
UNIVERSITÀ DEGLI STUDI DI NAPOLI
FEDERICO II

Scuola di Dottorato in Ingegneria Industriale

Corso di Dottorato in Ingegneria Elettrica - XXII Ciclo

A Flexible Framework for Magnetic
Measurements

Relatori : Candidato:
Ch.mo prof. Nello POLESE Vitaliano INGLESE
Ch.mo prof. Pasquale ARPAIA

Co-relatore:
Dott. Marco BUZIO

Coordinatore:
Ch.mo prof. Guido CARPINELLI

ANNO ACCADEMICO 2009





To my family





Acknowledgements

This experience at CERN represented for me a great opportunity of growth, both from

the professional and the human point of view. I worked with many persons who allowed

me to improve my skills and my knowledge, so I would like to thank them.

I would like to thank my supervisor Prof. Pasquale Arpaia for his full-time guide. His

enthusiasm encouraged me a lot by providing a strong motivation to do well my work

during the thesis work as a whole.

I would like to express also my gratitude to my two CERN supervisors, Luca Bottura,

who launched the FFMM project, and Marco Buzio, who followed the last part of my

work as Ph.D. Student. Our discussions were always prone of clever suggestions.

I would like to acknowledge Louis Walckiers for his help and participation to the project.

I would like to express my appreciation to my tutor from the University of Naples, Prof.

Nello Polese. His guide, helpfulness, and patience were important to achieve this final

result.

I would like to acknowledge also the coordinator of the Doctoral School in Naples, Prof.

Guido Carpinelli, for his careful guide during my work.

My gratitude also goes to Walter Scandale for the trust he had in me, from our first

meeting at CERN.

My work is a part of a project that involved the work of many persons. I had the

opportunity to work with consultants from the University of Sannio. I would like to

thank Prof. Giuseppe Di Lucca, MarioLuca Bernardi, Giuseppe La Commara, and Felice

Romano for their precious contribution to the development of FFMM.

I would like to thank Stefano Tiso and Domenico Della Ratta, my adventure at CERN

i



Acknowledgements

started with them. I will never forget the year we spent together.

I would like to thank Giovanni Spiezia, with whom I worked most of the time I spent at

CERN, for his contribution to the project and for his friendship.

I would like to thank Giancarlo Golluccio, Giuseppe Montenero, Ernesto De Matteis,

Lucio Fiscarelli, Carlo Petrone, Nicola Cardines, Fabio Corrado, Cosimo Iadanza. We

worked and we had a lot of fun together.

A special thanks also goes to Laurent Deniau, J. Garcia Perez, David Giloteaux, and

Peter Galbraith from CERN, and Nathan Brooks, from the University of Texas, for their

precious help.

I would like to thank Oana for her support and her patience during the last months. A very

special thanks also goes to Alessandro Masi, Pasquale Cimmino, Pier Paolo and Isabella,

Emmanuele Ravaioli, Alberto Ferro, Phat Srimanhobas, Filippo Liberati, Tiziana Miani.

I cannot make a list of all my friends, because I am afraid to forget someone. So, I

express my gratitude to all of them, and particularly the many wonderful people I met

in the Foyer Saint Justin, my house for the last years. Without them my stay in Geneva

would not have been as pleasant as it was.

Finally, I would like to express my gratitude to my parents, my brothers, my grandmothers

and my whole family, to whom I owe all. This work is dedicated to them.

ii



Contents

Summary 1

Introduction 4

1 Automatic systems for magnetic measurements 9

1.1 Methods for magnetic field measurements . . . . . . . . . . . . . . . . . . . 9

1.1.1 Rotating coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2 Stretched wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 Magnetic resonance technique . . . . . . . . . . . . . . . . . . . . . 13

1.1.4 Hall probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Software for magnetic measurements at CERN . . . . . . . . . . . . . . . . 14

1.2.1 The Magnetic Measurement Program . . . . . . . . . . . . . . . . . 15

1.3 Software frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Frameworks for measurement applications . . . . . . . . . . . . . . 17

2 Requirements 19

2.1 Past experiences and need for flexibility . . . . . . . . . . . . . . . . . . . . 19

2.2 The platform for magnetic measurements at CERN . . . . . . . . . . . . . 20

2.2.1 Hardware overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Data analysis requirements . . . . . . . . . . . . . . . . . . . . . . . 24

3 Framework design 25

3.1 FFMM kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



CONTENTS

3.1.1 Basic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 AOP basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Fault detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.5 Synchronizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Domain specific language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 DSL in FFMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Automatic generation of user interfaces . . . . . . . . . . . . . . . . . . . . 48

3.3.1 The Model-Viewer-Interactor paradigm . . . . . . . . . . . . . . . . 49

3.3.2 The GUI engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Data compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Harmonic resolution enhancer . . . . . . . . . . . . . . . . . . . . . 58

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Numerical analysis 64

4.1 Algorithm for data compression . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Static tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Dynamic tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.3 Algorithm performance . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Algorithm for harmonic resolution enhancement . . . . . . . . . . . . . . . 69

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Software quality assessment 85

5.1 Software quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The standard ISO 9126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Quality pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iv



CONTENTS

5.3.1 OOP design characterization . . . . . . . . . . . . . . . . . . . . . . 98

5.4 AOP Fault Detector characterization . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Modularity comparison . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.2 Performance verification . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Validation on LHC-related measurement applications 113

6.1 Application scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Tracking test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Permeability measurement . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Data analysis algorithms’ validation 131

7.1 Algorithm for data compression . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.1 Performance characterization . . . . . . . . . . . . . . . . . . . . . 134

7.1.2 Data reduction validation . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Algorithm for harmonic resolution enhancement . . . . . . . . . . . . . . . 139

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 Flexibility experimental tests 144

8.1 The generalized evolution cost metric . . . . . . . . . . . . . . . . . . . . . 144

8.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.2.1 Adding/modifying a device . . . . . . . . . . . . . . . . . . . . . . . 147

8.2.2 Changing service strategies . . . . . . . . . . . . . . . . . . . . . . . 149

8.2.3 Implementing new measurement algorithms . . . . . . . . . . . . . 149

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Conclusions 151

References 154

v



List of Figures

1.1 Rotating coils measurement principle. . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Layout of the rotating-coil based measurement system controlled by MMP. . . . . . . 16

3.1 FFMM architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Scheme architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The multilayered Scheme architecture. . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 UML diagram of the multilayered Scheme architecture. . . . . . . . . . . . . . . . 30

3.5 FFMM event handling architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 FFMM actions and listeners infrastructure. . . . . . . . . . . . . . . . . . . . . . 31

3.7 FFMM logger architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 A simple AO program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 An excerpt of the hierarchy of the proposed fault detector. . . . . . . . . . . . . . . 39

3.10 Levels of faults interception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 Fault notification publish-subscribe architecture. . . . . . . . . . . . . . . . . . . . 41

3.12 The proposed AOP-based architecture of synchronizer for an automatic measurement

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.13 User roles in FFMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.14 Code generation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 Developer view versus test engineer view of FFMM through DSL. . . . . . . . . . . . 48

3.16 Model-Viewer-Interactor approach. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.17 Abstract factory pattern for the GUI engine. . . . . . . . . . . . . . . . . . . . . 51

3.18 Final form aspect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



LIST OF FIGURES

3.19 Tracking mechanism of the proposed algorithm, observed band are highlighted; a) the

observed band is monitored, b) significant spectral content appears in the observed

band, c) an update of the sampling frequency is triggered and observed band changes

accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.20 Flow chart of the tracking mechanism. . . . . . . . . . . . . . . . . . . . . . . . 57

3.21 Representation of the extrapolation method. . . . . . . . . . . . . . . . . . . . . . 60

4.1 Combined approach to data reduction: original signal (dots) and signal reduced by

means of adaptive tracking sampler (circles) as function of angular position and time. . 67

4.2 Rate-distortion plot and heuristic determination of the noise strength (ε = 2∗10−5 Vs),

corresponding to the maximum of the second derivative. . . . . . . . . . . . . . . . 68

4.3 Sampling rate step responses for different values of α (the maximum change in the

sampling frequency allowed in one step, expressed as a fraction of the current sampling

frequency). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 First normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.0628 T/s. . . 71

4.5 Detail of first normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.0628

T/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 First normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.4776 T/s. . . 72

4.7 Detail of first normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.4776

T/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Error on B1 with standard analysis: linear profile, m=1, ramp rate 0.0628 T/s. . . . . 73

4.9 Error on B1 with linear interpolation: linear profile, m=1, ramp rate 0.0628 T/s. . . . 74

4.10 Error on B1 with standard analysis: linear profile, m=1, ramp rate 0.4776 T/s. . . . . 74

4.11 Error on B1 with linear interpolation: linear profile, m=1, ramp rate 0.4776 T/s. . . . 75

4.12 Error on B1 with standard analysis: linear profile, m=256, ramp rate 0.4776 T/s. . . . 75

4.13 Error on B1 with linear interpolation: linear profile, m=256, ramp rate 0.4776 T/s. . . 76

4.14 Error on B1 with standard analysis: constant B1, linear profile b2÷ b15, m=1. . . . . 77

4.15 First normal harmonic (B1) comparison: parabolic profile, linear interpolation, m=1. . 78

4.16 Detail of first normal harmonic (B1) comparison: parabolic profile, linear interpolation,

m=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



LIST OF FIGURES

4.17 Error on B1 with linear interpolation: parabolic profile, m=1. . . . . . . . . . . . . 79

4.18 Error on B1 with standard analysis: parabolic profile, m=1. . . . . . . . . . . . . . 79

4.19 First normal harmonic (B1) comparison: parabolic profile, quadratic interpolation, m=1. 80

4.20 Error on B1 with quadratic interpolation: parabolic profile, m=1. . . . . . . . . . . . 81

4.21 First normal harmonic (B1) comparison: exponential profile, quadratic interpolation,

m=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.22 Error on B1 with quadratic interpolation: exponential profile, m=1. . . . . . . . . . 82

4.23 First normal harmonic (B1) comparison: exponential profile, cubic interpolation, m=1. 82

4.24 Error on B1 with cubic interpolation: exponential profile, m=1. . . . . . . . . . . . 83

4.25 Error on B1 with standard analysis: exponential profile, m=1. . . . . . . . . . . . . 83

5.1 The ISO 9126 quality model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Approaches to software quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 ISO 9126 subcharacteristics in FFMM 3.0 (0 indicates the best quality level). . . . . . 94

5.4 ISO 9126 characteristics in FFMM 3.0 (0 indicates the best quality level). . . . . . . . 94

5.5 The three major aspects quantified by the Overview Pyramid. . . . . . . . . . . . . 96

5.6 Example of a complete Overview Pyramid. . . . . . . . . . . . . . . . . . . . . . 96

5.7 Overview Pyramid for the FFMM 3.0 source code. . . . . . . . . . . . . . . . . . . 98

5.8 Percentage lines of code (LOC%) of fault detection concern in device modules for OOP

and AOP versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 DOS (a) and DOF (b) comparisons of OOP and AOP versions with respect to Fault

Detection concern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Times spent in aspect runtime. The pointcut expressions numbering refers to Tab. 5.8. 111

6.1 LHC standard current cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Architecture of the tracking test measurement station. . . . . . . . . . . . . . . . . 118

6.3 Computed MSCs powering current cycle for sextupole compensation. . . . . . . . . . 120

6.4 Integral b3 component vs. I with and without compensation, in the dipole magnet

MB2524 during an LHC cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii



LIST OF FIGURES

6.5 Residual integral b3 component vs. I with compensation, in the dipole magnet MB2524

during an LHC cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6 Estimation of the sextupole with the old and the new acquisition system. . . . . . . . 122

6.7 Split-coil permeameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.8 Architecture of the new permeability measurement bench. . . . . . . . . . . . . . . 126

6.9 DSL script for permeability measurement. . . . . . . . . . . . . . . . . . . . . . . 128

6.10 Measured current and computed magnetic field without sample. . . . . . . . . . . . 129

6.11 First magnetization curve of the soft steel sample. . . . . . . . . . . . . . . . . . . 129

6.12 Relative permeability of the soft steel sample. . . . . . . . . . . . . . . . . . . . . 130

7.1 Combined approach to data reduction in rotating coils measurements: original flux

variations (dots) and flux variations reduced by means of adaptive tracking sampler

(circles) as function of angular position and time. . . . . . . . . . . . . . . . . . . 133

7.2 The reference dipole calibration bench at CERN. . . . . . . . . . . . . . . . . . . 137

7.3 Main normal harmonic (B1) over a linear-parabolic current profile, m = 4. . . . . . . 140

7.4 Difference of the main normal harmonics (B1) computed through cubic interpolation

and standard analysis, over a linear current profile at 10 A/s, m = 4. . . . . . . . . . 140

7.5 Decay and snapback of the normal sextupole harmonic (b3), m = 4. . . . . . . . . . . 141

7.6 Main skew harmonic (A1) over a linear current profile, m = 4. . . . . . . . . . . . . 142

ix



List of Tables

2.1 Main software characteristics and users they address. . . . . . . . . . . . . . . . . . 24

4.1 Comparison of algorithms’ static performance on simulated flux increment signal. . . . 66

4.2 Performance of the Fan algorithm, employed by the noise-canceller compressor, for the

reduction of nearly linear signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Comparison of algorithms’ computational burden expressed as execution time required

to process the same amount of incoming data (a sine wave of 131072 points): computa-

tion performed in MATLAB on a Pentium IV-2.8 GHz processor. . . . . . . . . . . . 70

5.1 Metrics catalogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Metrics catalogue. ANDC, AHH, DOF, and DOS are proportions. . . . . . . . . . . 88

5.3 Complexity and object-oriented metrics with their target values. . . . . . . . . . . . 92

5.4 FFMM 3.0 size metrics summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 FFMM 3.0 complexity metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 FFMM 3.0 object-oriented metrics. . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Fault detection code in each device module and computation of percentage DOF and

DOS metric for both OOP and AOP versions (OOP: object-oriented programming;

AOP: aspectoriented programming; LOC: lines of code; DOF: degree of focus; DOS:

degree of scattering). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Worst average times spent in aspect runtime with respect to device creation/destruction

and fault detection pointcuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Injection harmonic tolerance (values are shown in units). . . . . . . . . . . . . . . . 114

x



LIST OF TABLES

7.1 Compression Ratio and RMS Error for different settings of the adaptive tracking sampler

(ATS) on sinusoidal data of an LHC superconducting dipole. . . . . . . . . . . . . . 136

7.2 Compression Ratio and RMS Error of the noise-canceller compressor (NCC) run after

the adaptive tracking sampler (ATS) on linear data of an LHC superconducting dipole. 136

7.3 Compression Ratio and RMS Error for different settings of the algorithm on data of a

resistive reference dipole at constant current (200 A). . . . . . . . . . . . . . . . . 138

7.4 Compression Ratio and RMS Error for different settings of the algorithm on data of a

resistive reference dipole at variable current (ramp from 15 to 200 A at 10 A/s). . . . . 139

8.1 Generalized evolution cost metric for different classes of changes in FFMM. . . . . . . 147

xi





Summary

The work presented in this Ph.D. thesis covers the specification, design, prototyping, and

validation of a new version of a magnetic measurement control, acquisition, and data

analysis software package: the Flexible Framework for Magnetic Measurements (FFMM).

FFMM constitutes the software part of the new platform for magnetic measurements,

including also new high-performance hardware, developed at the European Organization

for Nuclear Research (CERN) in cooperation with the Department of Engineering of the

University of Sannio. FFMM is conceived as a unified solution to drive all the existing

and future park of measurement systems (mainly magnetic but also optical, mechanical,

etc.).

The effort for the series test of the LHC superconducting magnets highlighted limi-

tations in the measurement control and acquisition programs, mainly associated with

the relatively long time needed for a development iteration (the cycle of specification-

programming-debugging-validation). Moreover, the software capabilities needed to be

extended to manage the challenges of the new hardware, namely fast rotating-coil trans-

ducers (Micro Rotating Unit) and high-performance digital integrators (Fast Digital Inte-

grator), and the need to perform more specialized tests on small/medium magnet batches.

FFMM was developed to address these issues. Implemented in C++, it is based (i) on

Object-Oriented Programming (OOP), and (ii) on an innovative technology, the Aspect-

Oriented Programming (AOP). AOP extends the object-oriented paradigm in order to

encapsulate features that are transversal to several functional units (crosscutting con-

cerns) by means of new software modules, the aspects. The framework supports the user

in producing measurement applications for a wide range of requirements by limited effort

1



Summary

and development time.

FFMM includes utilities for (i) fault detection, (ii) software synchronization, (iii) auto-

matic generation of user interfaces, and (iv) a Measurement Domain Specific Language

(MDSL) to provide the test engineer with an easy and fast way to write measurement

scripts containing formal descriptions of the test protocols.

The higher sampling rate of the new transducers and acquisition hardware, capable of

increasing by three orders of magnitude the bandwidth of harmonic measurements with

respect to the previous ones, produced an exponential rise in storage requirements. Thus,

a data reduction algorithm was conceived as part of the system in order to decrease the

size of measurement results by controlling the quality loss simultaneously. In addition

to that, the framework includes an algorithm for field harmonic resolution enhancement

allowing to overcome the limitation of the CERN standard analysis procedure, for the

tests on magnets in non-stationary conditions.

A numerical study was performed to assess the performance of both the techniques for

data analysis (reduction and resolution enhancement). The results highlighted the good

performance achieved by the proposed approaches, and in particular their suitability for

application to the magnetic measurements carried out at CERN.

For both algorithms, these conclusions were confirmed on the field through dedicated

test campaigns. The tests on the field were performed with different protocols and mea-

suring equipments. The framework proved its effectiveness in developing software for

measurements with very different requirements. The results highlighted the resolution

improvement (up to a factor 100) attained in the harmonic estimation thanks to the new

platform and the capability of producing quickly and with a limited effort the acquisition

and control software for new applications.

The framework was designed to be flexible, maintainable, reusable, efficient. To assess the

fulfillment of these project goals on the release 3.0 of FFMM, the internal quality of its

source code was evaluated by means of suitable metrics according to the reference model

defined in the standard ISO 9126. The results highlighted a good average quality level,

with possibilities of interventions to decrease the complexity of some hot spots and exploit

2



Summary

more profitably the concepts of object-oriented programming. A supplementary analysis

was carried out on the aspect-oriented component handling the fault detection to state

the advantages of using such a software design. The proposed architecture proved to grant

a high level of flexibility, maintainability, and reusability, without affecting significantly

the run-time performance.

Finally, an experimental approach to the software flexibility assessment of measurement

frameworks was proposed and applied in the context of FFMM. The results highlighted

that the framework achieves increasing degrees of flexibility moving from the point of view

of the developer to that of the test engineer. The highest flexibility is attained for the

changes involving the measurement procedure, namely at the level where it was mainly

required.

3



Introduction

At the European Organization for Nuclear Research (CERN), the design and realization

of the particle accelerator Large Hadron Collider (LHC) [1] has required a remarkable

technological effort in many areas of engineering. In particular, the tests of LHC super-

conducting magnets disclosed new horizons to magnetic measurements [2, 3].

In the last years, several fast transducers (rotating units [4]) have been developed in order

to achieve an increase of two orders of magnitude in the bandwidth of harmonic measure-

ments (10 to 100 Hz), when compared to the standard rotating coil technique (typically

1 Hz or less), and still maintaining a typical resolution of 10 ppm [5, 4].

Standard magnetic measurements on accelerator magnets are mostly based on the in-

tegration of a voltage signal in order to get the magnetic flux, according to Faraday’s

law (such as in rotating coils, fixed coils, stretched wire, and so on)[6, 7, 8, 9], comple-

mented also by other techniques (such as Hall plates) [10]. A multi-purpose numerical

measurement instrument, the Fast Digital Integrator (FDI), has been therefore developed

at CERN with the aim of reducing the flux acquisition time down to 4µs while increasing

the metrological performance [11]. The new integrator was conceived with the specific

aim of being general-purpose, as much as possible, in order to become a sound basis for

satisfying a wide range of magnetic measurement requirements over the years.

Furthermore, after the end of the LHC series tests, and on the medium term, the expec-

tation is to have a number of very specific tests to be rapidly adapted and performed

on single prototypes or relatively small batches of magnets [12]. These tests require the

control of various devices, such as transducers, actuators, trigger/timing cards, power

supplies, and other devices not yet completely specified. Moreover, for different measure-

4



Introduction

ment techniques, different algorithms have to be implemented.

All these conditions demand for re-engineering the control and acquisition software in

order to be adequate to the new measurement requirements and to manage the challenge

of the new hardware. In practice, the ideal situation would be to have a flexible software

framework, providing a robust library to control remotely all the instrumentation involved

in the tests, including the new high-performance hardware, as well as the tools to help

the user in the design of new measurement algorithms.

A number of developments worldwide try to address these issues. At commercial level,

National Instrument (NI) proposes the product NI TestStand [13] for supporting the user

in designing new test applications by integrating software modules developed in different

programming languages (C, C++, LabVIEW R©). However, NI TestStand does not sup-

port the user in developing single software modules, and as a result standard development

and reusability are intrinsically limited. The Front-End Software Architecture (FESA)

paradigm, adopted at CERN for the LHC controls [14] was developed to provide a suitable

front-end for all the PCs interfacing the LHC control instruments. However, the analysis

of this software showed that a strong collaboration and involvement at the lowest level of

FESA would be required in order to adapt the architecture to the abovementioned appli-

cations. At the Fermi National Accelerator Laboratory (FNAL), a new software system

to test accelerator magnets was developed to handle various types of hardware, as well

as to be extensible to all measurement technologies and analysis algorithms [15]. Also

other sub-nuclear research centres (Alba, Soleil, Elettra, and ESRF) collaborate in order

to develop a suitable software framework for testing accelerator magnets [16]. This Con-

sortium proposes TANGO, an object-oriented system to handle different measurement

applications. The software of FNAL and the object-oriented system Tango are still under

development and not yet worldwide accessible.

The work presented in this Ph.D. thesis covers the specification, design, prototyping, and

validation of a new version of a magnetic measurement control, acquisition, and data

analysis software package: the Flexible Framework for Magnetic Measurements (FFMM).

FFMM constitutes the software part of the new CERN platform for magnetic measure-

5



Introduction

ments, including also the new high-performance hardware, and is conceived as a unified

solution to drive all the existing and future park of measurement systems (mainly mag-

netic but also optical, mechanical, etc.).

FFMM aims at maximizing the measurement software quality, in terms of flexibility, re-

usability, maintainability and portability, by simultaneously keeping high efficiency levels.

Moreover, FFMM can be configured for satisfying a large set of measurement applications

in the magnetic measurement field. It is characterized by (i) flexibility for rapid and cost

effective realization of “scriptable” applications, including prototyping in an R&D con-

text, (ii) a modular architecture to mix and reuse components chosen from an incremental

library, and (iii) high performance to exploit the increased throughput of the new trans-

ducers and acquisition systems.

The framework, implemented in C++, is based (i) on Object-Oriented Programming

(OOP), and (ii) on an innovative technology, the Aspect-Oriented Programming (AOP)

[17], extending the objects capabilities in order to encapsulate features that are transver-

sal to several functional units (crosscutting concerns) by means of new software modules,

the aspects.

After developing the kernel and the main components of FFMM, it was necessary to pro-

vide the test engineer with an easy and fast way to write measurement scripts. To achieve

this goal, a Measurement Domain Specific Language (MDSL) was developed.

Furthermore, suitable means were developed for the automatic generation of user inter-

faces. The practical goal is to allow programmers, as test engineers, who are not typically

trained to design interfaces, to produce easily good GUIs for their applications.

The higher sampling rate of the new generation of fast transducers and integrators, capa-

ble of increasing by three orders of magnitude the bandwidth of harmonic measurements,

increased the amount of resulting data by producing an exponential rise in storage re-

quirements. Thus, a data reduction algorithm was needed as a vital part of the system

in order to decrease the size of measurement results by controlling the quality loss simul-

taneously.

In addition to that, the framework includes an algorithm allowing harmonic resolution

6



Introduction

enhancement in rotating coil measurement data in order to overcome the limitation of the

standard analysis procedure [18] in non-stationary conditions, typical of tests on super-

conducting magnets.

In chapter 1, an overview of the main methods for magnetic measurements is given. Then

the automatic measurement system so far employed at CERN for magnets harmonic anal-

ysis is described. Finally, a state of the art of the frameworks for measurement systems

proposed in literature and employed in the main research centers is presented, concluding

with the rationale for a custom development of a new system.

In chapter 2, the requirements of FFMM are presented, with a particular emphasis on the

need for flexibility coming from the experience of other measurement systems previously

employed at CERN. FFMM is part of a wider project aiming at developing a platform

for magnetic measurements, including also new high-performance hardware. For the sake

of completeness, a brief overview of the main hardware components is also provided.

In chapter 3, the design of the FFMM is presented. In particular, (i) the framework

core design, with details on its overall structure and on its main software components

(including tools for fault detection and software synchronization realized through AOP),

(ii) the approaches proposed for the development of a Measurement Domain Specific lan-

guage and the automatic generation of user interfaces, and (iii) the design principles of

the algorithms for data reduction and harmonic resolution enhancement are presented.

In chapter 4, the results of the numerical analysis carried out on the algorithms for data

reduction and harmonic resolution enhancement are presented. Simulations were per-

formed to verify the fulfillment of the goals for which they were conceived, in conditions

typical of measurement on superconducting dipole magnets.

In chapter 5, the quality characterization of the release 3.0 of FFMM is presented. The

object-oriented and the aspect-oriented parts of the system are evaluated separately. First,

an approach based on the standard ISO 9126 [19] is chosen as a reference model for the

quality evaluation of the object-oriented part, along with a more practical analysis aim-

ing at finding possible points of intervention and propose improvement actions. Only the

internal software quality, related to static properties of the code, is considered. Subse-

7



Introduction

quently, a modularity and performance analysis of the aspect-oriented part is presented

to prove the benefits deriving from the introduction of this technology into the system.

In chapter 6, the experimental validation of the framework in some scenarios typical of

LHC-related measurements is presented. Two applications are described: the former, the

tracking test [20], is based on the rotating coil technique and aims at estimating and

compensating of the field errors due to non-ideality of the LHC superconducting dipoles;

the latter aims at measuring the permeability of a sample of the soft steel used for the

LHC magnet yokes, through a fixed coil system [21]. The setup of the measurement sta-

tions and the results obtained by means of the software produced through FFMM are

described.

In chapter 7, the validation on the field of the algorithms for data reduction and harmonics

resolution enhancement is presented. It aims at proving on the field the effectiveness of

their design principles and assessing their performance in actual working conditions. To

this purpose, measurements through rotating coils were carried out at the CERN magnet

test facility SM18, both on superconducting and on resistive dipoles.

In chapter 8, the flexibility test of FFMM is presented. As a part of the wider work

aiming at the characterization of the framework started in chapter 5, the twofold pur-

pose of this chapter is (i) to introduce specific metrics suitable for assessing the degree

of flexibility achieved by the framework, and (ii) to present experimental results for some

typical application scenarios of the current release 3.0 of FFMM.

8



Chapter 1

Automatic systems for magnetic
measurements

In this chapter, an overview of the main methods for magnetic measurements is provided.

Subsequently the automatic measurement system so far employed at the European Organi-

zation for Nuclear Research (CERN) for magnets harmonic analysis is described. Finally,

a state of the art of the frameworks for measurement systems proposed in literature and

employed in the main research centers is presented, concluding with the rationale for a

custom development of a new system.

1.1 Methods for magnetic field measurements

The main issues of High Energy Particle (HEP) accelerators are (i) to explore matter at

small scale, by means of radiations of wavelength smaller than the the dimension to be re-

solved, (ii) to produce new, massive particles in high-energy collisions, (iii) to reproduce

locally the very high temperatures occurring in stars or in the early universe, and inves-

tigate nuclear matter in these extreme conditions, by imparting energy to particles and

nuclei, (iv) to exploit the electromagnetic radiation they emit when accelerated, particu-

larly when the beam trajectory is curved by a magnetic field (centripetal acceleration).

CERN, one of the most important HEP laboratories, located at Geneva in Switzerland,

was founded in 1953 with the motivation of providing a deeper understanding of the

matter and its contents. The last CERN project is the Large Hadron Collider (LHC): a

circular accelerator that will collide proton beams, but also heavier ions up to lead. It is

9



CHAPTER 1. Automatic systems for magnetic measurements

installed in a 27-km long underground tunnel.

Superconductivity played a crucial role in the development of the LHC. It is a powerful

means to achieve high-energy particle beams and keep compact the design of the ma-

chine. Making a machine compact means not only saving capital cost, but also limiting

the beam stored per energy. Besides capital cost and compactness advantages, super-

conductivity reduces electrical power consumption. High-energy, high-intensity machines

produce beams with MW power, so that conversion efficiency from the grid to the beam

must be maximized, by reducing ohmic losses in RF cavities and in electromagnets [22].

In d.c. electromagnets, superconductivity suppresses all ohmic losses, thus the only power

consumption is related to the associated cryogenic refrigeration. On the contrary, the wall

resistance of superconducting RF cavities subject to varying fields does not drop to zero,

but varies exponentially with the ratio of operating to critical temperature Tc [22]. This

imposes to operate at a temperature well below Tc, in practice as the result of a trade-off

between residual dissipation and thermodynamic cost of refrigeration.

The coils of the LHC superconducting magnets are wound with NbTi cables (7000 km in

total), working in superfluid helium either at 1.9 K or at 4.5 K. A vertical dipole field

B of 8.33 T is required to bend the proton beams, whereas the quadrupole magnets are

designed for a gradient of 223 Tm−1 and a peak field of about 7 T .

In storage rings like the LHC, stable beams have to run as long as possible on the circular

orbit in order to increase the number of collisions between the counter-rotating beams.

This imposes strong constrains on the tolerable field perturbations along the trajectory.

Deviations from the dipole and quadrupole fields, even if short in both space and time,

can induce instabilities reducing the beam life-time. Higher-order multipoles correctors

are required to compensate the unavoidable imperfections of dipole and quadrupole mag-

nets.

The production of magnets with high field quality has been invariably assisted by a spec-

trum of various measurement, based on different methods depending on the goal and

accuracy of the desired analysis.

The quantities of relevance for the magnetic field produced by accelerator magnets are

10



CHAPTER 1. Automatic systems for magnetic measurements

the strength and direction of the field produced, the errors with respect to the ideal field

profile, and the location of the magnetic center in the case of gradient fields. For all the

LHC magnets, the above quantities are required as integral or average over the magnet

length.

In the following, an overview of the main methods for magnetic measurements is provided.

For its importance in the following chapters of this thesis, more details are provided about

the rotating coil method and the related harmonic analysis.

1.1.1 Rotating coils

The rotating coil method [6, 7] is widely used for magnets with cylindrical bore owing to

its capability at measuring all properties of the magnetic field (field strength, multipoles,

angle, direction) integrated over the coil length. An induction coil is placed on a circular

support and is rotated in the field to be mapped. The coil angular position is measured

by an angular encoder, rigidly connected to the rotating support. The coil rotating in

the field cuts the flux lines and a voltage is induced at the terminals. The voltage is

integrated between predefined angles obtaining the flux change as a function of angular

position (Fig. 1.1).

Figure 1.1: Rotating coils measurement principle.

Magnetic field harmonic analysis

The LHC dipoles are 15-meters long with a beam aperture of 50 mm in diameter, giving

the possibility to consider the coils as infinitely long, and to evaluate the magnetic field in

the x-y complex plane by neglecting the z component. This 2-dimensional approximation

11



CHAPTER 1. Automatic systems for magnetic measurements

is very convenient to describe ~B in terms of a complex variable z. In the central part of the

dipole taking into account the properties of the analytical functions, it can be postulated

that the magnetic field generated ~B can be expanded in the complex plane in a power

series [23]:

B (z) = B1

∞∑
n=1

CnR
n−1
ref

B1

(
z

Rref

)n−1

=B1

∞∑
n=1

cn

(
z

Rref

)n−1

· 10−4 (1.1)

where Cn is in units of T ·m1−n while cn = Cn
Rn−1

ref

B1
are the multipoles normalized respect

to the main dipole field and referred to a reference radius Rref = 17 mm. In this way,

all the series coefficients cn result dimensionless and are expressed in so called units of

the main field at the reference radius. They are then multiplied by the scaling factor 104

that is the order of the ratio between the main field and the field errors. In the complex

plane, the Cn coefficient can be decomposed in its normal and skew term, i.e. real and

imaginary part respectively, as follows [18]:

Cn = Bn + iAn (1.2)

By using the decomposition above, and by applying the scaling factor to the normal and

skew field components deduced from equation 1.2, the field components in units of the

main field B1 can be expressed: 
an = An

Rn−1
ref

B1

· 104

bn = Bn

Rn−1
ref

B1

· 104

(1.3)

The existence of non-zero bn and/or an coefficients reflects the fact that the magnetic field

generated by the superconducting coil in a dipole is not a pure dipole and is affected by

higher order of multipoles (quadrupole, sextupole, etc.). The multipole components are

generated by the difference between the ideal and the actual current distribution in the

coil. All undesired multipole components other than the main field are referred as field

errors. They can be associated with the geometry approximation of the superconducting

coils, but also they can have origins that depend on the different elements and materials

12



CHAPTER 1. Automatic systems for magnetic measurements

used.

The rotating coil method eliminates the time dependence [2], and, in particular, the influ-

ence of variations of the rotation speed, greatly relaxing requirements for uniform rotation.

Differential measurements are also beneficial to increase the resolution of high-order mul-

tipoles, several orders of magnitude smaller than the main field. This is realized by using

a set of compensation coils mounted on the rotation support [24]. The signal from the

compensation coils is used to suppress analogically the strong contribution from the main

field. The compensated signal is analyzed in Fourier series together with the absolute sig-

nal of the outermost rotating coil in order to obtain the main field, as well as the higher

order multipoles [18]. The overall uncertainty on the integral field strength and on the

harmonics depends on the shaft type. The new system developed at CERN can reach a

bandwidth of harmonic measurement up to 100 Hz maintaining a resolution of ±10 ppm.

1.1.2 Stretched wire

The stretched-wire technique is also based on the induction method [8, 9]. A thin wire,

with a diameter of 0.1 mm, is stretched in the magnet bore between two precision stages.

A motion results in a voltage at the two ends of the wire, whose integral is the magnetic

flux through the area scanned by the motion. The method, a robust null technique with

very high resolution, provides a measurement of the integral field, of the field direction,

and of the magnetic axis.

The uncertainty depends on the accuracy of the precision stages driving the wire mo-

tion (±1 µm), on the effectiveness of the sag correction, and on the alignment errors

during installation. The overall uncertainty on the integrated strength and on the angle

measurement was estimated at ±5 units and ±0.3 mrad, respectively [8, 9].

1.1.3 Magnetic resonance technique

The nuclear magnetic resonance technique is considered as the primary standard for cali-

bration. It is frequently used, not only for calibration purposes, but also for high accuracy

field mapping. Based on an easy and accurate frequency measurement, it is independent

13



CHAPTER 1. Automatic systems for magnetic measurements

of temperature variations. Commercially-available instruments measure fields in the range

from 0.011 T up to 13 T with an accuracy better than ±10 ppm.

In practice, a sample of water is placed inside an excitation coil, powered from a radiofre-

quency oscillator. The precession frequency of the nuclei in the sample is measured either

as nuclear induction (coupling into a detecting coil) or as resonance absorption [25]. The

measured frequency is directly proportional to the strength of the magnetic field with

coefficients of 42.57640 MHz/T for protons and 6.53569 MHz/T for deuterons.

The advantages of the method are its very high accuracy, its linearity, and the static

operation of the system. The main disadvantage is the need for a rather homogeneous

field in order to obtain a sufficiently coherent signal.

1.1.4 Hall probes

Hall probes exploit the Hall effect to measure magnetic fields [26]. When a current is flow-

ing in a solid penetrated by a magnetic field, this field generates a voltage perpendicular

to the current and the field itself. This voltage is large enough to be practical only for

semiconductors [27]. The main uncertainty factor is due to the temperature coefficient of

the Hall voltage.

The Hall probes permit the analysis of inhomogeneous fields because they measure the

field locally. Conversely, the integral measurement, over the entire magnet length, is more

difficult since the Hall sensors are quite small requiring either long and complex probes

or many measurements steps.

1.2 Software for magnetic measurements at CERN

Many magnetic measurement systems are currently used at CERN (rotating coils, stretched

wire, etc.), and different software packages are employed for control, data acquisition, and

analysis. These systems were developed incrementally during the years without focusing

on their quality, namely flexibility and reusability.

An example of such a software is the Magnetic Measurement Program (MMP) [28], used

in the past for the series tests of the LHC superonducting magnets. For its importance

14



CHAPTER 1. Automatic systems for magnetic measurements

in the test activities carried out at CERN, mainly based on the rotating coil technique

[29], and for its characteristics representative of the previous generation of control and

acquisition systems, more details on MMP are provided in the following.

1.2.1 The Magnetic Measurement Program

The Magnetic Measurement Program (MMP) [28] was internally developed at CERN in

LabVIEW R© with the main aim of measuring the field in the LHC magnets by means of

the rotating coils method. The software includes a control and a measurement system.

The control system drives the hardware used for the measurement (motors, power sup-

plies, etc.) and monitors the main parameters of the system allowing proper operation to

be verified. The user interacts with the system through a Graphical User Interface. The

measurement system reads out and saves the measured field and other parameters to be

used in the magnet analysis. A principle layout of a magnetic field measurements system

is shown schematically in Fig. 1.2. The software delivers as a result the measured raw

data for each measurement and integrates analysis routines to compute the main field,

the main field direction, the higher order harmonics and the magnetic axis coordinates.

At the end of each measurement run, the collected raw data can be transferred into a

database.

The system provides a predefined set of measurement procedures, adjustable to the cur-

rent needs only through the definition of a limited number of parameters for hardware

configuration. As a consequence, the system shows a remarkable lack of flexibility, since

it implements fixed measurement algorithm and analysis procedure, both based on ro-

tating coils, and requires changes in the LabVIEW R© code in order to modify it. Each

modification therefore requires a long time and the work of expert programmers.

The same approach was used also for the development of the other programs exploiting

different measurement techniques.

As a consequence, nowadays a plurality of systems is employed, which result to be rigid,

especially in the test protocol, and difficult to adapt to measurement requirements other

from those for which they were originally designed. This major limitation pushed the

15



CHAPTER 1. Automatic systems for magnetic measurements

Figure 1.2: Layout of the rotating-coil based measurement system controlled by MMP.

research activities, carried out at CERN in the field of magnetic measurements, to move

from standalone measurement programs towards the more modern and useful concept of

framework.

1.3 Software frameworks

In software development, a framework is a defined support structure in which another

software project can be organized and developed. A framework may include support

programs, code libraries, a scripting language, or other software to help develop and glue

together the different components of a software project. In other words, frameworks are

designed with the aim of facilitating software development, by allowing users to spend

more time on meeting the application requirements rather than dealing with the low level

details of providing a working system.

According to the object-oriented paradigm, a framework can be seen as a partial design

and implementation for an application in a given domain [30], described by a set of

16



CHAPTER 1. Automatic systems for magnetic measurements

abstract classes and the way instances of those classes collaborate. The functionalities

and the architecture of the system can be tailored and combined to create complete

applications. Thus, frameworks achieve the most reuse for object-oriented systems and

reduce the effort necessary for the construction of new applications.

1.3.1 Frameworks for measurement applications

Whilst test programs have been designed so far to solve specific problems with extremely

limited capability to evolve, a framework for magnetic measurement, suitably conceived

[31] in order to be configurable for satisfying a wide range of requirements, could consti-

tute a unified solution to drive all the existing and future park of measurement systems.

A number of developments worldwide try to address this issue. Jan Bosch was one of the

first to apply the concept of framework in the measurement field by proposing an object-

oriented project capable of satisfying a wide range of applications [32]. At commercial

level, National Instrument (NI) proposes the product NI TestStand R© [13] for supporting

the user in designing new test applications by integrating software modules developed in

different programming languages (C, C++, LabVIEW R©). However, NI TestStand R© does

not support the user in developing single software modules, and as a result standard de-

velopment and reusability are intrinsically limited. The Front-End Software Architecture

(FESA) paradigm, adopted at CERN for the LHC controls [14] was developed to provide

a suitable front-end for all the PCs interfacing the LHC control instruments. However, the

analysis of this software showed that a strong collaboration and involvement at the lowest

level of FESA would be required in order to adapt the architecture to the aforementioned

applications. At the Fermi National Accelerator Laboratory (FNAL), a new software

system to test accelerator magnets was developed to handle various types of hardware,

as well as to be extensible to all measurement technologies and analysis algorithms [15].

Also other sub-nuclear research centres (Alba, Soleil, Elettra, and ESRF) collaborate in

order to develop a suitable software framework for testing accelerator magnets [16]. This

Consortium proposes TANGO, an object-oriented system, to handle different measure-

ment applications.

17



CHAPTER 1. Automatic systems for magnetic measurements

The most advanced solutions, namely the software of FNAL and the object-oriented sys-

tem TANGO, are still under development and not yet worldwide accessible. Therefore, to

address the issues introduced above and detailed in chapter 2, the development of a new

framework for magnetic measurements, main topic of this thesis, was launched at CERN

in cooperation with the Department of Engineering of the University of Sannio.

18



Chapter 2

Requirements

This chapter presents the requirements of the Flexible Framework for Magnetic Measure-

ments (FFMM), and in particular the need for flexibility coming from the experience of

other measurement systems previously employed at CERN.

Although the main topic in this thesis is the software for acquisition, control, and data

analysis, FFMM is part of a wider project aiming at the development of a platform for

magnetic measurements, including also new high-performance hardware. For the sake of

completeness, a brief overview of the main hardware components is also provided.

2.1 Past experiences and need for flexibility

At CERN, the series field tests for the LHC superconducting and resistive magnets were

carried out by means of a control and acquisition measurement system, developed dur-

ing the past years under highly-variable conditions of evolving hardware and software

configurations and measurement requirements. The result was implemented in all major

test locations and used successfully for the warm and cold tests at CERN, as well as in

industry.

The software bears a long heritance of the evolution from the original version of the mag-

netic measurement program (implemented in C language for a VME bus-based station) to

the present version in use in the test stations (in excess of 1000 LabVIEW R© VI’s running

on Sun workstations). The data acquisition throughput of this system is too slow for the

commissioning period of the LHC with beams and calls for immediate streamlining, as

19



CHAPTER 2. Requirements

soon as series tests will be completed.

Furthermore, new hardware (i.e. digital integrators [33], rotating units [4]) was devel-

oped in order to provide new standards for magnetic measurements. In addition to its

improved metrological performance, the new integrator was conceived with the specific

aim of being open and general-purpose, as much as possible, in order to become a sound

basis for satisfying a wide range of magnetic measurement requirements over the years.

All these conditions demand strongly for re-engineering the control and acquisition soft-

ware in order to be adequate to the new measurement requirements and to manage the

challenge of new hardware.

2.2 The platform for magnetic measurements at CERN

The above discussion highlights the reasons leading to launch the development of a new

platform for magnetic measurements. This shall evolve from the accumulated knowledge

of the developments pursued in the past, by allowing the measurement capability to be

extended in harmony with the new available hardware and the new measurement and test

requirements. Although directly aimed at flux measurements (fixed and rotating coils),

the new control and acquisition software shall bear a large degree of generality to allow

extension to other type of measurements (e.g. fast voltage signals from quench, Hall

plates, etc.), which will be highly beneficial to unify the diverse systems presently used

for superconducting magnets tests.

The aim of the work presented in this Ph.D. thesis is to prototype a flexible platform for

acquisition, control, and data analysis, integrating the new hardware and a new software

developed suitably, for satisfying a wider range of measurement requirements, variable

and evolvable during the time.

2.2.1 Hardware overview

As far as the hardware is concerned, in the past years fast transducers [4, 5] have been de-

veloped at CERN in order to achieve an increase of up to three orders of magnitude in the

bandwidth of harmonic measurements (10 to 100 Hz), when compared to the standard

20



CHAPTER 2. Requirements

rotating coil technique (typically 1 Hz or less), and still maintaining a typical resolution

of 10 ppm.

In particular, a new Micro Rotating Unit (MRU) [4] was designed to turn faster and pro-

vide harmonic measurements at rates in the range from 1 to 10 Hz. Fast measurements

require that the coils rotate continuously in one direction and at higher speeds. The MRU

system is capable to turn continuously in one direction up to 8 Hz thanks to 54-channel

slip rings. The available coils are connected in series arbitrarily by means of a patch

panel. This permits changes in the compensation schemes or combination of several coils

in virtual super segments, used to measure the integral field.

These developments pave the way for a major improvement of the theoretical and ex-

perimental analysis of superconducting accelerator magnets. However, at the same time,

they push the performance demands on the digital instrumentation used for acquisition

[34, 35, 36]. Standard magnetic measurements of accelerator magnets require fast and

accurate data acquisition with integrating voltmeters. So far, the standard de facto in

most sub-nuclear research centers has been the Portable Digital Integrator (PDI [34]).

The core of this instrument is a voltage-to-frequency converter, whose resolution is intrin-

sically limited by the counting frequency. As a result, this instrument cannot follow the

evolution of the test requirements arising from the new generation of magnetic transducers

described above [4], especially considering the increasing need to measure superconduct-

ing magnets supplied by high frequency current cycles and pulses [37]. A number of

developments worldwide try to address this issue [35, 36, 33]. At CERN, a multi-purpose

numerical measurement instrument, the Fast Digital Integrator (FDI), was developed and

constitutes one of the main components of the platform hardware. Besides the increased

metrological performance [11], the FDI is capable of reducing the flux acquisition time

down to 4 µs.

For the development of the FDI, a new generation of high-resolution (18 bit) and high sam-

pling rate (500 kS/s) ADCs, Successive Approximation Register (SAR) was employed. A

DSP was added for on-line processing, thus allowing the decimation of the input samples,

with a Signal-to-Noise Ratio improvement by means of oversampling [11]. After the real-

21



CHAPTER 2. Requirements

ization of a first prototype, a digitizer model was developed on the results of experimental

tests in order to enhance the design and further improve the performance [38].

2.2.2 Software requirements

As far as the software is concerned, the effort for the series test of the LHC superconduct-

ing magnets at CERN highlighted limitations in the measurement control and acquisition

programs, mainly associated with the relatively long time needed for a development it-

eration (the cycle of specification-programming-debugging-validation). As an example,

the Magnetic Measurement Program (MMP) [28] used at CERN has a large spectrum of

pre-programmed configurations accessible to the user, but requires software specialists for

extending the set of configurations to cover new test and analysis requirements. For this

reason, more advanced design principles in the field of software engineering have to be

considered [14, 15, 16].

Furthermore, after the end of the LHC series tests, and on the medium term, the expec-

tation is to have a number of very specific tests to be rapidly adapted and performed on

single prototypes or relatively small batches of magnets. These tests require the control

of various devices, such as transducers, actuators, trigger/timing cards, power supplies,

and other devices not yet completely specified. Moreover, for different measurement tech-

niques and tests, different algorithms have to be implemented. In practice, the ideal

situation would be to have a flexible software framework, providing a robust library to

control remotely all the instrumentation involved in the tests, as well as the tools to help

the user in the design of new measurement algorithms.

The platform software is based on the Flexible Framework for Magnetic Measurements

(FFMM) in order to make easy the development of new measurement programs, allowing

simultaneously easy modification and extension of existing test software. Given a set of

measurement requirements, suitable to be satisfied by the new hardware, the flexible and

reconfigurable platform to be developed will allow an effective automatic measurement

system to be generated by low-cost and development time.

The new system, besides reproducing key operating capabilities of the previous software

22



CHAPTER 2. Requirements

(reference for comparison is MMP [39]), has to (i) extend the acquisition and control

capabilities to the new hardware, and (ii) allow user-driven and traceable configuration

of the hardware as well as of the test protocol, in order to bear a maximum capability to

evolve.

FFMM aims at maximizing the measurement software quality, in terms of flexibility, re-

usability, maintainability and portability, by simultaneously keeping high efficiency levels.

In particular, the flexibility, the modification easiness of a system or component for use

in applications or environments other than those for which it was specifically designed

[40], is definitely one of the most desirable properties of any system to face changes in

operational environment during its life. This is particularly true for software systems,

both because they are often subject to extremely rapid technological development, and

because some of them are specifically conceived to be employed in environments spanning

a wide range of functional requirements, not fully predictable at the design stage. This

is the case of FFMM, which should be easy to configure for satisfying a large set of mea-

surement applications in the magnetic measurement field.

The users that will interact with the software system can be classified in different cate-

gories:

• the developer/administrator user has knowledge of the framework internal structure

and can access it at any level;

• the test engineer has knowledge of the framework functionalities through its inter-

face, and can therefore provide a formal description of the measurement protocol to

be translated transparently into a suitable executable application by the framework;

• the end user interacts with the resulting executable measurement application in

order to perform the tests.

The roles of the different users should not be rigidly divided. For example, if the test

engineer needs to modify or add a component, he should be able to access the internal

structure of the framework.

The main goals of FFMM (flexibility, maintainability, reusability, efficiency) are meant to

23



CHAPTER 2. Requirements

Software characteristic User
Flexibility Test engineer

Maintainability Developer/administrator user
Reusability Developer/administrator user, test engineer
Efficiency Test engineer, end user

Table 2.1: Main software characteristics and users they address.

satisfy the various needs of the different users, according to the classification provided in

Tab. 2.1.

2.2.3 Data analysis requirements

The higher sampling rate of the new generation of fast transducers[4] and integrators [11]

increases the amount of resulting data by producing an exponential rise in storage require-

ments. Thus, a data reduction algorithm is needed as a vital part of the platform in order

to decrease the size of measurement results by controlling the quality loss simultaneously.

In addition to that, an algorithm allowing harmonic resolution enhancement in rotating

coil measurement data 1.1.1 should be available in order to overcome the limitation of

the standard analysis procedure [18] in non-stationary conditions, typical of tests on su-

perconducting magnets.

Suitable algorithms are therefore to be conceived and integrated into the framework as

two of its most important components. The proposed procedures of data analysis should

be thought to be suitable also for an implementation at DSP level, so that they could

be eventually moved into instruments provided with autonomous computing capabilities,

such as the FDI.

24



Chapter 3

Framework design

This chapter presents the design of the Flexible Framework for Magnetic Measurements

(FFMM). According to the requirements discussed in chapter 2, the main components

of the framework can be classified in three groups: (i) the kernel, including the frame-

work infrastructure and its main software components, developed with the aim of assuring

flexibility, reusability; (ii) a Measurement Domain Specific Language (MDSL) and tools

for the automatic generation of user interfaces, to increase the ease of use; (iii) the al-

gorithms developed for data reduction and harmonics time resolution enhancement. In

the following, the framework core design, with details on its overall structure and on its

main software components, the MDSL, the automatic interface generation, and the design

principles of the two proposed algorithms are presented.

3.1 FFMM kernel

The FFMM is a software framework for magnetic measurement applications based on

Object-Oriented Programming (OOP), and Aspect-Oriented Programming (AOP) [17],

conceived to make simple and cost-effective the development of new measurement pro-

grams, allowing simultaneously easy modification and extension of existing test software.

In the following, (i) the basic ideas, (ii) the architecture, (iii) and the main components

of the FFMM kernel are presented.

25



CHAPTER 3. Framework design

3.1.1 Basic ideas

FFMM is based on the following basic ideas:

1. a group of interfaces and abstract classes represents a white-box layer defining the

high-level structure of FFMM for generating new parts of the framework, this allows

potentiality and flexibility of FFMM to be extended;

2. a group of modules represents a black-box layer, allowing both module reusability

and use easiness to be achieved, even by test engineers without knowledge of internal

FFMM mechanisms;

3. Aspect-Oriented Programming (AOP) improves the reusability and the maintain-

ability of FFMM [17]: in large projects, several concepts are transversal to many

modules (cross-cutting concerns); they are extrapolated form the native units and

implemented in separated modules (aspects), in order to improve the system mod-

ularity and enhance maintainability;

4. a library of reusable modules is built incrementally during the start-up of the frame-

work up to a “saturation” condition inside an application domain, allowing progres-

sively further requirements in the same domain to be satisfied by a limited effort;

5. a suitable definition of the code structure allows standard modules to be devel-

oped: such modules represents a sound basis of a library both for implementing

new components and for extending old ones.

3.1.2 Architecture

On the basis of these ideas, the FFMM architecture shown in Fig. 3.1 was conceived.

The test engineer produces a description of the measurement application, the User Script,

whose syntactic correctness is verified by the Script Checker. Then, from the User Script,

the Builder assembles the Measurement Program, according to the architecture of the

Scheme by picking up suitable modules from the Software Module Library. If some mod-

ules are not available in the library, a template is provided to the user (administrator

26



CHAPTER 3. Framework design

Figure 3.1: FFMM architecture.

user) in order to implement them according to a suitable predisposed structure. Once

debugged and tested, the Measurement Program will be stored in the Database in order

to be reused.

According to the analysis of typical use-case tests on superconducting magnets, the generic

User Script is organized into the following phases: (i) definition of the measurement com-

ponents; (ii) specification of mechanical and electrical connections; (iii) definition of

dynamic parameters, i.e. configurable during run-time of the Measurement Program; (iv)

component checking (fault detection); (v) storing of measurement conditions; (vi) con-

figuration of measurement devices; (vii) description of the measurement procedure; (viii)

preliminary data analysis; (ix ) data saving.

The architecture of the FFMM kernel, the Scheme, is shown in Fig. 3.2 where its main

components and the relations among them are highlighted. The TestManager organizes

the test by knowing the device under test (UnitUnderTest), the measurands (Quantity),

the measurement configuration, and the measurement procedure. TestManager has an as-

sociation with the Devices (software representation of the measurement devices). Among

Devices, the PC can control remotely the VirtualDevices through a Communication Bus.

27



CHAPTER 3. Framework design

The system models also Sensors and Transducers in dedicated class hierarchies.

The Synchronizer and the FaultDetector are critical modules for a test application: the

Figure 3.2: Scheme architecture.

former allows the measurement algorithm timing, while the latter fosters the identifica-

tion and the location of failures and faults transparently to the user. Such features are

transversal to several functional units (cross cutting concerns): the synchronization policy

involves all the measurement devices and all the test procedures, the fault detection is

a fundamental part of all the devices, as well as of the measurement system as a whole.

The Synchronizer and the FaultDetector are, therefore, encapsulated in Aspects accord-

ing to the AOP approach, as detailed in sections 3.1.4 and 3.1.5. The synchronization

policy and fault management strategy can be extrapolated from the single modules and

handled separately. In this way, future changes related to these topics will affect only the

Synchronizer and the FaultDetector modules, without involving all the classes related,

directly or indirectly, to the fault or synchronization events.

The Scheme architecture is further detailed in Fig.s 3.3 and 3.4, where its three layer

structure is shown. The overall Scheme has a layered architecture, whilst single layers

have an object-oriented internal organization. In other words, the interaction among

objects takes place horizontally, among entities of the same level. The features of the level

28



CHAPTER 3. Framework design

Figure 3.3: The multilayered Scheme architecture.

i are realized by the objects of that layer, which in turn can use the capabilities offered

by the level i+1, through a suitably defined interface, as typically happens in layered

systems. The layered structure is not rigid. Even though it would be better to use, while

programming in a level, only functionalities implemented in the next lower layer, the user

is allowed to call the functionalities of all the underlying levels.

In the bottom layer, all the basic services, needed to implement high-level logic are placed.

This layer includes subcomponents for environment abstraction, memory management,

error handling, filesystem abstraction, processes and threads handling. It also defines ab-

stract communication services to high-level components within the FFMM layers, in order

to extract data from actual devices and external interfaces, by allowing the exchangeabil-

ity of the communication mechanisms without incurring into performance penalties. The

interface ICommunicationBus is used to send and receive data to/from components in an

abstract way. Concrete implementations of such interface are required to handle specific

communication devices.

The middle (core) layer includes several packages exposing main functionalities related

to components (in particular measurement devices), event handling infrastructure, fault

29



CHAPTER 3. Framework design

Figure 3.4: UML diagram of the multilayered Scheme architecture.

30



CHAPTER 3. Framework design

detection, and logging. In the design of the event handling architecture, a variant of the

Observer design pattern [41] was used in order to keep synchronized the state of coop-

erating components (e.g. VirtualDevices). The Observer enables one-way propagation

of changes: one publisher notifies any number of subscribers about changes of its state,

thus providing a form of loosely coupled signaling from publisher to subscribers. In Fig.s

3.5 and 3.6, the main architecture and the related template based listener infrastruc-

ture, respectively, are shown. For this reason, the FaultDetector can be considered as a

Figure 3.5: FFMM event handling architecture.

Figure 3.6: FFMM actions and listeners infrastructure.

cross-cutting concern, and an experimental release was conceived according to an aspect-

31



CHAPTER 3. Framework design

oriented approach. Logging facilities are also provided at this level of the architecture

(Fig. 3.4). The Logger class handles the storage of configuration and measurement data,

as well as system warnings and exceptions. The logger architecture is depicted in Fig.

3.7. Data can be stored in a text or binary file. In any case, the final destination of the

Figure 3.7: FFMM logger architecture.

logged messages has to be kept decoupled with the format of the messages themselves.

With this aim, two different responsibilities arise: logged message formatting, and logged

message recording. The formatter does not take care about where the message is recorded,

and the recorder does not care about the format of the message. Therefore, the Logger

class implements the Strategy design pattern [41]: the concrete logger can be configured

with the right formatter and the right recorder keeping them decoupled. Based on the

services provided at this level of architecture, the measurement layer (top of Fig. 3.4)

implements a minimal but extensible infrastructure, based on the class TestManager, in

order to handle and to perform measurement session. For the measurement layer, two

main features are needed:

• a test session director, the TestManager, encapsulating the user script (Fig. 3.1)

and executing it in a controlled environment. Within the user scripts, core services

are made available to the user in order to implement its measurement process;

32



CHAPTER 3. Framework design

• the capability of creating groups of data acquisition tasks (measurement tasks) to

be synchronized to well defined events (e.g. start and stop, or device events). In the

FFMM framework, the component realizing this high-level software synchronization

of data acquisition is the Synchronizer Fig. 3.4.

In the following, the most important components of the FFMM kernel are discussed. Some

of them rely on an aspect-oriented approach, thus AOP basic concepts are first recalled.

3.1.3 AOP basic concepts

The development of an automatic system, with reference to its software parts, is usually

developed by exploiting object-oriented [32], component-based [15], and agent-based tech-

niques [42]. They aim at organizing the software system in modules, each one responsible

of specified functionalities, reducing their coupling and maximizing their internal cohesion.

Anyway, crosscutting concerns can negatively affect the quality of even well modularized

systems implemented by these techniques [43]. Crosscutting concerns are related to issues

transversal to many modules, such as the synchronization and fault detection tasks in an

automatic measurement system. They cause the duplication of portions of code in several

different modules, by negatively affecting the maintainability and reusability.

This means that at run-time each component must encapsulate its part of information

related to the cross-cutting concern even when it does not need it (thus wasting memory

resources). The aspect-oriented architecture enforces, as much as possible, a centralized

design in which synchronization state is maintained in the related aspects: components

dealing with the cross-cutting concern are involved by the aspect encapsulating it for all

components. When a component does not need that feature, no data is stored for it in

the aspect and no memory is wasted at all.

Aspect-oriented programming (AOP) [17] is an extension of the object-oriented paradigm

that provides new constructs for improving the separation of concerns and supporting

their crosscutting. AOP defines a kind of program unit, the aspect, for specifying con-

cerns separately, and rules for weaving them to produce the overall system to be run. Like

a class of objects, an aspect introduces a new user-defined type into the system’s type

33



CHAPTER 3. Framework design

hierarchy, with its own methods, fields, and static relationships to other types. Usually,

an AOP system can be seen as composed by two parts: (i) one consisting of traditional

modularization units (e.g. classes, functions) and referred as the base system or core con-

cern, and (ii) the other one consisting of aspects, encapsulating the crosscutting concerns

involved in the system, and usually referred as the secondary concerns. The features

AOP provides for implementing crosscutting concerns in aspects can be classified in: (i)

dynamic crosscutting features : implementation of crosscutting concerns by modifying the

runtime behaviour of a program; (ii) static crosscutting features : modification of the

static and structural properties of the system.

Dynamic crosscutting is implemented by using pointcuts and advice. An advice is a code

fragment executed in specified points at the program runtime. The points in the dynamic

control flow where the advice code is executed are called join points. A pointcut defines

the events (such as method call or execution, field get and set, exception handling and

softening) triggering the execution of the associated advices. A pointcut is an expression

pattern matched during execution to join points of interest. Every advice is associated

to a pointcut defining the joinpoint(s) at which it must be applied. Advice code can be

executed either before, after, or around the intercepted joinpoint. A join point shadow is

the static counterpart, in the code, of a join point; equivalently, a joinpoint is a particular

execution of a joinpoint shadow. Aspects and base program are composed statically by a

weaving process. The weaver is the component of an AOP programming language envi-

ronment (such as AspectJ [44]) responsible for the weaving process. The weaver inserts

instructions at join point shadows to execute the advice to be applied at the corresponding

join points. The weaver may need to add runtime checks to the code inserted at a join

point shadow in order to perform parameters binding and other requested computations.

The static crosscutting features of AOP implement crosscutting concerns by modifying

the static structure of the system. An aspect can introduce new members (i.e. fields,

methods, and constructors) to a class, or interface; change or add parents for any class or

interface; extend a class from the subtype of the original super-class or implement a new

interface. These features are called intertype declarations. An example of a straightfor-

34



CHAPTER 3. Framework design

ward AOP program (an AO version of the ‘Hello World’ program implemented in AspectJ

[45]), enlightening AO basic working, is reported in Fig. 3.8. In the figure, the code of

Figure 3.8: A simple AO program.

the class HelloWorld and the aspect GreetingsAspect are reported. The aspect defines a

pointcut and two advices. The callTellMessage() captures calls to all public static meth-

ods with names that start with tell. In the example, the pointcut captures the calls to

tell(...) and tellPerson(...) methods in the HelloWorld class taking any arguments. The

two advices, one before and one after, associated to the callTellMessage() pointcut will

cause, respectively, the printing of the “Good morning!” and “Bye Bye!” text strings just

before and after each message printed by the tell() and tellPerson() methods.

3.1.4 Fault detector

Nowadays, test automation is a must for product quality and reliability, both in industry

and in research. Intelligent measurement systems are used deeply in delicate tests in-

volving several instruments. One of their key issues is the capability of assuring a proper

termination to the test process. With this aim, a suitable fault detection software turns

out to be an adequate reaction to anomalous working [46]. Devices provide information

about their status continuously and, in case of abnormal working, a fault condition is

pointed out. Software implementation of fault detection is a well-known strategy for deal-

ing with failures caused by both hardware and software faults [47]. Compared to hardware

implementation, it has the advantage of higher flexibility and cost effectiveness. Today,

35



CHAPTER 3. Framework design

it is a widely used technique, and emerging application areas for cost-effective depend-

able systems will further increase its importance [48]. Thus, the software implementation

of a fault detector affects the overall system quality, in particular maintainability and

reusability.

The analysis of state-of-the-art automatic measurement systems highlighted that fault

detection is usually scattered all over different software components, mainly with refer-

ence to devices’ hierarchy. This means that often the concrete classes of virtual devices

contain duplicated code for fault detection, thus making harder their comprehension, test-

ing, and maintenance. The aspect-oriented programming is proposed for the development

of software components for fault detection in order to overcome the drawbacks due to

their cross-cutting nature. The cross-cutting concerns related to fault detection of a large

measurement software project are separated and handled better by encapsulating them

into aspects. In this way, the reusability of system modules improves.

In the following, the proposed AOP-based approach to the development of software for

fault detection in automatic measurement systems is described. In particular, (i) the

measurement fault analysis, and (ii) the fault detector architecture are highlighted.

Measurement Fault Analysis

Most common faults in an automatic measurement system can be classified according to

the sources and the synchronization of the related handling operations. According to the

sources, faults can be classified as arising from:

• hardware devices, when devices are in a faulty internal state due to hardware

anomaly or to an external condition. Device internal fault detection can scale from

very basic internal information to very complex routines forcing the device in differ-

ent states. Correspondingly, concrete aspects of the fault detection subsystem must

be capable of intercepting relevant changes in the device status, decoding them, and

broadcasting high-level faults description to the interested components.

• the measurement environment, when the measurement environment is compromised

by external or internal alterations.

36



CHAPTER 3. Framework design

• software components, when software components are in any non consistent state,

owing to an incorrect use violating pre-conditions and/or post-conditions, or to the

presence of unresolved or undiscovered bugs.

According to the synchronization of the related handling operations, faults can be classified

as:

• synchronous, when an anomalous operation is attempted. In this case, the following

policies can be applied, according to the criticality level and the kind of the fault:

– k-times retry: some operations are retried until the device goes back in a

consistent state, without any performance constraint on the operation. As an

example, an initialization reset tried several times during a slow start up of a

multimeter.

– multicast warning and continue: for operations requested in wrong conditions,

requests can be ignored by issuing only a notification warning. As an example,

a digital scope is triggered when previous data digitization is not ended, or

when a stop or an abort is issued on a already stopped instrument.

– multicast fault and deny operation: for operations to not be executed when

specified faults occur. In this case, the operation is denied and the fault infor-

mation is sent to the pertinent components in order to be properly handled.

– multicast an immediate shutdown request and deny operation: for the most

critical situation when a fault on an critical operation in a risky device should

be blocked at the lowest level. Moreover, since the system as a whole is to

be shutdown gracefully as fast as possible, a high priority request of system

shutdown is sent to the fault handler component. These faults are handled suit-

ably by wrapping operations through concrete pointcuts, bounded to around

advices defined by abstract aspects of the fault detector component,

• asynchronous: when hardware or environment anomalies, in a whatever moment

not synchronized with the measurement operations generate faults forcing devices

37



CHAPTER 3. Framework design

in faulty states usually detected by suitable monitoring. The detection is based on

field access pointcut expressions bound to the decoding logic used to detect changes

in the status of devices.

AOP architecture

The proposed architecture is based on:

• a fault detection subsystem, designed for: (i) monitoring the “health” state of the

measurement system’s component devices; (ii) catching software faults such as stack

overflow, live-lock, deadlock, and application-defined faults, as soon as they occur;

• a fault notification subsystem, responsible for: (i) receiving the sequence of occur-

ring faults from all the system components constantly; (ii) storing the diagnostic

history and providing access to other components or to external humans in order to

react to faulty events adequately.

These two subsystems exploit three key components: (i) a FaultDetector aspect hierar-

chy, allowing the code related to the fault detection logic to be removed from the modules

implementing the virtual devices; (ii) FaultDecoder tables, needed by concrete aspects

for decoding status representation specific of concrete VirtualDevices ; (iii) FaultListeners

in order to dynamically and to bind (obliviously) components responsible for the fault

management to the ones acting as fault sources.

The aspects in the FaultDetector hierarchy intercept faults by means of the FaultDecoder

classes. The decoders are capable of handling groups of similar devices and knowing

internal state structure and encoding. They provide the aspect logic by FaultTable in-

stances encapsulating fault information to be sent to the interested components through

the FaultNotifier layer.

In Fig. 3.9, the proposed FaultDetector hierarchy is depicted, by highlighting the static

relationships among VirtualDevice classes, FaultDetector aspects, and some concrete vir-

tual devices. The figure shows the role played by the FaultDecoder and FaultTable for the

Fast Digital Integratot (FastDI ) device. Encoded fault information is extracted from the

38



CHAPTER 3. Framework design

FastDI device by context interception and is decoded by a concrete FastDIFaultDecoder.

The decoded information is then provided to the DigitalIntegratorFaultDetector, responsi-

Figure 3.9: An excerpt of the hierarchy of the proposed fault detector.

ble for enforcing fault management policies according to the fault kind. Moreover, it sends

the fault data to the interested software components. The FaultDetector is responsible for

defining high-level pointcuts capturing relevant operations affecting the state of devices.

In the measurement system, the VirtualDevice hierarchy models and organizes all the

physical devices involved in the measurement process. Each device has an internal status;

modifications to such status are captured by means of concrete sub-aspects executing the

logic needed to decode it, as well as detecting if and where a device notified an internal

fault. In each FaultDetector sub-aspect, associated to main devices categories, the map-

ping logic towards concrete devices classes belonging to the same family is defined and

39



CHAPTER 3. Framework design

the common behaviours can be factorized, such as needed. The coarseness of the mapping

among aspects and concrete devices allows a very flexible reuse of fault detection logic

for similar devices by encapsulating it in few modules (instead of spreading it all over the

device classes). Fig. 3.10 depicts the different levels of fault interceptions, according to

the fault types. The bottom level takes care about very specific issues and features of

concrete devices to encapsulate in dedicated sub-aspects. At the middle level, concrete

aspects, by using decoders, perform continuous monitoring of devices’ status. The top

Figure 3.10: Levels of faults interception.

level includes abstract aspects implementing the fault detection logic reusable in concrete

sub-aspects. In Fig. 3.11, the aspect mapping layer of the fault notification is shown. The

services to dynamically associate handlers to fault sources in the measurement system are

provided. The sub-aspects of the FaultHandler aspect have the responsibility of making

aware the concrete classes (like the TestManger responsible of performing the test session

) of the faults that happens in the system. This solution allows fault handling logic to be

reused in the super-aspects and does not force concrete classes in the system to implement

40



CHAPTER 3. Framework design

Figure 3.11: Fault notification publish-subscribe architecture.

fault handling code. Any component in the system can react to specific faults that occur

anywhere in the system and perform the needed actions to handle them. Moreover, since

concrete classes (TestManager or any other components interested in monitoring faults)

are oblivious of being faults’ handlers, the monitoring relationships can be changed by

simply acting on aspect mapping. Commonalities among different fault handling logics

can be factored out in the aspects while multiple observations of different kinds of faults

can be easily accomplished by defining several mapping aspects for a single concrete class.

3.1.5 Synchronizer

A key issue in automatic measurement systems is the capability of assuring a proper soft-

ware synchronization to the test procedure. Usually critical measurement constraints are

satisfied by running several asynchronous tasks contemporaneously on the same platform,

by maximizing the degree of parallelism in the system. This improves efficiency in concur-

rent measurements, but, on the other hand, imposes synchronization constraints among

the interacting processes. Whereas severe time constraints in a measurement procedure

41



CHAPTER 3. Framework design

require dedicated hardware, the abovementioned software interaction often requires pro-

gramming strategies capable of dealing with events asynchronously generated and notified

to the processes once a synchronization point is reached [49, 50, 51]. Today, software syn-

chronization is a widely used technique, and emerging application areas for cost-effective

dependable systems will further increase its importance. Moreover, the implementation

strategies of task synchronization not only affect the system performance, but also its

quality, in particular the modularity, maintainability and reusability.

AOP architecture

The proposed AOP-based architecture for task synchronization in automatic measurement

systems aims at modularizing concurrency and synchronization concerns, as well as guar-

anteeing system correctness, while increasing performance and safety. It is an abstract

aspect layer composed by a simple aspect framework to be reused in the development of

synchronization control in different application domains. The modularization achievable

by the proposed architecture makes the synchronization control easy to evolve and simpli-

fies the complexity of the remaining parts of the software, such as devices, fault detection

or logging modules, by decoupling concurrency and synchronization control code from

them.

Synchronization is a crosscutting concern particularly hard to modularize through object-

oriented programming and design patterns. The proposed AOP-based architecture is the

result of the analysis of several existing object-oriented software systems implementing

synchronization and concurrency, that revealed some typical deficiencies of OOP im-

plementation for synchronization. In particular, the deficiencies are related mainly to

extensibility, modularity, encapsulation, reusability.

In Fig. 3.12, a UML class diagram of the proposed architecture conceived as an

AOP-based variant of the Synchronization Manager design pattern is shown. The stereo-

type “aspect” is used to distinguish aspects and classes. All the aspects in the diagram

are abstract ones. The synchronization aspects can be easily integrated/reused in other

architectures and software systems. Indeed, just the components and services to be syn-

42



CHAPTER 3. Framework design

Figure 3.12: The proposed AOP-based architecture of synchronizer for an automatic measurement
system.

43



CHAPTER 3. Framework design

chronized, as well as the policy for their synchronization, have to be identified.

The abstract Synchronizer aspect provides reusable code and behaviour for implementing

and modularizing the synchronization logic and policies.

Concrete aspects have two main responsibilities: (i) intercept components and services

interactions to be synchronized; (ii) enforce the right synchronization policy in the right

context.

Three main issues are related to the synchronization management: the synchronization

policy to be adopted, the synchronization condition to be defined, and the specification of

the context using synchronized elements. The proposed architecture separates these three

components allowing the synchronization logic to be reused in the super-aspects, without

forcing concrete classes in the base system to implement synchronization handling code.

Concrete classes are oblivious to synchronization scenarios: thus, the synchronization poli-

cies can be changed by simply acting on the aspects. In the proposed architecture, several

synchronization policies are available in order to support the most interesting scenarios

arising in a measurement sessions. In particular, the following policies were defined to

synchronize data transfers among devices: (i) joined, repeated, sequential task execution,

(ii) optimistic and pessimistic readers/writers, (iii) dynamic priority readers/writers, (iv)

producer/consumer, and (v) support for active devices synchronization (scaling from sin-

gle internal thread to a cooperating pool of k threads).

As far as the synchronization conditions are concerned, the architecture provides the ba-

sic conditions to be aggregated in order to build more complex conditions. They can be

used in association with existing or new synchronization policies. The basic implemented

conditions are related to field read/write events, operation execution or invocations and

well-defined role operation execution events. For each new device added to the station,

the related synchronization code is added to the synchronization hierarchy.

The resulting architecture is extensible since concrete aspects implementing specific syn-

chronization policies can be added easily and designed to implement new kind of policies

such as needed. The added policies only need to implement interface and concrete map-

ping logic to intercept the client contexts. The architecture also fosters reusability since

44



CHAPTER 3. Framework design

existing policies can be reused in several different contexts and the synchronization logic

is completely decoupled from the client code.

3.2 Domain specific language

After developing the kernel and the main components of FFMM, it was necessary to

provide the test engineer with a easy and fast way to write measuremet scripts. To

achieve this goal, a Measurement Domain Specific Language (MDSL) was developed.

3.2.1 Proposed approach

A language is a set of terms and expressions which are bounded by a set of syntax and

semantic rules and used for communication within a domain. General Purpose Languages

(GPLs) are not specialized and are suited for a wide area of applications from business

processing up to scientific computing.

Conversely, Domain Specific Languages (DSLs) are explicitly tailored to a target domain:

“DSLs are languages tailored to a specific application domain. They offer substantial gains

in expressiveness and ease of use compared with GPLs in their domain of application” [52].

Complex constructs and abstraction of the domain are offered within the language, thus

increasing its expressiveness in comparison to GPLs. The higher abstraction level, the

compactness, and consequently the better readability and writability enable a group of

people larger than expert programmers to be productive using the DSL. This improves

productivity, since it is possible to express solutions for domain problems with a smaller

effort, and decreases maintenance costs.

A DSL has also potential shortcomings. One drawback is the high development effort

which is needed for a new language. The language developer needs at least experience

in language design and knowledge about the target domain. He has to find suitable ab-

stractions, the right scope and balance between GPL and DSL constructs. Furthermore

the language must be implemented and maintained.

Other problems are tool availability, user training costs and performance. While general

purpose languages have a strong tool support, corresponding tools for a new DSL have to

45



CHAPTER 3. Framework design

be created. Proper development methodology and suitable tools have to be chose to avoid

that DSL development costs surpass the estimated saving by using a DSL. Widely used

IDEs like Eclipse or Visual Studio offer deep integration with these languages like pow-

erful editors with syntax highlighting and checking, integrated compilers and advanced

debuggers.

Finally, a DSL might lead to performance loss with respect to other languages. If perfor-

mance is not critical, the other DSL benefits will make this a minor problem. Otherwise,

special attention has to be paid to the possible optimizations that potentially make the

performance loss negligible.

In FFMM, test engineers are not necessarily skilled programmers and have to produce

concise and bug-free FFMM specific applications (Fig. 3.13). Thus, a new Measurements

Figure 3.13: User roles in FFMM.

Domain Specific Language (MDSL) with specialized constructs was designed in order to:

(i) define logical, numeric, and temporal conditions; (ii) perform conditional branching,

immediate verification of conditions, verification of conditions within a time period, and

continuous verification of conditions; (iii) be able to define events based on measurement

value and attribute changes, time changes, external event notifications, and user inputs;

46



CHAPTER 3. Framework design

(iv) subscribe and unsubscribe to events, and respond to them with behaviors that in-

clude sending text messages to users or commands and generate measurements; (v) enable,

configure and disable framework service; (vi) be able to interact with the user through

a command prompt; (vii compare measurement data against specified criteria within a

specified time period, and compute results that are numeric and Boolean functions.

3.2.2 Architecture

The proposed MDSL is based on a Semantic Model, seen as a part of the FFMM domain

model. It captures the Measurement Test Procedure core structure and behavior. In Fig.

3.14, the proposed approach for the transformation of the Measurement Domain-Specific

Description (MDSD) into the final code is shown.

The DSL script, written by the Test Engineer, is parsed to create an internal file treated

Figure 3.14: Code generation process.

by the semantic model (Fig. 3.14).The parser reads the script and populates the Semantic

Model.

3.2.3 DSL in FFMM

A DSL can be thought of as a form of user interface [53]. It therefore provides an additional

view of FFMM, specifically conceived for the test engineer. As depicted in Fig. 3.15,

through the DSL it is possible to separate the developer view (interacting with the system

47



CHAPTER 3. Framework design

in C++) from the test engineer view (interacting through the DSL). The developer can

Figure 3.15: Developer view versus test engineer view of FFMM through DSL.

operate with C++ at any level in the system, including the definition of a measurement

script. On the other hand, the test engineer, with limited effort and programmation skills,

can operate at script level by means of the DSL, defining a procedure that the builder

will translate into C++ through an interaction with FFMM classes.

3.3 Automatic generation of user interfaces

As for most interactive applications, producing an attractive GUI for a measurement

software framework is not an easy task. The powerful GUI libraries offered by the oper-

ating system can be used of course, but the level of abstraction they offer is in general

rather low. Therefore, a visual editor, such as available in many commercial programming

environments [54], should be used. Such tools turn out to be very user-friendly at the

expense of offering limited functionality. Inherently, graphical representations depending

on run-time data cannot be drawn in advance. Summarizing, a visual editor is a useful

tool for simple GUI applications, but for more complicated ones, the test engineer still

has to struggle with low-level programming code. In addition, the quality of manual GUI

development depends strongly on the experience of the designers and their skills in the

platform and development tools.

48



CHAPTER 3. Framework design

The main goal of automatic techniques for generating interfaces is to allow the designer

to specify them at a very high level, with the details of the implementation to be provided

by the system [55].

Nevertheless, this approach is very unspecific and a further effort is required to tailor the

model to a definite context, such as in frameworks for measurement software applications.

3.3.1 The Model-Viewer-Interactor paradigm

To avoid that test engineers have to deal with raw graphical characteristic of software mea-

surement system, the proposed architecture is organized by separating functional from

appearance aspects of the interface through a three-way decomposition: (i) the parts

representing the model of the underlying application domain, (ii) the way the model is

presented to the user, and (iii) the way the user interacts with it.

This proposal is called the Model-View-Interactor approach (Fig. 3.16), derived as an

evolution of the model-based approach [54].

The Model is composed by the data structures and the classes of the framework involved

Figure 3.16: Model-Viewer-Interactor approach.

in the GUI generation and subject to change by them. A typical example is offered by

the Device classes involved in the configuration step of a measurement procedure.

49



CHAPTER 3. Framework design

The View consists in the aspect of the generated GUI, defined by the GUI expert in the

View Description, a XML file containing all the presentation features of the GUI and

handled by a XML Parser, completely transparent to the test engineer. In particular, the

user interfaces content may be organized in rectangular areas, or areas suitably described

by a rectangular bounding shape (referred here as boxes). Graphical user interface layouts

can be seen as a container subdivided in boxes, where graphic components (text editor

component, buttons, menu item, and so on) are placed. A box can contain others boxes,

and so on. A Layout Manager is responsible to arrange all the components in the resulting

form [56].

The Interactor represents the tie between model and view, by making available different

components specifying the GUI desired behaviour. In the measurement script writing

phase, the test engineer defines the components contained in the GUI and the type of

input/output data by means of the Interactive Components. Then, after the building

process of the script made by the DSL-Xpand component, the framework is able to gen-

erate the application with the desired the GUI.

In this way, the test engineer can define the interaction Measurement Application-User

by means of the Graphic Interactor Component objects only.

3.3.2 The GUI engine

The main aim of the proposed Model-View-Interactor paradigm is to allow the test engi-

neer to develop GUI applications with a minimal effort and without graphical knowledge.

This aim is achieved mainly through the GUI engine structure (Fig. 3.17), allowing all

the GICs (Graphic Interactor Components), encapsulating all common aspect of graphical

components [57, 58], to be built.

The GUI engine architecture is composed by several classes: (i) GIC, providing the

TestManager with the input/output features without graphical details, (ii) GenericWin-

dow, giving the interface for all the frames, (iii) InputWindow and OutputWindow, the

concrete windows, and (iv) LayoutManager, responsible for instantiating concrete win-

dows defining the graphical features parsing the View Description File and computing

50



CHAPTER 3. Framework design

Figure 3.17: Abstract factory pattern for the GUI engine.

the dimension and position parameters [56].

As an example, if the test engineer needs to ask as input an integer value at runtime, he

will use the capture() method of GIC object in the measurement script:

int a;

gic.capture(a,1,”Input form:”,”value”);

By inserting in the script only this instruction, a form is displayed (Fig. 3.18), and the

value entered by the user is stored in the variable pointed.

Figure 3.18: Final form aspect.

51



CHAPTER 3. Framework design

3.4 Analyzer

The framework includes libraries of software modules available to the user for developing

quickly measurement applications. Often, the measurement results need to undergo a

process of analysis in order to be understandable and useful. Therefore a specific com-

ponent, the Analyzer, was included in the project in order to store and make available

the required data analysis routines. Despite the simple structure of the component, spe-

cific conceptual work was devoted to the choice of the most convenient approach and to

the definition of the working principles of algorithms for data reduction and harmonic

resolution enhancement, presented in the following.

3.4.1 Data compressor

A real-time algorithm of data reduction, based on the combination of two lossy techniques

specifically optimized for high-rate magnetic measurements in two domains (e.g. time

and space), is proposed. The first technique exploits an adaptive sampling rule based on

the power estimation of the flux increments in order to optimize the information to be

gathered for magnetic field analysis in real time. The tracking condition is defined by the

target noise level in the Nyquist band required by post-processing procedure of magnetic

analysis. The second technique uses a data reduction algorithm in order to improve the

compression ratio while preserving the consistency of the measured signal. The allowed

loss is set equal to the random noise level in the signal in order to force the loss and the

noise to cancel rather than to add, by improving the signal-to-noise ratio.

Data reduction techniques

Higher and higher sampling rate of measurement setups produces an exponential rise in

data storage requirements. Thus, data reduction algorithms are needed in order to de-

crease the size of measurement results by controlling the quality loss simultaneously.

Lossless compression algorithms, such as Huffman coding [59], arithmetic coding [60], or

lossless JPEG [61], exploiting statistical redundancy for a more concise representation

without error, are the first logical choice. However, when original data contains sufficient

52



CHAPTER 3. Framework design

redundancy, and suitable assumptions on approximation can be made, better compression

ratios are achieved by lossy methods. Various approaches to dimensionality reduction,

such as principal components analysis, entropy measures for ranking features, and meth-

ods to discretize data were reviewed in [62]. In creating CAD geometry data from existing

parts by surface laser scanning, uniform and non-uniform grid methods were proposed [63].

In biomedical applications, adaptive sampling algorithms are widely used to reduce data

size at their source, while preserving clinical acceptability of the reconstructed signal

[64]. In particular, significant-point-extraction algorithms, retaining only samples with

key information such as Turning Point (TP) [65], Amplitude Zone Time Epoch Coding

(AZTEC) [66], and Fan [67], are proposed. In sensor networks, the distribution led to

the minimization of energy and network bandwidth, by adapting sampling rates to ac-

tual conditions [68, 69, 70, 71]. However, such applications have been developed mainly

for measurements with low sampling rates (typically below 100 S/s). Furthermore, the

proposed methods turn out to be highly complex, by requiring for example the solution

of a constrained optimization problem [70]. Computational burden limits application to

fast real-time data reduction above a few tens of samples per second. Other techniques,

such as histogram equalization [72] and entropy-based adaptive sampling [73], needs for

the data set as a whole, thus preventing their use for fast real-time applications.

In this section, a real-time two-domains data reduction algorithm based on adaptive

sampling and significant point extraction, specifically optimized for high-rate magnetic

measurements, is presented. In particular, in the following the proposed algorithm is

illustrated by highlighting the basic ideas, the procedure, and main design criteria for

magnetic flux measurements.

Proposed approach

In the following, (i) the basic ideas, (ii) the strategy, and (iii) the procedure of the

proposed algorithm are illustrated.

Basic ideas The algorithm was based on the following design concepts:

1. Data are reduced by analyzing the results in real time during the measurement and

53



CHAPTER 3. Framework design

by storing consequently only the necessary ones. Two different lossy techniques,

applied in different domains (e.g. time and space) and suitable for the signal features

in those domains, are applied. The first technique, the adaptive tracking sampler,

analyzes the acquired data on the basis of a Nyquist power threshold mechanism

of tracking, in order to adapt the sampling rate for capturing only the significant

features of the signal. The second technique, the noise-cancelling compressor, is

based on a significant point extraction: only the samples containing significant

information are retained by specifying the maximum error allowed on the reduced

signal.

2. In the adaptive tracking sampler, according to the fundamental data reduction prin-

ciple of gathering only the minimum amount of information sufficient to any kind of

further analysis, a rule for adapting the sampling by tracking the signal power in the

Nyquist bandwidth is defined [71]. Under the assumption of signal stationarity with

respect to the algorithm adaptation time, sampling rate is modified by analyzing

the signal in the frequency domain through a general technique for determining its

spectral content. The sampling rate is adapted in real time when a limit condition is

approached. The limit condition is based on the sampling rate defining the Nyquist

bandwidth including the minimum power necessary to capture the required features

of the signal. The power is estimated in a frequency band whose upper limit is

the Nyquist frequency, compared with thresholds representing the power level in

the band for which the current sampling rate is considered adequate. In particular,

the sampling rate is increased/decreased when relatively high-frequency terms are

present/absent into the power estimator.

3. In the second technique, the noise-cancelling compressor, between two observations

where the signal is monitored and the sampling rate adapted at evenly spaced time

intervals, the resulting signal is decomposed in a set of linear problems, to which

classic lossy algorithms for significant point extraction, such as the Fan [65, 67], are

applied. A suitable mechanism to control the related error allows a proper trade-off

54



CHAPTER 3. Framework design

among compression speed, compressed data size, and quality loss. In particular,

under the assumption of random noise (i.e. white but not necessarily Gaussian) and

deterministic signal, if the allowed loss is set equal to the noise level, loss and noise

tend to cancel rather than to add, by increasing signal-to-noise ratio [74]. In other

words, by means of a suitable design strategy, the loss mainly involves the noise

content of the signal, by improving both the signal quality and the compression

ratio simultaneously. This approach does not require a priori knowledge of the

spectral properties of the noise-free signal.

Strategy In the adaptive tracking sampler, if the sampling rate is fs, the power estima-

tor is unable to adequately treat a signal with frequency approaching fs/2. Moreover, if

the sampling rate is only fs, the presence of signals with frequency greater than fs/2 can

not be revealed. However, an increase of the estimated power in the observed frequency

band [f0, fs/2], with f0 ¡ fs/2 to be suitably chosen, at a level above a suitable threshold,

can reveal higher frequency components approaching the limit of the current observable

band. Hence, an increase in resolvable frequencies can be obtained by triggering an in-

crease in the sampling rate. Likewise, the absence of large terms in the band [f0, fs/2] is

used to trigger a decrease in the sampling rate. In this way, error penalties incurred by

slightly reducing the sampling rate in places where the signal is relatively uninteresting

are not likely to be high. The tracking mechanism is explained graphically in Fig. 3.19.

This is true if the variation of the power content of the signal can be considered station-

ary with respect to the algorithm adaptation time. The frequency f0 is to be chosen as a

function of fs, thus both the extremes of the observed frequency band can vary while the

sampling rate is adapted.

While the tracking mechanism adapts the sampling frequency by analyzing subsequent

batches of data, the noise-cancelling compressor discards possible redundant points be-

tween each pair of consecutive observations. The information loss is controlled by means

of the tolerance ε: the approximation maximum error. The noise-cancelling compressor

operates on the acquired samples, by approximating them by means of straight line seg-

55



CHAPTER 3. Framework design

Figure 3.19: Tracking mechanism of the proposed algorithm, observed band are highlighted; a) the
observed band is monitored, b) significant spectral content appears in the observed band, c) an update
of the sampling frequency is triggered and observed band changes accordingly.

56



CHAPTER 3. Framework design

ments and removing redundant points along the way. Good results are obtained if the

algorithm is applied to each of the linear data subsets. The end points of the segments

are determined on the basis of a maximum-error criterion requiring that the results of an

approximation always fall within a user-specified range. The error range can be adaptive

and not necessarily symmetrical.

Procedure The procedure of the proposed algorithm acts in two different domains by

exploiting the adaptive tracking sampler and the noise-cancelling compressor, respectively.

The adaptive sampling algorithm can be summarized in the following steps (Fig. 3.20):

1. acquire a batch of samples at the current rate fs;

2. estimate the signal power in the frequency band [f0, fs/2];

3. compare the estimated power to the threshold terms, and if necessary update fs;

4. if new data income then go to point 1, else exit.

Figure 3.20: Flow chart of the tracking mechanism.

The algorithm is modular and generic: different techniques can be used for power estima-

tion, thresholds computation, low-pass filtering, and sampling rate updating.

Subsequently, the noise-cancelling compressor is applied to each subset of linear data.

57



CHAPTER 3. Framework design

Once the tolerance ε has been specified, the approximation method works on a discrete

signal f(k) through the following main steps [75]:

1. The starting point k is a non-redundant point by definition. Points k and k+1 are

used to draw two straight lines starting at k and crossing f(k+1)+ε and f(k+1)-ε,

respectively, in order to check the redundancy of the point k+1.

2. The resulting lines are extended to point k+2. If point k+2 lies outside them, point

k+1 becomes a non-redundant point and the process is repeated by starting from

point k+1. If point k+2 lies between the lines, it is found to be redundant and point

k is retained as the starting point.

3. Then, new lines are created by using points k and k+2. These lines are compared

with the previous ones and the more restrictive are kept. If point k+3 lies outside

the new lines, point k+2 becomes a non-redundant point and the process starts over

with point k+2 as the starting point. If point k+3 lies between them, point k+2 also

becomes redundant and new and narrower cones are created until a non-redundant

point is found.

In this way, the original sampled signal is approximated by straight line segments sequen-

tially. All the non-redundant points and all the lengths between each pair of consecutive

non-redundant points are stored.

3.4.2 Harmonic resolution enhancer

The measurement method most widely used for the measurement of the integrated field

and higher order harmonics of the LHC magnets is based on the rotating coils (section

1.1.1), well adapted to the measurement of integral steady-state or slow varying fields.

Rotating coils are mainly used . The harmonics are obtained through Fast Fourier Analy-

sis on the flux samples collected during a complete coil turn. The standard procedure [18],

based on the application of traditional DFT algorithm to flux samples acquired through

a rotating coils system, has proven to be unreliable when magnets are supplied with

non-stationary current ramping up to the value corresponding to the nominal operative

58



CHAPTER 3. Framework design

magnetic field.

Differently from traditional conductive magnets, superconducting magnets suffer from dy-

namic effects when supplied with non DC currents, like those characterizing the standard

LHC cycle [76]. Non-stationary excitation currents give rise to additional dynamic field

contributions, namely magnetization imperfections which worsen field quality inside the

magnet.

The aim of this section is to present a digital signal processing approach to overcome

standard procedure limitations and harmonic resolution enhancement.

At CERN, an approach based on interpolation techniques had already been proposed [77].

Here, an enhancement of this algorithm, allowing also the improvement of the harmonic

resolution, is presented.

Standard analysis limitations

For varying magnetic fields, the coefficients obtained by means of the standard analysis

[18] are significantly different from the mean value during a single coil turn and two effects

have to be considered:

1. the magnetic flux due to the main component can be seen as an AM modulation of

a sinusoidal carrier at frequency equal to the coil frequency rotation, where Cn(I(t))

represents the modulating signal.

2. for higher order multipoles, each one characterized by a variation law Cn(I(t)), the

same effect have to considered. In addition, interference due to the modulation

produced by the dipolar field variation has to be taken into account.

Furthermore, the standard analysis provides only an approximation of the harmonic co-

efficients over each coil turn. No possibility of tracking the instantaneous value of the

coefficients is given.

In the hypothesis of a superconductive magnetic LHC dipole excited by a current ramping

linearly versus time [77], intolerable differences, i.e. greater than 1 unit (1 · 10−4T ), have

been experienced even in the best operating condition (lowest ramp rate, 10 A/s). Yet

worse results have been achieved for the other coefficients [78].

59



CHAPTER 3. Framework design

Proposed approach

The standard procedure for field quality measurement operates with success only in mag-

netic field stationary conditions (i.e. dipole magnets powered by a constant current),

when flux samples show a periodic evolution versus angular position of the rotating coils.

To overcome the limitations of the standard analysis due to the non stationary mea-

surement conditions, a signal processing approach based on a simple interpolation of the

magnetic flux samples stored over more coil turns was proposed. This approach is capable

of granting as good results in the presence of non-stationary magnetic fields [79]. The key

idea underlying the proposed approach is illustrated in Fig. 3.21 [77], The magnetic flux

Figure 3.21: Representation of the extrapolation method.

samples are acquired in different angular positions, so they can be represented as belong-

ing to P -points curves in a three dimensional diagram (time-angle-flux). When a single

coil turn is completed, the angular position θ returns to 0, while time t is updated in order

to take into account the expired coil rotation period. If a suitable set of completed turns is

retained, it can be used to fit the surface ϕ(t, θ) by means of a straightforward polynomial

regression algorithm [77]. The right trade-off between accuracy and computational load

is obtained by choosing the order of the adopted polynomial equal to 3. This choice is

further discussed in section 4.2.

60



CHAPTER 3. Framework design

According to the approach proposed in [77], a set of P -extrapolated flux samples, all

related to the same time instant, t*, and different values of angular position can be con-

sidered as generated by a constant current equal to the current at time t*. The standard

Fourier analysis can then be applied on the set of extrapolated flux samples characterized

by the same time instant. The problems deriving from the amplitude modulation of the

flux signal is therefore solved.

In the new implementation proposed in the following, the extrapolation was eliminated.

The problem does not pose any causality constraint, in other words the harmonic do not

have to be extrapolated at a time t* greater then the times at which the flux samples

were acquired. Consequently, t* can be chosen in any possible way inside the observation

window. For the sake of comparison with the results provided by the standard analysis

procedure, t* was chosen as the middle point of the temporal window. In fact the stan-

dard procedure can be seen as a zero order interpolation, providing the middle value on

a single turn referred to the middle time on the same turn.

From an operating point of view, the algorithm consists of the following steps:

1. acquisition of flux samples related in the latest four coils turns, and their collection

in a buffer;

2. computation of sets of interpolated flux samples, accounting for different angular

positions uniformly distributed within [0, 2π], for any time instant.

3. application of the standard procedure to the attained sets in order to gain the

evolution versus time of harmonic coefficients;

4. after the completion of the new coils turn, the first flux sample in the acquired

buffer is substituted by the last acquired sample, according to a first-in-first-out

queue management;

5. steps 2, 3 and 4 are repeated until the whole flux samples are covered.

The above-described procedure solves the problems due to the amplitude modulation

of the flux signal. Anyway, an intrinsic limitation of the rotating coils measurements

61



CHAPTER 3. Framework design

remains, namely the impossibility of tracking the instantaneous value of the harmonic

coefficients, since the analysis is performed over each coil turn. Before, the limitations of

the existing hardware, namely the old rotating unit [80], made it difficult to overcome this

problem. A measurement had to be performed by interrupting the acquisition between

subsequent turns. With the new fast rotating unit, capable of continuous rotation, a new

approach can be followed. In particular the algorithm can be run at each new flux sample

to produce an undate of the harmonics estimation at the same rate at which the flux is

acquired. This approach requires two main improvements in the algorithm:

• The proposed approach was implemented in order to scan the acquisition buffer

point by point or in general m by m, with m ∈ N+. So it is possible overcome the

limitation of a turn by turn analysis, and attain maximum flexibility in the choice

of the frequency at which the interpolation is run. This possibility allows in any

situation the achievement of the best trade-off between computational burden and

harmonics resolution.

• A phase correction was introduced to compensate the rotation of the reference frame

during the analysis of subsequent points in a coil turn. In fact, the results of the

analysis always provide the harmonics as real and imaginary part of the complex

coefficient (section 1.1.1) in the reference frame corresponding to the initial position

of the coil [18]. The algorithm can be run every m points, and not necessarily every

turn as before, thus if m is not a multiple of the number of points per turn the

reference frame rotates during the analysis. This rotation has to be recuperated by

means of the previously mentioned phase correction.

The improved algorithm is more general, and gives the previous procedure when the pa-

rameter m is set equal to number of points per turn.

Another important remark about the parameter m concerns the link between this algo-

rithm and the problem of data reduction previously explained. The interpolation proce-

dure could in general also be seen as a method of data reduction, by expressing a sequence

of acquired samples in terms of the computed coefficients of the interpolating polynomial.

62



CHAPTER 3. Framework design

Anyway, if an interpolation of order n is employed, the algorithm for harmonic resolution

enhancement would produce n + 1 coefficient for each new point. This would cause an

increase in the amount of data to be stored. At the same time, also the computational

burden increases. A possible approach allowing the achievement of a better tradeoff be-

tween amount of data/computational burden and resolution improvement can indeed be

allowed by the introduction of the parameter m. It is to be considered though that a big

value of m can cause significant fit errors.

Moreover, there is a similarity between the algorithms proposed for harmonics resolution

enhancement and data reduction: both operate on subset of the original data by exploiting

the periodicity of the signal (see section 4.1). A reason to prefer the approach in section

3.4.1 for the data reduction is that with this technique, when the points lie outside the

allowed tolerance (e.g. on an exponential profile), there is no reduction and the original

data set is kept. Here, instead, the original signal is represented by means of a set of

coefficients even when the order of interpolation does not allow to reconstruct perfectly

the field profile. The loss is not considered and therefore is not under control.

3.5 Discussion

A batch algorithm for data reduction through adaptive sampling and significant point

extraction has been proposed. It is fast, reliable, cost effective and can be implemented in

real-time in order to extract significant points from a sampled signal, with an information

loss within an error range specified by the user through a threshold mechanism. The

algorithm is modular and generic: different techniques can be used for power estimation,

thresholds computation, low-pass filtering, and sampling rate updating.

In the second part, a signal processing algorithm for improving measurements of non-

stationary magnetic field through a rotating coils system was presented. An interpolation-

based algorithm had already been developed at CERN. The proposed approach further

enhances the performance of the previous one by allowing a remarkable improvement in

the resolution with which field harmonics evolution versus time can be reconstructed.

63



Chapter 4

Numerical analysis

The algorithms for data reduction (3.4.1) and harmonic resolution enhancement (3.4.2)

were tested in simulation to verify the fulfillment of the goals for which they were con-

ceived, in conditions typical of a rotating coil-based measurement on superconducting

dipole magnets.

This chapter presents the results of the simulation characterization, highlighting that,

in the considered domain, the proposed approaches are suitable for data reduction and

harmonic resolution enhancement, respectively.

4.1 Algorithm for data compression

The algorithm for data reduction (section 3.4.1) was tested in simulation, by evaluating

the effect of the frequency adaptation on dynamic metrological performance, without

other perturbation sources.

In the following, numerical results of (i) the static tests, and (ii) the dynamic tests of the

algorithm are illustrated.

4.1.1 Static tests

In static tests, the algorithm is fed with a constant frequency input signal, the sampling

frequency is set to the optimal value, and then the reduced data acquired in steady state

are used to estimate the indices of the reduced signal and to compare them with those of

the input signal.

64



CHAPTER 4. Numerical analysis

The proposed algorithm was compared to the following state-of-the-art solutions [59, 60,

61, 62, 63, 64, 65, 66, 67]:

1. The TP, a simple and fast algorithm producing a fixed reduction ratio of 2:1. It

processes three points at a time, stores the first one and retains one of the next two

samples depending on which one preserves the turning point (i.e., the slope change)

of the original signal.

2. The AZTEC algorithm decomposes raw sample points into plateaus and slopes, thus

representing the original signal through a piecewise-linear approximation formed by

a sequence of line segments.

3. The pure Fan algorithm, as said before, also uses a piecewice-linear approxima-

tion of the original signal, but unlike AZTEC draws lines between pairs of starting

and ending points so that all intermediate samples are within some specified error

tolerance.

Simulation tests were carried out on an ideal input signal defined on the basis of the

actual signals acquired on the field in a typical setting of a rotating coil measurement of a

superconducting dipole magnet [76]. After the reduction, some performance indices were

estimated and subsequently compared to those computed on the original signal.

The Compression Ratio (CR), defined as ratio between the size of original data and the

size of compressed data, assesses the data reduction, while SIgnal-to-Noise And Distortion

ratio (SINAD), Signal-to-Non Harmonic Ratio (SNHR), and Total Harmonic Distortion

(THD) [81] the loss. Finally, the main component amplitude is evaluated to express the

closeness of the reduced signal to the original one.

Test results are summarized in Tab. 4.1. for different settings of the algorithms’ param-

eters.

Results show that the adaptive tracking sampler provides the best tradeoff between CR

and error on the reconstructed signal. Lossy data compression algorithm, when applied

to a noisy signal with the allowed loss set equal to the noise strength, produces a filtered

signal with reduced noise content [74]. In addition to that, since the adaptive tracking

65



CHAPTER 4. Numerical analysis

Table 4.1: Comparison of algorithms’ static performance on simulated flux increment signal.

sampler operates a decimation with an Over Sampling Ratio (OSR) equal to the decima-

tion ratio, the SNR is improved while reducing the data size.

The additional comparison of the adaptive tracking sampler with the pure Fan algorithm

applied to sine wave signals typical of a rotating coils-based measurement system [2], [76]

highlighted satisfying results. Nevertheless, the Fan algorithm performs better than TP

and AZTEC, in terms of compression capabilities and fidelity to the original signal, re-

spectively.

Furthermore, the choice of the Fan algorithm inside the noise-cancelling compressor was

checked. By exploiting the signal periodicity, the reduced sine wave can be decomposed

in a set of quasi-linear time series, formed by points corresponding to the same angular

position (Fig. 4.1). The results (Tab. 4.2) highlight the remarkable tradeoff between

compression ratio and approximation error of the Fan algorithm when applied to a data

set representing a linear signal. Fig. 4.2 shows the corresponding rate-distortion plot [74],

allowing the noise strength to be determined by means of a heuristic method. This is

used for tuning the tolerance ε inside the noise-cancelling compressor. In the conditions

of Fig. 4.2, where a white noise of power σ2 is applied, the method suggests the setting

of ε to a value of 3σ.

66



CHAPTER 4. Numerical analysis

Figure 4.1: Combined approach to data reduction: original signal (dots) and signal reduced by means
of adaptive tracking sampler (circles) as function of angular position and time.

Table 4.2: Performance of the Fan algorithm, employed by the noise-canceller compressor, for the
reduction of nearly linear signals.

67



CHAPTER 4. Numerical analysis

Figure 4.2: Rate-distortion plot and heuristic determination of the noise strength (ε = 2 ∗ 10−5 Vs),
corresponding to the maximum of the second derivative.

4.1.2 Dynamic tests

Inside the adaptive tracking sampler, the proposed algorithm includes an fft-based tracking

mechanism, working properly only if its adaptation time is negligible in comparison to the

typical time variation of the signal. The algorithm tracking capabilities were verified for

different settings of its parameters by a simulation with variable frequency input signal.

Extremely fast changes were imposed by using step functions to define the time variation

law of the input frequency. The algorithm had to follow this variation by updating

suitably the sampling frequency. The algorithm dynamic performance is depicted in Fig.

4.3 for different values of α, the maximum change in the sampling frequency allowed in

one step, expressed as a fraction of the current sampling frequency. The figure shows how

adaptation times suitable for the typical magnetic measurements carried out at CERN

can be achieved.

68



CHAPTER 4. Numerical analysis

Figure 4.3: Sampling rate step responses for different values of α (the maximum change in the sampling
frequency allowed in one step, expressed as a fraction of the current sampling frequency).

4.1.3 Algorithm performance

With the aim of checking the computational burden of the proposed solution, the algo-

rithm performance were evaluated in simulation and compared to those of other state-of-

the-art algorithms, by measuring the time for processing the same data set. Execution

times were computed in MATLAB, with respect to a very easy and fast solution such

as the TP. Tab. 4.3 shows the result of the comparison, proving that the computation

required suits the capabilities of a system typically used for the application to magnetic

measurements.

4.2 Algorithm for harmonic resolution enhancement

A numerical analysis was performed also on the algorithm for harmonic resolution en-

hancement (section 3.4.2. A number of tests on simulated flux samples were carried out

to assess the performance of the proposed approach, by comparing it to that granted by the

standard procedure. To this aim, suitable models for harmonic coefficient were adopted

in order to generate simulated harmonic coefficients Cn (section 1.1.1), from which the

69



CHAPTER 4. Numerical analysis

Table 4.3: Comparison of algorithms’ computational burden expressed as execution time required to
process the same amount of incoming data (a sine wave of 131072 points): computation performed in
MATLAB on a Pentium IV-2.8 GHz processor.

flux samples were computed. Each effect has been quantified using data obtained from

measurement series on the LHC magnet. The proposed approach has been applied to

estimate the harmonic coefficients from the flux samples and compare their values with

the nominal ones, during an LHC PELP (Parabolic Exponential Linear Parabolic) cycle

[76]. The coefficient are computed for a fixed coil rotation speed (8rps), and fixed number

of points per turn (256), by varying: 1)the field profile (linear, parabolic, exponential),

2) the field variation speed, 3) the rate at which the algorithm is executed, expressed

through the parameter m (number of new flux samples to be acquired before each run of

the algorithm). The interpolation order is set equal to 3. Former experiences at CERN

have indicated this value as the best tradeoff between computational burden and accuracy

in harmonics reconstruction. In the following, for the sake of conciseness, only the results

obtained for the normal dipole harmonic B1 are shown. The other harmonics exhibits a

very similar behaviour and the related results are therefore omitted.

Linear field profile

For this profile, the algorithm was tested with different ramp rates and updating fre-

quency of interpolation coefficients. A first test was run with m=1 (coefficients computed

at the maximum rate, i.e. for every new flux sample) and with a ramp rate of 0.0628 T/s.

The simulation was subsequently repeated at a higher ramp rate (0.4776 T/s), with two

different values of the parameter m (m = 1, i.e. one update for every new flux sample and

70



CHAPTER 4. Numerical analysis

m = 256, i.e. one update for every coil turn) in order to evaluate also the effect of this

parameter on the harmonic coefficients estimation. Fig.s 4.4-4.7 show the reconstructed

profile of the main normal harmonic (B1) for the two different ramp rates, while Fig.s

4.8-4.13 report the error estimated with and without algorithm for the aforementioned

cases.

As the ramp rate increases, as expected the absolute error without interpola-

Figure 4.4: First normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.0628 T/s.

tion increases proportionally, with the relative error remaining comparable in both cases.

Conversely, when the algorithm is applied there is a perfect match between known in-

put harmonics and their estimated value and there is no ramp rate dependence. The

absolute error is always negligible, i.e. within the resolution of the 64-bit floating point

environment used for the computations. As expected, it is therefore possible to conclude

that with a pure linear field profile, the third order interpolation guarantees very good

fidelity in the reconstruction of the field profile, no matter for the frequency at which the

interpolation coefficients are updated.

Furthermore, varying m gives no remarkable change in the error amplitude, always neg-

ligible in the linear case if the algorithm is applied, but the computational complexity is

71



CHAPTER 4. Numerical analysis

Figure 4.5: Detail of first normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.0628
T/s.

Figure 4.6: First normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.4776 T/s.

72



CHAPTER 4. Numerical analysis

Figure 4.7: Detail of first normal harmonic (B1) comparison: linear profile, m=1, ramp rate 0.4776
T/s.

Figure 4.8: Error on B1 with standard analysis: linear profile, m=1, ramp rate 0.0628 T/s.

73



CHAPTER 4. Numerical analysis

Figure 4.9: Error on B1 with linear interpolation: linear profile, m=1, ramp rate 0.0628 T/s.

Figure 4.10: Error on B1 with standard analysis: linear profile, m=1, ramp rate 0.4776 T/s.

74



CHAPTER 4. Numerical analysis

Figure 4.11: Error on B1 with linear interpolation: linear profile, m=1, ramp rate 0.4776 T/s.

Figure 4.12: Error on B1 with standard analysis: linear profile, m=256, ramp rate 0.4776 T/s.

75



CHAPTER 4. Numerical analysis

Figure 4.13: Error on B1 with linear interpolation: linear profile, m=256, ramp rate 0.4776 T/s.

decreased for larger values of m.

With the standard analysis, the amplitude modulation of the flux signal produces an

oscillation in the amplitude of the harmonic coefficient, with a period related to that of

the input sine wave. In order to support this hypothesis, additional simulations were per-

formed with different input field profile. Additional simulations were executed by keeping

constant the main harmonic and imposing a linear variation of the higher order com-

ponents. The spectral leakage is supposed to be basically due to the time variation of

the main field harmonic, by far the most significant in module (higher order harmonics

are chosen to be 4 orders of magnitude smaller than the main one, according to typical

values found at CERN during superconductive magnet test campaigns). In this case the

amplitude modulation involves only small terms with slow variations. In such a situation,

a drastic reduction of the oscillation in the harmonics computed through the standard

analysis is observed as shown in Fig.s. 4.14.

76



CHAPTER 4. Numerical analysis

Figure 4.14: Error on B1 with standard analysis: constant B1, linear profile b2÷ b15, m=1.

Parabolic field profile

Similar tests were considered for a parabolic profile. This case is quite similar to the linear

one, since in both cases the third order interpolation allows a perfect reconstruction of

the field profile. The usefulness of showing the results of the harmonic computation

lies in the possibility it provides of evaluating the effects of the algorithm with different

interpolation orders, capable of perfectly matching or not the input field profile. In

this way the effects of different interpolation orders can be highlighted. In particular,

simulations with parabolic field profile were run with (i) linear interpolation and (ii)

quadratic interpolation, and compared with the harmonics provided by the standard

analysis, with m = 1. As expected, the field coefficients evaluated with the interpolation

algorithm match the ideal ones, while the coefficients evaluated without algorithm show

a significantly greater error, depending in absolute terms on the local field slope (i.e. the

field variation during a turn), and a clearly visible oscillation.

Fig.s 4.15-4.18 depict the results, showing that with the first order interpolation, incapable

of fitting perfectly the field profile, also by applying the algorithm there is an oscillation of

77



CHAPTER 4. Numerical analysis

the reconstructed field profile, whose period is related to the period of the input sine wave.

This oscillation is visible to a smaller extent with respect with the standard analysis,

Figure 4.15: First normal harmonic (B1) comparison: parabolic profile, linear interpolation, m=1.

Figure 4.16: Detail of first normal harmonic (B1) comparison: parabolic profile, linear interpolation,
m=1.

78



CHAPTER 4. Numerical analysis

Figure 4.17: Error on B1 with linear interpolation: parabolic profile, m=1.

Figure 4.18: Error on B1 with standard analysis: parabolic profile, m=1.

79



CHAPTER 4. Numerical analysis

and even more important, unlike the results of the standard analysis it does not exhibits

a dependence on the instantaneous slope of the field profile. Conversely, the second order

interpolation adequacy to fit the input data results with a negligible reconstruction error

is shown in Fig.s 4.19 and 4.20. Even though the absolute error is negligible, it is possible

to see its dependence on the variation speed of the field, namely the faster the variation

the bigger the error.

Figure 4.19: First normal harmonic (B1) comparison: parabolic profile, quadratic interpolation, m=1.

Exponential field profile

In the following the results obtained for an exponential field profile case are shown. This

profile allows some considerations to be made about the appropriate interpolation order

to be chosen, since it is not polynomial and cannot be fit perfectly by any of the possible

options. Fig.s 4.21-4.25 show the reconstruction of the main normal field harmonic and

the estimation error obtained by applying both the standard analysis procedure and the

interpolation algorithm, with m = 1. In particular, the latter was executed twice

with different interpolation orders. Initially the second order was applied, leading to the

results shown in Fig. 4.22, where the residual error not eliminated by the algorithm,

80



CHAPTER 4. Numerical analysis

Figure 4.20: Error on B1 with quadratic interpolation: parabolic profile, m=1.

Figure 4.21: First normal harmonic (B1) comparison: exponential profile, quadratic interpolation,
m=1.

81



CHAPTER 4. Numerical analysis

Figure 4.22: Error on B1 with quadratic interpolation: exponential profile, m=1.

Figure 4.23: First normal harmonic (B1) comparison: exponential profile, cubic interpolation, m=1.

82



CHAPTER 4. Numerical analysis

Figure 4.24: Error on B1 with cubic interpolation: exponential profile, m=1.

Figure 4.25: Error on B1 with standard analysis: exponential profile, m=1.

83



CHAPTER 4. Numerical analysis

although significantly reduced with respect to that produced by means of the standard

analysis, still exceeds the requirements of the most demanding applications (error below

10−4−10−5 T ). The quadratic interpolation therefore does not give satisfactory fidelity of

the reconstructed field profile to the original one. The simulation was repeated employing

a third order interpolation, yielding the results reported in Fig. 4.24. Also in this case, the

polynomial interpolation is not capable of following the field profile with negligible error,

but the results highlight that with this setting the algorithm can be usefully employed to

increase the harmonic resolution of the short exponential parts of the LHC PELP current

cycle within the tolerance of 10−4 − 10−5 T .

4.3 Discussion

Several tests have been conducted on simulated flux samples to assess the performance of

the approaches proposed both for data reduction and harmonic resolution improvement.

A far as the data reduction algorithm is concerned, the results highlight the better per-

formance of the proposed combined approach, when compared to other techniques, and

in particular its suitability for application where signals similar to those usually found

in rotating coils based magnetic measurements, from the point of view of performance,

reduction capabilities, and fidelity of the reconstructed signal to the original one.

Subsequently, the algorithm for harmonic resolution improvement was characterized. The

results obtained for different field profiles and algorithm’s settings are presented and com-

pared to those granted by standard procedure. In all cases, the interpolation algorithms

allows significant improvements of the harmonics resolution to be achieved. The simula-

tions also highlighted that, during an LHC PELP cycle, a good tradeoff between compu-

tational burden and desired harmonics resolution improvement can be achieved when a

cubic interpolation is used.

84



Chapter 5

Software quality assessment

In this chapter the quality characterization the release 3.0 of the Flexible Framework for

Magnetic Measurements is presented. The object-oriented and the aspect-oriented parts

of the system are evaluated separately. First, the approach proposed in the standard ISO

9126 is chosen as reference model for the quality evaluation of the object-oriented part,

and experimental results are provided. Anyway, this evaluation follows an approach only

recently proposed and not yet completely validated. Moreover, it does not provide clear

indications about possible ways of improving the quality. Therefore a more practical

analysis of the object-oriented part follows, in order to find design flaws and propose

corrective actions. Finally, a modularity and performance analysis of the aspect-oriented

Fault Detector is presented to prove the benefits deriving from the use of this technology.

5.1 Software quality

Quality is key issue in software development. The quality of a system is the result of the

quality of its elements and their interactions. Quality in general can be defined as: (i)

the degree to which a system, component, or process meets specified requirements; (ii)

the degree to which a system, component, or process meets customer or user needs or

expectations [82]. This definition offers the two most common interpretations of the word

quality are (i) conformance to requirements (“inner quality”), and (ii) measure of user

satisfaction (“outer quality”). Although it can be described from different perspectives

[83, 84, 85], a specific definition has been provided for the software quality, intended as

85



CHAPTER 5. Software quality assessment

“the capability of a software product to satisfy stated and implied needs when used under

specified conditions‘” [86]. Pursuing software quality is always worthwhile, since the cost

of achieving a high quality level is widely overtaken by the cost of nonquality (having a

software incapable of providing the required functionalities when needed).

The assessment of the software quality cannot be achieved without defining how to mea-

sure it in a quantitative way. For this reason, several metrics were introduced. The term

metric is defined as a measure of the degree to which a process or product possesses a

certain quality characteristic [87]. Tabs. 5.1 and 5.2 present all the metrics used in this

chapter, providing also a brief description for each of them.

One of the major points when using metrics is that reference points (thresholds) are

required in order to link them to a useful semantic, thus allowing an objective assessment.

The main aim is not to look for perfect thresholds, but for values that can be useful in

practice in order to detect possible software artifacts. Two major sources of threshold

values can be identified [88]:

• Statistical information, leading to thresholds based on statistical measurements.

One or more reference points are used to split the space of numbers into meaningful

intervals. Applying simple statistical techniques to the data collected for each met-

ric, the average AVG can be used to estimate the typical values, and the standard

deviation STD to define higher/lower margins as AV G± STD.

• Generally accepted semantics, leading to thresholds based on information considered

common widely accepted knowledge. This knowledge could be in its turn based on

former statistical observations, but their values have become part of our culture and

can be inferred without statistically measuring them.

Metrics need to be evaluated within the frame of a quality model to avoid their misuse.

A model is an abstraction of reality, allowing to discard useless details and view an entity

or a concept form a particular perspective [89], understanding the interactions among the

parts forming the whole system of interest. A model can be used to predict or assess the

quality, the latter being the aim of this chapter.

86



CHAPTER 5. Software quality assessment

Metric Description
Cyclomatic Complexity Logic complexity of a module,

(CYCLO) as number of linearly-independent paths.
Essential Complexity Cyclomatic complexity after replacing all well

(ESS) structured control structures with a single statement.
Class Depending Child Class depending at leat

(CDC) on one of its children.
Class Depth Depth of a class within the
(DEPTH) inheritance hierarchy.

Multiple Inheritance Number of immediate
(FAN IN) base classes.

Response for Class Number of methods,
(RFC) including inherited ones.

Coupling between Objects Number of other classes coupled to. Coupling means using a
(CBO) type, data, or member from that class. Any number of couplings

to a given class counts as 1 towards the metric total.
Lack of Cohesion of Methods Cohesion between class

(LOCM/LCOM) data and methods.
Weighted Methods for Class Sum of cyclomatic complexity of

(WMC) all nested functions or methods.
Access to Forein Data Number of attributes from unrelated classes

(ATFD) accessed directly or through accessor methods.
Changing Classes Number of classes in which the methods

(CC) that call the measured method are defined.
Coupling Intensity Number of distinct operations

(CINT) called by the measured operation.
Changing Methods Number of distinct methods

(CM) that call the measured method.
Lines of Code The number of lines that

(LOC) contain source code.
Tight Class Cohesion Relative nuber of method pairs of a class that access in

(TCC) common at least one attribute of the measured class.
Weight of a Class Number of public methods divided by

(WOC) the total number of public members.
Number of Accessor Methods Number of accessor (getter

(NOAM) and setter) methods of a class.
Number of Public Attributes Number of public attributes

(NOPA) of a class.
Number of Accessed Variables Number of variable accessed directly

(NOAV) by the measured operation.
Locality of Attribute Accesses Number of attribute from the method definition class,

(LAA) divided by the total number of variable accessed.
Foreign Data Providers Number of classes in which

(FDP) the attributes accessed are defined.
Maximum Nesting Level Maximum nesting level of

(MAXNESTING) control structures within an operation.

Table 5.1: Metrics catalogue.

87



CHAPTER 5. Software quality assessment

Metric Description
Coupling Dispersion Number of classes in which the operation called from

(CDISP) the measured operation are defined, divided by CINT.
Number of Packages Number of high level packages

(NOP) (packages in Java, namespaces in C++).
Number of Classes Number of classes defined in the

(NOC) system, not counting library classes.
Number of Operations Number of user-defined

(NOM) operations (methods and global functions).
Number of Operation Calls Number of distinct operation calls (invocations)

(CALLS) made by all the user-defined operations.
Number of Called Classes Sum of the classes from which operations

(FANOUT) call methods, for all the user-defined operations.
Average Number of Derived Classes Average number of subclasses of a class, tells

(ANDC) how extensively abstractions are refined through
inheritance. Interfaces are not counted.

Average Hierarchy Height Average path length from a root class to its deepest
(AHH) subclasses, tells how deep the class hierarchy is.

Interfaces are not counted.
Degree of Focus Measure of the level of dedication of a

(DOF) component to every concern in the system.
Degree of Scattering Measure of the level of scattering of a

(DOS) concern within all the modules in the system.

Table 5.2: Metrics catalogue. ANDC, AHH, DOF, and DOS are proportions.

A considerable amount of work has been devoted to the formulation of so-called quality

models. One of the first was proposed by Gilb [90], according to whom any quality

characteristic can be measured directly. The quality concept is broken into component

parts until each can be stated in terms of directly measurable attributes. Other models

were proposed by Boehm [87] and McCall [91]. These hierarchical models are based on

the assumption that there are a number of important high level quality factors that are

determined by lower level criteria supposed much easier to measure than the corresponding

factors. Actual measures, metrics, are proposed for the criteria. The model describes

all the relationships between factors and criteria, so that the former can be quantified

in terms of measures of their dependent criteria. This conception of modeling quality

was more recently at the basis of international efforts that led to the development of a

standard for software quality measurement, defining a software quality model (ISO 9126

[19, 92, 93, 94]), the software measurement process (ISO 15939 [95]), and the software

evaluation process (ISO 14598 [96]). The standard ISO9126-1 [19] recommends six quality

88



CHAPTER 5. Software quality assessment

characteristics, further refined in subcharacteristics, as basic set for quality evaluation,

and the standards ISO9126-2 -3 and -4 [92, 93, 94] define metrics for measurement of

characteristics and subcharacteristics. Anyway, the metric list is not finalized and no

clear indications are provided about their mapping to the quality characteristics. Given a

particular problem, techniques like the Goal-Question-Metric [97] can help identify which

measures are to be taken into account to monitor and improve quality in the specific case.

5.2 The standard ISO 9126

A definition of software quality, along with guidance for its evaluation, is provided by

international standards [19, 92, 93, 94, 95, 96]. This section aims at assessing of the

quality level achieved by the release 3.0 of FFMM according to the guidelines of these

standards. The software quality model provided by the standard ISO 9126 defines six

quality characteristics (Fig. 5.1):

Figure 5.1: The ISO 9126 quality model.

• Functionality : the capability of the software product to provide functions which

meet stated and implied needs when the software is used under specified conditions.

89



CHAPTER 5. Software quality assessment

• Reliability : the capability of the software product to maintain a specified level of

performance when used under specified conditions.

• Usability : the capability of the software product to be understood, learned, used

and attractive to the user, when used under specified conditions.

• Efficiency : the capability of the software product to provide appropriate perfor-

mance, relative to the amount of resources used, under stated conditions.

• Maintainability : the capability of the software product to be modified. Modifi-

cations may include corrections, improvements or adaptation of the software to

changes in environment, and in requirements and functional specifications.

• Portability : the capability of the software product to be transferred from one envi-

ronment to another.

The standard defines an additional quality characteristic:

• Quality in use: the capability of the software product to enable specified users to

achieve specified goals with effectiveness, productivity, safety and satisfaction in

specified contexts of use.

The quality characteristics have defined sub-characteristics and the standard allows for

user defined sub-subcharacteristics in a hierarchical structure. The ISO framework is

completely hierarchical, each subcharacteristic is related to only one characteristic. The

quality model defines three different views of quality: (i) software quality in use, (ii)

external software quality, and (iii) internal software quality. The software quality in use

view is related to application of the software in its operational environment, for carrying

out specific tasks by specific users. External software quality provides a black box view of

the software and addresses properties related to the execution of the software on computer

hardware and applying an operating system. Internal software quality provides a white

box view of software and addresses properties of the software product that typically are

available during the development. Internal software quality is mainly related to static

90



CHAPTER 5. Software quality assessment

properties of the software and has an impact on external software quality, which again

has an impact on quality in use (Fig. 5.2). As shown in the figure, internal and external

Figure 5.2: Approaches to software quality.

attributes refer to product quality, while quality in use reflects the user view of the product.

The the process through which this product is obtained is not taken into account.

At the current stage of development of FFMM, the system is not yet widely employed

by users others than the developers, thus making premature the evaluation of the quality

in use. The following quality assessment is therefore product-oriented. More specifically,

an analysis of the static properties of the software design and code (internal quality) is

carried out by means of pure internal metrics [93].

5.2.1 Experimental results

The analysis of the software was carried out by means of the tool UnderstandC++ [98].

Heuristic thresholds were employed, as proposed in literature [88, 99, 100, 101], in order to

define the metrics target values. An example of metrics and corresponding target values

is reported in Tab. 5.3 [88, 102].

In particular, the complexity metrics (such as Essential Complexity and Cyclomatic

Complexity [103]) measure the logic complexity of the software modules and hence the

effort required for testing and maintain them. The object-oriented metrics, taken from well

known metrics suites [104, 105, 106, 107] (LCOM, FAN IN, CBO, RFC, WMC, DEPTH)

measure the extent to which features typical of object-oriented systems are exploited (e.g.

inheritance) or achieved (e.g. lack of coupling and cohesion). Tab. 5.4 reports a short

91



CHAPTER 5. Software quality assessment

Metric Target
Cyclomatic Complexity (CYCLO) ≤ 10

Essential Complexity (ESS) ≤ 4
Class Depending Child (CDC) FALSE

Class Depth (DEPTH) ≤ 7
Multiple Inheritance (FAN IN) ≤ 1

Response for Class (RFC) ≤ (WMC ∗DEPTH) + 1
Coupling between Objects (CBO) ≤ 2

Lack of Cohesion of Methods (LOCM/LCOM) ≥ 0.75
Weighted Methods for Class (WMC) ≤ 14

Table 5.3: Complexity and object-oriented metrics with their target values.

Blank Lines 4’115
Classes 96

Code Lines (LOC) 16’253
Comment Lines 6’977

Comment to Code Ratio 0.43
Declarative Statements 4’779
Executable Statements 8’642

Files 131
Functions 1’082

Inactive Lines 172
Lines 28’119

Table 5.4: FFMM 3.0 size metrics summary.

summary of size metrics computed on FFMM. At first glance, the complexity metrics

(Essential Complexity and Cyclomatic Complexity) show that, although in FFMM the

average complexities respect the heuristic upper bounds, the maximum values exceed

them in a significant way (Tab. 5.5). This means that the complexity is concentrated in

few points that need to be simplified in order to decrease the effort required for software

testing and maintenance. Analogous remarks can be made from the analysis of the object-

oriented metrics (Tab. 5.6): most of them show maximum values significantly exceeding

Metric Average Max Std Target % OK
(program units)

ESS 1.2 19 1.1 ≤ 4 99
CYCLO 2.4 40 3.2 ≤ 10 97

Table 5.5: FFMM 3.0 complexity metrics.

92



CHAPTER 5. Software quality assessment

Metric Average Max Std Target % OK
(classes)

CDC FALSE FALSE - FALSE 100
DEPTH 1 4 1.2 ≤ 7 100
FAN IN 0.7 2 0.7 ≤ 1 85

RFC 20 138 31 ≤ (WMC∗ 45
*DEPTH)+1

CBO 3.9 21 4.6 ≤ 2 50
LOCM/LCOM 0.42 1 0.40 ≥ 0.75 40

WMC 13 103 18 ≤ 14 74

Table 5.6: FFMM 3.0 object-oriented metrics.

the heuristic thresholds, potentially causing problems to system developers and users. The

values of the FAN IN metric exceeding the threshold are the result of a conscious design

choice, since all the devices implemented in FFMM inherit from two abstract classes.

These two classes are completely independent from each other, therefore the multiple

inheritance is not expected to cause any undesired side effects.

An attempt to use internal metrics, computed on the source code, according to the model

ISO 9126 for an automatic metric based quality control is presented in [108, 109]. This

approach proposes a set of metrics and a quality matrix mapping them into factors and

criteria of the model.

Heuristic thresholds [88, 99, 100, 101] were used to evaluate the percentages of classes

exceeding the acceptable values for the considered metrics. The quality matrix allow the

translation of these properties into the levels at which quality characteristics are achieved.

The quality model presented in [109] refers to an adapted quality model where reusability

replaces usability, evaluated on the basis of both non-object-oriented metrics (mainly

referring to size) and to object-oriented metrics (mainly referring to cohesion, coupling

and inheritance). The results obtained through this approach are shown in Fig.s 5.3 and

5.4. The values vary in the range [0,1], with 0 corresponding to the best quality level. It

is worth pointing out that the aforementioned connections between static metric analysis

and internal software qualities have been recently proposed, are only partially validated

and and still need improvements and confirmations to be widely accepted by the scientific

community. In other words, the automatic assessment of software quality defined by

93



CHAPTER 5. Software quality assessment

Figure 5.3: ISO 9126 subcharacteristics in FFMM 3.0 (0 indicates the best quality level).

Figure 5.4: ISO 9126 characteristics in FFMM 3.0 (0 indicates the best quality level).

94



CHAPTER 5. Software quality assessment

the ISO standards using internal metrics is still an open question. Therefore the results

presented in this section are to be intended only as suggestive of the quality level achieved

by FFMM. Furthermore, no direct indications are provided on how to improve quality.

For this reason, in the following the quality analysis is complemented by introducing a

more practical approach.

5.3 Quality pyramid

In [88], a more practical approach to software quality is presented to (i) characterize the

design of the object-oriented part of FFMM, (ii) find the possible problems, and (iii)

propose corrective actions.

According to these approach, some design metrics [110], namely metrics capturing the

quality of the project’s design at a certain point in the software development cycle, are used

in the frame of the Goal-Question-Metric (GQM) [97] technique to effectively characterize

and evaluate the design of an object-oriented system.

The characterization of an object-oriented system is a complex task that cannot rely on

the evaluation of single metrics in a non-organized way. It requires to choose suitable

metrics, compute their values and correlate them in a proper manner in order to draw

significant conclusions. As previously said, the characterization of an object-oriented

system must necessarily include metrics that reflect three main aspects (Fig. 5.5) [88]):

(i) Size and complexity, to understand how big and complex a system is, (ii) Coupling,

to know to which extent classes are coupled with each other, and (iii) Inheritance, to

understand how much and how well the concept of inheritance is used. To understand

these three aspects, the Overview Pyramid is introduced in [88]. The pyramid is a metric-

based means to both describe and characterize the overall structure of an object-oriented

system by quantifying complexity, coupling and usage of inheritance. It can be seen as a

graphical template for presenting and interpreting system-level measurements in a unitary

manner. An Overview Pyramid is composed of three parts, each concerning one of the

above mentioned aspects (Fig. 5.6).

95



CHAPTER 5. Software quality assessment

Figure 5.5: The three major aspects quantified by the Overview Pyramid.

Figure 5.6: Example of a complete Overview Pyramid.

System size and complexity

The left side of the pyramid gathers information characterizing size and complexity of

the system, provided by direct metrics computed on the source code. These simple and

widely used metrics refers to the most significant modularity unit of an object-oriented

system, from the highest level (packages or namespaces) to the lowest (lines of code). For

each unit there is a metric in the pyramid measuring it. The considered metrics, placed

one per line in a top-down manner, are: NOP, NOC, NOM, LOC1, and CYCLO (Tabs.

5.1 and 5.2). From these basic absolute metrics, some proportions (the numbers on the

left) can be computed as rations of the direct metrics, namely those placed immediately

next to them by dividing the lower number by the next upper one (Fig. 5.6). The four

computed proportions, unlike the direct metrics, have two important characteristics: (i)

they are independent of each other, thus making each number a distinct characteristic of

1In the pyramid only lines of code belonging to methods are counted.

96



CHAPTER 5. Software quality assessment

a specific aspect of the code organization, and (ii) they allow an easy comparison with

other projects, independently of their size, being computed as ratios of absolute values.

In the Overview Pyramid, the following proportions result: (i) High-level structuring

(NOC/Package), providing a clue on the package level of the system, i.e if the pack-

ages tend to be coarse grained or fine grained, (ii) Class structuring (NOM/Class),

providing a hint about the quality of class design, since it reveals how operations are

distributed among classes, (iii) Operation structuring (LOC/Operation), indicat-

ing how well the code is distributed among operations, i.e the structuring from the point

of view of the procedural programming, (iv) Intrinsic operation complexity (CY-

CLO/Code Line), characterizing the conditional complexity found in the operations

(density of branches with respect to the lines).

System coupling

The right part of the Overview Pyramid provides information about the level of coupling

in the system (Fig. 5.6), by means of operation invocations. Two direct metrics are

used to establish how intensive and how dispersed coupling in the system is: CALLS

and FANOUT (Tabs. 5.1 and 5.2). Again, these metrics describe the total amount of

coupling of a system, bur are difficult to use to characterize the system. To this purpose,

two proportion can be calculated using the number of operations (NOM): (i) Coupling

intensity (CALLS/Operation), denoting the level of collaboration (coupling) between

the operations, namely how many how many other operations are called on average from

each operation. Very high values suggest that there is excessive coupling among opera-

tions, i.e. that the calling operation do not collaborate with the right counterparts, (ii)

Coupling dispersion (FANOUT/Operation call), indicating how many classes are

involved in the coupling.

System inheritance

The top part of the Overview Pyramid is composed of two proportion metrics that provide

an overall characterization of the inheritance usage. They give a clue of the extent to which

some typical object-oriented features (generalization and polymorphism) are used. The

97



CHAPTER 5. Software quality assessment

two proportions are: ANDC (Tabs. 5.1 and 5.2). These two metrics reveal the presence

and the shape of class hierarchies by capturing two important complementary aspects:

their width and height.

Interpreting the overview pyramid

The characterization of an object-oriented system is based on the eight computed propor-

tions previously described. The proportions are preferred to the absolute metrics from

which they are computed because they are independent of the project size, thus (i) mak-

ing easier its evaluation, and (ii) making meaningful the gathering of statistical data and

allowing the use of thresholds based on statistical measurements, as explained in section

5.1. In particular, in [88] metrics were collected from a statistical base of Java and C++

projects.

5.3.1 OOP design characterization

The Overview Pyramid obtained from the FFMM source code by means of the analysis

tool inFusion [111], is presented in Fig. 5.7. In order to provide a graphical aid to its

Figure 5.7: Overview Pyramid for the FFMM 3.0 source code.

interpretation, colors were associated to the computed proportions. In particular, a blue

rectangle shows that the value is closer to the low threshold, a green rectangle that it

is closer to the average threshold, and a red rectangle that it is closer to the high one.

An analysis of the resulting computed proportions allows the following conclusions to be

drawn for the FFMM source code:

98



CHAPTER 5. Software quality assessment

• Class hierarchies tend to be tall and narrow, i.e. inheritance trees tend to have

many depth-levels and base-classes with few directly derived subclasses.

• Classes tend to be rather large (they define many methods) and organized in fine-

grained packages (few classes per package).

• Methods tend to be average in length and have an average logical complexity (con-

ditional branches).

In the development of a software system it is often difficult to find the appropriate design,

the responsibilities of objects and their distribution. Once this has been done, it is im-

portant to be able to state whether the complexity due to the design choices is balanced

by the benefits they introduce.

Although the Overview Pyramid allows the graphic characterization of an object-oriented

system through the quantification of some suitable chosen metrics, it is not enough to

completely understand and evaluate the design. Metrics and thresholds must be mean-

ingful and put in the right context [88], [112], in order to assess the quality level of the

project deign and eventually to ameliorate it. An application, a class, a method should be

implemented in an harmonious way, in terms of size, complexity and functionality, with

respect to itself, its collaborators and its ancestors and descendants. In other words, the

system has to achieve an overall harmony, composed of three distinct measurable parts:

• Identity harmony, related to the extent to which a software entity implements a

specific concept and how well (is it doing too many things? is it not doing enough

to exist as an autonomous entity?).

• Collaboration harmony, expressing the extent to which an entity collaborate

with others, and how well (does an entity use other entities? how many?).

• Classification harmony, combining elements of the other two harmonies in the

context of inheritance (does a subclass use inherited services? does it ignore some

of them?).

99



CHAPTER 5. Software quality assessment

The design evaluation, from the point of view of the harmonies presented above, aims

therefore at stating if every software entity has appropriate place, size, complexity within

the system.

Disharmonies are revealed by means of metric-based heuristics to detect and locate object-

oriented design flaws from the source code. For the quantification of complex design

rules, the evaluation of a single metric is not sufficient. Therefore detection strategies,

composed logical conditions based on proper set of metrics and thresholds, are used to

evaluate design quality of an object-oriented system through quantifying deviations from

good design heuristics and principles. Design rules are in this way made quantifiable,

so that is it possible to detect fragments of the source code with specified properties

(typically denoting a design problem). The result of this stage of detection is a list of

software entities suspected to be affected by some flaw. These entities need subsequently

to be inspected to find those that cause the most severe problems and determine how to

refactor them. This insight into the class structure is needed to understand the static

structure of the class, i.e. the way attributes are accessed, methods called, inheritance

used, and decide if there is need for intervention.

Among the 11 design disharmonies classified in [88] in the three categories presented above,

those that were detected in FFMM are discussed in the following. It is worth pointing

out that no significant code duplication was found. This is an important achievement of

the FFMM design, since code duplication can be very harmful, breaking the uniqueness

of entities with certain functionalities in the system, and causing an increase of size,

complexity, error proneness, and problems of co-evolution of clones.

Identity disharmonies

Identity disharmonies are design flaws that affect single entities such as classes and meth-

ods. Three distinct aspects contribute to the disharmonies of a single entity: its size,

its interface, and its implementation. These aspects can be summarized in three rules f

identity harmony:

• operations and classes should have an harmonious size;

100



CHAPTER 5. Software quality assessment

• each class should present its identity (interface) by a set of services , which have

one single responsibility and which provide a unique behaviour ;

• data and operations should collaborate harmoniously within the class to which they

semantically belong.

The most frequent and easily recognizable sign if identity disharmony is is excessive size

and complexity of a class (proportion rule), and one of the causes could be a massive

presence of code duplication. Another sign of disharmony is the lack of cohesiveness

of behaviour (presentation and implementation rule) and the tendency more and more

features and services, thus producing a God Class [113, 114]. Generally, the more a class

tends to become a God Class, the more other classes communicating with it tend to

be Data Classes [113], simple data containers not providing much functionality. As a

consequence, the methods of the God Class, which use foreign data, produce the Feature

Envy [114], since they are more interested in attributes of other classes than those of their

own class.

God Class The God Class design flaw refers to classes that tend to centralize the

intelligence of the system [113]. A God Class performs too much work, delegating only

minor details to a set of trivial classes and using the data from other classes, with negative

impact on reusability and understandability.

In FFMM, the three classes were detected as God Classes because: (i) some of their

methods access directly (or via getter/setters) attributes from external classes, (ii) the

methods are very complex, i.e. have many branches, and (iii) the classes are non-cohesive

with respect to the way methods use the attributes of the class. An analysis of the results

shows that: (i) the methods accessing attributes from external classes are the same for

the three God Classes, and are used for data type conversion, bus configurations, or

thread handling. In all cases, they result from precise implementation choices and are not

considered a source of problems. (ii) the cohesiveness of all the classes is only slightly

below the limit of one third. As a consequence of these considerations, the problem

represented by the God Classes can be classified as noncritical. Anyway it could be

101



CHAPTER 5. Software quality assessment

useful to reduce the complexity of the methods, since this might affect understandability,

usability, and maintainability.

Data Class A Data Class [114, 115] is a data holder without complex functionality,

but with other classes strongly relying on it. The lack of functionality may indicate that

related data and behaviour are not kept in one place. In other words, Data Classes provide

almost no functionality through their interfaces, which mainly exposes data fields either

directly or though accessors methods.

In FFMM the three detected Data Classes do not produce any Feature Envy. This

implies that, although they do not provide complex functionality, the data they contain

are not significantly accessed by methods of other classes. The problem represented by the

detected Data Classes can be therefore reappraised if we put it into this perspective. They

do not contain misplaced data needed by other parts of the system, but are the result

of a precise design choice for handling the communication buses and their configurators

(chapter 3).

Brain Class This design flaw refers to classes that tend to accumulate an excessive

amount of intelligence, often concentrated in Brain Methods. It recalls the God Class, but

the two disharmonies are distinct. A God Class, besides being complex and centralizing

a large amount of the system’s intelligence, breaks the encapsulation principle accessing

attributes from other classes and shows a lack of cohesion. The Brain Class detection

strategy is complementary to that of the God Class, catching very complex classes which

do not break encapsulation and do not manifest a significant lack of cohesion.

The main characteristic of a Brain Class is that it is very likely to contain Brain Methods,

therefore the first improvement action should be directed to these methods, as discussed in

the relative section. On the other hand, if the class is detected as a Brain Class because

of its lack of cohesion, it should be split into an appropriate number of more cohesive

classes. However, it is often the case where a Brain Class does not cause any significant

problem in the system, for example if it is simply a mature complex utility class. In such

cases, if no maintenance problems arise during the system’s history [116], it is not worth

102



CHAPTER 5. Software quality assessment

starting a costly refactoring phase just to get better metric values.

In FFMM, the six Brain Classes contain only 1 or 2 Brain Methods, and are characterized

by high complexity and low cohesion. As a corrective actions, the Brain Methods should

first be split. In case of maintenance problems, the involved classes could also be split in

smaller and more cohesive units.

Feature Envy Objects are a mechanism for keeping together data and operations pro-

cessing that data. The Feature Envy design flaw [114] refers to methods that access,

directly or through accessor methods, more data of other classes than of their own class.

The Feature Envy disharmony is often a sign that a method was misplaced and should

be moved to another class. The problem can be solved if the method, or a part of it, is

extracted and moved to the envied class [114, 115].

The Feature Envy problem is often due to the presence of Data Classes, which make the

classes using them to envy their data. When a method is affected by Feature Envy, it is

probable that there are data classes among the classes from which the method accesses

data. The fact that in FFMM the two methods affected by Feature Envy do not access

Data Classes highlights that the problem is isolated to two methods used to handle the

polling tasks of a class. Even though this is detected as a violation of the encapsulation

principle of the object-oriented design, it is the result of an implementation choice for the

threads executing the polling methods. Moreover some metrics are very close to the de-

tection threshold. It is therefore to be concluded that the observed Feature Envy does not

represent a critical issue in the system, and that the cost of a possible code improvement

action would not be balanced by proportionate benefits.

Brain Method Brain Methods tend to centralize the functionality of a class (proportion

and implementation rules), in the same way as God Classes centralize the functionality of

the whole system or of a subsystem, making it hard to understand, maintain, and reuse

[88].

The 14 Brain Methods detected result rather complex (both for conditional branching and

nesting) and long, and employ a very large number of variables. For the negative impact

103



CHAPTER 5. Software quality assessment

of this design flaw on understandability, maintainability and reusability, these methods

require a refactoring. In this case, the Brain Methods do no not exhibit either significant

code duplication or Feature Envy, thus there is no cloned code to remove nor Data Classes

to which some of the behaviour complexity can be moved. In literature it is suggested

that in almost all cases a Brain Method should be split into one or more simpler methods

[114], by finding appropriate cutting points.

Collaboration disharmonies

Collaboration disharmonies are design flaws that affect several entities at once in terms of

the way they collaborate to perform a specific functionality. All the authors propose low

coupling as a design rule for object-oriented system2. Anyway, a tradeoff needs to be found

between the aim of low coupling and the need of a certain amount of collaboration among

objects of the same system. The collaboration harmony consists in the achievement of a

balance between the aforementioned opposing demands.

All this can be summarized in the following rule:

• collaborations should be only in terms of methods invocations and have a limited

extent, intensity and dispersion.

where extent refers to the number of other classes, intensity to the number of services

provided by other classes, and dispersion to the distance of collaborating classes (two

classes can be in the same hierarchy, package, ...). The rule refers both to incoming and

outgoing dependencies. Excessive outgoing dependencies are undesirable because they

make a class more vulnerable to changes and bugs of other classes. On the other hand,

excessive incoming dependencies are undesirable because they create the need of stability

and therefore make the class less evolvable3. Collaboration disharmonies are captured

using two detection strategies: Intensive Coupling and Dispersed Coupling. The former

refers to the case where a method uses intensively a reduced number of classes, the latter

2To this purpose, an Event Handling Infrastructure (chapter 3) is used whenever possible in FFMM,
minimizing the coupling introduced by the necessary communications among objects.

3It is to be noted that, at the same time, incoming dependencies could mean high degree of code reuse
in the system, with the condition of having stable interfaces.

104



CHAPTER 5. Software quality assessment

to situations where the dependencies are dispersed over many classes. Moreover, on the

server method’s side, it might happen that a method is excessively invoked by many

methods located in many other classes (Shotgun Surgery [114]). In this case, a small

change in a part of the system can cause lot of changes in many other classes.

Intensive Coupling The main reason for reducing coupling is that this is required in

order to be able to use a component without the others or to make easier the replacement of

a component with another one. A usual refactoring action that allows to solve the problem

consists in defining a new more complex service in the provider class, and replacing the

multiple calls with a single call to the new method. Anyway in some cases the design flaw

might be due to misplaced operations. This is the case of FFMM, where the intensive

coupling involves two methods contained in the classes modeling two motor controllers.

These methods access many (11) methods of another class. The origin of the problem is

the fact that the methods were developed at a too low abstraction level in the system,

i.e. in a device. In fact each method involves two devices, and if inserted in one of

them it has necessarily to call many methods of the other class. On the basis of this

consideration, it is clear that it should be implemented at a higher level, as a measurement

routine employing both the aforementioned devices. Placing the method into a library

of measurements routines would solve the coupling problem, besides removing the code

duplication by leaving only one instance of the method.

Shotgun Surgery Unlike the intensive coupling, the Shotgun Surgery refers to the cases

where the incoming dependencies can cause problems, i.e. where a change in an operation

implies many (little) changes to a lot of other components (methods and classes) in the

system [114]. Similarly, if this method is erroneous (has bugs) this will have a significant

negative ripple effect on the parts of the system that are using it. In such a situation,

maintenance and evolution problems could arise.

A possible refactoring action to solve the problem consists in moving more responsibility

to the classes containing Shotgun Surgeries, above all for small and non complex methods

and classes with tendency to become Data Classes [88]. Anyway, this is not the case in

105



CHAPTER 5. Software quality assessment

FFMM, where this design flaw involves five methods of two classes designed in order to

favour code reuse for interacting with the user and handling the communication buses

(and consequently massively accessed by methods in other classes). The characteristics

of these methods come therefore from a conscious design choice, and do not cause any

problems under the assumption that they are used through stable interfaces.

5.4 AOP Fault Detector characterization

Finally, a twofold analysis was performed on the aspect-oriented Fault Detector (chapter

3). The analysis is aimed at (i) assessing the modularity improvement deriving from its

introduction (internal quality), and (ii) evaluating its performance to verify that these

benefits do not introduce run-time side effects (external quality).

5.4.1 Modularity comparison

The software quality of the proposed AOP version of the fault detector was evaluated in

comparison with the corresponding OOP version previously existing inside FFMM. With

this aim, the software quality attribute of modularity was assessed for both the AOP and

OOP versions by evaluating (i) the percentage of lines of source code related to fault

detection logic present in each module with respect to the total lines of code (LOC) of

the same module, and (ii) the Degree of Scattering (DOS) and Degree of Focus (DOF)

metrics [117], for each module and fault detection concern. The analysis was focused on

the most relevant fault sources of the FFMM, i.e. the modules implementing devices.

In Tab. 5.7, the analysis results along with the ratio of code duplicated in the different

software modules (cloned code ratio) are reported. In the OOP version of the fault

detector, a high level of cloned code exists, because in each device operation often the

same tests against the internal status are requested. Conversely, in the AOP version,

this ratio is drastically reduced. An ideal implementation of the Fault Detection concern

would have a null DOS and a DOF equal to 1, for each device module (i.e. each device

is focused only on the base concern and does not contribute at all to the Fault Detector

concern). Tab. 5.7 shows that the OOP version has a very-low value of DOF, for each

106



CHAPTER 5. Software quality assessment

Device OOP OOP OOP OOP AOP AOP AOP
FD Cloned DOF DOS %LOC DOF DOS

%LOC %LOC
FastDI 15.75 10.93 0.17 0.81 0.97

Maxon Epos 18.04 9.78 0.21 0.73 0.97
EncoderBoard 21.53 14.27 0.28 0.96 0.62 0.98 0.13
PowerSupply 18.36 12.70 0.24 2.64 0.90
Transducer 21.15 8.24 0.27 1.79 0.93
Keithley2k 18.48 11.32 0.16 0.77 0.97

Table 5.7: Fault detection code in each device module and computation of percentage DOF and DOS
metric for both OOP and AOP versions (OOP: object-oriented programming; AOP: aspectoriented pro-
gramming; LOC: lines of code; DOF: degree of focus; DOS: degree of scattering).

module (i.e. all modules contribute to the fault detection concern), and a DOS for the

Fault Detection concern near to the maximum (uniformly scattered). This means that the

fault detection concern in the OOP version has very bad values of modularity. Thus, any

not trivial maintenance (or evolution) is very difficult, because each modification could

affect and require changes in many different software modules (i.e. mainly all device

modules).

Instead, in Tab. 5.7, DOS values of the AOP version are near to the minimum: the fault

detection concern is well modularized in one module (the FaultDetector aspect), and each

device module is marginally involved in the concern (such as said before, this is due to

the fault and error broadcasting methods not yet removed from the devices). This results

is better highlighted in Figs. 5.8 and 5.9. In particular, in Fig. 5.8 the percentage LOC

(%LOC) of the Fault Detection concern all over the device modules are compared for

both AOP and OOP versions. In the figure, the ratio of the cloned LOCs in the OOP

implementation, completely removed in the AOP version, is reported. Of course, the

cloned code makes worst the maintainability and increases the probability of introducing

bugs in the code. In Fig. 5.9, the level of DOS (a) and DOF (b) for each device module

with respect to Base System and Fault Detection concerns is reported. The results show a

radically increased modularity for the AOP version, because each device module is much

more focused on the base concern with respect to the OOP version. Moreover, the fault

detection concern is highly scattered in the OOP version (high values of DOS), while it

is very focused in the AOP implementation (very low values for DOS).

107



CHAPTER 5. Software quality assessment

Figure 5.8: Percentage lines of code (LOC%) of fault detection concern in device modules for OOP and
AOP versions.

5.4.2 Performance verification

The analysis was aimed also at verifying experimentally that the AOP architecture would

not have a negative impact on run-time performance of the overall system (due to aspect

runtime interception overhead). With this aim, the AOP system was instrumented in

order to gather execution times of the aspect overheads. In both the versions, fault de-

tection times related to fault decoding and handling, are present. They were filtered out

from the analysis. Therefore, main attention was paid to evaluate the overheads added by

AOP interception mechanism to the fault detection time in order to assess the effective-

ness of the AOP architecture, i.e. that the AOP response times are not worst than the

OOP version. The above described analysis was carried out by running the two versions

of the software in the same conditions. The runs were performed by causing some faults

in the measurement station previously described. Those faults were induced intentionally

in different ways, for example by providing the devices with wrong parameter values, by

interrupting the communication between the PC and the devices (device not found, or

108



CHAPTER 5. Software quality assessment

Figure 5.9: DOS (a) and DOF (b) comparisons of OOP and AOP versions with respect to Fault
Detection concern.

109



CHAPTER 5. Software quality assessment

communication timeout if the communication with device had already been established),

by starting the FDI acquisition procedure without feeding the instrument with the re-

quired trigger signal (measurement timeout) and adding a delay in the execution of some

commands (command timeout). The worse average times in several different categories

of fault detection pointcut expressions (i.e. device creation/destruction, interception of

device operations) were selected, and the time spent in the aspect runtime to jump to

fault detection routines were collected. These are reported in the last column of Tab. 5.84

(in percentage of the total time spent in the aspect). For the sake of clarity, the results of

Tab. 5.8 are reported also in Fig. 5.10. Times needed to handle creation/destruction of

devices (pointcut expressions from rows 1 to 8) are greater than those required to handle

faults during measurement tasks (pointcut expressions from rows 9 to 15). In the former

cases, the fault detector infrastructure must be set up for devices being created. This re-

quires more time than the other kind of pointcuts expressions, that have only to capture

the context of an operation, issuing a fault event if necessary. These times are compara-

ble to those of the OOP version, where listeners are explicitly registered with the created

devices to handle faults. In these cases, the aspect overhead is particularly reduced with

respect to the entire fault detection tasks. Pointcut expressions ranging from row 9 to row

15 are related to fault detection during normal device operations. Their goal is to capture

all the context in which the device state changes to check its validity. In the developed

AOP implementation, the worst overheads due to aspect interception mechanism (see the

last column in Tab. 5.8) are always less than 1.5 % of the fault detection times (the worst

case is for the interception of calls to EncoderBoard device operations with complex argu-

ments matching expression to check preconditions; related to pointcut expression at row

9). Therefore, the suitability of such performance overhead in the concrete measurement

scenario was assessed, and all the timing constraints were satisfied.

4The times refer to a Pentium IV 1.3GHz machine, with 512Mb of RAM running the instrumented
AOP version.

110



CHAPTER 5. Software quality assessment

Table 5.8: Worst average times spent in aspect runtime with respect to device creation/destruction and
fault detection pointcuts.

Figure 5.10: Times spent in aspect runtime. The pointcut expressions numbering refers to Tab. 5.8.

111



CHAPTER 5. Software quality assessment

5.5 Discussion

This chapter presents the results of the software quality characterization of the object-

oriented and aspect-oriented parts of the release 3.0 of the Flexible Framework for Mag-

netic Measurements. The characterization of the object-oriented part was carried out

with reference to the quality model ISO 9126 developed by the International Standard

Organization. Only the internal quality of FFMM source code was taken into account.

As a consequence, the quality assessment relates more to the developer point of view

than to that of the user. Both complexity and object-oriented metrics were evaluated.

Although the results highlighted a good average quality level, improvements are possible

in order to decrease the maximum complexity and to exploit more profitably the concepts

of object-oriented programming. A supplementary analysis was carried out in order to

find the main parts requiring improvement in the object-oriented design.

Subsequently the aspect-oriented Fault Detector was analyzed. Such a software design

extends the Object-Oriented approach, by adding specific encapsulation of crosscutting

concerns. The advantages of using AOP in the development of a fault detector were

verified in the case of a measurement application based on rotating coils for testing a

superconducting magnet. The proposed architecture allows a high level of flexibility by

performing very complex and bendable run-time binding among sources and handlers

of the faults, without affecting significantly the performance, while keeping the detection

code well modularized in its hierarchy. Another main advantage of such a technique is the

maintainability and the reusability of the code: for each new device added to the frame-

work, the related fault detection code is added to the fault detection hierarchy. Since

all fault detection code is well modularized in few sub-aspects, commonalities among dif-

ferent fault detection logic is well structured and factored out. As a consequence, the

FaultDetector design, with respect to ‘traditional’ OOP version, exhibits a much more

centralized design, reducing code duplication and greatly increasing the possibility of code

reuse. Finally, the proposed AOP architecture is not targeted at a specific system com-

ponent, and the same fault detector architecture can be reused to detect different kinds

of faults in different components.

112



Chapter 6

Validation on LHC-related
measurement applications

The framework was validated on the field in some scenarios typical of LHC related mea-

surements. In particular, in the following two applications are described. The former,

the tracking test, is based on the rotating coil technique and aims at the estimation and

compensation of the field errors due to non-ideality of the LHC superconducting dipoles.

The latter aims at measuring the permeability of a sample of soft steel through a fixed

coil system. This chapter presents the setup of the measurement stations and the results

obtained by means of the software produced through FFMM.

6.1 Application scenarios

The Flexible Framework for Magnetic Measurement was used to develop applications for

different activities currently carried out at CERN. Different application scenarios are a

good test bed for checking FFMM flexibility, namely its capability to offer an environment

for a fast development of several measurement applications with different requirements.

A specific discussion of FFMM flexibility is presented in chapter 8. Here, the discussion is

focused on describing the measurement procedure and the test stations, and on presenting

the first results obtained on the field.

113



CHAPTER 6. Validation on LHC-related measurement applications

commissioning nominal operation
b3 0.35 0.02
b5 - 0.1

Table 6.1: Injection harmonic tolerance (values are shown in units).

6.1.1 Tracking test

The LHC has unprecedented demands on the control of the field and its errors during

injection, acceleration, and collision. One of the most stringent requirements during the

energy ramp of the LHC is to have a constant ratio between dipole-quadrupole and dipole-

dipole field so as to control the variation of the betatron tune and ensure that the beam

orbit remains the same throughout the acceleration phase, hence avoiding particle losses.

Furthermore, superconducting magnets for particle accelerators are affected by charac-

teristic dynamic effects leading to field errors of the order of a few 10−4 relative to the

main harmonic component. These errors, which were observed and studied systemati-

cally for the first time at the Tevatron [118], are due mainly to the diffusion of persistent

magnetization currents through the strands composing the superconducting cable. In

particular, LHC double-aperture 15 m long, 8.34 T main dipole magnets are affected by a

slow decay of the sextupole (b3) and decapole (b5) components during the low-field phase

of particle injection. Subsequently, as the field is ramped up for beam acceleration, these

error components snap back suddenly to their initial value, unbalancing the beam orbit

and giving rise to significant particle losses [119]. The tolerances of the sextupole and de-

capole correction are calculated from the beam requirements [20] and these hence provide

a specification for the maximum allowed field errors. These calculations [20] yield the

tolerances shown in Tab. 6.1 for the commissioning and the nominal operation phases.

For the reasons presented above, a specific test (tracking test) is performed with a twofold

purpose:

1. generate the current ramps for the main superconducting magnets which would

produce the expected magnetic fields;

2. generate the current ramps to supply the corrector magnets and compensate the

114



CHAPTER 6. Validation on LHC-related measurement applications

sextupole and decapole field errors in the main dipole.

It is known that the decay amplitude is affected by the power history of the magnet,

and particularly by the pre-cycle flat top current and duration. A Field Description for

the LHC (FiDeL) [120], modeling the field variations during injection, acceleration, and

collision, was developed to cope with the difference between the test procedure and the

expected cycles during the machine operation. FiDel is a feed-forward system used to

forecast and compensate the field variations within the commissioning tolerance, so that

subsequently suitable tools based on beam measurements can bring the beam to the nom-

inal parameters. In practice the LHC ring is divided into 8 sectors, in each of which it is

possible to actuate independently the compensation actions by means of power converters

supplying the series of the magnets. An average field model for each sector is therefore

necessary. This model is obtained from the measurements of (i) all the magnets at room

temperature, and (ii) one third of the magnets at cryogenic temperature (1.9 K).

In this section, the application of FFMM to the rotating coil techinque was devoted to

the second point, the field harmonic correction, since this problem strongly relies on field

harmonic analysis, for which rotating coils (section 1.1.1) are one of most accurate tech-

niques. In particular, in the following the compensation of the sextupole term for the

commissioning phase is considered.

Past measurement campaigns [20] highlighted the need to improve the harmonic com-

pensation of the third-harmonic (b3) component of the main LHC dipoles. In particular,

measurements had already been carried out by means of the standard measurement equip-

ment [80], but the time resolution obtained on the field estimation was intrinsically limited

by the acquisition hardware, so that a new harmonic value was available only every 20

s. A new, fast hardware was developed to overcome this limitation [4]. Currently the

harmonic estimation can be updated at a rate of 8 S/s. Anyway, the new hardware still

needed a proper acquisition and control software. This software was realized by means of

FFMM. In the following, (i) the measurement procedure, (ii) the test station architecture,

(iii) the compensation mechanism, and (iv) the experimental results are presented.

115



CHAPTER 6. Validation on LHC-related measurement applications

Measurement procedure

The test procedure for the harmonic compensation is composed of the following steps:

1. Measurement of the integral dipole field and error components during a nominal

LHC machine cycle;

2. Measurement of the transfer function of the two superconducting sextupole corrector

magnets (MCS) installed in line with each dipole aperture in the same cryoassembly;

3. Computation of the compensation current for the MCS from the results of points 1

and 2;

4. Measurement of the integral field when the main dipole performs an LHC cycle and

the MCS are supplied with the compensation current, and estimation of the residual

field errors.

The first step is aimed at characterizing the LHC dipole magnet during a nominal machine

cycle (LHC cycle, Fig. 6.1) [76]. In particular, the measurement is carried out to get a

Figure 6.1: LHC standard current cycle.

116



CHAPTER 6. Validation on LHC-related measurement applications

reference behavior, without compensation, of the integral harmonic component B3. The

nominal LHC cycle has a ramp-up at 10 A/s from 350 A to an injection current plateau

at 760 A, lasting about 1000 s, to simulate the particle injection at constant field. This

is followed by a Parabolic Exponential Linear Parabolic (PELP) [76] profile, a 1000 s flat

top at nominal current of 11850 A, and a ramp-down at 10 A/s to the minimum current of

350 A. The LHC cycle is also preceded by a pre-cycle aimed at bringing the magnet into

a reproducible magnetic state. The reproducibility of the sextupole during LHC cycles is

better than 0.1 units [20]. The target value of 0.02 units for the b3 compensation (Tab.

6.1) is therefore to be intended as an ideal target.

The second step is aimed at (i) computing the Transfer Function (TF), i.e. the ratio

between the field and the current, for the two sextupole correctors, and (ii) verifying the

linearity of such TF. The resulting TF allows the required sextupole excitation current to

be computed for the compensation of the B3 field inside the dipole. The field is measured

during several ramp cycles, i.e. from 0 A up to the nominal current of 550 A, down to

−550 A and back to 0 A with a ramp rate of ±10 A/s.

The third step is the main measurement procedure. The sextupole is fed with the current

cycle computed via the TF and at the same time the LHC dipole is fed with the nom-

inal LHC cycle, both cycles being tightly synchronized (< 1ms). The results of such a

measurement highlight the quality of compensation for the third harmonic in the dipole.

Measurement station architecture

In Fig. 6.2, the architecture of the measurement system is shown. The core is the

fast equipment for harmonic coils measurements. Rapidly varying magnetic fields are

measured by designing the measurement station according to the main specification of

improving the bandwidth. This was achieved by means of developing high-speed rotating

units and associated electronics. The algorithm for harmonic resolution enhancement

presented in section 3.4.2 was not employed, because the current limitations of the power

converter control system make it pointless.

Both apertures of the cryoassembly are equipped with a rotating shaft, made by 12

117



CHAPTER 6. Validation on LHC-related measurement applications

Figure 6.2: Architecture of the tracking test measurement station.

pivoting ceramic segments each holding three tangential, equal and parallel pick-up coils.

One coil is normally used to measure the dipole field component (the so-called “absolute”

signal), while the connection in series opposition with a second coil provides cancellation

of the dipole (“compensated” signal) and ensures higher SNR for the measurement of

harmonic error components. The shaft covers the whole length of the LHC dipole and

the last segment captures the sextupole corrector field in its entirety. In the present

arrangement, the signals from consecutive segments are connected in series by three groups

of four segments, constituting three “super segments” with the purpose of limiting the

number of necessary integrators to 6 per aperture. Two Micro Rotating Units[4] provide

a rotation speed up to 480 rpm in order to get voltage signals with the desired time

resolution. The absolute and compensated signals, from each super segment, are the

input of a Fast Digital Integrator (FDI) [33] measuring the magnetic flux linked with the

super segment coils. The pulses from the angular encoders trigger the integration time of

the FDI’s and the acquisition of the supply magnet current: the synchronization between

magnetic flux sample and the current measurement is thus ensured. The software used to

handle the station and to retrieve the current reading, via ethernet connection from the

118



CHAPTER 6. Validation on LHC-related measurement applications

power supply controller, is obtained through FFMM.

Compensation mechanism

The sextupole harmonic component in the LHC dipole is compensated by applying to the

MCS magnets a current computed from from (i) the integral B3 and (ii) the sextupole

corrector’s TF. The integral B3 (expressed in Tm) is defined as:

B(t)3 =
3∑
i=1

LiB(t)i,3 (6.1)

where Li and B(t)i,3 are the effective length and the measured third harmonic of the i-th

super segment, respectively. The effective length is adjusted to take into account the

contribution of the gaps between the coils. All harmonic field values are expressed in T

measured at a given reference radius, which for the LHC is conventionally taken to be 17

mm.

The sextupole TF (expressed in Tm/A) is obtained by averaging the ratio of the measured

fields and currents (point 2 of the measurement procedure) of both correctors:

TF =
L1

2
(meant

B(t)ap.1,3
I(t)

+meant
B(t)ap.2,3
I(t)

) (6.2)

where L1 is the length of the super segment used for sextupole magnets measurement

(Fig. 6.2).

Finally, by combining (6.1) and (6.2), the current for dipole harmonic compensation turns

out to be:

IMCS(t) = −B(t)3

TF
(6.3)

In Fig. 6.3, the current curve for the corrector magnets computed through (6.3) is shown.

The mean value of the TF (6.2) was 9.55 · 10−5 Tm/A, consistent with the previous

measurements of the sextupoles installed in the machine [20]. A standard deviation of 3

µTm/A proved also a satisfying TF linearity.

Harmonic compensation results

The preliminary results reported in this section aim at highlighting the capability of the

new setup of attaining at the first iteration a compensation level of the integral sextupole

119



CHAPTER 6. Validation on LHC-related measurement applications

Figure 6.3: Computed MSCs powering current cycle for sextupole compensation.

harmonic very close to previous campaign [20].

The desired sextupole excitation cycle had to be approximated by interpolating the current

curve of Fig. 6.3 with linear segments, owing to a limitation of the power converter control

system that is going to be updated. The harmonic measurements were performed once

every second, which is still well below the theoretical bandwidth of the instrumentation

albeit 20 times faster than what was done during the series tests.

In Fig. 6.4, the integral b3 in units measured during the reference measurement of the LHC

cycle in the aperture 1 of the dipole MB242 5 is shown. In Fig. 6.4 the integral b3 during

the harmonic compensation measurement, with the linear interpolated current supplying

the MCSs, is also shown. A more detailed view of the residual b3 with compensation is

provided in Fig. 6.5. A tolerance of 0.6 units, roughly corresponding to a reduction of

a factor 3 of the snapback swing, was achieved already at the first iteration. The decay

and snapback transient is detected with unprecedented detail, in particular considering

the amplitude of the peak. The increased resolution is highlighted in the comparison with

the results of the standard measurement equipment shown in Fig. 6.6, for an acquisition

120



CHAPTER 6. Validation on LHC-related measurement applications

Figure 6.4: Integral b3 component vs. I with and without compensation, in the dipole magnet MB2524
during an LHC cycle.

Figure 6.5: Residual integral b3 component vs. I with compensation, in the dipole magnet MB2524
during an LHC cycle.

121



CHAPTER 6. Validation on LHC-related measurement applications

on a single segment with the new acquisition system running at maximum speed (8 rps).

Considerably better results are expected from the upcoming test campaign with the

Figure 6.6: Estimation of the sextupole with the old and the new acquisition system.

updated power supply control system, which will provide much tighter synchronization

of the two current sources and the possibility to overcome the limitations of the linear

approximation of the compensation current cycle.

6.1.2 Permeability measurement

Measurements of the materials’ magnetic permeability are of main interest in order to

exploit the properties of innovative materials to improve accelerator technologies. In par-

ticular, for the LHC it is important to characterize the magnetic properties of the material

used for the magnets’ yokes, a laminated low-carbon steel.

In the practice, toroidal specimens for magnetic permeability measurements of soft mate-

rials are used in order to avoid the issues regarding testing of bars or strips samples [21].

As a matter of fact, a ring-shaped specimen avoids the problems concerning end effects

and gaps or joints in the magnetic circuit, and allows the accurate computation of the

122



CHAPTER 6. Validation on LHC-related measurement applications

mean magnetizing force from a measurement of the magnetizing current, the dimensions

of the specimen, and the number of turns in the magnetizing windings. They are there-

fore nearest to the ideal case when considering the testing principle, even if they are not

particularly suitable when end usage aspects of certain specimen are considered.

A split-coil permeameter was built and used for magnetic property characterization at

CERN (Fig. 6.7). The permeameter consists of three toroidal windings, which can be

Figure 6.7: Split-coil permeameter.

opened for placing the sample. The two outer coils form the 180 turn excitation winding

and the inner 90 turn coil forms the flux measurement winding. The maximum excitation

current, passing through the coil, is limited to 40 A to avoid overheating, then the maxi-

mum magnetizing field is approximately 300 Oersted or 24000 A/m at room temperature.

Acquisition systems developed in the past for the aforementioned permeameter provide

low sample rate of the hysteresis curve, as well as a low level of flexibility in the mea-

surement definition. Moreover, an automatic measurement station with acquisition and

control software has never been available, therefore this application represents a good test

bed for checking the flexibility of FFMM.

The system exploits the state-of-the-art performance of FFMM and FDI in order to im-

prove the accuracy of the whole measurement and to increase also the application domain

of such tools.

123



CHAPTER 6. Validation on LHC-related measurement applications

Theoretical background

The principles of permeability measurements are here recalled for the particular case of

tests on ring-shaped specimen by means of a ballistic galvanometer, when the material is

subject to a particular steady state (magnetostatic) or is changed from one magnetostatic

condition to another.

Points on the curve of first magnetization are measured by bringing a magnetic field (H)

to bear on the sample. Switching the field to the opposite direction causes a change of

the flux density, which equals twice the flux density (B). Repetition of the measurement

with a gradual increase of the field will produce a set of values (B, H) determining the

curve.

In order to properly retrieve the value of the average magnetic induction, a correction

has to be used since the search coil detects also the flux contribution from the applied

magnetic field outside the bulk of the sample. For this reason, two measurements are

carried out and combined, the former without the specimen, the latter with the sample

inside the permeameter. Subsequently the values of B and H can be calculated as [21]:

B = k2φ− k3I (6.4)

H =
N1I

2πr0

(6.5)

with

k1 = µ0
H

I

k2 =
1

2N2Ss

k3 = k2
φ0

I
− k1

2πr0 = 2π
rext − rint

ln rext − ln rint

where N1 is the number of excitation windings, N2 the number of windings of the search-

coil, rint and rext the inner and outer radius of the sample, φ and φ0 the integrated signal of

the permeameter with and without sample, respectively, 2πr0 the sample average magnetic

length, Ss the sample section. The section Ss might be difficult to estimate, especially

124



CHAPTER 6. Validation on LHC-related measurement applications

when laminated samples are used. In these cases, by knowing the density of the material

and by measuring its mass, it is possible to compute the sample volume V and hence Ss

as rint+rext

V
.

Measurement procedure

The formulas presented above highlight that the estimation of the magnetic permeability

requires two measurements to be carried out, one with and one without sample inside the

split coils. Moreover, a preliminary demagnetization cycle is needed to bring the sample

under test into a virgin state. The whole measurement procedure can be summarized as

follows:

1. Measurement of the average magnetic induction without the specimen to retrieve

the correction factor;

2. Demagnetization cycle;

3. Measurement of the average magnetic induction with the specimen inside the per-

meameter.

The demagnetization procedure is carried out by feeding the excitation windings of the

permeameter with several current plateaus. The first current plateau (40 A) generates a

magnetization field sufficient to bring the sample into a saturation state. Subsequently,

the current is decreased from 40 A down to 1 mA, with three ranges of attenuation factors

according to a geometric progression. From 40 A down to 0.2 A each plateau equals the

previous divided by 1.5, then by 1.2 down to 85 mA, and finally by 1.1 to 1 mA. Each

plateau lasts 4 s.

Each measurement cycle, with and without the sample, is carried out by powering the

excitation windings with a current cycle made of increasing plateaus of opposite signs,

linked by ramps of fixed slope (1.5 A/s). The voltage signal induced on the search coil

is integrated to obtain the variation of the linked flux. The current is measured via a

feedback signal of the Voltage Controlled Power Converter, synchronously with the flux

by exploiting a common trigger signal.

125



CHAPTER 6. Validation on LHC-related measurement applications

Measurement station architecture

In Fig. 6.8, the architecture of the bench for magnetic permeability measurement is shown.

A PC hosting the measurement application produced by FFMM is connected to a NI data

acquisition board [121], in order to control the Voltage Controlled Power Supply of the

excitation coil of the permeameter by the analog output. The PC controls also a PXI

Figure 6.8: Architecture of the new permeability measurement bench.

crate containing (i) two FDIs (Fast Digital Integrator), configured for current acquisition

and voltage integration, respectively; (ii) a board developed at CERN generating pulses

used to trigger synchronously the acquisition of the FDIs.

Experimental results

The software application for magnetic permeability measurement is obtained from FFMM

through a formal description provided in a user script. Besides the hardware synchroniza-

tion of the two FDIs by means of trigger pulses generated by the Encoder Board, a

software synchronization of the devices is handled by the FFMM Synchronizer (chapter

3). In particular, suitable constructs are used to schedule the execution of the following

actions without worrying about the time synchronization of parallel or series tasks:

1. demagnetization of the specimen;

2. start acquisition of flux and current;

3. start generation of one cycle of the signal controlling the power converter;

126



CHAPTER 6. Validation on LHC-related measurement applications

4. wait for the completion of the present current cycle;

5. stop the acquisition of the flux;

6. start the generation of the next current cycle and go to 3) or, if the maximum value

of current is reached, stop the acquisition;

7. convert the data obtained from the FDIs to a suitable format.

An excerpt of the high-level user script is provided in Fig. 6.9. The specimen is magne-

tized gradually by using a current waveform made by a series of linear ramps and plateaux

with an exponential increasing amplitude. The current cycle referred at point 3 is com-

posed by an initial plateau, a linear ramp with constant ramp rate, and a final plateau.

A test was performed on a laminated soft steel sample. As first step, a current cycle was

defined and generated through the DAQ board. The current and the flux without the

sample were acquired. In Fig. 6.10, an example of current cycle and field H computed

from it are shown.

Subsequently, the current cycle was repeated with the sample inside the permeameter.

By combining the results of the two acquisitions, as previously explained, the first mag-

netization curve of the sample material was obtained (Fig. 6.11). Finally, an estimation

of the sample relative permeability was obtained from the points of this curve as ratio of

the fields B and H (Fig. 6.12).

6.2 Discussion

The Flexible Framework for Magnetic Measurements was employed successfully on the

field to produce the software applications required by the current needs at the CERN test

facilities. In particular, the framework proved its effectiveness in developing software for

measurements with very different requirements, based both on rotating and fixed coils.

The former technique was employed for the estimation and compensation of the sextupolar

component of the field generated by a superconducting LHC dipole. The latter technique

was used to estimate the permeability of a soft steel sample.

127



CHAPTER 6. Validation on LHC-related measurement applications

Figure 6.9: DSL script for permeability measurement.

128



CHAPTER 6. Validation on LHC-related measurement applications

Figure 6.10: Measured current and computed magnetic field without sample.

Figure 6.11: First magnetization curve of the soft steel sample.

129



CHAPTER 6. Validation on LHC-related measurement applications

Figure 6.12: Relative permeability of the soft steel sample.

The results of harmonic compensation and permeability measurement were presented,

highlighting the resolution improvement attained in the harmonic estimation and the

capability of FFMM of producing quickly and with a limited effort the acquisition and

control software for both applications, in particular for the split-coil permeameter for

which an automatic test station had never been developed before.

130



Chapter 7

Data analysis algorithms’ validation

This chapter presents the validation on the field of the algorithms for data reduction (sec-

tion 3.4.1) and harmonics resolution enhancement (section 3.4.2), already characterized

in simulation (chapter 4).

The aim of the validation is to prove on the field the effectiveness of their design principles

and assess their performance in actual working conditions. To this purpose, measurements

through rotating coils were carried out at the CERN magnet test facility SM18, both on

superconducting and on resistive dipoles.

In the following, the results of the validation campaign are presented and discussed.

7.1 Algorithm for data compression

The experimental proof of the principle and the performance assessment of of the algo-

rithms for data reduction (section 3.4.1) were carried out at the magnet test facility SM18

of CERN by exploiting two demonstrators. Tests were carried out on dipole magnets with

the rotating coil method (section 1.1), one of most accurate techniques for magnet testing.

The aim to be achieved is to reduce the data size and simultaneously to be able of

reconstructing the field with an acceptable approximation. In the most demanding ap-

plications, this means estimating the main field harmonic, in module and phase, with an

uncertainty lower than ±10 ÷ 100 µT , and the higher harmonics with an uncertainty of

few ppm of the main component.

Methods for data reduction through transformation were proposed [122]: data are com-

131



CHAPTER 7. Data analysis algorithms’ validation

pressed through a compact representation in a transformed domain, with a simultaneous

noise suppression. The proposed algorithm exploits an fft transformation, and could be

easily adapted to include such a mechanism for the rotating coils application. However,

data reduction would be achieved only by releasing the flux harmonics at each fixed num-

ber of time samples, typically at every coil turn. Therefore, the instantaneous behaviour

of the original signal can not be reconstructed and the resulting data can not used for an

even slightly different analysis. For this reason, a more general solution based on reducing

and storing raw data in time domain was preferred.

Rotating coil measurements have some peculiar features useful for customizing the pro-

posed algorithm implementation and improve its performance. In particular, the main

field component and its first m harmonics have to be found, thus inside the adaptive

tracking sampler, the tracking is tuned to detect the main component frequency f1, and

the sampling rate is updated in order to extend the observable spectrum up to mf1.

Moreover, field harmonics have a spatial period along the circumference described by the

coils during the measurement. The harmonics time period is therefore a function of their

spatial period and of the motor rotation speed. Formally, for the mth harmonic:

fm = mω/(2π) (7.1)

where ω is the angular speed in rad/s. On the other hand, as explained before, the flux

sampling frequency is the trigger frequency, obtained by multiplying the number of points

per turn of the angular trigger by the motor rotation speed:

fs = Nω/(2π) (7.2)

where N is the number of flux samples acquired per turn. In other words, both harmonic

frequencies and sampling frequency scale according to the same proportionality law with

the coils shaft angular speed. Their ratio is therefore fixed by the number of samples per

turn for any motor speed. In this case, according to the Nyquist criterion, the minimum

number of points per turn required for the mth harmonic to be resolved can be determined

easily:

fs ≥ cmf1, with c ≥ 2 (7.3)

132



CHAPTER 7. Data analysis algorithms’ validation

Therefore, the algorithm capability of approaching the theoretical optimal value can be

checked.

Consequently, the adaptive tracking sampler operates in the angular domain, basically by

adapting the number of points per turn to the signal characteristics (Fig. 7.1). The signal

Figure 7.1: Combined approach to data reduction in rotating coils measurements: original flux vari-
ations (dots) and flux variations reduced by means of adaptive tracking sampler (circles) as function of
angular position and time.

under analysis represents the flux over subsequent angular sectors, with width depending

on the flux sampling frequency. Therefore, the sampling frequency adaptation implies a

variation of the angular sectors where the flux increments are computed. Each of these

values is obtained by integrating the voltage samples coming from a fixed rate ADC, thus

the adaptation of the flux sampling frequency results in different OSR of the flux signal

[11].

Then, the signal features allow the noise-cancelling compressor to be applied. The ro-

tating coils-based technique typically produces a sinusoidal output. As shown in Fig.

7.1, if the series ∆ϕn(θi) are considered as formed by flux samples corresponding to a

given angular position (θi) and acquired for increasing time (expressed as the current

turn number n), when the magnet is supplied with a constant or ramped current, they

have a nearly linear pattern since they represent the flux variation on the same angular

133



CHAPTER 7. Data analysis algorithms’ validation

sector in different time instants. For each point along the circle, there will be an almost

linear time series ∆ϕn(θi) to which the noise-cancelling compressor can be applied with

satisfying results.

The combined reduction procedure as a whole can be summarized:

1. the adaptive tracking sampler is let run in order to reduce to its optimal value,

compatibly with the constraints, the number of samples acquired on every single

turn in correspondence to the angular positions θi;

2. for each one of these θi, a quasi-linear series ∆ϕn(θi) is obtained, containing a point

for each coil turn, and the noise-cancelling compressor is applied.

The signal is therefore reduced twice, in angular and time domains, thus increasing the

overall achievable compression. This combined approach is capable of attaining a re-

markable tradeoff between reduction ratio and fidelity of the reconstructed signal to the

original one, since its two steps operate subsequent compressions by means of mechanisms

fitting the signal features in their respective application domains.

Finally, from a computational point of view it has to be noted that, since every series

∆ϕn(θi) has one point for each coil turn, at the maximum allowed rotation speed (8 rps)

each of them requires to process only 8 S/s, thus keeping the additional computing power

required to the measurement system within reasonable limits.

A twofold campaign of on-field tests was carried out on the proposed algorithm mainly

aimed at (i) the performance characterization, and (ii) the data reduction validation.

7.1.1 Performance characterization

A test bench aimed at testing on the field the proposed algorithm was assembled in the

CERN test facility SM18, by means of:

1. a motor controller MAXON EPOS 24, accessible through RS232, for handling the

motor turning the coil inside a superconducting magnet at a constant rotation rate;

2. a Fast Digital Integrator (FDI), configured for the coil signal acquisition and nu-

merical integration [33];

134



CHAPTER 7. Data analysis algorithms’ validation

3. an encoder board for managing the encoder pulses and feeding the trigger input of

the FDI;

4. a superconducting magnet at cryogenic temperature (1.9 K) used as unit under test,

supplied with a current of 1500 A to generate the magnetic field;

5. a software developed by means of FFMM.

The proposed algorithm was characterized on the field for (i) performance analysis, by

varying its settings, and (ii) improvement assessment, in comparison to state-of-the-art

algorithms.

As far as the performance analysis is concerned, the adaptive tracking sampler was ex-

ecuted off line in order to find the optimal sampling rate for carrying out the flux mea-

surement, and the signal was consequently reduced and saved. Afterwards, the multipole

expansion of the magnetic field was determined by means of the CERN standard analysis

process [18]. The procedure was repeated for different settings of the algorithm, corre-

sponding to different optimal sampling rates and consequently to different compression

ratios.

As an example, the results with the Fast Digital Integrator acquiring 128 points per turn

from a coil rotating at a speed of 8 rps are shown in Tab. 7.1, in reference to the original

signal. Amplitude and phase of the main component of the magnetic field were consid-

ered, along with harmonics of the multipole expansion [23] up to order 10. The latter are

normalized with respect to the main field component and multiplied by a factor 106 (i.e.

expressed in ppm). These results highlight how the algorithm is capable of achieving a

remarkable trade off between reduction ratio and fidelity of the reconstructed signal.

As far as the improvement assessment is concerned, the reduction of the same sinusoidal

measurement data by means of the adaptive tracking sampler and a classic reduction

method, the Fan algorithm [75], were compared. In Tab. 7.1, the RMS error on the

multipole expansion obtained from both the algorithms, are reported for different com-

pression ratios. For similar ratios, the comparison shows a remarkable reduction of the

error when the adaptive tracking sampler is employed. In particular, with a compression

135



CHAPTER 7. Data analysis algorithms’ validation

Table 7.1: Compression Ratio and RMS Error for different settings of the adaptive tracking sampler
(ATS) on sinusoidal data of an LHC superconducting dipole.

Table 7.2: Compression Ratio and RMS Error of the noise-canceller compressor (NCC) run after the
adaptive tracking sampler (ATS) on linear data of an LHC superconducting dipole.

ratio of 4, the proposed adapting sampling algorithm is still able to provide an estimation

of the field harmonics within an RMS error of a few tenths of ppm.

The noise-cancelling compressor, according to combined approach explained before, was

applied to the series ∆ϕn(θi) obtained after reducing the data by means of the adaptive

tracking sampler. The results achieved after the second step of reduction are reported

in Tab. 7.2, in terms of compression ratio and RMS error on the computed harmonics.

The results highlight, for similar compression ratio, the significant performance improve-

ment of the noise-cancelling compressor if applied to a linear signal with respect to the

reduction of a sine wave reported in Tab. 7.1. The value of the tolerance ε was chosen on

the basis of the noise level of the flux signals. Obviously different values have to be set

for the absolute and compensated signal. In particular, the noise level estimated on the

136



CHAPTER 7. Data analysis algorithms’ validation

compensated signal is two orders of magnitude lower than on the absolute signal (∼ 10−7

and ∼ 10−5 V s, respectively), according to typical values observed on these signals.

7.1.2 Data reduction validation

The data reduction algorithm was subsequently validated on the same calibration bench

with a reference resistive dipole magnet at room temperature, used as unit under test,

supplied with a current up to 200 A (Fig. 7.2).

First, the reduction was performed during an acquisition with the magnet supplied by

Figure 7.2: The reference dipole calibration bench at CERN.

a constant current, with the aim (i) of determining the noise levels of the absolute and

compensated signals in order to tune the tolerance ε, and (ii) of testing the algorithm in

stationary conditions. The results are shown in Tab. 7.3. The values of the parameter ε

were chosen according to the noise level of the flux signal. The magnet was supplied with

a current of 200A, and 4096 points per turn were initially set. The tracking mechanism,

used to detect harmonics up to the 15th, reduced the number of points per turn to 256,

thus achieving a compression ratio of 16. This value is in accordance with the theoretical

137



CHAPTER 7. Data analysis algorithms’ validation

Table 7.3: Compression Ratio and RMS Error for different settings of the algorithm on data of a
resistive reference dipole at constant current (200 A).

value derived by considering eq. 7.3 with m = 15 and c = 10. In fact, this yields:

Number of points per turn = fs/f1 ≥ cm = 150 (7.4)

Since the number of points per turn is to be a power of 2, its minimum value is 256.

Subsequently, the noise-canceller compressor further reduces the obtained data with a

compression ratio of 3.4 and 3.7 for the absolute and compensated signals, respectively. As

a whole, the proposed technique proves therefore to be capable of achieving the remarkable

compression ratios of 54.4 and 59.2 for the absolute and compensated signal, introducing

an acceptable error on the main component and on the harmonics of the resulting signals.

Afterwards, the compression was performed on the data acquired during an acquisition

with the current in the magnet ramping at a rate of 10 A/s. The Fan algorithm was

executed with the values of ε determined before. Tab. 7.4 shows the results obtained

in these measurement conditions. The figures in table highlight the good capabilities of

the proposed approach also in non-stationary conditions. In particular, in this case, a

higher compression ratio is obtained with a smaller approximation error. The reason for

that could be that, when the current is low at the beginning of the ramp, the signal is

significantly affected by the noise. The results therefore highlights that the algorithm is

capable of filtering most of the noise, thus achieving high compression without increasing

the related error.

138



CHAPTER 7. Data analysis algorithms’ validation

Table 7.4: Compression Ratio and RMS Error for different settings of the algorithm on data of a
resistive reference dipole at variable current (ramp from 15 to 200 A at 10 A/s).

7.2 Algorithm for harmonic resolution enhancement

The algorithm for harmonics resolution enhancement (section 3.4.2) has already proven

its effectiveness in simulation (section 4.2). Here, some tests are performed on signals

of actual acquisitions carried out on an LHC superconducting dipole in non-stationary

conditions. In particular, the dipole was supplied with a current varying according to

the Parabolic-Exponential-Linear-Parabolic (PELP) profile of an LHC current cycle [76],

where the ramp rate of the linear part was set to 10 A/s. The normal and skew harmonic

coefficients (section 1.1.1) were obtained in the following measurement conditions: 128

points per turn, motor speed 1 rps, absolute gain 1, compensated gain 50. It is possible

to choose a suitable value for the parameter m (section 3.4.2), thus giving the best trade-

off between computation burden and accuracy of the estimated harmonics (estimation

quality in fact improves for a little m but computational load is smaller for a great m).

Here, the harmonics estimation was executed with m = 4. Unlike the simulations pre-

sented in chapter 4, in this and in the following tests the ideal harmonic coefficients are

not available. Therefore only the harmonic coefficients obtained from the experimental

flux with and without algorithm are presented and compared.

Fig. 7.3 shows a comparison of the main normal harmonics computed through standard

analysis and interpolation algorithm in a linear-parabolic part of the current profile. Their

difference over a linear profile with a ramp rate of 10 A/s is reported in Fig. 7.4. The

139



CHAPTER 7. Data analysis algorithms’ validation

Figure 7.3: Main normal harmonic (B1) over a linear-parabolic current profile, m = 4.

Figure 7.4: Difference of the main normal harmonics (B1) computed through cubic interpolation and
standard analysis, over a linear current profile at 10 A/s, m = 4.

140



CHAPTER 7. Data analysis algorithms’ validation

difference is significant since it exceeds 10−4 T , usually considered as the threshold for

many applications based on harmonic coil measurements.

In Fig. 7.5, the resolution improvement obtained in the phase of decay and snapback of

Figure 7.5: Decay and snapback of the normal sextupole harmonic (b3), m = 4.

the normal sextupole harmonic b3 is shown.

Finally, the main skew harmonic A1 is reported in Fig. 7.6. The measurement was carried

out in a normal reference frame, where A1 should ideally be 0. In the figure, the system-

atic deviation from 0 is due to a non perfect alignment of the reference frame to the

normal direction. Moreover, the oscillations of the harmonic computed by means of the

interpolation algorithm, where the effect of the flux amplitude modulation is not visible,

can be interpreted as the results of the mechanical vibrations of the coil shaft during the

rotation.

The results presented above highlight the algorithm’s capability of improving the har-

monic coefficients estimation, enhancing their time resolution in non-stationary condi-

tions.

141



CHAPTER 7. Data analysis algorithms’ validation

Figure 7.6: Main skew harmonic (A1) over a linear current profile, m = 4.

7.3 Discussion

The experimental validation of the algorithms for data reduction and harmonic resolution

enhancement was performed at the CERN test facility SM18 both on a superconducting

LHC dipole and on a calibration resistive dipole magnet.

As far as the data reduction is concerned, the results highlight the remarkable tradeoff

between fidelity to the original signal and achieved reduction allowed by the proposed two-

domain combined approach. The results also highlighted a synergic interaction between

the two steps of the proposed reduction procedure: the overall error of the algorithm

never exceeds those of each of its subprocedures.

Finally, it is worth pointing out that the absolute and compensated signals previously

analyzed have different harmonic contents (typically first harmonic in the absolute and

higher order harmonics in the compensated), thus the algorithm’s performance could be

further improved by means of a separate reduction in the angular domain of such signals.

The algorithm for harmonic resolution enhancement was also validated on the field through

a test on a superconducting LHC dipole in non-stationary conditions. The algorithm

142



CHAPTER 7. Data analysis algorithms’ validation

proved its effectiveness in enhancing the time resolution of the harmonic estimation dur-

ing an LHC current cycle.

143



Chapter 8

Flexibility experimental tests

This chapter deals with the flexibility test of software frameworks for measurement ap-

plications, and, in particular, of the Flexible Framework for Magnetic Measurements

(FFMM). After prototyping, experimental applications, and analysis of code quality, a

flexibility characterization of the proposed framework is also needed. As part of the wider

work aimed at the characterization of the framework started in chapter 5, the twofold

purpose of this chapter is (i) to introduce specific metrics suitable for assessing the de-

gree of flexibility achieved by a software framework for measurement applications, (ii) to

present experimental results for some typical application scenarios of the current release

3.0 of FFMM.

8.1 The generalized evolution cost metric

Classic and contemporary literature in software design recognize the central role of flexi-

bility in software design and implementation. Structured design, modular design, object-

oriented design, software architecture, design patterns, and component-based software

engineering, among others, seek to maximize flexibility.

During its life cycle, a flexible software system is forced to face variable requirements. As

a consequence, the implementation has to be adapted to provide a solution to problems

in new application domains. An evolution step is defined as the unit of evolution with

relation to a particular change in the implementation.

It has been observed that predicting the class of changes is the key to understanding

144



CHAPTER 8. Flexibility experimental tests

software flexibility. During the phases of design and development of the software, initially

the changes that are likely to occur over the lifetime of the product are characterized .

Since it is impossible to predict the actual changes, the predictions will be about classes

of changes [123].

The notion of evolution step can be used for estimating software flexibility [124]: a is more

flexible than b towards a particular evolution step, if the number of changes required for a

is smaller than the number of changes required for b. Thus, the complexity of an evolution

step measures how inflexible the implementation is towards a particular class of changes:

the less changes are required, the more flexible it is.

Therefore, it is useful to organize the software so that the items that are most likely to

change are confined to a small amount of code, so that if those things do change, only

a small amount of code would be affected [123]. In other words, flexibility (measured in

terms of the cost of the evolution process) is directly linked to the amount of code affected

by the changes required in a particular evolution phase. Thus, a first approximation to

measuring the cost of an evolution step ε is given by the evolution cost metric counting

the number of modules affected by ε. Under the assumption that the costs of adding,

removing, or changing each modular unit commensurate, the evolution cost metric can be

obtained by calculating the number of modules added, removed, or adjusted as a result

of the evolution. This number is obtained by calculating the symmetric set difference

between the sets of classes in the old (iold) vs. the adjusted (iadjusted) implementations.

Formally [124]:

CClasses(ε) = |(Classes(iold)− Classes(iadjusted))
⋃

(8.1)⋃
(Classes(iadjusted)− Classes(iold))|

This evolution cost metric is inadequate in some situations: when the evolution of different

modules do not commensurate, when the modules are not implemented yet, and when

the programming language does not support classes at all or adds other programming

units (such as in the case of AOP). Therefore, the metric is to be accommodated for

varying degrees of modular granularity, as well as for varying degrees of information on

145



CHAPTER 8. Flexibility experimental tests

each module. This leads to the definition of the generalized evolution cost metric [124]:

Cµ
Modules(ε) =

∑
m∈∆Modules(iold,iadjusted)

µ(m) (8.2)

where ∆Modules(iold, iadjusted) is the symmetric set difference between the set of modules

in iold and the set of modules in iadjusted.

The generalized metric is parameterized by the variables Modules and µ:

• Modules represents any notion of module that is appropriate for the circumstances,

such as class, procedure, method, aspect, and package;

• µ represents any software complexity metric meaningful in relation to a particular

module m.

Finally, evolution complexity is a measure of growth, not an absolute value, and therefore

it does not measure the actual cost of the evolution process but how it grows.

8.2 Experimental results

The proposed approach to flexibility assessment has been applied at CERN in the context

of the Flexible Framework for Magnetic Measurements. The platform was designed in or-

der to satisfy the requirements for a wide range of magnetic measurement applications,

thus the most probable scenarios to face are the different techniques currently used for

testing magnets for accelerators, besides those developed in the future.

The framework is based on OOP and AOP, therefore the modules involved in these sce-

narios are methods, classes, and aspects (section 3.1.3). In a preliminary analysis phase,

the classes of changes due to the different measurement techniques were classified (by

increasing flexibility) as: (i) adding/modifying software modules implementing the de-

vices, (ii) changing the strategies for handling the services provided by the framework

(e.g. fault detection, logging, synchronization), and (iii) implementing new measurement

algorithms. The abovementioned classes of changes involve different users of the frame-

work, namely (i) and (ii) the developer, and (iii) the test engineer.

In the following, some preliminary experimental results of the flexibility assessment are

146



CHAPTER 8. Flexibility experimental tests

Table 8.1: Generalized evolution cost metric for different classes of changes in FFMM.

illustrated. The tests were carried out at CERN on the release 3.0 of FFMM for different

measurement methods. The experimental results are summarized in Tab. 8.1.

The generalized evolution cost metric is obtained by fixing µ = CY CLO (Cyclo-

matic Complexity [103], a measure of the number of linearly independent paths through

a program’s source code and therefore of its logical complexity), thus yielding the metric

CCY CLO
Modules. This metric is used to compare the degree of flexibility of the different classes of

changes, and not as an absolute measure of flexibility. A high cyclomatic complexity (>10

[88, 99, 100, 101]) denotes a complex procedure hard to understand, test, and maintain.

Therefore, the lower the cyclomatic complexity (and consequently CCY CLO
Modules), the higher

the flexibility.

8.2.1 Adding/modifying a device

When new devices are required by a measurement application, the effort for their imple-

mentation cannot be avoided completely. In this case, the flexibility is therefore limited

intrinsically. Nevertheless, FFMM is fairly flexible towards this class of changes, because

it helps the user effectively in developing the related new components. Namely, it provides

services, such as event handling and fault detection (chapter 3), whose infrastructure is

accessible easily and whose implementation is customizable with limited effort.

The possible changes at device level can be classified as (i) adding the device into the

framework from scratch, and (ii) modifying it to satisfy new requirement when it already

exists, by adapting its interface or some method implementation. The cost of adding

a new device strongly depends on its size. Formally, rather than through the lines of

code (LOC), this cost can be expressed as the sum of the cyclomatic complexity of all

147



CHAPTER 8. Flexibility experimental tests

its methods, including additional code devoted to events and faults handling, and com-

puted as the average cyclomatic complexity of a software unit (method) multiplied by

the number of units implemented. The generalized evolution cost metric results therefore

proportional to the number of member functions, events and faults of the new class (Tab.

8.1). The member functions of the class are likely to be more complex than the methods

handling events and faults, thus the generalized evolution cost metric usually depends

more on the former set of functions. If a class interface has to be modified, for example

by adding/removing a method, the change will involve many modules since typically a

device is part of a hierarchy of classes in a generalization relationship (chapter 3). The

effort to add/remove a method is fixed and determined by its own complexity, thus the

growth of the evolution cost metric depends only on the depth of the inheritance hierarchy

(Tab. 8.1). In the design phase of FFMM, the maximum depth was kept to a reasonable

value (4), so this class of changes requires a limited effort. The evolution cost estimation

strongly depends on the device considered.

In order to provide a quantitative example, in the following the driver for the device

Encoder Board, developed at CERN and employed in different scenarios typical of the

magnetic measurements (see section 1.1), is taken into account. The device is part of

the hierarchy of classes (chapter 3). Adding the device requires a considerable program-

ming effort, anyway FFMM provides support in the following ways: it provides libraries

implementing communication features on different buses, so that all the required func-

tionalities are already available and accessible through a suitable interface. Furthermore,

FFMM already implements and makes available infrastructures for event handling and

fault detection. The tasks of exploiting events and improving system fault tolerance are

therefore extremely simplified for the user. He just needs to add few small modules to

extend the event structure and the fault detection logic. The generalized evolution cost

metric, computed as the sum of the total cyclomatic complexity of the modules to be

added, has a value of 301 in the particular case considered. This value is provided just as

an example, since it strongly depends on the evolution step under analysis. Anyway, to

give insight on its meaning, it can be observed that in FFMM an average device has 35

148



CHAPTER 8. Flexibility experimental tests

member functions, and an average device member function has CY CLO = 2. Therefore,

since the complexity of a device lies mainly in its member functions, on average adding a

new device costs 35 · 2 = 70. With respect to this value, the Encoder Board results to be

significantly above the average complexity level.

8.2.2 Changing service strategies

FFMM provides many services to help the user employ the framework and enlarge its

application domain. The choice of OOP reduces the number of modules affected by

possible changes, thus assuring a good level of flexibility. Moreover, some services (chapter

3) were implemented by means of AOP. As an example, here only the fault detection

is considered, because it is a fundamental part of all the devices (section 3.1.4). By

this solution, the classes of FFMM are oblivious of triggering the execution of specific

code in the related aspects providing the services. Classes and aspects are therefore

completely decoupled, further increasing software flexibility. Namely, a change of the

fault detection strategy typically involves only one module, without affecting in any way

the corresponding device. The complexity of such a change can be estimated as the

average complexity of a fault handling method multiplied by the number of methods to

be modified, and is therefore proportional to the number of faults involved in the change

(Tab. 8.1). To provide a quantitative estimation, for the fault detection code specific of

the Encoder Board one gets CCY CLO
Modules = 4, while for fault detection code common to other

devices one gets CCY CLO
Modules = 25, for a total generalized evolution cost of 29.

8.2.3 Implementing new measurement algorithms

Several measurement techniques are currently employed for the test of accelerator mag-

nets, such as fixed and rotating coils, as well as stretched wire [125].

FFMM was designed to reduce drastically the amount of code affected by modification to

the measurement procedure. The test engineer interacts with the framework through the

User Script mainly, a formal description of the measurement procedure. All the changes

required by a new measurement algorithm are focused in the User Script, without af-

149



CHAPTER 8. Flexibility experimental tests

fecting any other modules. In this case, the framework provides the highest degree of

flexibility, with CCY CLO
Modules = 0 (Tab. 8.1). This result was proven experimentally by devel-

oping the application for permeability measurements described in section 6.1.2 by means

of devices already developed and previously employed for the rotating coil benches. It

is worth pointing out that the system for permeability measurement was developed at

CERN in the 1960s, and since then used by means of a semiautomatic test station [21]. It

is therefore remarkable the possibility to develop quickly from scratch the required control

and acquisition software through FFMM.

8.3 Discussion

In this chapter, an experimental approach to the software flexibility assessment of mea-

surement frameworks is proposed. In particular, this approach is meant to be applied in

the context of FFMM at CERN. FFMM was designed to be flexible, reusable, maintain-

able, and portable. A complete release of FFMM is available and its effectiveness on the

field has already been proved in chapter 6, thus the evaluation of its degree of flexibility

completes the more comprehensive phase of software quality assessment, aimed at stating

the fulfillment of the challenging project goals.

The flexibility of the system cannot be stated in absolute terms, but only with respect

to specified classes of changes, involving different users. The results highlight that the

framework achieves increasing degrees of flexibility moving from the programming level

to the user script level, and at the same time from the point of view of the developer to

that of the test engineer. The highest flexibility is attained for the changes involving the

measurement procedure, namely at the level where flexibility was mainly required.

150



Conclusions

A new software system, the Flexible Framework for Magnetic Measurements (FFMM), was

designed, developed and validated. Implemented in C++ and based on object-oriented

(OOP) and aspect-oriented (AOP) programming, FFMM aims at supporting the user

in developing measurement software maximizing its quality, in terms of flexibility, re-

usability, maintainability and portability, by simultaneously keeping high efficiency levels.

Given a set of measurement requirements, formally described by the test engineer in a

script and suitable to be satisfied by the available hardware, FFMM allows an effective

automatic measurement system to be generated with limited effort and development time.

It can be easily configured for a large set of measurement applications, mainly magnetic

but also optical, mechanical, etc.

Tests on the field were performed at CERN with different protocols and measuring equip-

ments, including also the new high-performance hardware, namely fast rotating-coil trans-

ducers (Micro Rotating Units) and digital integrators (Fast Digital Integrators). FFMM

was employed successfully to produce the software applications required by the current

needs of the CERN test facilities. In particular, the framework proved its effectiveness

in developing software for measurements with very different requirements, based both

on rotating and fixed coils. The former technique was employed for the estimation and

compensation of the sextupolar component of the field generated by a superconducting

LHC dipole. The latter technique was used to estimate the permeability of a sample of

the same material (soft steel) used for the LHC magnet yokes. The results highlighted

the resolution improvement (up to a factor 100) attained in the harmonic estimation and

the capability of FFMM of producing quickly and with a limited effort the acquisition

151



Conclusions

and control software for both applications.

The framework includes also two algorithms, for data reduction and harmonic time res-

olution enhancement, respectively. A numerical study was first performed to assess the

performance of both the proposed techniques.

A far as the data reduction algorithm is concerned, the results highlighted the better per-

formance of the proposed approach, when compared to other techniques, from the point

of view of computational burden, reduction capabilities, and fidelity of the reconstructed

signal to the original one. In particular they showed its suitability for application where

signals are similar to those typical of rotating coils based magnetic measurements.

As far as the algorithm for harmonic resolution enhancement is concerned, the results

obtained in non-stationary conditions for different field profiles and algorithm’s settings

highlighted the achievement of a significant improvement in the harmonics time resolution

when compared to those granted by the CERN standard procedure.

For both algorithms, these results were confirmed on the field through dedicated test

campaigns carried out at the CERN test facilities.

A software quality characterization of the object-oriented and aspect-oriented parts of

the release 3.0 of FFMM was performed. The characterization of the object-oriented

part was carried out with reference to the quality model ISO 9126. The internal qual-

ity of FFMM source code was evaluated by means of suitable metrics. Although the

results highlighted a good average quality level, improvements are possible to decrease

the maximum complexity and exploit more profitably the concepts of object-oriented pro-

gramming. A supplementary analysis was carried out identify the possible improvements

in the object-oriented design. Subsequently, the aspect-oriented component handling the

fault detection was analyzed. Aspect-oriented programming extends the object-oriented

approach, by adding specific encapsulation of crosscutting concerns. The advantages of

using such a software design in the development of a fault detector were verified in the

case of a measurement application based on rotating coils for the test of superconducting

magnets. The proposed architecture proved to grant a high level of flexibility, maintain-

ability, and reusability, without affecting significantly the run-time performance.

152



Conclusions

Finally, an experimental approach to the software flexibility assessment of measurement

frameworks was proposed and applied in the context of FFMM. A complete release of

FFMM was available and its effectiveness on the field had already been proved, thus the

evaluation of its degree of flexibility completed the more comprehensive phase of software

quality assessment, aimed at stating the fulfillment of the challenging project goals. The

flexibility of the system was stated with respect to specified classes of changes, involving

different users. The results highlighted that the framework achieves increasing degrees of

flexibility moving from the programming level to the user script level, and at the same

time from the point of view of the developer to that of the test engineer. The highest

flexibility is attained for the changes involving the measurement procedure, namely at the

level where it was mainly required.

153



Bibliography

[1] CERN. Lhc design report. In CERN 2004 003, 2004.

[2] L. Bottura and K.N. Henrichsen. Field measurements. CERN Accelerator School

Proceedings, September 2004.

[3] S. Amet, L. Bottura, L. Deniau, and L. Walckiers. The multipoles factory: an

element of the lhc control. Applied Superconductivity, IEEE Transactions on,

12(1):1417–1421, Mar 2002.

[4] N.R. Brooks, L. Bottura, J.G. Perez, O. Dunkel, and L. Walckiers. Estimation

of mechanical vibrations of the lhc fast magnetic measurement system. Applied

Superconductivity, IEEE Transactions on, 18(2):1617–1620, June 2008.

[5] M. Haverkamp, L. Bottura, E. Benedico, S. Sanfilippo, B. ten Haken, and H.H.J.

ten Kate. Field decay and snapback measurements using a fast hall plate detector.

Applied Superconductivity, IEEE Transactions on, 12(1):86–89, Mar 2002.

[6] W.C. Elmore and M.W. Garrett. Measurement of two-dimensional fields, part i:

theory. Review of Scientific Instrument, 1954.

[7] I.E. Dayton, F.C. Shoemaker, and R.F. Mozley. Measurement of two-dimensional

fields, part ii: study of a quadrupole magnet. Review of Scientific Instruments,

1954.

[8] J. DiMarco and J. Krzywinsky. Mtf single stretched wire. Technical report, Fermi

National Accelerator Laboratory, March 1996.

154



BIBLIOGRAPHY

[9] J. DiMarco, H. Glass, M.J. Lamm, P. Schlabach, C. Sylvester, J. C. Tompkins,

and J. Krzywinsky. Field alignement in quadrupole magnets for the lhc interaction

region. IEEE Transactions on Applied Superconductivity, 10(1):127–130, 2000.

[10] L. Bottura, L. Larsson, S. Schloss, M. Schneider, and N. Smirnov. A fast sextupole

probe for snapback measurement in the lhc dipoles. IEEE Transactions on Applied

Superconductivity, 10(1):1435–1438, 2000.

[11] P. Arpaia, V. Inglese, and G. Spiezia. Performance improvement of a dsp-based

digital integrator for magnetic measurements at cern. Instrumentation and Mea-

surement, IEEE Transactions on, 58(7):2132–2138, July 2009.

[12] P. Arpaia, L. Bottura, M. Buzio, D. Della Ratta, L. Deniau, V. Inglese, G. Spiezia,

S. Tiso, and L. Walckiers. A Software Framework for Magnetic Measurements

at CERN. In Proc. of the IEEE Instrumentation and Measurement Technology

Conference, Warsaw, Poland, May 1-3 2007.

[13] Designing next-generation test systems developers guide.

http://zone.ni.com/devzone/cda/tut/p/id/3238toc0 .

[14] A. Guerrero, Jj Gras, Jl Nougaret, M. Ludwig, M. Arruat, and S. Jackson.

Cern front-end software architecture for accelerator controls. In Proceedings of

ICALEPCS2003, Gyeongiu, Korea, 2003.

[15] J.M. Nogiec, J. DiMarco, S. Kotelnikov, K. Trombly-Freytag, D. Walbridge, and

M. Tartaglia. A configurable component-based software system for magnetic field

measurements. Applied Superconductivity, IEEE Transactions on, 16(2):1382–1385,

June 2006.

[16] http://www.tango-controls.org/ .

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.M. Lo-

ingtier, and J. Irwin. Aspect-oriented programming. In Proc. of the 11th European

155



BIBLIOGRAPHY

Conference on Object-Oriented Programming (ECOOP), Springer-Verlag, volume

1241, pages 220–242, 1997.

[18] L. Bottura and K.N. Henrichsen. Standard analysis procedures for field quality

measurement of the lhc magnets - part i: Harmonics. Internal note EDMS 313621,

1997.

[19] International Standard ISO/IEC 9126-1. Software Engineering - Product Quality

- Part 1: Quality Model. International Organization for Standardization, Interna-

tional Electrotechnical Commission, 2001.

[20] P. Xydi, N. Smmut, R. A. Fernandez, L. Bottura, G. Deferne, M. Lamont, J.Miles,

S. Sanfilippo, M. Strrzelczy, and W. Delsolaro. A demonstration experiment for the

main field tracking and the sextupole and decapole compensation in the lhc main

magnets. In LHC Project Report 1083, CERN, Geneva, Switzerland, 2008.

[21] K. N. Henrichsen. Permeameter. In Proc. 2nd Int. Conf. On Magnet Technology,

Oxford, 1967.

[22] J. Gareyte. Impact of superconductors on lhc design. In CERN 96-03, pages 335–

346, CERN, Geneva, Switzerland, 1996.

[23] A. K. Jain. Harmonic coils. CERN Accelerator School Proceedings, April 1997.

[24] S. Bidon, J. Billan, F. Fischer, and C. Sanz. New technique of fabrication of search

coil for magnetic field measurement by harmonic analysis. In CERN Internal Note

AT-MA 95-117, CERN, Geneva, Switzerland, 1995.

[25] N. Bloenbergen, E.M. Purcell, and R.V. Pound. Relaxation effects in nuclear mag-

netic resonance absorption. Physical Review, 73, 1948.

[26] E.H. Hall. On a new action of the magnet on electric currents. American Journal

of Mathematics, 2:287–292, 1879.

156



BIBLIOGRAPHY

[27] G.L. Pearson. A magnetic field strength meter employing the hall effect in germa-

nium. Review of Scientific Instruments, 19:263–265, 1948.

[28] L. Madaro, A. Rijllard, R. Saban, L. Walckiers, L. Bottura, and P. Legrand. A vme-

based labview system for the magnetic measurements of the lhc prototype dipoles.

In Proc. of EPAC 96, Barcelona, Spain, 1996.

[29] L. Walckiers. The harmonic coil method. In CERN Accelerator School on Magnetic

Measurments and Alignment, CERN, Geneva, Switzerland, May 1992.

[30] J. Bosch, P. Molin, M. Mattson, and P. Bengtsson. Object-oriented frameworks

- problems and expectations. In Building application frameworks: object-oriented

foundation of framework design, Eds. Wiley and Sons, 1999.

[31] J. van Gurp and J. Bosch. Design, implementation and evolution of object oriented

frameworks: concepts and guidelines. Software Practice and Experience, 31:277–300,

2001.

[32] J. Bosch. Design of an object-oriented framework for measurement systems.

In Domain-Specific Application Frameworks, M. Fayad, D. Schmidt, R. Johnson

(eds.), John Wiley, ISBN 0-471-33280-1, pages 177–205, 1999.

[33] P. Arpaia, A. Masi, and G. Spiezia. Digital integrator for fast accurate measure-

ment of magnetic flux by rotating coils. Instrumentation and Measurement, IEEE

Transactions on, 56(2):216–220, April 2007.

[34] P. Galbraith. Portable digital integrator. In Internal Technical Note 93-50, AT-

MA/PF/fm, CERN, Geneva, Switzerland, 1993.

[35] C. Evesque. A new challenge in magnet axis transfer. In Proc. of Int. Magnetic Mea-

surement Workshop IMMW11, Brookhaven National Laboratory (USA), September

1999.

[36] R. Carcagno, J. DiMarco, S. Kotelnikov, M. Lamm, A. Makulski, V. Maroussov,

R. Nehring, J. Nogiec, D. Orris, O. Poukhov, F. Prakoshin, P. Schlabach, J.C.

157



BIBLIOGRAPHY

Tompkins, and G.V. Velev. A fast continuous magnetic field measurement system

based on digital signal processor. In Proc. of 19th Magnet Technology Conference,

Genoa, 18-23 September 2005.

[37] W. Pellico and P. Colestock. Pulsed magnetic field measurement using a ferrite

waveguide in aphase bridge circuit. In Proceedings of the Particle Accelerator Con-

ference, volume 3.

[38] P. Arpaia, V. Inglese, G. Spiezia, and S. Tiso. Surface-response-based modeling of

digitizers: A case study on a fast digital integrator at cern. Instrumentation and

Measurement, IEEE Transactions on, 58(6):1919–1928, June 2009.

[39] P.C. Ferreira and H. Reymond. Sequence of tests and settings to start a magnetic

measurement on mmp 6.5.0. In Internal note EDMS num. 399822, CERN, Geneva,

Switzerland, 2003.

[40] IEEE. Standard Glossary of Software Engineering Terminology 610.12-1990, Vol.

1. Los Alamitos: IEEE Press, 1999.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, October 1994.

[42] N.R. Jennings. Agent-based computing: promises and perils. In Proc. of the fifth

International Joint Conference on Artificial Intelligence (IJCAI), volume 3.

[43] C. Pfister and C. Szyperski. Why objects are not enough. In Proc. First Interna-

tional Component Users Conference (CUC), volume 3.

[44] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An

overview of aspectj. In Proc. of 15th Eur. Conf. on Object-Or. Prog (ECOOP 01),

volume 2072, pages 220–242, Budapest, Hungary, 2001.

[45] http://www.eclipse.org/aspectj/ .

158



BIBLIOGRAPHY

[46] O. Postolache, J. M. Dias Pereira, M. Cretu, and P.S. Girao. An ann fault detection

procedure applied in virtual measurement systems case. In Proc. of IEEE Instru-

mentation and Measurement Technology Conference, IMTC/98, Vol. 1, volume 3.

[47] M. Catelani and S. Giraldi. A measurement system for fault detection and fault

isolation of analog circuits. Measurement, 25(2):115–122, March 1999.

[48] P. Arpaia, G. Lucariello, and A. Zanesco. Automatic fault isolation by cultural

algorithms with differential influence. IEEE Trans. on Instrumentation and Mea-

surement, 56(5):1573–1582, Oct. 2007.

[49] R. K. Gupta, C. N. Coelho, and G. De Micheli. Synthesis and simulation of dig-

ital systems containing interacting hardware and software components. In 29th

ACM/IEEEDesign Automation Conference, 1992.

[50] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory multi-

processors. IEEE Computer, 23(6):68–69, June 1990.

[51] C. von Praum, H. W. Cain, J. Choi, and K. D. Ryu. Conditional memory ordering.

In in Proc. of the 33th International Symposium on Computer Architecture (ISCA),

IEEE, 2006.

[52] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific

languages. ACM Comput. Surv., 37(4):316–344, December 2005.

[53] J. Bosch and G. Hedin. Editors’s introduction. In In Proceedings ALEL’96 Work-

shop on Compiler Techniques for Application Domain Languages and Extensible

Language Models, Technical Report LU-CS-TR:96-173, Lund University, April 1996.

[54] B. Mayers, S.E. Hudson, and R. Pausch. Past, present and future of user interface

software tools. ACM Trans. Computer-Human Interaction, 7(1):3–28, March 2000.

[55] T. P. Browne et al. Using declarative descriptions to model user interfaces with

MASTERMIND. In F. Paternò and P. Palanque editors, Formal Methods in Human

Computer Interactions, Springer-Verlag, 1997.

159



BIBLIOGRAPHY

[56] G. Weber C. Lutteroth. Modular specification of gui layout using constraints. In

Proceedings of ASWEC 2008 - 19th Australian Conference on Software Engineering,

IEEE Press, 2008 1996.

[57] P. Achten, M. van Eekelen, and R. Plasmeijer. Compositional model-views with

generic graphical user interfaces. In Practical Aspects of Declarative Programming,

PADL04, LNCS, Springer, 3057, 2004.

[58] P. Achten, M. van Eekelen, and R. Plasmeijer. Generic graphical user interfaces. In

Greg Michaelson and Phil Trinder, editors, Selected Papers of the 15th Int. Work-

shop on the Implementation of Functional Languages, IFL03, LNCS. Edinburgh,

UK, Springer, 3145, 2003.

[59] D. A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.

[60] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data

compression. Commun. ACM, 30(6):520–540, 1987.

[61] W.B. Pennebaker and J.L. Mitchell. JPEG Still Image Data Compression Standard.

Van Nostrand Reinhold, New York, 1993.

[62] M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-

IEEE Press, 2002.

[63] K.H. Lee, H. Woo, and T. Suk. Data reduction methods for reverse engineering.

The International Journal of Advanced Manufacturing Technology, 17(10):735–743,

May 2001.

[64] W.J. Tompkins. Biomedical digital signal processing. Prentice Hall, New Jersey,

2000.

[65] W.C. Mueller. Arrhythmia detection program for an ambulatory ecg monitor.

Biomed.Sci. Instrument., 14:81–85, 1978.

160



BIBLIOGRAPHY

[66] J. R. Cox, F. M. Nolle, H. A. Fozzard, and G. C. Oliver. Aztec, a preprocessing pro-

gram for real-time ecg rhythm analysis. Biomedical Engineering, IEEE Transactions

on, BME-15(2):128–129, April 1968.

[67] L.N. Bohs and R.C. Barr. Prototype for real-time adaptive sampling using the

fan algorithm. Medical and Biological Engineering and Computing, 26(6):574–583,

November 1988.

[68] A. Djafari Marbini and L.E. Sacks. Adaptive sampling mechanisms in sensor net-

works. In London Communications Symposium, London, 2003.

[69] Ankur Jain and Edward Y. Chang. Adaptive sampling for sensor networks. In

DMSN ’04: Proceeedings of the 1st international workshop on Data management

for sensor networks, pages 10–16, New York, NY, USA, 2004. ACM.

[70] Johnsen Kho, Alex Rogers, and Nicholas R. Jennings. Decentralized control of

adaptive sampling in wireless sensor networks. ACM Trans. Sen. Netw., 5(3):1–35,

2009.

[71] C. Alippi, G. Anastasi, C. Galperti, F. Mancini, and M. Roveri. Adaptive sampling

for energy conservation in wireless sensor networks for snow monitoring applica-

tions. In Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal

Conference on, pages 1–6, Oct. 2007.

[72] O.O. Fadiran, P. Molnar, and L.M. Kaplan. Adaptive sampling via histogram

equalization using an active walker model. In Computer and Information Sci-

ence, 2006 and 2006 1st IEEE/ACIS International Workshop on Component-Based

Software Engineering, Software Architecture and Reuse. ICIS-COMSAR 2006. 5th

IEEE/ACIS International Conference on, pages 424–432, July 2006.

[73] J. Rigau, M. Feixas, and M. Sbert. Entropy-based adaptive sampling. In Graphics

Interface, Halifax, Canada, June 2003.

161



BIBLIOGRAPHY

[74] B.K. Natarajan. Filtering random noise from deterministic signals via data com-

pression. Signal Processing, IEEE Transactions on, 43(11):2595–2605, Nov 1995.

[75] L. Kok-Fung. Biomedical Digital Signal Processing, chapter Data Reduction Tech-

niques, pages 193–215. Prentice Hall, 2000.

[76] S. Sanfilippo, L. Bottura, M. Buzio, and E. Effinger. Magnetic measurements for 15-

m long dipoles - extended program of tests. Internal note LHC-MTA-IN-2002-183,

2002.

[77] L. Angrisani, L. Bottura, A. Masi, and R. Schiano Lo Moriello. Digital signal

processing approach for measurements of non-stationary magnetic field through a

rotating coils system. In Instrumentation and Measurement Technology Conference,

2006. IMTC 2006. Proceedings of the IEEE, pages 747–752, April 2006.

[78] A. Jain. Measurements of field harmonics at very high ramp rates. In Proceedings

of the 14th International Magnet Measurement Workshop (IMMW-XIV), Geneva,

September 26-29 2005. CERN.

[79] C. Daniel and F.S. Wood. Fitting Equations to Data. John Wiley & Sons, 1980.

[80] J. Billan, L. Bottura, M. Buzio, G. D’Angelo, G. Deferne, O. Dunkel, P. Legrand,

A. Rijllart, A. Siemko, P. Sievers, S. Schloss, and L. Walckiers. Twin rotating coils

for cold magnetic measurements of 15 m long lhc dipoles. In 16th International

Conference on Magnetic Technology, Ponte Vedra Beach, USA, 1999.

[81] IEEE standard for digitizing waveform recorders. IEEE Std 1057-1994, pages –,

Dec 1994.

[82] IEEE Std 610-1990. IEEE standard computer dictionary: A compilation of IEEE

standard computer glossaries. (ANSI).

[83] D. Garvin. What does “Product Quality” really mean? Sloan Management Review,

pages 25–45, Fall 1984.

162



BIBLIOGRAPHY

[84] B. Kitchenham and S. L. Pfleeger. Software Quality: the Elusive Target. IEEE

Software, 13(1):12–21, 1996.

[85] I. Tervonen and P. Kerola. Towards deeper Co-Understanding of Software Quality.

Information and Software technology, 39:995–1003, 1998.

[86] International Standard ISO 8042. Quality Management and Quality Assurance -

Vocabulary. International Organization for Standardization, Geneva, second edition,

1994.

[87] B. W. Böhm, J. R. Brown, and M. Lipow. Quantitative Evaluation of Software

Quality. Information and Software technology, 39:995–1003, 1998.

[88] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[89] N. E. Fenton. Software Metrics: A Rigorous Approach. Chapman & Hall, 1991.

[90] T. Gilb. Principals of Software Engineering Management. Addison-Wesley, Reading,

Mass., 1987.

[91] J. A. McCall, P. K. Richards, and G. F. Walters. Factors in Software Quality,

volume 1, 2, and 3. US. Rome Air Development Center Reports NTIS AD/A-049

014, NTIS AD/A-049 015 and NTIS AD/A-049 016, U. S. Department of Commerce,

Springfield, Va., 1977.

[92] International Standard ISO/IEC 9126-2. Software Engineering - Product Quality -

Part 2: External Metrics. International Organization for Standardization, Interna-

tional Electrotechnical Commission, 2003.

[93] International Standard ISO/IEC 9126-3. Software Engineering - Product Quality -

Part 3: Internal Metrics. International Organization for Standardization, Interna-

tional Electrotechnical Commission, 2003.

163



BIBLIOGRAPHY

[94] International Standard ISO/IEC 9126-4. Software Engineering - Product Quality

- Part 4: Quality in Use Metrics. International Organization for Standardization,

International Electrotechnical Commission, 2004.

[95] International Standard ISO/IEC 15939. Software Engineering - Software Measure-

ment Process. International Organization for Standardization, International Elec-

trotechnical Commission, 2002.

[96] International Standard ISO/IEC 14598. Software Engineering - Product Evalua-

tion. International Organization for Standardization, International Electrotechnical

Commission, 2000.

[97] R. van Solingen and E. Berghout. The Goal/Question/Metric Method: A practical

guide for quality improvement of software development. McGraw-Hill Education,

1999.

[98] Understand c++. http://www.scitools.com/products/understand/.

[99] V. A. French. Establishing software metric thresholds. In WSM 99: Int. Workshop

on Software Measurement, pages 43–50, Lac Supérieur, Canada, September 1999.

IEEE.

[100] Le metriche e il loro utilizzo nello sviluppo del software (in Italian).

http://www.dia.uniroma3.it/ torlone/sistelab/annipassati/sbavaglia.pdf., 2005.

[101] Nasa. software metrics. http://satc.gsfc.nasa.gov/metrics/codemetrics/index.php.

[102] Metrics available in understand c++. http://www.scitools.com/documents/metrics.php.

[103] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engi-

neering, 2(4):308–320, December 1976.

[104] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Transactions on Software Engineering, 20(6):476–493, June 1994.

164



BIBLIOGRAPHY

[105] W. Li and S. Henry. Maintenance metrics for the object oriented paradigm. In

IEEE Proceedings of the First International Software Metrics Symposium, pages

52–60. IEEE, May 1993.

[106] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented system. In

Proceedings of the ACM Symposium on Software Reusability. ACM, April 1995.

[107] M. Hitz and B. Montazeri. Measure coupling and cohesion in object-oriented sys-

tems. In ISAAC’95: Proceedings of International Symposium on Applied Corporate

Computing, pages 24, 25, 274, 279, October 1995.

[108] R. Lincke and W. Löwe. Validation of a standard- and metric-based software quality

model. In 10th ECOOP Workshop on Quantitative Approaches in Object-Oriented

Software Engineering (QAOOSE), July 2006.

[109] Rüdiger Lincke and Welf Löwe. Compendium of software quality standards and

metrics. http://www.arisa.se/compendium/, April 2007.

[110] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical guide.

Prentice-Hall, 1994.

[111] infusion - an integrated environment for performing in-depth code and

architectural reviews of object-oriented and procedural software systems.

http://www.intooitus.com/infusion.html.

[112] M. Salehie, S. Li, and L. Tahvildari. A metric-based heuristic framework to de-

tect object-oriented design flaws. In ICPC 2006: Proceedings of the 14th IEEE

International Conference on Program Comprehension, pages 159–168. IEEE, 2006.

[113] Arthur Riel. Object-Oriented Design Heuristics. Addison Wesley, Boston, MA,

1996.

[114] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-

toring: Improving the Design of Existing Code. Addison Wesley, 1999.

165



BIBLIOGRAPHY

[115] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented Reengi-

neering Patterns. Morgan Kaufmann, Boston, MA, 2002.

[116] Daniel Rajiu, Stéphane Ducasse, Tudor Girba, and Radu Marinescu. Using history

inforation to improve design flaws detecion. In CSMR’94: Proceedings Eighth Eu-

romicro Working Conference on Software Maintenance and Reengineering, pages

223–232, Los Alamitos, CA, October 2004. IEEE Computer Society.

[117] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy, N. Nagappan,

and A. V. Aho. Do Crosscutting Concerns Cause Defects? IEEE Trans. on Software

Engineering, 34(4):497–515, July/August 2008.

[118] D. A. Finley, D. A. Edwards, R. W. Banft, R. Johnson, A. D. MC Inturff, and

J. Strait. Time dependent chromaticity changes in the tevatron. In Il. 60510,

Fermilab, Batavia, 1987.

[119] G. Ambrosio at alt. A scaling law for the snapback in superconducting accelerator

magnets. IEEE Transaction On Applied Superconductivity, June 2005.

[120] N. Sammut, L. Bottura, and J. Micallef. The lhc magnetic field model. In Pro-

ceedings of Particle Accelerator Conference, pages 2648–2650, Knoxville, Tennessee,

2005.

[121] Ni m series multifunction daq for pci, pxi, and usb,

http://sine.ni.com/nips/cds/view/p/lang/en/nid/14114.

[122] D. Wenzel, N. Borsi, and E. Gockenbach. Noise suppression and data reduction

for partial discharge measurements using orthogonal transformations. In Electrical

Insulation, 1994., Conference Record of the 1994 IEEE International Symposium

on, pages 292–295, Jun 1994.

[123] D. L. Parnas. Software Aging. In Proc. Int’l Conf. Software Engineering-ICSE,

pages 279–287, Los Alamitos, May 1994. IEEE Computer Society Press.

166



BIBLIOGRAPHY

[124] A. H. Eden and T. Mens. Measuring software flexibility. IEE Proc. Softw.,

153(3):113–125, June 2006.

[125] K.N. Henrichsen. Overview of magnet measurement methods. CERN Accelerator

School Proceedings, April 1997.

167


	Summary
	Introduction
	Automatic systems for magnetic measurements
	Methods for magnetic field measurements
	Rotating coils
	Stretched wire
	Magnetic resonance technique
	Hall probes

	Software for magnetic measurements at CERN
	The Magnetic Measurement Program

	Software frameworks
	Frameworks for measurement applications


	Requirements
	Past experiences and need for flexibility
	The platform for magnetic measurements at CERN
	Hardware overview
	Software requirements
	Data analysis requirements


	Framework design
	FFMM kernel
	Basic ideas
	Architecture
	AOP basic concepts
	Fault detector
	Synchronizer

	Domain specific language
	Proposed approach
	Architecture
	DSL in FFMM

	Automatic generation of user interfaces
	The Model-Viewer-Interactor paradigm
	The GUI engine

	Analyzer
	Data compressor
	Harmonic resolution enhancer

	Discussion

	Numerical analysis
	Algorithm for data compression
	Static tests
	Dynamic tests
	Algorithm performance

	Algorithm for harmonic resolution enhancement
	Discussion

	Software quality assessment
	Software quality
	The standard ISO 9126
	Experimental results

	Quality pyramid
	OOP design characterization

	AOP Fault Detector characterization
	Modularity comparison
	Performance verification

	Discussion

	Validation on LHC-related measurement applications
	Application scenarios
	Tracking test
	Permeability measurement

	Discussion

	Data analysis algorithms' validation
	Algorithm for data compression
	Performance characterization
	Data reduction validation

	Algorithm for harmonic resolution enhancement
	Discussion

	Flexibility experimental tests
	The generalized evolution cost metric
	Experimental results
	Adding/modifying a device
	Changing service strategies
	Implementing new measurement algorithms

	Discussion

	Conclusions
	References

