from {c1, . . . , cH} suh that c̄†Rc̄ ≥ c

†
iRci for all i = 1, . . . , H.26: end
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGAs benhmark ode for the detetion probability, we onsider the unon-strained unitary ode
cbenchmark = argmax

c

{
c†Rc | ‖c‖2 = 1

}
,whih does not neessarily satisfy the similarity onstraints or spatial/temporalDoppler auray onstraints. Sine that c†benchmarkRcbenchmark = λmax (R),the benhmark Pd an be expressed as

P benchmark
d = Q

(√
2|α|2λmax (R),

√
−2 lnPfa

)
.Analogously, we onsider a benhmark CRB for both spatial and temporalDoppler frequenies, i.e.CRBbenchmark

l =
Ψ

λmax (Rl)
, l ∈ {s, t} .Notie that, in general, the three values P benchmark

d , CRBbenchmark
s , andCRBbenchmark

t are not obtained in orrespondene of the same unitary normode. Besides, the ambiguity funtion of the oded pulse train an be evalu-ated as
χ(τ, ν) =

N−1∑

m=0

N−1∑

n=0

c
STEP

(m)c∗
STEP

(n)χp(τ − (m− n)Tr, ν) ,where [c
STEP

(0), . . . , c
STEP

(N − 1)]T = c
STEP

, and χp(·, ·) is the ambiguityfuntion of an unmodulated pulse [22℄.In our senario, we onsider a STAP system with M = 11 hannels and59
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N = 32 pulses. Moreover, we �x Pfa to 10−6. As to the temporal steeringvetor pt, we set the normalized temporal Doppler frequeny ft = 0.25,while we use the normalized spatial Doppler frequeny fs = 0.15 for thespatial steering vetor ps. As similarity ode c0, we resort to a generalizedBarker sequene [22, pp. 109-113℄: suh odes are polyphase sequenes whoseautoorrelation funtion has minimal peak-to-sidelobe ratio exluding theoutermost sidelobe. Examples of these sequenes have been found for allN ≤

45 [29℄ [30℄, using numerial optimization tehniques. In our simulations, wehoose a unitary norm version of the generalized Barker ode c0 of length 32[22, p. 111℄.In order to ompare the performane of our algorithm with that of thesimilarity ode, we have also evaluated Pd and CRBs obtained using c0, i.e.
P 0
d = Q

(√
2|α|2c†0Rc0,

√
−2 lnPfa

)
,and CRB0

l =
Ψ

c
†
0Rlc0

, l ∈ {s, t} .Conerning the inverse disturbane ovariane matrix M , we onsiderthe two following senarios:
• simulated ovariane, aording to the disturbane model desribed byWard [31℄;
• ovariane, from the KASSPER database [36℄.Regarding the parameters δt and δs, in general, what an be assignedis the interval of δs and δt values whih an be exploited. Evidently, they60



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGdepend on M , fs, and ft and must be smaller than the maximum eigenvalueof Rs and Rt respetively. From a pratial point of view, the seletionof the quoted parameters depend on the desired auray region (providedit is ompatible with strit feasibility). In the numerial examples, we haveonsidered a wide variation range for the parameters so as to better highlightthe performane trade-o� due to di�erent parameters ombinations.Finally, in the numerial simulations, we have exploited the Matlab ©toolbox SeDuMi [4℄ for solving the SDP relaxation.4.4.1 Simulated CovarianeThe disturbane ovariane matrix M−1 has been simulated aordingto Ward's model [31, h. 2℄, as the sum of a lutter term plus a thermalnoise ontribution, i.e. M−1 = Rclutter + σ2I, where Rclutter is the lutterovariane and σ2 is the thermal noise level. More preisely, Rclutter an beobtained using the general lutter model desribed by Ward [31, par. 2.6.1℄.It aounts for the e�ets of veloity misalignment (due to airraft rab) andintrinsi lutter motion [31℄. A syntheti desription of the prinipal radarsystem parameters, used in the simulations, is reported in Table 4.1 (for amore exhaustive list, please refer to the lassi Ward's book [31℄).In Figure 4.1, we plot Pd of the optimum ode (aording to the proposedriterion) versus |α|2 for non�utuating target, δs = 3.8, δǫ = 0.001, and forseveral values of δt. In the same �gure, we also represent both the P 0
d andthe P benchmark

d . The urves show that, inreasing δt, we get lower and lowervalues of Pd for a given |α|2 value. This was expeted sine the higher δtthe smaller the feasibility region of the optimization problem to be solved61



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGTable 4.1: Radar System Parameters.Peak power 200 kW Transmit Gain 21 dBPulse width 0.2 ms Reeiver Gain 10 dBSystem Losses 4 dB Instantaneous Bandwidth 4 MHzOperating frequeny 300 MHz Noise Figure 3 dBPRF 300 Hz Clutter-to-Noise Ratio 30 dBDuty Fator 6% Number of lutter foldovers β = 1Platform Veloity 50 m/s Platform Altitude 9000 m

α

δ

Figure 4.1: Pd versus |α|2 for non�utuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, δs = 3.8, δǫ = 0.001, andseveral values of δt ∈ {494.4, 516.0, 543.0}. Generalized Barker ode (solidurve). Pd of the proposed ode for a given δt (dashed urves). Benhmark
Pd (o-marked dashed urve).for �nding the ode. Nevertheless, the proposed enoding algorithm usuallyensures a better detetion performane than the original generalized Barkerode.In Figure 4.2, ∆CR(ft) is plotted versus |α|2 for the same values of δtas in Figure 4.1. The benhmark CRBt and CRB0

t are plotted too. Theurves highlight that, inreasing δt, better and better ∆CR(ft) values an be62
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Figure 4.2: ∆CR(ft) versus |α|2 for non�utuating target, simulated data,
ft = 0.25, fs = 0.15, N = 32, M = 11, δs = 3.8, δǫ = 0.001, and severalvalues of δt ∈ {494.4, 516.0, 543.0}. Generalized Barker ode (solid urve).
∆CR(ft) of the proposed ode for a given δt (dashed urves). Benhmark
∆CR(ft) (o-marked dashed urve).ahieved. This is in aordane with the onsidered riterion, beause thehigher δt the larger the size of the region At.In Figure 4.3, we plot Pd versus |α|2 for non�utuating target, δt = 0.5,
δǫ = 0.001, and for several values of δs. Also in this ase, we an notiea gain of the proposed enoding sheme over the lassi generalized Barkerode. However, the gain slightly redues as the parameter δs inreases, sinethe feasibility region beomes smaller and smaller.In Figure 4.4, we plot CRBbenchmark

s , CRB0
s and ∆CR(fs) versus |α|2 forthe same values of the parameters onsidered in the previous �gure. Weobserve that inreasing δs, we slightly enlarge the region of ahievable spatialDoppler auray. Moreover, the proposed enoding tehnique assures alarger As than the generalized Barker ode.Summarizing, the joint analysis of Figures 4.1÷4.4 shows that a trade-o�63
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Figure 4.3: Pd versus |α|2 for non�utuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, δt = 0.5, δǫ = 0.001, andseveral values of δs ∈ {656.7, 658.9, 669.9}. Generalized Barker ode (solidurve). Pd of the proposed ode for a given δs (dashed urves). Benhmark
Pd (o-marked dashed urve).
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Figure 4.4: ∆CR(fs) versus |α|2 for non�utuating target, simulated data,
N = 32, M = 11, ft = 0.25, fs = 0.15, δt = 0.5, δǫ = 0.001, and severalvalues of δs ∈ {656.7, 658.9, 669.9}. Generalized Barker ode (solid urve).
∆CR(fs) of the proposed ode for a given δs (dashed urves). Benhmark
∆CR(fs) (o-marked dashed urve).
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Figure 4.5: Pd versus |α|2 for non�utuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, δt = 0.5, δs = 3.8, and severalvalues of δǫ ∈ {0, 0.9811, 0.9918, 0.9957}. Generalized Barker ode (solidurve). Pd of the proposed ode for a given δǫ (dashed urves). Benhmark
Pd (o-marked dashed urve).an be realized between the detetion performane and the estimation au-ray of both the temporal and the spatial Doppler frequenies. Additionally,there exist odes apable of outperforming the generalized Barker ode bothin terms of Pd and sizes of At and As.The e�ets of the similarity onstraint are analyzed in Figure 4.5. Therein,we set δt = 0.5, δs = 3.8, and onsider several values of δǫ. The plots showthat inreasing δǫ worse and worse Pd values are obtained; this behavior anbe explained observing that the smaller δǫ the larger the size of the similar-ity region. However, this detetion loss is ompensated for an improvementof the oded pulse train ambiguity funtion, as we an see in Figures 4.7and 4.8, where the modulus of that funtion is plotted assuming retangu-lar pulses, and Tr = 3Tp. For omparison purposes, the ambiguity funtionmodulus of c0 is plotted in Figure 4.8. The plots highlight that the loser δǫ65
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Figure 4.6: Ambiguity funtion modulus of the generalized Barker ode c0with Tr = 3Tp.to 1 the higher the degree of similarity between the ambiguity funtions ofthe devised and pre�xed odes. This is due to the fat that inreasing δǫ istantamount to reduing the size of the similarity region. In other words, wefore the devised ode to be similar and similar to the pre�xed one and, as aonsequene, we get loser and loser ambiguity funtions.In the previous �gures, we have �xed two parameters, and have hangedthe other in order to analyze the impat on the performane of a parti-ular onstraint. In Figures 4.9 ÷ 4.11, we analyze the joint e�et of thethree parameters, so as to show that there are situations where the pro-posed enoding method an outperform the generalized Barker oding interms of Pd, ∆CR(ft), and ∆CR(fs). In partiular, in Figure 4.9 we plot
Pd, in Figure 4.10 ∆CR(ft), and in Figure 4.11 ∆CR(fs) versus |α|2, assum-ing (δt, δs, δǫ) = (325.7, 403.2, 0.8). Evidently, for the onsidered values ofthe parameters, the proposed ode, whose ambiguity funtion is plotted in66



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSING

Figure 4.7: Ambiguity funtion modulus of ode whih maximizes the SINRfor N = 32, Tr = 3Tp, δt = 0.5, δs = 3.8, c0 generalized Barker ode, and(up) δǫ = 0.9957, (down) δǫ = 0.9918.Figure 4.12, outperforms the generalized Barker in terms of Pd, CRBt, andCRBs.As to the robustness of the proposed method, we study the behaviourof the algorithm when a mismath on the temporal or spatial Doppler ispresent. In partiular, we design two odes, one assuming ft = 0.25 and67
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Figure 4.8: Ambiguity funtion modulus of ode whih maximizes the SINRfor N = 32, Tr = 3Tp, δt = 0.5, δs = 3.8, c0 generalized Barker ode, and(up) δǫ = 0.9811, (down) δǫ = 0.
fs = 0.15, and another where ft and fs are modeled as random parameteruniformly distributed in the interval [−1/3; 1/3], i.e. ft ∼ U (−1/3; 1/3) and
ft ∼ U (−1/3; 1/3). We analyze the performane when ft (left olumn) or fs(right olumn) ranges in the interval [−1/2; 1/2]. In Figure 4.13, we plot the
Pd versus ft in the left olumn (versus fs in the right one) for |α|2 = 14 dB68
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αFigure 4.9: Pd versus |α|2 for non�utuating target, simulated data, Pfa =
10−6, N = 32, M = 11, ft = 0.25, fs = 0.15, and (δt, δs, δǫ) =
(325.7, 403.2, 0.8). Pd of the proposed ode (dashed urves). Benhmark
Pd (o-marked dashed urve).

∆

αFigure 4.10: ∆CR(ft) versus |α|2 for non�utuating target, simulated data,
ft = 0.25, fs = 0.15, N = 32, M = 11, and (δt, δs, δǫ) = (325.7, 403.2, 0.8).
∆CR(ft) of the proposed ode (dashed urves). Benhmark ∆CR(ft) (o-marked dashed urve).and (δt, δs, δǫ) = (53.4, 15.6, 0.5). We an notie that the proposed methodoutperforms the generalized Barker ode almost everywhere for the ase of a69
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∆

αFigure 4.11: ∆CR(fs) versus |α|2 for non�utuating target, simulated data,
N = 32, M = 11, ft = 0.25, fs = 0.15, and (δt, δs, δǫ) = (325.7, 403.2, 0.8).
∆CR(fs) of the proposed ode (dashed urves). Benhmark ∆CR(fs) (o-marked dashed urve).

Figure 4.12: Ambiguity funtion modulus of proposed ode for N = 32,
Tr = 3Tp, c0 generalized Barker ode, and (δt, δs, δǫ) = (325.7, 403.2, 0.8).spatial or temporal Doppler mismath. In other words, simulations indiatethat the novel enoding method shares an intrinsi robust behaviour.
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Figure 4.13: Robustness analysis for |α|2 = 14 dB, non�utuating target,simulated data, N = 32, M = 11, (δt, δs, δǫ) = (53.4, 15.6, 0.5), ft = 0.25 and
fs ∈ [−1/2; 1/2] (left olumn), fs = 0.15 and ft ∈ [−1/2; 1/2] (right olumn).Proposed ode for ft = 0.25 and fs = 0.15 (dashed urves), GeneralizedBarker ode (solid urves), Proposed ode for ft ∼ U (−1/3; 1/3) and fs ∼
U (−1/3; 1/3) (dash-dotted urves). (top left) Pd versus ft; (top right) Pdversus fs; (middle left) ∆CR(ft) versus ft; (middle right) ∆CR(ft) versus fs;(bottom left) ∆CR(fs) versus ft; (bottom right) ∆CR(fs) versus fs.4.4.2 Covariane from the KASSPER DatabaseIn this subsetion, we use the ground lutter ovariane matrix from therange ell number 10 of the KASSPER [36℄ dataube. This dataset ontainsmany real-world e�ets inluding heterogeneous terrain, sub-spae leakage,array errors, and many ground targets. It refers to a California site harater-ized by large mountains and moderate density of roads. The hosen matrix isloaded with the thermal noise ovariane matrix and then the sum is invertedto get M−1. As in the previous senario, we set the Clutter-to-Noise Ratio71
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Figure 4.14: Pd versus |α|2 for non�utuating target, real data, Pfa = 10−6,
ft = 0.25, fs = 0.15, δs = 30.6, δǫ = 0.001, and several values of δt ∈
{873.3, 1036.0, 1059.5}. Generalized Barker ode (solid urve). Pd of theproposed ode for a given δt (dashed urves). Benhmark Pd (o-markeddashed urve).to 30 dB.
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Figure 4.15: ∆CR(ft) versus |α|2 for non�utuating target, real data,
ft = 0.25, fs = 0.15, δs = 30.6, δǫ = 0.001, and several values of
δt ∈ {873.3, 1036.0, 1059.5}. Generalized Barker ode (solid urve). ∆CR(ft)of the proposed ode for a given δt (dashed urves). Benhmark ∆CR(ft)(o-marked dashed urve). 72



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGIn Figures 4.14 and 4.15, we study the e�et of the parameter δt on
Pd and ∆CR(ft). In partiular, in Figure 4.14, we plot Pd of the optimumode versus |α|2 for non�utuating target, δs = 30.6, δǫ = 0.001, and forseveral values of δt. In the same �gure, we also represent both P 0

d and
P benchmark
d . We an observe a similar behavior as in the simulated ase ofsubsetion 4.4.1: inreasing δt, we get lower and lower values of Pd for agiven |α|2 value. Moreover, our proposed enoding sheme an ahieve abetter detetion performane than the lassi generalized Barker ode. InFigure 4.15, ∆CR(ft) is plotted versus |α|2 for the same values of δt as inFigure 4.14. The benhmark CRBt and CRB0

t are plotted too. As expeted,the urves show that inreasing δt better and better ∆CR(ft) values an beobtained.
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Figure 4.16: Pd versus |α|2 for non�utuating target, real data, ft =
0.25, fs = 0.15, δt = 1.1, δǫ = 0.001, and several values of δs ∈
{29.3, 1351.6, 1381.7}. Generalized Barker ode (solid urve). Pd of the pro-posed ode for a given δs (dashed urves). Benhmark Pd (o-marked dashedurve).In Figure 4.16, we plot Pd versus |α|2 for non�utuating target, δt = 1.1,73
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δǫ = 0.001, and for several values of δs. It is evident that an inrease of theparameter δs leads to a slight deterioration of detetion performanes. Thisan be explained observing that the feasibility region beomes smaller andsmaller as δs inreases.

α

∆

δ

Figure 4.17: ∆CR(fs) versus |α|2 for non�utuating target, real data,
ft = 0.25, fs = 0.15, δt = 1.1, δǫ = 0.001, and several values of
δs ∈ {29.3, 1351.6, 1381.7}. Generalized Barker ode (solid urve). ∆CR(fs)of the proposed ode for a given δs (dashed urves). Benhmark ∆CR(fs)(o-marked dashed urve).In Figure 4.17, we plot CRBbenchmark

s , CRB0
s, and ∆CR(fs) versus |α|2 forthe same values of the parameters onsidered in the previous �gure. Theurves highlight that inreasing δs lower and lower ∆CR(fs) values an beahieved.Finally, in Figure 4.18, we plot Pd versus |α|2 for non�utuating target,

δt = 1.1, δs = 30.6, and for several values of δǫ. We an notie that the loser
δǫ to 1, the loser Pd to P 0

d , namely the performanes of the proposed odeand the generalized Barker ode end up oinident.In onlusion, Pd, ∆CR(ft), and ∆CR(fs) exhibit a similar behavior both74
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Figure 4.18: Pd versus |α|2 for non�utuating target, real data, Pfa = 10−6,
ft = 0.25, fs = 0.15, δt = 1.1, δs = 30.6, and several values of δǫ ∈
{0, 0.9792, 0.9974}. Generalized Barker ode (solid urve). Pd of the pro-posed ode for a given δǫ (dashed urves). Benhmark Pd (o-marked dashedurve).with simulated and KASSPER ovariane data. Moreover, the proposedanalysis shows that it is possible to realize a trade-o� among the three pa-rameters δt, δs, and δǫ to inrease the detetion performane, or to improvethe Doppler estimation auray, or to shape the ambiguity funtion.4.4.3 Ourrene of Subase 3.2In this subsetion, we analyze the typial rank of an optimal solution
C̄ of the SDP problem REQP2. First of all, we have to deal with the �nitepreision of Matlab © implementation of the enoding algorithm. To this end,we introdue the Rankγ (A) funtion, namely the number of eigenvalue of thematrix A greater than the positive threshold γ. For a positive semide�nitematrix A, Rankγ (A) represents a good numerial estimation of the rank of75
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A, as γ → 0. Moreover, we have to distinguish a tight onstraint from a stritonstraint. In this ase, we onsider the onstraint as pratially tight if thedi�erene of the two sides of the inequality is less than γ. Performing 10000instanes of the problem REQP2 (with lutter ovariane matrix from therange ell number 10 of the KASSPER dataube,M = 11, N = 32, ft = 0.25,
fs = 0.15, c0 generalized Barker sequene, δt, δs, and δǫ randomly hosen2), inless than 1% of the ases, we get an optimal solution C̄ with Rankγ (C̄) = 2.For those partiular situations, we have also ontrolled the onstraints, andin less than 10% of the ases, we have all the three onstraints pratiallytight (namely, ase 3.2 desribed at page 55). Summarizing, in less than
0.1% of the instanes, we have a suboptimal solution of the original QP2problem. This trend holds for all the onsidered values3 of the parameter
γ. Furthermore, most of the instanes presents a Rankγ (C̄) = 1, even ifthe number dereases as the preision γ tends to 0 (and onsequently theourrene of the event Rankγ (C̄) ≥ 3 inreases). Thus, we an onludeobserving that a duality gap between the original problem QP2 and therelaxed problem REQP2 (namely an optimal solution of rank 2 and all theonstraints tight) is very rare, and even for high preision (i.e. γ = 10−8), ithappens in less than 0.1% of the ases. The analysis is summarized in Figure4.19.2δt is a uniformly distributed random variable in the interval [λmin (Rt) ;λmax (Rt)],
δs in [λmin (Rs) ;λmax (Rs)], and δǫ in [0; 1].3Notie that additional results obtained hanging M and c0 randomly in the 10000experiments also agrees with the aforementioned behavior.
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Figure 4.19: Rankγ (C̄), over 10000 random experiments, for di�erent valuesof γ ∈ {10−2, 10−4, 10−6, 10−8}.4.5 ConlusionsIn this hapter, we have addressed the problem of ode design for radarSTAP, assuming that the overall disturbane omponent, whih ontami-nates the useful signal, is a olored omplex irular Gaussian vetor. Wehave onsidered the lass of linearly oded pulse trains and have determinedthe radar ode whih maximizes the detetion performane under a onstrainton the region of ahievable values for the temporal and spatial Doppler esti-mation auray and foring a similarity onstraint with a given radar odeexhibiting some desirable properties.The optimization problem, we have been faed with, is nononvex andquadrati. In order to solve it, we have �rst performed a relaxation into aonvex SDP problem. Then, applying appropriately rank-one deompositiontheorems [28℄ [35℄ to an optimal solution of the relaxed problem, we have de-termined an optimal ode. Remarkably, the proposed ode design proedure77



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGrequires a polynomial omputational omplexity.At the analysis stage, we have assessed the performane of the new al-gorithm both on simulated data and on the KASSPER referene STAP dat-aube. The analysis has been onduted in terms of detetion performane,regions of estimation auraies that unbiased estimators of the temporaland the spatial Doppler frequenies an theoretially ahieve, and ambiguityfuntion. The results have highlighted the trade-o� existing among the afore-mentioned performane metris. Otherwise stated, detetion apabilities anbe traded with desirable properties of the oded waveform and/or with en-larged regions of ahievable temporal/spatial Doppler estimation auraies.Possible future researh traks might onern the possibility to make thealgorithm adaptive with respet to the disturbane ovariane matrix, namelyto devise tehniques whih jointly estimate the ode and the ovariane.Moreover, it should be investigated the introdution in the ode design op-timization problem of onstraints related to the probability of orret targetlassi�ation as well as of knowledge-based onstraints, ruled by the aprioriinformation that the radar has about the surrounding environment.
In the next hapter, we further extend the proposed enoding framework.In fat, starting from hapter 3, where we have shown a single transmitter-single reeiver example, in this hapter we have analyzed the STAP ase(namely, a single transmitter-multiple reeivers situation), arriving to hapter5, where we will fae with a radar network senario (multiple transmitters-78



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR SPACE-TIME PROCESSINGmultiple reeivers). As we will see, in this ontext we have a NondeterministiPolynomial (NP) problem. Nevertheless, onvex optimization wil be useful,evaluating a quasi-optimal solution in polynomial time, through a relaxationand randomization tehnique [26℄.
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Chapter 5
Coding for Networked Radar
N etworked radar sensors are onsidered in this hapter. In the lastdeade, the importane of radar has grown progressively with the inreasingdimension of the system: from a single oloated antenna to a large sensornetwork [37℄. The onept of heterogeneous radars working together has beenthoroughly studied, opening the door to the the onept of Multiple-Input-Multiple-Output (MIMO) radar [38℄ [39℄, Over-The-Horizon (OTH) radarnetworks [40℄, and Distributed Aperture Radar (DAR) [41℄ [42℄. These threesenarios are examples of ooperative radar networks, in the sense that everysingle element ontributes to the overall detetion proess. Unfortunately, inmany pratial situations, it is not possible to design the network apriori.As suh, the elements are just simply added to the already existing network(plug and �ght), and eah sensor exhibits its own detetion sheme. This isthe ase in nonooperative radar networks [43℄ [44℄. In this senario, it be-omes extremely important that eah additional sensor interferes as little aspossible with the pre-existing elements, and, to this end, some tehniques are80



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAReasily adopted. The usual approahes rely upon the employment of spatialand/or frequeny diversity: the former resorts to forming multiple orthog-onal beams, while the latter uses separated arrier frequenies to redueinterferene [45℄ [46℄. Another possibility is to exploit waveform diversity[47℄: in whih the basi onept is to suitably modulate the waveform ofthe new sensor so as to optimize the detetion apabilities of a spei� sen-sor, but, at the same time, ontrolling the interferene introdued into thenetwork. Notie that this is di�erent from the approah employed in oop-erative sensor network, where one must design waveforms so as to optimizethe joint performane of the system [48℄ [49℄. In the nonooperative ase,the optimization of radar waveforms has been disussed in two papers [50℄[51℄. In the former, the design is based upon the maximization of the globalSignal-to-Interferene-Plus-Noise Ratio (SINR), and lassi onstraints suhas phase-only or �nite energy are onsidered [50℄. In the latter, the prob-lem of parameter estimation (e.g. diretion of arrival) for a nonooperativeradar is analyzed [51℄. In this hapter, we propose a di�erent approah: wemaximize the Signal-to-Noise Ratio (SNR), but at the same time, we ontrolthe interferene indued by our sensor on the other elements of the network.Furthermore, we apply a onstraint to the transmitted signal, limiting theenergy to a spei� maximum value. The resulting problem is Nondetermin-isti Polynomial (NP) hard, namely an optimal solution an not be found inpolynomial time. Sine a traditional approah is not possible for real-timeappliations, we propose a new algorithm, referred to as WILD (WaveformInterferene Limiting Design), to generate a suboptimal solution with a poly-nomial time onstraint due to omputational omplexity. The proedure is81



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARbased on the relaxation and randomization theory [26℄: �rst we relax thefeasible set of the problem, obtaining a solution; then we use this solution togenerate a waveform that is feasible for our original problem. The quality ofthe solution is guaranteed by the approximation bound that ensures that theWILD tehnique ahieves at least a fration R ∈ (0, 1] of the optimal valueof the relaxed problem [52℄.
The hapter is organized as follows. In Setion 5.1, we present a modelfor the generi signal reeived by an element of the network. In Setion 5.2,we disuss some relevant guidelines for waveform design and formulate theproblem. In Setion 5.3, we introdue the optimization proedure. In Setion5.4, we analyze via simulation the performane of the proposed enodingmethod. Finally, in Setion 5.5, we draw onlusions and outline possiblefuture researh traks.5.1 System ModelWe onsider a network of L nonooperative monostati radar systems,where eah sensor transmits a oherent burst of pulses

sl(t) = atxl ul(t) exp[j(2πft+ φl)] , l = 0, . . . , L− 1 ,
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARwith atxl the transmit signal amplitude,
ul(t) =

N−1∑

i=0

cl(i)p(t− iTr)the signal's omplex envelope, p(t) the single pulse shape of the transmittedsignal and assumed of duration Tp, and with unit energy, i.e.
∫ Tp

0

|p(t)|2dt = 1 ,

Tr (Tr ≥ Tp) is the pulse repetition period, cl = [cl(0), cl(1), . . . , cl(N−1)]T ∈

CN the radar ode assoiated with the l-th sensor, f is the arrier frequeny,and φl a random phase assoiated with the l-th transmitted waveform. Inother words, we are onsidering a network of nonooperative homogeneoussensors, whih do not ooperate in the detetion proess, yet exploit thesame kind of waveform, namely a linearly oded pulse train with possiblydi�erent odes. Assume that the 0-th sensor is the radar of interest: thereeived signal under the alternative hypothesis (target presene) is the sumof L transmitted signals sattered by the target. Eah term of this sum has aharateristi amplitude, delay and Doppler shift (whih depend both on the
l-th transmitter and the 0-th reeiver), so we an express the signal reeivedby the radar sensor of interest as

r0(t) =

L−1∑

l=0

αrx
0,le

j2π(f+f0,l)(t−τ0,l)ul(t− τ0,l) + n0(t) , (5.1)where n0(t) is an additive disturbane due to lutter and thermal noise, αrx
0,l,

τ0,l, and f0,l, l ∈ {0, . . . , L− 1} are respetively the omplex eho amplitude83



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR(aounting for the transmit amplitude, phase, target re�etivity, and han-nel propagation e�ets), the delay, and the target Doppler frequeny relativeto the l-th transmitter and the 0-th reeiver. No synhronization is assumedamong the sensors, namely τ0,l, l = 1, . . . , L−1, is onsidered unknown to the
0-th radar system. To simplify the notation, we use the symbol γ0 instead of
γ0,0 when the index of the reeiver (�rst index) is equal to the index of thetransmitter (seond index), where γ0,l an be one of the parameters αrx

0,l, τ0,l,or f0,l. We an separate in the Right Hand Side (RHS) of equation (5.1) theterm due to the 0-th transmitter:
r0(t) = αrx

0 ej2π(f+f0)(t−τ0)u0(t− τ0)+

L−1∑

l=1

αrx
0,le

j2π(f+f0,l)(t−τ0,l)ul(t− τ0,l) + n0(t) .

(5.2)
This signal is down-onverted to baseband and �ltered through a linear sys-tem with impulse response h(t) = p∗(−t). Let the �lter output be

v0(t) = αrx
0 e−j2πfτ0

N−1∑

i=0

c0(i)e
j2πif0Trχp (t− iTr − τ0, f0) +

L−1∑

l=1

αrx
0,le

−j2πfτ0,l

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (t− iTr − τ0,l, f0,l) + w0(t)where χp(λ, ν) is the (pulse waveform) ambiguity funtion [22℄, i.e.

χp(λ, ν) =

∫ +∞

−∞

p(β)p∗(β − λ)ej2πνβdβ,
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARand w0(t) is the down-onverted and �ltered disturbane. The signal v0(t) issampled at tk = τ0 + kTr, k = 0, . . . , N − 1, providing the observables
v0(tk) = α0c0(k)e

j2πkf0Trχp(0, f0)+

L−1∑

l=1

α0,l

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(k − i), f0,l) + w0(tk) ,where α0,l = αrx

0,le
−j2πfτ0,l , with l ∈ {0, . . . , L−1} (again, we use the simpli�ednotation α0 = α0,0), and ∆τ0,l(h) = hTr−τ0,l+τ0, l = 1, . . . , L−1. Moreover,denoting by
p0,l = [1, ej2πf0,lTr , . . . , ej2π(N−1)f0,lTr ]Tthe temporal steering vetor (with p0 = p0,0),
v0 = [v0(t0), v0(t1), . . . , v0(tN−1)]

T ,

w0 = [w0(t0), w0(t1), . . . , w0(tN−1)]
T ,and

i0,l =

[
N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(−i), f0,l) , . . . ,

N−1∑

i=0

cl(i)e
j2πif0,lTrχp (∆τ0,l(N − 1− i), f0,l)

]T
,we get the following vetorial model for the sattered signal

v0 = α0χp(0, f0)c0 ⊙ p0 +

L−1∑

l=1

α0,li0,l +w0 . (5.3)85



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARIn (5.3), we an distinguish the �rst term due to the 0-th radar (α0χp(0, f0)c0⊙

p0), the seond term due to the interferene indued by the other radars
(
∑L−1

l=1
α0,li0,l), and, �nally, the disturbane (w0) aounting for lutter andthermal noise.Moreover, sine χp(t, ν) = 0 , for |t| ≥ Tp , the vetor i0,l shares a struturewhih belongs to the �nite set A0,l (of ardinality 2N) whose elements are




cl(N − 1)ej2π(N−1)f0,lTr

0...
0



χp (∆τ0,l(−N + 1), f0,l) ,




cl(N − 2)ej2π(N−2)f0,lTr

cl(N − 1)ej2π(N−1)f0,lTr

0...
0




χp (∆τ0,l(−N + 2), f0,l) ,

...



cl(0)

cl(1)e
j2πf0,lTr...

cl(N − 1)ej2π(N−1)f0,lTr



χp (∆τ0,l(0), f0,l) ,

...
86



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR



0...
0

cl(0)

cl(1)e
j2πf0,lTr




χp (∆τ0,l(N − 2), f0,l) ,




0...
0

cl(0)



χp (∆τ0,l(N − 1), f0,l) ,

and the N-dimensional vetor 0. De�ning ĩ0,l

ĩ0,l =
[
cl(0), cl(1)e

j2πf0,lTr . . . , cl(N − 1)ej2π(N−1)f0,lTr
]T

= (cl ⊙ p0,l)
T ,and

i0,l(h) = Jhĩ0,lχp (∆τ0,l(h), f0,l) , (5.4)with Jh the N ×N matrix whose entries are
Jh(i, j) =





1 i− j = h

0 elsewherewith −N + 1 ≤ h ≤ N − 1, the set A0,l an be ompatly written as
A0,l =

{
i0,l(h)

}

−N+1≤h≤N−1

⋃
0 .87



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR5.2 Problem FormulationIn this setion, we formulate the problem of designing the ode usedby the sensor of interest. The design priniple is the maximization of theSNR for the sensor of interest (the 0-th), mitigating the mutual interfereneindued by the sensor of interest on other sensors in the network, and foringan energy onstraint. To this end, it is neessary to introdue expliitlythe de�nition of SNR and the onstraints whih are required to ontrol themutual interferene and the transmitted energy.5.2.1 Signal-to-Noise RatioAssuming that the disturbane wm, for m = 0, . . . , L− 1, is a zero-meanomplex irular Gaussian vetor with known positive de�nite ovarianematrix
E[wmw

†
m] = M ,it is known that the GLRT for the detetion of a target omponent c0 ⊙ p0with unknown omplex amplitude in the presene of w0 only (i.e. in theabsene of mutual interferene among the sensors), is given by

|v†
0g0|2 = |v†

0M
−1(c0 ⊙ p0)|2

H1
>
<
H0

G , (5.5)where g0 = M−1 (c0 ⊙ p0) is the 0-th pre-proessed steering vetor, and G isthe detetion threshold, set aording to a desired value of Pfa. This deisionrule also oinides with the optimum test (aording to the Neyman-Pearson88



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARriterion) if the phase of α0 is uniformly distributed in [0, 2π[ [24℄. From ageometri point of view it is tantamount to projeting the reeived vetor onthe pre-proessed steering diretion and then omparing the energy of theprojetion with a threshold. An analytial expression of Pd, for a given valueof Pfa, is available. Preisely, for non�utuating targets,
Pd = Q

(√
2|α0χp(0, f0)|2(c0 ⊙ p0)

†M−1(c0 ⊙ p0),Ψ

)
,where Ψ =

√
−2 lnPfa. This last expression shows that, given Pfa, Pd de-pends on the radar ode, the disturbane ovariane matrix, and the temporalsteering vetor only through the SNR, de�ned asSNR = |α0χp(0, f0)|2(c0 ⊙ p0)

†M−1(c0 ⊙ p0) . (5.6)Moreover, Pd is an inreasing funtion of SNR and, as a onsequene, themaximization of Pd an be obtained maximizing
(c0 ⊙ p0)

†M−1(c0 ⊙ p0) = c
†
0Rf0c0 (5.7)over the radar ode c0, with

Rf0 = M−1 ⊙ (p0p
†
0)

∗ . (5.8)Evidently, (5.8) requires the spei�ation of f0; as a onsequene, thesolution depends on this pre-assigned value. It is thus neessary to providesome guidelines on the importane and the appliability of the proposed89



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARframework. To this end, we highlight that:
• the mathed performane (namely when the atual Doppler is exatly
f0) whih an be obtained through the optimal solution of (5.7), rep-resents an upper bound to that ahievable by any pratial system;

• a single oded waveform designed for the hallenging ondition of slowlymoving targets (i.e. f0 ≃ 0) an be devised;
• a single oded waveform optimized over an average senario may bedesigned. Otherwise stated, this ode might be hosen so as to maxi-mize (5.7) with Rf0 replaed by Ra = M−1 ⊙

(
E
[
p0p

†
0

])∗, where theexpetation operator is over the normalized Doppler frequeny. If thislast quantity is modeled as a uniformly distributed random variable,i.e. f0Tr ∼ U (−ǫ, ǫ), with 0 < ǫ < 1/2, the expetation an be readilyevaluated, leading to
Ra = M−1 ⊙Σǫ , (5.9)where Σǫ(m,n) = sin [2ǫ(m− n)].Summarizing, we an express the objetive funtion as

c
†
0Rc0 , (5.10)with R equal to Ra or Rf0 aording to the hosen design ontext.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR5.2.2 Mutual Interferene ConstraintsTo mitigate interferene indued by the 0-th sensor, we fore our ode toprodue a small energy level when projeted on the l-th pre-proessed steeringvetor, namely on the reeiving diretion of the l-th sensor. Otherwise stated,we impose the design onstraints
E
[
|i†l,0gl|2

]
≤ δ̂l, l = 1, . . . , L− 1 , (5.11)where δ̂l > 0 are parameters ruling the aeptable levels of interferene: thesmaller δ̂l, the smaller the interferene of the radar of interest on the l-thsensor.As indiated in (5.4), il,0 depends on the partiular shift h; hene, inorder to irumvent this drawbak, we an resort to an average approah,imposing the onstraint on the average of all the admissible nonzero il,0(h)(assumed equiprobable), i.e. (5.11) beomes

E

[
N−1∑

h=−N+1

|i†l,0(h)gl|2
]
≤ δ̂l(2N − 1), l = 1, . . . , L− 1 . (5.12)As to the expetation operator, it ats over the parameters τl,0, τl, fl,0 and fl,for l = 1, . . . , L − 1, whih are pratially unknown, and an be reasonablymodeled as random variables. Now,

E

[
N−1∑

h=−N+1

|i†l,0(h)gl|2
]
= E

[
N−1∑

h=−N+1

|i†l,0(h)M−1(cl ⊙ pl)|2
]
≤ δ̂l(2N − 1) ,(5.13)
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARor equivalently
E

[
N−1∑

h=−N+1

i
†
l,0(h)M

−1(cl ⊙ pl)(cl ⊙ pl)
†M−1il,0(h)

]
≤ δl,for l = 1, . . . , L − 1, with δl = δ̂l(2N − 1). Hene, denoting by Sl =

M−1diag(cl)plp
†
ldiag(c∗l )M−1 , the onstraints an be reast as

E

[
N−1∑

h=−N+1

i
†
l,0(h)Slil,0(h)

]
≤ δl, l = 1, . . . , L− 1 . (5.14)Aording to (5.4),

il,0(h) = Jh(c0 ⊙ pl,0)χp(∆τl,0(h), fl,0) = (Jhc0 ⊙ Jhpl,0)χp(∆τl,0(h), fl,0) ,so (5.14) beomes
E

[
N−1∑

h=−N+1

c
†
0J

†
hSl,hJhc0

]
≤ δl, l = 1, . . . , L− 1 , (5.15)with Sl,h = |χp(∆τl,0(h), fl,0)|2Sl ⊙
(
Jhpl,0p

†
l,0J

†
h

)∗
. Moreover, denoting by

Rl =

N−1∑

h=−N+1

J
†
hE [Sl,h]Jh, the mutual interferene onstraint (5.12) an beexpressed as

c†0Rlc0 ≤ δl , l = 1, . . . , L− 1 . (5.16)Notie that the onstraints in (5.16) an be evaluated, assuming a suitablemodel for the random variables fl,0, fl, τl,0 and τl, with l = 1, . . . , L − 1.Assuming fl, fl,0, τl and τl,0 statistially independent, we an fatorize E [Sl,h]92



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARas
E [Sl,h] = C l ⊙Hh , (5.17)where the term C l depends on the ode cl, while the term Hh depends onthe shift h. In partiular,

C l = E [Sl] = M−1diag(cl)E [plp
†
l

] diag(c∗l )M−1 , (5.18)and
Hh = E

[
|χp(∆τl,0(h), fl,0)|2

(
Jhpl,0p

†
l,0J

†
h

)∗]
. (5.19)Moreover, assuming the normalized Doppler frequenies flTr uniformly dis-tributed in the interval [−∆,∆], i.e. flTr ∼ U (−∆,∆), with 0 < ∆ < 1/2,we get

E
[
plp

†
l

]
= Σ∆ .5.2.3 Energy ConstraintIt remains to fore a onstraint on the transmitted energy by the radarof interest, namely we suppose that the normalized ode energy is less thanor equal to N , i.e.

‖c0‖2 ≤ N . (5.20)
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR5.3 Problem SolutionNow, aording to (5.10), (5.16), and (5.20), we an formulate the odedesign in terms of the following Quadrati optimization Problem (QP3)
QP3





maximize
c0

c0
†Rc0

subject to c0
†Rlc0 ≤ δl, l = 1, . . . , L− 1

c0
†c0 ≤ N .

(5.21)
Letting Rδl = δ−1

l Rl, for l = 1, . . . , L − 1, problem (5.21) an be reastas QP3





maximize
c0

c0
†Rc0

subject to c0
†Rδlc0 ≤ 1, l = 0, . . . , L− 1

(5.22)with Rδ0 = N−1I. Now, we have a homogeneous quadrati optimizationproblem de�ned in omplex �eld CN . Moreover, Rδl are positive semide�nitematries. The equivalent matrix formulation of QP3 is
QP3





maximize
C0

Tr (C0R)

subject to Tr (C0Rδl) ≤ 1, l = 0, . . . , L− 1

C0 = c0c
†
0

(5.23)
Unfortunately, this problem is NP-hard [52℄. One approah to approximat-ing the solution to the NP-hard quadrati programs is the relaxation andrandomization tehnique [26℄: �rst relax the feasible solution set of the prob-lem, obtaining a Convex Problem (CP) that an be solved in polynomialtime through the interior point methods; then use the optimal solution of94



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARthe relaxed problem to produe a feasible solution for the original problem.In the following, we present the WILD proedure to obtain a near optimalsolution of the original problem (5.23), and give the approximate bound inthe proposed problem.5.3.1 Relaxation and RandomizationA possible relaxation of (5.23) is the following SDP problem
CP maximize

C0

Tr (C0R)

subject to Tr (C0Rδl) ≤ 1, l = 0, . . . , L− 1

C0 � 0

(5.24)
where we have removed the rank-one onstraint. An SDP is a onvex problemwhih an be solved using interior point methods [3℄, so CP an be easilysolved in polynomial time, obtaining the optimal solution C.Fatorize the optimal solution C suh that C = UU †, with U a omplex
N × r matrix1, where r = rank (C). Evaluate the orthogonal r×N omplexmatrix Q suh that Q†U †RUQ is a diagonal matrix.The next step is to generate a random vetor that is feasible (with prob-ability one) for the problem QP3. Let us de�ne x as a real normal vetor,i.e. x ∼ N (0, I), and

ξ = sign (x) = [sign (x(0)) , . . . , sign (x(N − 1))]T ,1Notie that in the partiular ase of r = 1, U is an optimal solution of QP3.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARwhere sign (x(i)) =  1 x(i) ≥ 0

−1 x(i) < 0 .Now, we an de�ne a feasible solution of QP3, say cξ, in the following way
cξ =

UQξ√
max

0≤l≤L−1
ξT R̂δlξ

, (5.25)
where R̂δl = Q†U †RδlUQ.5.3.2 Approximation BoundA �measure of goodness� of the randomization algorithm is provided bythe approximate bound whih haraterizes the quality of the produed solu-tions. In the literature, a randomized approximation method for a maximiza-tion problem has a bound (or performane guarantee, or worst ase ratio)
R ∈ (0, 1], if for all instanes of the problem, it always delivers a feasiblesolution whose expeted value is at least R times the maximum value of therelaxed problem [26℄.With referene to the WILD algorithm, we have

R× v(CP) ≤ v
WILD

(QP3) ≤ v(CP) ,where R is the approximate bound, v(CP) is the optimal value of CP, and
v
WILD

(QP3) is the objetive value of QP3 ahieved by the WILD algorithm.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARIt has been proven [52℄ that the approximate bound for this tehnique is
R =

1

2 ln (2Lµ)
,where µ = min {L,N}.For example, if N = L = 2, R = 0.24; if N = L = 3, R = 0.17; if

N = L = 4, R = 0.14. However, we remark that the approximate boundis a worst-ase result [26℄, and, in pratie, the atual performane v
WILDis substantially better than the lower bound R × v(CP) (see Setion 5.4.1):suh behavior is quite ommon for randomized tehniques [54℄ [7℄.Summarizing, the WILD an be formulated as reported in Algorithm 4.Algorithm 4 Waveform Interferene Limiting Design (WILD)Input: R, Rδl for l = 0, . . . , L− 1;Output: c

WILD
;1: solve CP �nding an optimal solution C;2: evaluate U suh that C = UU †;3: evaluate Q suh that Q†U †RUQ is diagonal;4: generate ξ with ξ(i) ∈ {−1, 1} independent, with Pr (ξ(i) = 1) = 0.5, for

i = 0, . . . , N − 1;5: alulate
c

WILD
=

UQξ√
max

0≤l≤L−1
ξT R̂δlξwhere R̂δl = Q†U †RδlUQ.
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADAR5.4 Performane AnalysisThe present setion disusses the performane of the proposed enodingsheme. The analysis is onduted in terms of normalized average2 SNR,SNRnorm (Subsetion 5.4.1) and average normalized interferene level induedby the m-th sensor on the l-th one I lm (Subsetion 5.4.2), respetively de�nedas SNRnorm =
E
ξ

[
c
†
0Rc0

]

Nλmax (R)
,and

I lm =
E
ξ

[
c†mRlcm

]

Nλmax (Rl)
.Notie that Nλmax (R) an be viewed as the optimal value of the Unon-strained Problem (UP),UP maximize

c0

c
†
0Rc0

subject to c0
†c0 ≤ N

(5.26)where the onstraints on the interferene have been removed. Obviously, theoptimal value v(UP) is greater than the optimal value of the problem QP3,i.e. v(UP) ≥ v(QP3), and, as a onsequene, SNRnorm ≤ 1. Subsetion 5.4.3illustrates the omputational omplexity of the proposed algorithm.We assume that the disturbane ovariane matrix is exponentially shapedwith one-lag orrelation oe�ient ρ = 0.8, i.e.
M(m,n) = ρ|m−n| , (m,n) ∈ {0, . . . , N − 1}2.2The average is performed over ξ's as to make the result independent of the spei�randomization. 98



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARMoreover, we hoose the pulse p(t) with retangular shape, and duty y-le Tp/Tr = 1/3. Finally, we model the normalized delay ∆τm,l(h)/Tr andthe normalized Doppler shift fm,lTr as independent random variables, uni-formly distributed in the interval [−1, 1] and [−1/3, 1/3] respetively, i.e.
∆τm,l(h)/Tr ∼ U (−1, 1) and fm,lTr ∼ U (−1/3, 1/3). The onvex optimiza-tion Matlab © toolbox SeDuMi [4℄ is exploited to solve the SDP relaxation.5.4.1 Maximization of the SNRIn this subsetion, we analyze the e�et of three di�erent parameters onthe SNRnorm : normalized Doppler shift on the referene sensor, length of theode, number of interfering sensors. We onsider the ase of a WILD ode
c0 of length N , and temporal steering vetor p0 with a known normalizedDoppler shift fd = f0Tr, i.e.

p0 =
[
1, ej2πfd, . . . , ej2πfd(N−1)

]T
.All the aeptable interfering levels δl with l = 1, . . . , L− 1, are set equal to

δ, de�ned as
δ = δnorm (Λmax − Λmin) + Λmin ,where
Λmax = min

l=1,...,L−1
{Nλmax (Rl)} ,

Λmin = max
l=1,...,L−1

{Nλmin (Rl)} ,and δnorm ∈ (0, 1).Finally, the operating environment has L− 1 = 3 interfering sensors. All99



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARthe interfering radars use a phase ode with the same length and the sameenergy3 as our WILD ode. In partiular, the �rst radar uses a Barker ode,the seond one a generalized Barker ode, and the third a Zado� ode [22℄.In Figure 5.1, we plot SNRnorm versus δnorm for N = 5, L = 4, and fourdi�erent values of fd. For omparison purpose, we also plot the SNRnorm of aBarker ode of length 5. As expeted, the higher δnorm the higher SNRnorm:this an be easily explained observing that inreasing δnorm is tantamount toenlarging the feasibility region, so higher and higher optimal values an befound. It is also notieable that the WILD ode outperforms the lassialBarker ode for δnorm ≥ 0.03. Finally, the performane of the proposedenoding tehnique depends on the Doppler shift for small values of δnorm,but for δnorm ≥ 0.6 at any Doppler frequeny the SNRnorm of the WILDalgorithm is very lose to the maximum (i.e. SNRnorm = 0 dB).In Figure 5.2, we illustrate the e�et of the length N on the ode. Inpartiular, we onsider the normalized Doppler frequeny fd = 0.30, L = 4sensors in the network, while the length N of the ode c0 an be 4, 7, 11, or13. For omparison purpose, we plot the SNRnorm of a Barker ode of length13. In partiular, we plot SNRnorm versus δnorm for the onsidered values of
N ; evidently, inreasing N leads to higher values of SNRnorm. This an beexplained observing that the parameter N governs the energy onstraint: thehigher N , the higher the maximum energy. Moreover, inreasing N enlargesthe number of degrees of freedom. Finally, we an observe that the WILDode of length 13 outperforms the Barker ode of the same length for almost3We reall that the maximum ode energy of our WILD ode is equal to N , as requiredby (5.20). 100
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δFigure 5.1: SNRnorm versus δnorm for N = 5, L = 4, and some normalizedDoppler shifts fd, i.e. fd ∈ {0.15; 0.20; 0.25; 0.30} (solid urves). Barker odeof length 5 (dotted line).all values of δnorm.

δFigure 5.2: SNRnorm versus δnorm for L = 4, normalized Doppler shift fd =
0.30, and some values of N , i.e. N ∈ {4; 7; 11; 13} (solid urves). Barkerode of length 13 (dotted line).In Figure 5.3, we analyze the e�et of the size L of the network. We101



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARplot SNRnorm versus δnorm with normalized Doppler frequeny fd = 0.30,length N = 13, and di�erent values of L: when L = 2 there is just oneinterfering ode (Barker), L = 3 two interfering odes (Barker and general-ized Barker), L = 4 three interfering odes (Barker, generalized Barker, andZado�). In this �gure, we also plot the SNRnorm of a Barker ode of length13. The urves show that inreasing the dimension of the network, leads todegraded performane. In fat, inreasing L redues feasibility, so lower andlower optimal values may be ahieved. It an also be observed that for highvalues of δnorm, the algorithm reahes the maximum value of SNRnorm (i.e.
v(UP) = v

WILD
(QP3)), and even for small values of δnorm (i.e. δnorm = 0.1)the WILD ode exhibits a gain of at least 1 dB over the lassi Barker ode.Summarizing, there is a trade-o� between the SNRnorm of the sensor of in-terest and the interferene in the remaining sensors: δnorm is the seondaryparameter that rules this relationship.

δFigure 5.3: SNRnorm versus δnorm for N = 13, normalized Doppler shift
fd = 0.30, and some values of L, i.e. L ∈ {2; 3; 4} (solid urves). Barker odeof length 13 (dotted line). 102



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARNow, we study the robustness of the proposed algorithm, onsidering amismath between the nominal steering vetor p0 with fd = 0 (assumed todesign the ode) and the atual steering vetor
pF =

[
1, ej2πF , . . . , ej2πF (N−1)

]T
,with F representing the atual normalized Doppler frequeny. We also an-alyze the WILD version of the ode with R = Ra, as indiated in (5.9),assuming ǫ = 0.3. To evaluate the performane of the algorithm, we onsiderthe atual average normalized SNR, de�ned asSNRF =

E
ξ

[
c
†
0RFc0

]

Nλmax (RF )
,where RF = M−1 ⊙

(
pFp

†
F

)∗.In Figure 5.4, we plot SNRF versus F for two di�erent values of δnorm, andfor L = 4 (Barker, generalized Barker, and Zado�). For omparison purpose,we plot the Barker ode of length 5. The lassi version of the proposed odeoutperforms the Barker ode only when the e�etive normalized Dopplerfrequeny F is lose to the nominal value fd. On the ontrary, the averageversion of WILD ahieves an higher value of SNRF than the Barker ode inthe interval [−0.3;+0.3]. As expeted, this robustness has a prie: a loss of
3 dB in the ase of perfet knowledge of the steering vetor (i.e. F = fd).
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δ

δ

δ

δFigure 5.4: SNRF versus F for N = 5, L = 4. Barker ode of length 5 (dottedurve). Average (Ra) WILD ode (dashed urves). Classi (Rf0) WILD odefor fd = 0.30 (solid urves). WILD odes for δnorm = 0.2 (o-marked urves).WILD odes for δnorm = 0.8 (+-marked urves).5.4.2 Control of the indued interfereneIn this subsetion, we analyze the behavior of the indued interferene
I lm for di�erent network senarios. In the �rst ase, we study the sameoperating environment as in Subsetion 5.4.1, i.e. three pre-existing radarsensors, whih use a Barker ode (c1), a generalized Barker ode (c2), and aZado� ode (c3) respetively.In Figure 5.5, we plot the interferene indued on the Barker ode c1 (i.e.
I1m, with m ∈ {0, 2, 3}) versus δnorm, for normalized Doppler frequeny fd =

0.30, and lengthN = 5. In partiular, we plot the interferene indued by ourode (I10 ), and, for omparison purpose, we plot the interferene indued bythe generalized Barker ode and by the Zado� ode (I12 and I13 respetively).We notie that the interferene level inreases as δnorm inreases, beause theparameter δnorm rules the aeptable amount interferene. For δnorm = 0.7the interferene indued by the WILD ode beomes higher than I12 and I13 .In Figure 5.6, we onsider the interferenes indued on the generalized Barker104



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARode c2 and on the Zado� ode c3 respetively. Analogous onsiderations anbe done in these two ases.
δFigure 5.5: I1m versus δnorm for N = 5, L = 4, and normalized Doppler shift

fd = 0.30: I10 (solid urves); I12 (dashed lines); I13 (dotted-dashed lines).In the seond senario, desribed in Figure 5.7, we onsider an operatingenvironment with only one pre-existing ode. This allows us to analyze thee�et of a partiular ode on the algorithm. We seleted �ve possible odes,all of them with energy N = 7: four phase odes (Barker, generalized Barker,Zado� and P4 odes) [22℄, and an amplitude-phase modulated ode (Hu�manode) [55℄. In Figure 5.7, we plot I10 versus δnorm for normalized Dopplerfrequeny fd = 0.15, network dimension L = 2, and di�erent interfering odes
c1. We observe that our ode indue almost the same value of interfereneover all the proposed odes: for δnorm > 0.8, there is less than 1 dB between
I10 of the P4 ode and of the Hu�man ode.Finally, in the third senario, we onsider a network with L− 1 = 3 pre-existing radar sensors, all of them with a ode of length and energy N = 4.Moreover, the �rst ode (c1) is a Barker ode, while the other two odes (c2and c3) belong to a ertain lass: phase odes, Gold odes, orthogonal PN105
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δ

δFigure 5.6: I lm versus δnorm for N = 5, L = 4, and normalized Doppler shift
fd = 0.30: I2m (up) and I3m (down). I l0 (solid urves); I l1 (dotted lines); I l2(dashed lines); I l3 (dotted-dashed lines).odes, or WILD odes. When the sensors use phase odes, we set c2 and
c3 as generalized Barker and Zado� odes, respetively. In the ase of Goldodes [56℄, the two odes are generated aording to the proedure desribedby Levanon and Mozeson [22℄, while the PN sequenes [57℄ are generated sothat they are orthogonal. Finally, in the last ase, we have an initial Barkerode c1, a WILD ode c2 devised assuming L = 2 and δnorm = δ0, and aWILD ode c3, with L = 3 and δnorm = δ0 (see Figure 5.8 for a pitorialdesription of the di�erent senarios).In Figure 5.9, we plot the normalized overall indued interferene on the
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δFigure 5.7: I10 (c1) versus δnorm for N = 7, L = 2, normalized Doppler shift
fd = 0.15, and di�erent odes c1: Hu�man ode (point-marked urve), Zado�ode (dotted-dashed urve), Barker ode (dotted urve), generalized Barkerode (dashed urve), P4 ode (solid urve).

Figure 5.8: Some senarios where WILD an be applied.radar sensor whih uses the Barker ode c1, i.e. I1TOT , de�ned as
I1TOT =

I10 + I12 + I13
L− 1

,versus δnorm, for normalized Doppler frequenies fd = 0.30, and di�erent107



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARlasses of odes. The last lass WILD is also parameterized on three di�er-ent values of δ0. First of all, we notie that lasses of odes with good ross-orrelation properties, suh as Gold odes and orthogonal PN sequenes,ahieve lower values of indued interferene than phase odes. Moreover,WILD odes an ahieve the same performane as PN orthogonal sequenesfor δ0 = 0.5, while the overall indued interferene an inrease in orrespon-dene of higher values of δ0, or derease for smaller δ0 values. This behavioron�rms that there is a trade-o� between the SNR and the indued interfe-rene. It is also notieable that for a ertain range of δnorm, our proposedalgorithm an ahieve both higher values of SNR and lower values of induedinterferene than other odes.
δ

δ

δ

δFigure 5.9: I1TOT versus δnorm for N = 4, L = 4, normalized Dopplershift fd = 0.30, and di�erent lasses of odes c2 and c3: phase odes(dashed urve), Gold ode (dotted urve), orthogonal PN odes (dotted-dashed urve), WILD odes with δ0 = 0.2 (solid urve), WILD odes with
δ0 = 0.5 (square-marked urve), WILD odes with δ0 = 0.8 (star-markedurve).
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WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARTable 5.1: Average Nit and average TCPU required to solve problem (5.24).
δnorm N L Average Nit Average TCPU

0.2 4 4 8 0.46
0.5 4 4 9 0.51
0.8 4 4 10 0.56
0.2 13 4 13 0.71
0.5 13 4 14 0.80
0.8 13 4 15 0.835.4.3 Computational omplexityAmong the �ve steps of the WILD algorithm, the most bundersome interms of omputational omplexity, is the �rst step. In fat, the resolutionof CP has a omputational omplexity O (N3.5) [27℄. We reall that theomplexity is based on a worst-ase analysis, and usually the interior pointmethods are muh faster [3℄. In Table I, we report the number of iterations

Nit and the CPU time TCPU in seonds required to solve CP using the toolboxSeDuMi [4℄. We have indiated also the orresponding value of δnorm usedin the simulation, the dimension N of the problem, and the number L ofonstraints. The reported averaged values have been evaluated over 100trials. Finally, the omputer used to obtain these results is equipped with a
3 GHz Intel XEON proessor.5.5 ConlusionsIn this hapter, we have onsidered the problem of ode design for a singleradar that operates in a nonooperative network. We try to maximize theSNR of the radar, ontrolling, at the same time, the interferene indued109



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION -CODING FOR NETWORKED RADARby our sensor on the others sensors of the network, and foring a onstrainton the transmitted energy by our radar. The resulting problem is NP-hard.Using the well established relaxation and randomization theory [52℄, we havepresented a new oding proedure (referred to as WILD), whih in polynomialtime generates a suboptimal solution of the original problem. Numerialsimulations on�rm that the WILD tehnique an inrease the detetionperformane of the network. Possible future researh traks might onernthe extension of the WILD: for istane, it might be interesting to add aonstraint on the resulting ambiguity funtion of the ode [6℄, or on theahievable region of Doppler estimation auray. Moreover, it will be ofinterest to study this proedure applied to a real senario.
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Chapter 6
Conlusions
An extensive disussion about radar waveform design has been pre-sented. In hapter 1 we introdue the onept of optimization theory appliedto signal proessing. Some examples in the radar �eld are proposed. Thus, inhapter 2 we explain some basi onepts about ode design and ambiguityfuntion. In fat, ode design is the main tool to ahieve ambiguity fun-tion shaping. The following hapters present original works about waveformdesign. In hapter 3, we start with the problem of pulse ode design fora single radar. We determine the optimum radar ode, in the sense that itmaximizes the detetion performane under a ontrol on the region of ahiev-able Doppler estimation auraies, and under a similarity onstraint with apre�xed radar ode. In hapter 4, the enoding proedure is extended to aSTAP senario. We look for the best ode under partiular auraies andsimilarity onditions. Using a relaxation and deomposition tehnique, weevaluate the desired ode in polynomial time. Finally, in hapter 5, we applythe oding design to a networked radar. In partiular, we try to maximize the111



WAVEFORM DESIGN VIA CONVEX OPTIMIZATION - CONCLUSIONSSNR, ontrolling, at the same time, the interferene indued by the radar onthe others sensors of the network, and foring a onstraint on the transmit-ted energy by our radar. We �nd a quasi-optimal solution with polynomialomplexity.
Summarizing, in this thesis we have demonstrated how onvex optimiza-tion theory an be suessfully applied to radar waveform design (and, ingeneral, to radar proessing). Remarkably, all the proposed algorithms pos-sess polynomial omplexity, so they ould be adopted in real senarios.
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Waveform Design via Convex Optimization   
 

In this thesis, we propose some original examples of radar 
waveform design via convex optimization theory. After an 
initial section introducing some basic concepts about waveform 
design (chapter 2), we analyze in detail code design for a stand-
alone radar in case of temporal (chapter 3)  or spatial-temporal 
processing (chapter 4), and for a networked radar with 
constraints on the induced interference (chapter 5). Finally, 
some concluding remarks are presented (chapter 6). 
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