
RELIABILITY-ORIENTED VERIFICATION OF

MISSION-CRITICAL SOFTWARE SYSTEMS

By

Roberto Pietrantuono

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

“FEDERICO II” UNIVERSITY OF NAPLES

VIA CLAUDIO 21, 80125 – NAPOLI, ITALY

NOVEMBER 2009

c© Copyright by Roberto Pietrantuono, 2009

ii

Table of Contents

Table of Contents iii

List of Tables vi

List of Figures vii

Introduction 1

1 Software Reliability and Verification 7
1.1 Software Faults . 7

1.1.1 Fault-error-failure . 7
1.1.2 Fault Types: the Orthogonal Defect Classification 10
1.1.3 Fault Activation: Bohrbugs, Heisenbugs, Mandelbugs 16

1.2 Software Reliability . 23
1.2.1 Basic Notions . 23
1.2.2 Reliability Modelling . 28
1.2.3 Black Box vs. Architecture-based Reliability Analysis 35

1.3 Software Verification . 39
1.3.1 Basic Concepts . 39
1.3.2 Verification Process . 40
1.3.3 Verification Techniques . 44

2 Improving Verification Effectiveness for Reliability 51
2.1 Efforts Allocation Models . 51

2.1.1 Modelling objective: Fault removal vs. Reliability 52
2.1.2 Explicit vs. Implicit Architecture . 57

2.2 Comparing Verification Techniques . 58
2.2.1 Comparison criterion: Fault Removal vs. Reliability 58
2.2.2 Method of analysis: theoretical vs. empirical 60

2.3 Software Aging . 62
2.4 Thesis Contribution . 65

iii

2.4.1 Comparison . 67

3 Verification Resources Allocation 72
3.1 Model Overview . 72
3.2 Architectural Model . 75
3.3 Optimization Model . 79

3.3.1 Performance Testing Time Contribution 85
3.3.2 Fault Tolerance Mechanisms . 87

3.4 Information Extraction . 91
3.5 Experimental Evaluation . 97

3.5.1 Results and Analysis . 100

4 Verification vs. Reliability 112
4.1 Understanding the behaviour of Verification Techniques 112
4.2 Design of an Empirical Analysis . 113

4.2.1 Compared Techniques . 113
4.2.2 Investigation Goals . 115
4.2.3 Experimental Procedure . 117
4.2.4 Experimental Plan . 119
4.2.5 Fault Injection and Experiments Execution 122

4.3 Data Analysis - Fault Detection Perspective 123
4.3.1 Detection Effectiveness . 125
4.3.2 Cost . 128
4.3.3 Effectiveness per Type . 130

4.4 Data Analysis - Reliability Perspective . 132
4.5 Discussion . 136

5 Software System Characterization 139
5.1 Software Metrics vs. Fault Types . 139

5.1.1 Investigation goals . 139
5.1.2 Empirical Analysis . 141
5.1.3 Data Analysis . 146

5.2 Software Aging Analysis . 148
5.2.1 Experimental Procedure and Data Analysis 150

6 Steps for Reliability-Oriented Verification 157
6.1 Step-by-step procedure outline . 157

6.1.1 Effort Allocation . 160
6.1.2 Initialization . 161
6.1.3 Switching techniques . 163

6.2 Improving the Process . 167

iv

7 Conclusion 169

Bibliography 173

v

List of Tables

3.1 Types of injected faults . 99

3.2 An excerpt of the Injected Faults . 101

3.3 Estimated Paramter Values . 105

3.4 Testing of the system according to the model results 107

4.1 Factors and levels adopted in the experiment. Legend: F = Functional Test-

ing, ST = Statistical Testing, SS = Stress Testing, R = Robustness Testing 121

4.2 Results of detection effectiveness, grouped by factors 125

4.3 Results of cost response variables, grouped by factors 128

4.4 Results of detection effectiveness per fault type, grouped by factors 131

5.1 Faults Content per Type in the chosen Software Applications 143

5.2 Regressione Models and their Predictive Power 146

vi

List of Figures

1.1 Fault-Error-Failure Chain . 8

1.2 Classification od Software faults . 9

1.3 Evolution over time and software life cycle phase of reproducible and non-

reproducible software faults . 20

1.4 Fault Classification according to their Reproducibility 23

2.1 Summary of Contributions . 71

3.1 Fault Tolerance Mechanisms . 88

3.2 Software Architecture . 97

3.3 Granularity of Visit . 103

3.4 Sensitivity to visit counts and failure intensities variation 108

3.5 Sensitivity to OS Reliability variation . 110

4.1 The Experimental Plan . 122

4.2 Experimental Results . 124

4.3 Results of reliability measurements . 134

4.4 Measurements of Average Reliability . 135

5.1 Selected metrics . 142

5.2 Selected metrics . 144

5.3 Software selected for the aging analysis . 151

5.4 Metrics correlation with software aging . 153

5.5 Classification error . 154

5.6 Statistics for the LittleAging group . 155

vii

5.7 Statistics for the BigAging group . 155

6.1 Step-by-step Procedure . 159

6.2 Removal of ODC Fault types durig testing 165

viii

Introduction

A mission-critical system is a system whose failure or disruption may lead to catastrophic

loss in terms of cost, damage to the environment, or even human life. Mission-critical

systems are adopted in a growing number of areas, ranging from banking to e-commerce,

from avionics to railway, from automotive to health care scenarios. In such contexts, high

level of reliability represents a crucial requirement to satisfy. However, activities needed to

achieve the desired reliability can require huge development cost. In particular, it has been

showed that the greatest part of the total development and maintenance cost is due to the

verification process [1], especially in large systems.

This is mainly due to the inadequateness of current verification strategies (i) to deal with

complexity and size of today’s software systems, and (ii) to sufficiently cope with issues

related to high-reliability demands (e.g., few strategies are specifically conceived to improve

reliability).

In several critical application domains the reliability level to be achieved (along with other

quality goals) is imposed by domain-specific standards, such as CENELEC [2], in the field

of railway applications, IEC 61508 [3], for electrical/electronic systems, or the DO-178B [4]

for ATC systems. In order to achieve the required reliability, these standards also suggest

potential techniques that can be adopted along the development cycle, but neglecting cost

and effectiveness issues. The guidelines they provide are quite general, as also noticed by

[5], since their purpose is not to define what techniques a company must use or what is their

impact on company’s cost. Hence, there is a gap between what they suggest and strategies

1

2

that can actually be adopted.

This poses serious difficulties to companies, which on one hand are constrained to meet

predefined reliability goal, whereas, on the other hand, are required to deliver systems at

acceptable cost and time. This thesis focuses on verification activities mainly impacting

the reliability-cost trade-off. It aims to provide means for an effective reliability-oriented

verification in large critical software systems.

Currently, reliability is rarely adopted as pilot criterion to drive verification activities,

since it is difficult to quantitatively evaluate the impact of crucial choices in the verification

process (such as what techniques should be adopted) on the final reliability. Most often such

choices are left to the engineers’ intuition, which base their decisions on personal expertise

and on past experience. However, we claim that in systems where reliability is the main

concern, activities in the verification phase should systematically be focused on heighten the

final reliability through the adoption of objective and quantitative criteria.

Moreover, current verification processes often underestimate some phenomena which effects

are visible only during the operational phase. One of this is the software aging phenomenon

[6], in which progressively accrued error conditions lead to a gradual degradation and to

the system failure after some period. Even though software aging is not easily detectable

at testing time, in highly reliable systems it cannot be neglected, as demonstrated by the

catastrophic accidents that it caused in the past [7].

Thesis Contributions

Focus of thesis is on the effective reliability-driven verification of large critical software

systems. Many challenges have to be addressed to implement an effective verification process

3

for critical systems oriented to improve reliability. These range from the accurate identifica-

tion of the most critical software components for effective effort allocation, to the selection

of most proper verification technique(s) to adopt for a software component in hands, up to

the adoption of suitable techniques able to detect faults which typically manifest only at

runtime (e.g., software aging).

Inded, in order to build effective plans, efforts for verification should be conveniently

allocated to the various parts of the system, e.g., devoting greatest resources to the parts

mostly affecting the quality objective. This requires engineers to correctly identify the most

critical components/subsystems in the software architecture from reliability’s point of view.

However, identifying parts of a complex system that are the major contributors to its unre-

liability is not an easy task, and consequently the testing resource allocation is most often

based on engineers’ judgement. Sometimes, engineers tend to judge as “most critical” com-

ponents that are the most complex ones, or those that are the most used ones and devote

most of the testing efforts to them, making wrong allocations and hence wasting precious

resources.

The first step towards effective verification planning addressed by this work is therefore the

convenient allocation of resources available for verification. It requires the adoption of allo-

cation policies conceived to best distribute the efforts (that may be intended as man/month,

calendar time, number of test cases, CPU time, etc.) among the various parts of the system,

considering the reliability objective to satisfy.

Even distributing the resources correctly, a critical choice regards the verification tech-

niques to adopt in the plan. In the context of highly reliable systems, the impact of different

kinds of verification techniques on the final reliability should be considered to drive the se-

lection. However, the relationships between techniques and reliability that they are able to

4

deliver are currently not known, since this depends on the kinds and the number of soft-

ware faults which affect the component being tested. It is clear that the applications of the

same verification technique to different software systems yield, in general, different results.

However, most of studies in the literature neglected how a given technique impact on the

reliability 1. Thus engineers have also to understand how choosing a proper combination

that best adapts to the software being developed. This choice is often based, again, on

engineers intuition and experience. Hence, the second relevant issue addressed in this work

is how to combine techniques in order to design a verification plan oriented to improve the

reliability attribute and tailored for the specific system being developed.

To address the above mentioned issues, the dissertation proposes a solution for the im-

provement of verification activity effectiveness oriented to deliver highly reliable software

systems, where the most critical choices are supported by means of quantitative criteria. In

particular, the proposed solution addresses the outlined challenges by:

• Defining a policy for cost-effective allocation of verification resources. The

study explores the existing solutions for modelling the efforts distribution and proposes

a way to allocate resources to allow each subsystem to achieve the necessary reliability

to meet the overall system reliability level.

• Improving the effectiveness of reliability-driven verification techniques of

a software components. There is no technique that is the best one for all contexts;

the choice of techniques should be based on the specific context where it will be

employed. Two empirical studies are conducted to address the issue of how to select

and to apply the proper verification techniques for a software system. The empirical

studies aim (i) at analyzing, by running a controlled experimental campaign, the
1Note that detecting more faults does not imply improving the reliability. The reliability increase requires

the removal of those faults which occurrence at operational time is more frequent

5

effectiveness of various verification techniques with respect to the fault types the

system is potentially affected; and (ii) at characterizing a system by the tester’s point

of view, by investigating (and inferring) the potential relationship between the types

and the number of faults present in a software system, and some relevant software

features, expressed by means of common software metrics.

• Taking into account the software aging phenomenon for planning verifica-

tion. In particular, this work intends to consider the aging phenomenon, typically

taken into account at runtime, already in the testing phase, by estimating aging prone-

ness of the software being developed. To the best of author’s knowledge, tihs is the

first attempt to relate the software aging phenomenon to the features of the software

being tested.

The work also defines a procedure to exploit at their best results of the outlined contri-

butions in order to let testers determine the most suited set of techniques, their best order

of application and the final confidence at which reliability is improved. The procedure is

conceived to iteratively refine results across the developed projects.

The dissertation is organized as follows: Chapter 1 provides the needed background on

software faults, on software reliability analysis and on software verification strategies.

Chapter 2 deeply discusses the existing related work, analyzing the state-of-the-art con-

cerning resources allocation, verification techniques and their relationship with reliability,

and software aging phenomenon. It then gives a synthetic description of the contribution

provided by this work, which is then exploded in the successive chapters.

Chapter 3 presents the proposed approach to cope with the careful allocation of resources

available for verification to the various parts of a system. It describes the adopted model,

the information it needs and the experimental results.

6

Chapter 4 presents an empirical analysis of verification techniques revealing how verifi-

cation techniques behave in various conditions and what is their impact on the reliability

attribute. Techniques are evaluated in their effectiveness in detecting faults, in improving

reliability, in their cost and most importantly with respect to different types of faults.

In chapter 5, a further empirical analysis aiming at inferring what relation stands be-

tween fault types and some relevant software features is presented. Results of this analysis

complement the analysis conducted in chapter 4, in that it gives the tester the opportunity

to bind verification techniques to the software features, through the knowledge of potential

fault types affecting the software. Software aging impact is also discussed in this chapter.

Finally, chapter 6 describes the steps that a quality manager should take in order to

effectively plan verification activities. The chapter describes how such steps should be

incorporated in a verification process in a self-refining way; i.e., in order that results of each

process application iteratively enrich the empirical data on which the procedure is based

and improve the final accuracy.

Chapter 1

Software Reliability and
Verification

Pervasiveness of software in our life induces many people to rely on computing systems and on ser-
vices they offer. People are aware that computing systems can support, and in some cases replace,
their activities in many contexts. However, this is not sufficient alone to make people reasonably
trust software systems. In many cases, systems are not only required to deliver the intended ser-
vice; but also that they are always able, under well-defined circumstances, to deliver the intended
service within a reasonable confidence level. But in the real world software systems, as any other
kind of system, not always succeed in doing what they are required; in certain conditions, system’s
behaviour deviates from the expected one, and cause damages often unforeseeable and catastrophic.
Such deviations are caused by “faults” in the system, which differently from other engineering dis-
ciplines, are very hard to detect and remove. This chapter first discusses the concept of software
fault, explaining how it can lead a system to undesired behaviours. In particular, faults are explored
and classified with respect to their typology and reproducibility. The effects of fault activation on
reliability provided by the system is then discussed. The latter part is devoted to the set of activities
typically undertaken by engineers to uncover faults and deliver highly reliable systems: the software
verification. Basic background on verification process and several verification techniques are briefly
surveyed in this section.

1.1 Software Faults

1.1.1 Fault-error-failure

The function of a system is what the system is intended to do and is described by the

functional specification in terms of functionality and performance [8]. The service delivered

by a system is what the system actually does to implement its function. When a system

7

Chapter 1. Software Reliability and Verification 8

is not able to deliver the correct service (i.e., to implement its function), a service failure,

or simply a failure, is said to be occurred. Since a service is a sequence of the system’s

external states (i.e., states perceivable by the user), a failure means that at least one of

such states deviates from the correct one. The deviation is called an error. The adjudged

or hypothesized cause of an error is called a fault . Referring to the well-known and widely

accepted taxonomy presented in [8], faults, errors and failures are related as shown in Figure

1.1.

Figure 1.1: Fault-Error-Failure Chain

A fault is said to be active when it produces an error; otherwise it is dormant. If the

produced error propagates up to the service interface a failure occurs. An error which does

not lead the system to failure is said to be a latent error. A failure of a system component

causes an internal fault of the system that contains such a component, or causes an external

fault for other system(s) that receive service from it. The ability to identify the activation

pattern of a fault is the fault activation reproducibility. Among the many classes of faults

identified in [8], the ones attributable to software are 13, depicted in Figure 1.2.

Chapter 1. Software Reliability and Verification 9

Even though there are many other types of faults, software faults are the main source of fail-

ures in today’s systems [9], [10]. Hardware fault tolerance, fault avoidance and management,

reliability/availability modelling are relatively well developed with respect to software; as a

consequence, system outages are more often due to software faults.

Figure 1.2: Classification od Software faults

Laprie et al. classified software faults according to several dimensions, such as the

phase of creation or occurrence (development or operational), the objective (malicious or

non-malicious), the intent (deliberate or not), its capability (accidental or incompetence),

and its persistence (permanent or transient).

Faults introduced during operational phase can be either permanent or transient and are

due to user mistakes or attacks. Faults introduced in the development stage are always

permanent, and are commonly known as “software defects”. This thesis focuses on this

Chapter 1. Software Reliability and Verification 10

class of faults.

The activation of software faults can cause the system to fail, if it reaches the service in-

terface. This can occur during system verification (hopefully), during operational phase,

or never (in case of dormant faults). The objective of verification is to cause these faults

to be activated, in order to remove them prior to operational phase. The software fault

types reported in Figure 1.2 can be classified adopting various criteria, depending on what

characteristics we want to emphasize. In the following, they will be classified according

to their semantics, adopting the Orthogonal Defect Classification (ODC) scheme, and ac-

cording to their reproducibility, distinguishing faults that exhibit a deterministic behaviour

from others that, instead, seem to be non-deterministic.

In the rest of this section, the term “software fault”, or simply “fault” will refer exclusively

to faults introduced in the development phase (i.e., software defects), either malicious or not.

1.1.2 Fault Types: the Orthogonal Defect Classification

Orthogonal Defect Classification (ODC) is a scheme to capture the semantics of software

defects that was first presented in 1992 [11]. Its main goal is the definition of defect

attributes that enable in-process feedback to engineers by extracting key information on

the development process from defects. Classification and subsequent analysis of ODC data

allow engineers to evaluate various phases of the software life cycle (design, development,

test and service) and the maturity of the product.

ODC overcomes the limitation of other defects/process analysis techniques, such as the Root

Chapter 1. Software Reliability and Verification 11

Cause Analysis (RCA), and statistical growth modelling. Indeed, RCA provides enough

details on each defect, but it requires substantial investment and it is based on qualitative

reasoning, not lending itself to measurement and quantitative analysis. Growth modelling,

on the other hand, provides an easy way to monitor trends, but it is not capable of suggesting

corrective actions due to the inadequate capture of the semantics behind the defects. ODC

lies between these two extremes, since it attempts to preserve the clearness and easiness of

qualitative approaches and the measurability of quantitative analyses. Its wide spreading

undoubtedly confirms ODC as a fundamental milestone in the analysis of the dependability

of software systems.

The ODC approach follows two main steps: fault classification and fault analysis.

Classification is done in two phases: when faults are detected and when they are fixed. At

detection time, key information is recorded about: the activity executed when the fault

is revealed, the trigger that exposed it, the perceived or actual impact of the fault on the

customer. Trigger and activities are related. A defect trigger is a condition that allows

a defect to be activated. Examples of activities are Design Review and Code Inspection,

in which triggers may be the checking for design conformance or backward compatibility,

orSystem Test, in which a trigger may be the workload testing session.

The most used defect trigger categories are:

• Boundary Conditions - Software defects were triggered when the systems ran in

particularly critical conditions (e.g., low memory).

• Bug Fix - The defect surfaced only after another defect was corrected: this happens

Chapter 1. Software Reliability and Verification 12

either because the first defects was covering the second one, or because the fix was

not successful, introducing a new bug.

• Recovery - The defect surfaced after the system recovered from a previous failure.

• Exception Handling - The defect surfaced after an unforeseen exception-handling

path was executed.

• Timing - The defect emerged when particular timing conditions occurred.

• Workload - The defect surfaced only when particular workload condition occurred

(e.g., only after the number of concurrent requests to serve was higher than a given

threshold).

At fix time the developer has to record: the target (i.e., the entity fixed to remove the fault),

the source (i.e., the origin of the faulty modules, such as “in-house”, library, outsourced or

ported from other platforms), the age of the faulty element (new, old, rewritten, or re-fixed

code), and its type. The defect type is the kind of information that may be trickiest to

classify: hence, the ODC defines types that are as much simple as possible and orthogonal,

in order to avoid confusion. The idea is that it should be quite obvious for programmer to

classify them. In each case a distinction is made between something missing and something

incorrect. In [11] the following defect types have been defined.

• Function - The fault affects significant capability, end-user interfaces, interface with

hardware architecture or global data structures and should require a formal design

Chapter 1. Software Reliability and Verification 13

change. Usually these faults affect a considerable amount of code and refer to capa-

bilities either implemented incorrectly or not implemented at all.

• Interface - This defect type corresponds to errors in interacting with other com-

ponents, modules or device drivers, via macros, call statements, control blocks or

parameters list.

• Assignment - The fault involves a few lines of code, such as the initialization of

control blocks or data structures. The assignment may be either missing or wrongly

implemented.

• Checking - This defect addresses program logic that has failed to properly validate

data and values before they are used. Examples are missing or incorrect validation of

parameters or data in conditional statements.

• Timing/Serialization - Missing or incorrect serialization of shared resources, wrong

resources serialized or wrong serialization technique employed. Examples are dead-

locks or missed deadline in hard real time systems.

• Algorithm - This defect includes efficiency and correctness problems that affect the

task and can be fixed by (re)implementing an algorithm or local data structure without

the need for requesting a design change.

• Build/package/merge - Describe errors that occur due to mistakes in library sys-

tems, management of changes, or version control. Rather than being related to the

product under development, this defect type is mainly related to the development

Chapter 1. Software Reliability and Verification 14

process, since it affects tools used for software development such as code versioning

systems.

• Documentation - This defect type affects both publication and maintenance notes.

It has a significant meaning only in the early stages of software life cycle.

The detailed information on faults allows for numerous subsequent analyses. Examples of

what can be done are:

• Distribution of Fault Types vs. activities: for instance, algorithmic faults are

mainly targeted by unit testing, and a high proportion is expected to be found; if this

does not happen, then the unit tests may be not well designed.

• Distribution of Trigger over time during field test: faults corresponding to sim-

ple activation conditions should arise early during field test, while complex activation

faults should appear later. In both cases, the detection rate should asymptotically

decrease. Unexpected distributions of triggers over time may indicate poor system or

acceptance test.

• Age Distribution over target code: most faults should be located in new and

rewritten code, whereas few faults should be found in old or re-fixed code, which has

already been tested. Different patterns may reveal holes in the fault tracking process.

ODC is used in this work as fault classification scheme in order to evaluate and consider

the impact of distinct defect types on the selection of the most suited verification techniques.

Chapter 1. Software Reliability and Verification 15

Extension to the ODC

In 2003, the ODC has been extended by Madeira and Duraes [12], [13], which refined it by

taking into account other factors, such as those related to language programming constructs

being used. The original ODC relates faults to the way they are corrected: since the same

fault can be usually corrected in different ways, Madeira and Duares considered for each

ODC category a further classification in order to improve the accuracy of description.

In fault types classification, it may happen that several different faults are classified in the

same category, even if their nature and their activation path is totally different. According

to these authors, a fault in any ODC class can be further characterized by a programming

language construct that can be either missing, wrong or superfluous. Developers may come

to this detailed classification by adopting the ODC as a first step, and then, in a second

step, by grouping faults according to the nature of the defect, defined from the mentioned

“programming constructs” perspective.

Finally, in the third and last step, faults are further refined and classified in specific types.

As an example of such fault types, it is possible to consider Missing function calls (MFC),

which is a particular kind of algorithm fault in which a required function call is missing.

Field data collected in [13] reported more than 20% of faults belong to this category. Dis-

tribution of occurrence of any ODC fault categories is also reported in the same work [13].

Chapter 1. Software Reliability and Verification 16

1.1.3 Fault Activation: Bohrbugs, Heisenbugs, Mandelbugs

The ODC classifies software faults according to their semantic, i.e., categorizing defect types

by looking at the semantic of their fix. This classification is very useful from the process

improvement perspective, in that it can provide insights about deficiencies of process de-

velopment stages.

A crucial concern for software engineers is to understand how a fault, of any type, may be

activated and how it can be reproduced. Software fault reproducibility was first discussed

in 1986 [14], by Jim Gray. In this work, Gray distinguished faults whose activation is easily

reproducible (e.g., through a debugger), i.e., solid or hard faults, from faults whose activa-

tion is not systematically reproducible, i.e, elusive or soft faults.

Solid faults manifest consistently under a well-defined set of conditions and that can easily

be isolated, since their activations and error propagations are relatively simple. Soft faults,

instead, are intricate enough that their activation conditions depend on complex combina-

tions of the internal state and the external environment. The conditions which activate the

fault occur very rarely and can be very difficult to reproduce.

In Gray’s paper, the first class of faults (i.e., solid) were named “Bohrbugs”, recalling the

physicist Niels Bohr and his rather simple atomic model: “Bohrbugs, like the Bohr atom,

are solid, easily detected by standard techniques, and hence boring”. Thus a Bohrbug does

not disappear or alter its characteristics when it is activated. These include the easiest bugs

to fix (where the nature of the problem is obvious), but also bugs that are hard to find and

to fix, which remain in the software during the operational phase. A software system with

Chapter 1. Software Reliability and Verification 17

a Bohrbug is analogous to a faulty deterministic finite state machine.

Soft faults were instead defined as those faults for which “if the program state is reinitial-

ized, and the failed operation is retried, the operation will not fail a second time”. Such kind

of faults were named “Heisenbugs”, referring to the physicist Werner Heisenberg and his

Uncertainty Principle.

Based on Gray’s paper, researchers have often equated Heisenbugs with soft faults. How-

ever, when Bruce Lindsay originally coined the term in the 1960s (while working with Jim

Gray), he had a more narrow definition in mind. In his definition, Heisenbugs were envi-

sioned as “bugs in which clearly the system behaviour is incorrect, and when you try to look

to see why it’s incorrect, the problem goes away”. In this sense the term recalls the uncer-

tainty principle, in that the measurement process (in this case the fault probing) disturbs

the phenomenon to be measured (the fault).

A software system with a Heisenbug is analogous to a faulty non-deterministic finite state

machine. One common example is a bug that occurs in a release-mode compile of a program,

but not when researched under debug-mode; another is a bug caused by a race condition.

One common reason for heisenbug-like behaviour is that executing a program in debug mode

often cleans memory before the program starts, and forces variables onto stack locations,

instead of keeping them in registers. Another reason is that debuggers commonly provide

watches or other user interfaces that cause code to be executed, which can, in turn, change

the state of the program. Moreover, many Heisenbugs are caused by uninitialized variables.

Hence, Heisenbugs are, for their nature, very difficult (if not impossible) to reproduce, due

to their non-deterministic activation.

Chapter 1. Software Reliability and Verification 18

However, between Bohrbugs and Heisenbugs behaviour there is another class of bugs that

has been identified later, which cannot be classified in neither of the two categories. They

are, like Heisenbugs, very hardly reproducible; but their activation is just apparently non-

deterministic, i.e., they are deterministically activated by a particular exact condition (like

Bohrbugs), but detecting this condition is so difficult that the bug can be considered as

non-deterministic.

In scientific literature these software defects are named Mandelbugs (which name derives

from the name of fractal innovator Benoit Mandelbrot). According to this classification,

• A Heisenbug is a bug that disappears or alters its characteristics when it is probed.

• A Mandelbug is a bug whose causes are so complex that its behaviour appears to be

chaotic (but they are deterministic).

However, currently there is no agreement in the literature and the term “Heisenbug” is

used inconsistently: some authors accepts this classification; others use the term Mandel-

bugs as a synonym for Heisenbugs, since they claim that there is no way to distinguish a

bug whose behaviour appears chaotic and a bug whose behaviour is actually chaotic.

On the other hand, Trivedi et al. [15] claim that Heisenbugs are actually a kind of Man-

delbugs. He identified two main sources of complexity characterizing the occurrence of a

Mandelbugs. The first one is that there may be a long delay between the fault activation

and the final failure occurrence (e.g., because several error state are traversed before the

failure or because the fault progressively accrues an abnormal condition until the system

Chapter 1. Software Reliability and Verification 19

fails). This usually happens with complex software systems employing one or more Off-

The-Shelf (OTS) items. The second source of complexity is due to the system-internal

environment: fault activation and/or error propagation depend on interactions between

conditions occurring inside the application and conditions that accrue within the system-

internal environment (e.g., a fault causing failures due to side-effects of other applications

in the same system, or a race condition caused by inadequate synchronization in multi-

threaded software). According to this view, “since the system-internal environment induces

the change in [fault] behaviour, Lindsay’s Heisenbugs are actually a type of Mandelbug”.

Referring to this classification:

• Mandelbugs include those faults which activation is chaotic or non-deterministic (in-

cluding Heisenbugs);

• Heisenbugs are a special case of Mandelbugs in which system-internal environment

influences fault’s behaviour in a specific application (hence causing the bug to “disap-

pear” when probed).

In the following we will refer to this classification. Due to their different nature, removing

Bohr- or Mandel- bugs implies distinct techniques to be adopted. Indeed Bohrbugs, due

to their simple activation conditions are more prone to be detected and fixed during the

software design and verification phase. For instance, structured design, design review,

formal analysis, unit testing, inspection, integration, system and acceptance testing are

techniques that are employed in the development phase and that usually fix the greatest

part of Bohrbugs.

Chapter 1. Software Reliability and Verification 20

On the other hand the residual bugs are rare cases, typically related to specific environmental

conditions, limit conditions (e.g., out of storage, out of memory, buffer overflows, etc.) or

race conditions, which may require a long time to be activated and to manifest; these are

what we called Mandelbugs.

Figure 1.3: Evolution over time and software life cycle phase of reproducible and non-
reproducible software faults

For these reasons, the number of detected Bohrbugs decreases over life cycle time (as

depicted in Figure 1.3, by [16]) , becoming negligible after a long period of production. On

the other hand, the number of Mandelbugs increases over time: during the development

phase this number is very low, since the system under test runs always in the same envi-

ronment and intricate activation conditions rarely occur; during the beta testing, when the

Chapter 1. Software Reliability and Verification 21

system is delivered out of the production environment, a consistent number of Mandelbugs

are reported. In that stage, the system runs in several environments under workloads very

different from the ones applied in the testing phase. This number further increases once the

system is brought to the operational phase.

Given their nature, Mandelbugs are typically treated with the following recovery techniques

[15], which aim to change the execution environment state: “Micro-reboot” of indi-

vidual component, Application restart, System reboot, Failover to a standby

component (replicate).

One more category of bugs, which recently is gaining attention, are the so-called “Aging-

related bugs”. Often, software systems running continuously for a long time tend to show

a degraded performance and an increased failure occurrence rate. This phenomenon is usu-

ally called Software Aging [6]. There are several examples in the literature reporting real

system failures due to software aging. It is typically caused by accrued error conditions,

such as round-off errors, data corruption or unreleased physical memory. The preventive

technique against this phenomenon is known as Software Rejuvenation, which consists in

cleaning the system-internal environment without removing the bug in order to reset the

accumulated error.

A typical example of Aging-Related bug is an unreleased memory region inside a program’s

heap area, i.e., memory allocated and never released. Also in this case, there is no complete

agreement on the classification of these bugs: some authors relegate Aging-related bugs

only in the Mandelbugs category, while others view these bugs as an intersection between

Chapter 1. Software Reliability and Verification 22

Mandelbugs and Bohrbugs classes. Indeed, Aging-related bugs can be either deterministic

(e.g., a missing delete statement) or non-deterministic (e.g., a fault which is dependent on

the message arrival order). However both kinds of bug require a long time to manifest (the

aging phenomenon notion requires a delay between fault activation and failure occurrence).

Hence, also deterministic Aging-related bugs will very likely manifest at the operational

time (like Mandelbugs), being very difficult to note their effect at testing time. For this

reason, in accordance with the adopted classification for Bohrbugs-Mandelbugs, we adopt

this second solution (Aging bugs as subset of Mandelbugs), suggested by [15], for placing

aging-related bugs in the classification scheme.

Figure 1.4 (by [15])summarizes the adopted bugs classification scheme and potential recov-

ery techniques.

With respect to the classification scheme in Figure 1.4, this thesis deals with all the men-

tioned classes o faults. In fact, the focus of this thesis is on reliability-oriented software

verification. Software verification clearly aims to remove as much Bohrbugs as possible in

the least time. On the other hand, software reliability is a quality property related to the

operational phase, because it is a user-perceived attribute. This means that it depends not

only on the number of residual faults in the software, but also on their activation pattern. A

verification oriented to achieve high reliability should also tend to remove those faults which

activation is rare and that may occur during operation (i.e., Mandelbugs), trying to “an-

ticipate” their occurrence during testing. The thesis copes with this issue to pursue its goal.

Chapter 1. Software Reliability and Verification 23

Figure 1.4: Fault Classification according to their Reproducibility

1.2 Software Reliability

1.2.1 Basic Notions

Reliability is a measure of continuous delivery of correct service. It is one of the attributes

of dependability concept [8] that is particularly relevant for critical systems, where no down

time can be tolerated. Differently from availability, which focuses on failures on a given

instant of time, reliability emphasizes the occurrence of undesirable events in a specified

time interval, often called Mission Time. A lowly available system may be highly reliable in

a given mission time, depending on when the failures occur (e.g., a system may fail many

times in one year, but never in the time interval that is crucial for system’s mission, i.e., it

fails always in times when failures are tolerable).

Chapter 1. Software Reliability and Verification 24

Reliability is often specified as a numeric value indicating a probability (typically, the prob-

ability that the system fails in a give time interval), or by means of its mean time to failure

(MTTF), or its failure rate (that is the frequency with which a system fails). However,

in a more formal way, reliability is a function of time, denoted by R(t): it represents

the probability that the system survives (does not fail) throughout [0,t]. This

function has the following properties:

1. The system is assumed to be working properly at time t = 0, i.e., R(0) = 1

2. The system cannot work forever without failure: limt→∞ R(t) = 0

3. R(t) is a monotone decreasing function of t.

Let us call X a random variable denoting the time to failure of a system, and F (t) the un-

reliability function, i.e., the cumulative distribution function of X. The reliability function

can thus be written as:

R(t) = Pr(X > t) = 1− F (t) (1.1)

Reliability function can be approximated as “probability of survival” [17], using the

frequency interpretation of probability. Consider a number of identical components, N0,

under test (or equivalently N0 test cases of a system test session). Let us denote with Nf(t)

the number of components (or test cases) failed at time t and with Ns(t) the number of

survived components (or negative-outcome test cases, i.e., not failed executions), so that:

Nf(t) + Nf(t) = N0. Hence:

Pr(survival) = Ns(t)/N0 = 1−Nf(t)/N0 ≈ R(t) (1.2)

Chapter 1. Software Reliability and Verification 25

In the limit as N0 →∞, Pr(survival) is expected to approach to R(t) (Ns(t) gets smaller

and R(t) decreases). As shown in [17], taking derivatives on both sides, we have:

R′(t) = −(1/N0) ∗N ′

f(t) (1.3)

where N
′

f(t) is the rate at which components fail; thus the ratio of equation 1.3 represents

the failure density function of the variable X:

R
′

(t) = −f(t) (1.4)

In this expression, f(t) ∆t is the unconditional probability that a component will fail in (t,

t+ ∆t); the probability that component will fail in (t, t+ ∆t) given that it did not fail until

t is expected to be always greater than f(t)∆t . This conditional probability is:

GY (x|t) = P (t < X ≤ t+ x)/P (X > t) = (F (t+ x)− F (t))/R(t) (1.5)

Dividing this probability by the interval of time x and taking the limit, we obtain the

instantaneous failure rate h(t):

h(t) = lim
x→0

(F (t+ x)− F (t))/xR(t) = f(t)/R(t) (1.6)

Thus, h(t)∆t represents the conditional probability that a component having survived

till t will fail in (t, t + ∆t]. By integrating both sides of equation 1.6, and using equation

Chapter 1. Software Reliability and Verification 26

1.4, the final reliability expression is obtained:∫ t
0 h(x)dx =

∫ t
0 f(x)/R(x)dx∫ t

0 h(x)dx =
∫ t
0 −R

′
(x)(R(x)dx

∫ t
0 h(x)dx = −

∫ R[t]
R[0] dR/R∫ t

0 h(x)dx = −lnR(t)

R(t) = exp[−
∫ t
0 h(x)dx]

(1.7)

The instantaneous failure rate is also known as hazard rate, conditional failure rate or

simply failure rate. Since in practice it is a small value, it is commonly expressed in failures

over 10000 hours or in FIT (failure in time), i.e., failures per 109 or a billion hours. The

cumulative hazard rate, H(t) =
∫ t
0 h(x)dx is referred to as cumulative hazard. Note that if

the time to failure (TTF) F(t) has an exponential distribution, the hazard rate is constant:

h(t) = f(t)/R(t) = λe−λt/e−λt = λ (1.8)

This means that the lifetime is independent of component age t (note that the exponen-

tial distribution is the only distribution with a constant failure rate), i.e., a component does

not age stochastically and the probability of failure over an additional period δt is the same

regardless of its current age. Conversely, a survival probability can decrease over time (due

to aging), in which case the corresponding distribution function F(t) is an increasing failure

rate (IFR) distribution, or can increase over time (e.g., if aging is beneficial for component

lifetime), in which case the distribution is a decreasing failure rate (DFR) function. Usually,

the failure rate of a system is not constant during all the system life-time, but it follows

Chapter 1. Software Reliability and Verification 27

the so-called bath-tube form (empirically observed), i.e., a system experiences a decreasing

failure rate when it is firstly deployed, due to infant-mortality failures, then it follows a

rather constant failure rate during the operational life (that justifies the adoption of an

exponential distribution for the useful-life phase), and, finally, it experiences an increasing

failure rate at the end of its life, due to wear-out failures.

Common distribution for h(t) are the exponential, the hyper-exponential, the lognormal,

and the weibull.

The exponential distribution was firstly adopted to model the time to failure and time

to repair of electronic components. However, due to its simplistic memoryless property, the

exponential distribution is not able to fit real data when multiple and dependent failure

causes are involved.

If a process consists of alternate phases, that is, during any single experiment, the process

experiences one and only one of many alternate phases, and these phases have exponential

distributions, then the overall distribution is hyper-exponential [17]. This failure time

distribution can be used to model failures which are the manifestation of different, inde-

pendent and alternate underlying causes.

Recently, the lognormal distribution has been recognized as a proper distribution for

software failure rates [18]. Many successful analytical models of software behaviour share

assumptions that suggest that the distribution of software event rates will asymptotically

approach lognormal.

Chapter 1. Software Reliability and Verification 28

The weibull distribution has been used to describe fatigue failures and electronic com-

ponents failures. At present, it is perhaps the most widely used parametric family of failure

distributions. The reason is that by a proper choice of its shape parameter, an increasing,

a decreasing, or a constant failure rate distribution can be obtained. Therefore, it can be

used for all the phases of the bath-tube mortality curve [17].

1.2.2 Reliability Modelling

Reliability can be evaluated by using several approaches, generally classified into two cat-

egories: model-based and measurements-based. Model-based approaches are widely used

for reliability evaluation of complex software/hardware systems. They are based on the

construction of a model that is a “convenient” abstraction of the system, with enough level

of detail to represent the aspects of interest for the evaluation. The degree of accuracy

of a model depends on the ability of the associated formalism to extrapolate the system

features.

Models allow to suitably analyse a system architecture, to evaluate different configurations,

to pinpoint performance/reliability bottlenecks, to make predictions and to compare design

alternatives without physical implementation. They can be object of analysis or simulation.

Analytic models are classified in combinatorial and state-based models. Models in the first

category represent the structure of the system in terms of logical connection of working

(failed) components in order to obtain the system success (failure). State space based mod-

els represent the behaviour of the system in terms of reachable states and possible state

transitions.

Chapter 1. Software Reliability and Verification 29

Models can be solved analytically in closed-form or numerically depending on their com-

putational complexity. When analytical solution is not available (or it is computationally

expensive) simulation represents a viable alternative.

COMBINATORIAL MODELS

Combinatorial models have a simple and intuitive notation. They are easy to be designed

and manipulated, and they can be efficiently analysed by means of combinatorial techniques.

The system is typically divided into a set of non-overlapping modules, each one associated

with either a probability of working, Pi (or a probability as function of time, e.g., Ri(t)).

The goal is to derive the overall Psys value (or function Rsys(t)), representing the proba-

bility that the system survives (until t). These models typically enumerate all the system

states, by using combinatorial counting techniques to simplify the process.

Despite of their advantages (simple and intuitive analysis), combinatorial models suffer from

a limited modelling power, mainly due to the assumptions they make:(i) module failures

are independent (i.e., statistical independence of events), (ii) once a module has failed, it

is always assumed to yield incorrect results, (iii) once system enters a failed state, other

failures cannot resume the system to functional state.

Examples of combinatorial models are Reliability Block Diagrams (RBD) [19], [20] and

Fault Trees (FT) [21].

RBDs use logical blocks to link a complex system state to the states of its components.

A block, representing a component, can be viewed as a “switch” that is “closed” when the

block is operating and “open” when the block is failed. System is operational if a path of

Chapter 1. Software Reliability and Verification 30

“closed switches” is found from the input to the output of the diagram [17]. Blocks can be

connected in series (to represent components that are all required for system functioning),

in parallel (to represents blocks of which at least one is required), in a k− of − n structure

(when at least k out of n components are required). The overall structure can be composed

of all of these kinds of connection, leading either to series-parallel RBDs (that can be solved

by simple series-parallel reductions) or to non-series-parallel RBDs (that can be solved by

state enumeration, factoring, conditioning, or binary decision diagrams (BDDs)).

Fault trees relate combination of basic events to the system failure. It is a graphical

representation in which components are connected with each other through logical gates,

in a tree-like structure. Failures of a component (i.e., a basic event) or subsystem cause

the corresponding input to the gate to become true; when the output of the topmost gate

becomes true, the system is considered failed. In their basic version, fault trees use AND

gates to connect parallel components, OR gate to connect series systems and (n − k + 1)

of n gate for k-out-of-n components. Extensions to Fault-trees include further gates, such

as NOT, EXOR, Priority AND, cold spare gate, functional dependency gate and sequence

enforcing gate. Fault trees easiness and their simple graphical representation are the main

reasons for their success, which is confirmed by their extensive usage for real and complex

systems modelling.

In order to improve their modelling power, several extensions to the fault trees formalism

were proposed in the literature, such as Dynamic Fault Trees (DFT) [22], Parametric Fault

Trees (PFT) [23], and Repairable Fault Trees (RFT) [24].

Chapter 1. Software Reliability and Verification 31

STATE-SPACE MODELS

When the accuracy of combinatorial models is not enough to capture the characteristics of

the system to be modelled, state space based models can be considered.

Models in this category have a greater modelling power and flexibility than combinatorial

models, but the state space analysis may be computationally expensive. This depends on

the number of states in the model, since the state space size grows exponentially with the

number of components in the system. The space state explosion problem has triggered

many studies and significant results have been achieved based on two general approaches:

“largeness avoidance” and “largeness tolerance”. Largeness avoidance techniques try to

circumvent the generation of large models. They are complemented by largeness tolerance

techniques which provide practical modelling support to facilitate the generation and solu-

tion of large state-space models.

The basic formalism for state-space modelling are Markovian models. A Markov process

is a stochastic process whose dynamic behaviour is such that probability distributions for its

future development depend only on the present state and not on how the process arrived in

that state [17]. When the state-space is discrete (i.e., the set of all possible values that can

be assumed by random variables of the process is discrete), the Markov process is known

as a Markov chain. Markov chains are a fundamental block for state-space analysis.

They have been used to model a wide number of systems, ranging from network systems, pro-

tocols hardware components, software/hardware systems and software applications, com-

plex clustered systems, and for analysing any kind of dependability and performance-related

Chapter 1. Software Reliability and Verification 32

attributes (reliability , availability, performability, survivability).

Markovian models can be classified in: discrete time Markov chains (DTMCs), when

the model adopts a discrete index T (usually representing the time), continuous time

Markov chains (CTMCs), when T is a continuous index, and Markov Rewards Mod-

els (MRMs), when the Markov chain also includes a reward rate (or weight) attached to

the states in order to derive additional measures (e.g., expected accumulated reward in a

given interval).

The model is usually graphically represented by a state-transition graph, which highlights

the system states (the nodes) and transitions among them (the edges) labelled by the one-

step transition probability value.

When the Markovian memoryless property does not hold (i.e., it does not accurately describe

the system being modelled), non-Markovian models (such as semi-Markov processes or

Markov regenerative models), or non-homogeneous Markov models are employed,

where other distributions are allowed. The accuracy they add to the model is of course paid

in terms of complexity in management, parameterization and solution.

Markovian analysis consists of some basic steps to be carried out: abstraction of the physi-

cal system, construction of a Markov model, setting up and solution of ordinary differential

equations (for transient solution) or linear equation (for steady-state solution). When the

number of states is very large, this becomes a tedious, complex and error-prone procedure.

With the increasing size of systems, this problem led in the late 1980s to the introduction of

new formalisms and tools. One of this has been particularly successful, due to its ability to

concisely represent a complex system in an intuitive fashion: this is Stochastic Petri Nets

Chapter 1. Software Reliability and Verification 33

(SPNs). A fundamental feature of SPNs is that there is a direct mapping between them

and CTMCs, which allows designers to model their system by the more intuitive SPN for-

malism, and then to automatically translate it into a CTMC to be solved (by proper tools,

such as SPNP, DSPNExpress, GreatSPN, and SHARPE). Similarly, stochastic reward nets

(SRN), that are the extension of SPNs with the addition of rewards, can be mapped onto

Markov Rewards Models.

Motivated by their representational power (their graphical representation is also particu-

larly suited to model parallel architectures, concurrent programs, synchronization problems

and multiprocessor systems) and their solution capability as Markovian models, researchers

defined several variants of stochastic Petri nets, well-suited to particular application needs

or solution methods (Generalized SPNs, Stochastic Activity Networks (SANs),

and Coloured Petri Nets (CPN)).

HYBRID MODELS

Non-state-space models (e.g., RBDs, FTs) are undoubtedly efficient to specify and anal-

yse, but the independent assumption on which they rely on may be too restrictive for

many practical situations. On the other hand, Markovian models provide the ability to

model systems that violate this assumption, but at the price of a state space explosion.

To cope with this problem a number of modelling approaches have been proposed to avoid

the generation of a so-wide state space (i.e., the mentioned “largeness avoidance” approach).

This is obtained by hybrid modelling. The main idea is to hierarchically compose/decompose

the system and construct models accordingly: state-space methods are used for those parts

Chapter 1. Software Reliability and Verification 34

requiring dependences modelling, whereas combinatorial methods are used for the parts

that can be assumed independent.

Several research works have been published, that try to combine the advantages of combina-

torial and state space based analysis methods: typically, minimal subsystems/components

are isolated and treated by state-space methods, and then they are combined in a FT-like

structure, exploiting combinatorial analysis techniques at the overall system level (these

works also fostered proposals to extend the original FT formalism in order to express de-

pendencies by using an FT-like language).

Example of works adopting hybrid modelling are in [25][26][27][28][29][30][31]. For instance,

authors in [27] modelled a SIP Application Server configuration on WebSphere, by using a

set of interacting sub-models of all system components capturing their failure and recovery

behaviour. A service reliability analysis adopting a hierarchical model is presented in [26];

the hierarchical modelling is mapped to the physical and logical architecture of the grid

service system and makes use of Markov models, Queuing theory, and Graph theory to

model and evaluate the grid service reliability.

MEASUREMENT-BASED APPROACH

Models are extensively used for dependability attributes evaluation, especially for reliability

analysis. However, they may be not accurate enough, when the input parameters values

are not representative of the real system behaviour.

Measurements-based approach may allow for more accurate results: it is based on real

operational data (from the system or its prototype) and the usage of statistical inference

Chapter 1. Software Reliability and Verification 35

techniques. It is an attractive option for assessing an existing system or prototype and

constitutes an effective way to obtain the detailed characterization of the system behaviour

in presence of faults. However, since real data are needed, it is not always possible to apply

this approach, because data may be not available. Moreover, just relying on measurement-

based approach does not yield insight into the complex dependencies among components

and does not allow system analysis from a more general point of view. It is often more con-

venient to make measurements at the individual component/subsystem level rather than

on the system as a whole [32], and then to combine them in a system model.

An overview of experimental approaches to dependability evaluation is in [33]. Although

the most of papers use either the model based or the measurement based approach, some

papers use a combined approach [34], [35]. An online monitoring system combining both the

approaches towards system availability evaluation is in [36], [37]. Models parameterized by

experimental data are also used in [38] for software aging analysis, in which Markov chains

are used to model both system states and workload states, and transition probabilities and

sojourn time estimates were obtained by using real experimental data.

1.2.3 Black Box vs. Architecture-based Reliability Analysis

Regardless to the modelling formalism that can be adopted, reliability analysis approaches

can be distinguished with respect to their objective. A first class of models, referred to as

“black box” models, aims to evaluate how reliability improves during testing and varies af-

ter delivery; a second class of models focuses mainly on understanding relationships among

Chapter 1. Software Reliability and Verification 36

system components and their influence on system reliability. These are often referred to as

“architecture-based models”.

Traditionally, approaches to analyse software reliability are “black box”, that is, they treat

the software application as a monolithic whole by modelling its interactions with the exter-

nal environment. The black box approach ignores information about the internal structure

of the application and neglects relationships among system components. It is based on (i)

collecting failure data during testing, and (ii) calibrating a software reliability growth model

(SRGM) using such data. This model is then used for prediction in the operational phase

(to predict the next failure occurrences based on the trend observed during testing) and/or

in the testing phase of successive system releases to determine when to stop testing.

Many SRGMs have been proposed in the literature. Commonly used models adopt a non-

homogeneous Poisson process (NHPP) to model the software reliability growth during the

testing phase.

NHPP models are distinguished by the form of its mean-value function m(t) = E[N(t)],

where N(t) is the number of failures occurring in the time interval (0,t], or equivalently by

its integral
∫ t
0 m(x)dx, named failure intensity. One of most successful models was proposed

in 1979 by Goel and Okumoto (GO)[39]. It assumed an exponential failure intensity func-

tion λ(t) = b(a −m(t)) = abe−bt, where a is the expected number of faults to be detected

if the testing is carried out indefinitely, b is interpreted as the failure occurrence rate per

fault (that, in this context, is named hazard rate h(t)). By allowing h(t) to be not constant,

other models are obtained. A generalized version of GO model is derived by using the

Weibull distribution [40], h(t) = bctc−1. Gokhale and Trivedi [41] proposed a log-logistic

Chapter 1. Software Reliability and Verification 37

distribution for h(t) in order to caputure the increasing/decreasing behaviour of the failure

occurrence rate per fault.

Many other models have been proposed, also capturing debugging activity or infinte-failure

behaviour [42] (i.e., models assuming that an infinite number of faults is detected in infinite

testing), and several tools have been developed to deal with fitting and parametrization of

the most suitable model for a given set of failure data (such as SREPT, SMERFS, SoRel

and CASRE). However, the main problem of these models remain the inability to consider

internal system components and their interactions.

To cope with these limitations, architecture-based approaches have been proposed in the

literature. This kind of models have gained importance since the advent of object-oriented

and component-based systems, when the need to consider the internal structure of the soft-

ware to properly characterize its reliability has become important. This led to an increasing

interest in the architecture-based reliability and performance analysis [43, 44, 45, 46].

Architecture-based models can be categorized as follows [47]:

• State-based models use the control flow graph to represent software architecture;

they assume that the transfer of control among components has a Markov property,

modelling the architecture as a Discrete Time Markov Chain (DTMC) a Continuous

Time Markov Chain (CTMC) or semi Markov Process (SMP).

• Path-based models compute the system reliability considering the possible execution

paths of the program.

• Additive-models, where the component reliabilities are modelled by non-homogeneous

Chapter 1. Software Reliability and Verification 38

Poisson process (NHPP) and the system failure intensity is computed as the sum of

the individual components failure intensities.

State-based models can be further categorized into composite and hierarchical models

[48]. In the former, the software architecture and the failure behaviour of the software are

combined in the same model, while hierarchical approach separately solves the architectural

model and then superimposes the failure behaviour of the components on the solution.

Although hierarchical models provide and approximation to the composite model solution,

they are more flexible and computationally tractable. In the composite model, evaluat-

ing different architectural alternatives or the effect of changing an individual components

behaviour is computationally expensive. Unlike hierarchical models, they are also subject

to the problem of stiffness [49]. To cope with the accuracy gap between hierarchical and

composite models, Gokhale and Trivedi [50] included the second-order architectural effects

in hierarchical models.

In this thesis we use both black box and architectural (state-based) models for addressing

the problem of conveniently allocating resources available for verification to various parts

of the system. The solution proposed adopts a combination of both kind of models, in that

it tries to leverage state-based models ability of more accurate capture of the architecture,

by combining it with the NHPP models ability in relating reliability and testing time.

Chapter 1. Software Reliability and Verification 39

1.3 Software Verification

1.3.1 Basic Concepts

As any other engineering discipline, building high quality software products requires con-

struction activities to be complemented by intermediate checking activities and verification

of the final product. In particular, verification is responsible for assuring that the software

is rightly being developed, i.e., it is the set of activities to provide adequate confidence that

the software product conforms to its specified requirements.

Compared to other engineering fields, software verification cannot rely on well-established

and trained processes able to outline what steps should be carried out in any case and

what is the final result. This is mainly due to two reasons. First, software engineering is

a relatively young discipline as compared to other engineering fields, and it is simply not

mature enough to cope with issues raised by software products’ needs. Second, software

seems to be inherently more complex than other engineering products, since:

• Software engineering rapidly evolves, continuously proposing new development tech-

niques and approaches, which also bring new challenges to be addressed for verification

(i.e., object-oriented development, or multithreading);

• Structure of a software system changes quickly over time (and also deteriorates),

• Faults affecting software, as shown in the previous section, may be difficult to identify,

their distribution cannot easily be foreseen, and their activation can be even non-

deterministic;

• Software is intrinsically non-linear, as exemplified by [1]: “if an elevator safely carry

Chapter 1. Software Reliability and Verification 40

a load of 1000 kg, it can also safely carry any smaller load, but if a procedure correctly

sorts a set of 256 elements, it may fail on a set of 253 or 53 or 12 elements, as well

as on 257 or 1023”;

• Finally, software systems have many different, often incompatible, quality require-

ments, that make verification activities impossible to be determined once for all.

This makes cost devoted to software verification to be notably high. Hence, engineers have

to effectively weave quality assurance and improvement activities in the development process

in order to measurably guarantee that the software meets the requirements specification.

Verification starts at very beginning of the software development, from requirements elic-

itation (when qualities to be assured are identified), to coding, delivery and maintenance.

It is not the set of activities to apply once the system is developed.

The activities usually carried out include inspection, static/dynamic analysis, and testing.

In the following, a brief overview of issues related to the process activities and to techniques

usually involved in verification plan is presented.

1.3.2 Verification Process

The final quality of software depends on many intertwined activities, involving specifica-

tion/design as well as verification activities, and on how these activities are mapped into

the specific organization. Verification process (i.e., the set of activities and responsibilities

to ensure the desired quality) is therefore tightly related to the development process and

to organizational factors. It provides a framework for selecting and arranging activities to

pursue quality objectives within cost constraints.

Chapter 1. Software Reliability and Verification 41

Activities and actions to be taken and their schedule in a verification plan depend on:

• the application domain that often determines the quality requirements to be achieved

(e.g., standards for safety critical system imposes specific reliability goals);

• the development environment (e.g., the adopted development process affects the activ-

ities and their schedule);

• the structure and size of the organisation, which determines the responsibilities and

roles assignment policy [1];

• the size of the system to be developed, that determines what activities are most suited;

• the cost constraints to be met, which may affect design choices, such as the inclusion

of Off-The-Shelf (OTS) components, and in turn verification;

• once high-level design is complete, the system architecture also affects the resources

allocation policies, and hence verification effectiveness.

The ultimate goal of a verification plan is to determine i) what activities will be carried

out and in what order; ii)how they will be mapped and related to the development activities;

iii) how efforts will be allocated; and iv) how the achieved quality can be assessed.

Improving a process means improving the ability to systematically answer such ques-

tions, so that plans can be effectively be produced within an organisation across several

products.

Companies are required to learn from past for deriving useful guidance in planning verifi-

cation. Hence the retrospective analysis of a software product development is a key step

Chapter 1. Software Reliability and Verification 42

to improve the process. The most important techniques to this aim are the Orthogonal

Defect Classification (ODC), the Root Cause Analysis (RCA), growth modelling, and fault

proneness models for efforts allocation.

ODC attempts to compare the patterns of detected defect types to activities across the

development cycle, in order to reveal process flaws. It has been described in section 1.1.2;

RCA aims to identify the root cause of the most important classes of faults (in terms

of severity and types) in order to eliminate process faults. It identifies process deficiencies

by applying four fundamental steps: what (i.e., what are the faults that occurred), when

(i.e., when they occurred and when they were found), why (i.e., what is the root cause of

the fault) and how (i.e., how they can be prevented by intervening in the process).

Differently from ODC, it does not have a predefined set of categories, since it does not aim

to compare different classes of faults over time. The idea is that RCA eliminates progres-

sively the causes of the most important faults at a given time; but as they are eliminated,

they lose importance. Hence a static classification would not make sense. Moreover, the

most important fault types depend on the specific current project/process, therefore it may

not be always the same.

Growth modelling has been briefly discussed in section 1.2.3, when models for relia-

bility were discussed. They make use of past data (or sometimes of in-process data) to

Chapter 1. Software Reliability and Verification 43

calibrate models of reliability growth over time, which enable the evaluation of testing ef-

fectiveness in achieving the desired reliability in a given time. However, this technique does

not capture the semantics behind the defects and therefore cannot suggest significant im-

provement actions.

Fault proneness models allow to exploit historical data in order to identify, through

empirical analyses, software modules more prone to contain faults. This allows to better

allocate efforts to the system modules. Such models have recently re-gained attention, due

to the wide availability of data in large bug tracking databases and version control systems.

This thesis proposes means for improving verification process effectiveness, specifically

when the quality goal to be achieved is reliability. Solution that we propose for cost-effective

verification uses some concepts of these techniques: ODC is used as fault classification

scheme to evaluate the influence of defect types on the selection of verification techniques;

it is used in conjunction with fault proneness models, that we adopted to evaluate the

tendency of software modules to be affected by faults of different types. This is described in

section 4 and 5. Reliability growth models are instead used in the allocation of verification

resources to various system’s components/subsystems, as showed in section 3.

Note that all these techniques are not mutually exclusive. More techniques can suitably

be adopted, standing the availability of economical resources. Similarly, integrations of

what we propose in the next chapters with one or more of these techniques can be also

envisioned.

Chapter 1. Software Reliability and Verification 44

1.3.3 Verification Techniques

Planning verification requires the selection of a set of techniques to employ. Techniques for

verification include testing and analysis. Pezze’ and Young [1] classify techniques according

to their inaccuracy with respect to the ideal optimal verification (i.e., the exhaustive testing

or perfect verification by logical proof). They distinguish techniques that are pessimistically

inaccurate, meaning that they do not guarantee to accept a program even if the program

does possess the property being analysed (e.g., the most of analysis techniques) or opti-

mistically inaccurate, i.e., they may accept some programs that do not posses the property

(testing techniques are optimistic). A third dimension of inaccuracy are “simplified prop-

erties”, that are the techniques (mainly static analysis techniques) substituting a property

that is more easily checked or constraining the class of programs that can be checked.

There is an extensive body of literature about testing and analysis techniques, that is not

possible to address in this thesis. Techniques are usually conceived to pursue one specific

goal, to improve a specific quality attribute or to verify a particular property. They may be

suited for a particular phase of development cycle, for some specific kind of systems and/or

for different system sizes.

In the following a brief description of some testing and analysis techniques more relevant

for mission-critical systems (the target of this thesis) is given.

Functional testing , along with structural testing, is the most adopted testing technique.

Chapter 1. Software Reliability and Verification 45

It derives test cases from program specifications and does not require any knowledge of

system’s internal code (it is therefore also known as black-box testing). Test cases are de-

rived systematically, i.e., not randomly. Usually, the input space is partitioned into a set

of classes. Test cases are picked up from these classes and from their boundaries (ideally,

classes should include inputs that fail often or do not fail at all). Although functional test-

ing can be used in unit testing, they are more often used for system tests. Combinatorial

approaches to generate test cases may also allow to systematically combine input values,

leading to what is called combinatorial testing .

Test cases can be picked up from input space also randomly, as if faults were distributed

uniformly across the input space (random testing). Although this criterion may seem

inadequate, several studies have showed that random testing have performances compara-

ble with functional testing, since the generation of test cases is much faster than any other

technique.

Structural testing complements functional testing. It derives test cases based on the

structure of the code, with the goal of covering the greatest “part” of the program code.

The part of the program to be covered is determined by the adequacy criterion, which

differentiates the various versions of structural testing. It may be expressed by “executed

statements”, branches of the control flow graph (CFG), conditions, paths, or a combina-

tion of them (one of the most successful one is the modified condition/decision criterion,

MC/DC). Since it requires the knowledge of the code, it is often referred to as “white box”

testing. For this reason it is used immediately after implementation, i.e., for unit testing.

Another widely adopted criterion is “data flow”. Data flow testing generates test cases in

Chapter 1. Software Reliability and Verification 46

order to cover the flow of data between data definition and its usage. Some criteria are the

coverage of all possible definition-use (DU) paths (i.e., a path on the CFG starting from a

definition to a use of a same variable, in which value is not replaced on the path) or DU

pairs (i.e., a pair of definition and use for some variable, such that at least one DU path

exists from the definition to the use).

Other than these techniques and their numerous variants, more specific and narrowed

techniques have been proposed. The spreading of model-based development favoured a

large-scale adoption of model-based testing . Model-based testing is a technique where

the runtime behaviour of an implementation under test is checked against predictions made

by a formal specification, or model. Models can be developed by using several formalisms

(grammars, sets, states), but they are typically given in a finite state machine (FSA)-like

form. Test cases may be generated to cover “All transitions”, “All states”, “Random walks”

, “Shortest paths first”, “Most likely paths first”, etc.. Fault-based testing (in which faults

are injected in the program) may have different purposes: it may be used to evaluate the

quality of test suite in detecting faults (as in mutation testing), to evaluate the quality

of fault tolerance mechanisms (e.g., fault-injection based testing) or simply to analyse the

system behaviours in the presence of faults. Testing based on fault injection is mainly used

in mission-critical systems.

Robustness testing generates test cases aiming to evaluate the system behaviour under

exceptional conditions. Thus, it deliberately forces the system with unexpected inputs and

observes its ability to manage such values. Robustness testing is often used in conjunction

Chapter 1. Software Reliability and Verification 47

with functional testing techniques especially in critical systems, since its purpose is the

opposite of functional testing (it has to verify that the system does not do what is not

required)

Stress testing evaluates the application’s ability to react to unexpected loads; even

if the similarity with robustness testing is evident, stress testing does not use “exceptional

inputs”; it uses normal input values, but with excessive load. It lies in between robustness

and functional testing.

Statistical testing explicitly tests software for reliability rather than for fault detec-

tion. It is based on the definition of an operational profile that should accurately describe

the system usage at the operational time. Test cases are generated from this operational

profile and software is tested and amended until that level of specified reliability is reached.

The main problem with statistical testing is that the operational profile may not be an ac-

curate reflection of the real use of the system and that a statistically significant number of

failures should be caused to compute the reliability (but highly reliable systems will rarely

fail). Hence, this technique will probably increase rapidly the reliability at the beginning of

the testing, but will hardly boost reliability beyond a certain limit, if used alone.

Automated analysis techniques are conceived to exhaustively check properties that are

difficult to test (e.g., faults that are rarely activated). They can in some cases replace (or

support) the manual inspection , which however remain a key technique for some classes of

faults. Analysis can be either static or dynamic. Static analysis examines program source

code to verify the property of interest and spans over the entire execution space. Hence it

Chapter 1. Software Reliability and Verification 48

generates many false warnings and may require too much time, but it may potentially detect

any kind of faults. For this reason it is often used to verify some specific property and on

some critical parts of the system. A relevant example is software model checking , which

recently re-emerged thanks to new techniques able to cope with the known problem of state

space explosion. It is able to verify several kinds of properties, expressed in temporal logics,

on a model of the system (that can be derived from specification or extracted from source

code). They are particularly suited to detect execution paths violating critical properties,

such as safety or liveness, that are difficult to detect by testing. Other static and dynamic

analysis techniques are adopted for more specific purposes. For instance, point-to analysis

is a code analysis technique that tries to understand which pointers (or references) can point

(refer) to which locations. It is often part of a more complex and shape analysis, that

aims to verify properties on dynamically allocated structures. Value flow analysis refers

to a family of techniques (coming from compiler theory) that try to detect computations

producing always the same value: these are grouped in new namespaces on which a classical

data-flow analysis can be carried out. They can be either path-sensitive or path-insensitive.

Another well-known analysis technique is slice analysis, introduced by Mark Weiser. A

slice is a part of the program that may affect the values computed at some point of interest,

referred to as a slicing criterion. Slicing refers to the computation of such slices, exploiting

data flow and control flow dependences. It is useful for debugging purposes, since it eases

the location of fault sources. It can be either static, If it uses only static information, or

dynamic, if also uses runtime information. Other static analysis techniques that worth to

be mentioned are the software change impact analysis, to assess the effects of changes

Chapter 1. Software Reliability and Verification 49

in the program, cluster analysis used in the observation-based testing, and experimental

analysis, which aims to characterize the effect of one or more independent variables on one

aspect of the program (also used in Delta Debugging implementations).

Dynamic analysis techniques examine program execution traces to verify properties:

hence it does not examine the execution space exhaustively, but the most representative ex-

ecutions. It is of course less expensive than static analysis. Memory analysis instruments

the program to trace memory usage and detect improper memory access, incompatible with

the current state (e.g., read from uninitialized memory locations). An example of tools for

dynamic memory analysis is Purify from IBM. Lockset analysis attempts to detect viola-

tion of the locking discipline to prevent data races. Behavioural analysis techniques aim

to extract the system behavioural model from execution traces that can then be used for

comparison with real execution. For instance, they can be used to detect differences between

the actual behaviour and the modelled one, inferring the cause and potentially uncovering

faults. Another usage example is for regression testing (i.e., compare different versions), or

component-based testing (i.e., compare the behaviour of component in different contexts).

Other verification techniques that it is worth to mention are theorem proof and symbolic

execution , which are used in rare case for very small piece of code or in conjunction with

other techniques. For instance, symbolic execution may be used for symbolic testing . The

key principle of symbolic execution is to summarize the values of variable with few symbolic

value and then verify properties on this “reduced” program version. Although the reduced

set of possible states, symbolic execution still turns out to be inapplicable for medium/large

programs. Symbolic testing uses symbolic execution principle, but it does not run all the

Chapter 1. Software Reliability and Verification 50

possible state space; it cuts off paths up to a given depth according to heuristic criteria and

verifies few critical properties. The Prefix tool is an example of symbolic testing application,

which aims to solve memory-related problems, such as invalid pointers, faulty allocations,

uninitialized memory and improper operations on resources (e.g., on files).

Chapter 2

Improving Verification
Effectiveness for Reliability

This chapter surveys the existing approaches that engineers can rely on to plan an effective reliability-
oriented verification. When coping with high reliability demands and tight time/cost constraints, one
fundamental aspect concerns the identification of the most critical parts of the system, i.e., the ma-
jor contributors to its unreliability. This is crucial to conveniently distribute efforts for verification.
Moreover, even suitably allocating efforts, an important choice regards the verification techniques to
adopt in the plan. Engineers should know what techniques most impact the final reliability and how
the system being tested influences their performances. Studies comparing techniques could be impor-
tant to drive this selection. This chapter discusses past work and open challenges regarding these
issues. Relevant studies which solutions, methods and results are either useful for the definition of
the proposed approach or for comparison purpose only are reported. The problem of software aging,
which is a phenomenon that this thesis intends to consider in the testing phase instead of operational
time, is also discussed. The chapter will then describe the contribution provided by this thesis to go
beyond the current state-of-the-art.

2.1 Efforts Allocation Models

Approaches to allocate efforts to system’s software modules/components/subsystems aim

to distribute resources available for verification in a cost effective manner. The princi-

pal way to cope with this problem is to use a model: typically the objective is to obtain

some kind of predictions (e.g., faults content) from system features that are then used to

51

Chapter 2. Improving Verification Effectiveness for Reliability 52

assign resources accordingly. Note that resources identifying the testing effort can be in-

tended as person/months, number of test cases, CPU testing time, calendar testing time,

and other metrics. As described in the next chapter, Testing Effort Functions (TEFs) can

be used to describe the testing effort-testing time relationship, and be suitably integrated

in the models. In the following subsections solutions proposed in the literature are surveyed.

2.1.1 Modelling objective: Fault removal vs. Reliability

The task of identifying the parts of the systems that should receive more or less attention

in the verification phase mainly depends on what specific purpose the verification has to

serve. Typically, verification aims to detect as many faults as possible in the software.

Hence criteria to distribute efforts should reflect this need: allocating a greater effort on

software modules/components/subsystems expected to contain more faults. Towards this

aim, much research has been produced in the past on fault-proneness models, i.e., models

able to estimate the content of faults of software modules based on several software metrics.

Less commonly, verification goal is to improve the system reliability. Note that detect-

ing more faults does not imply improving the reliability. Reliability improvement requires

the removal of those faults which occurrence at operational time is more frequent. A test-

ing session can therefore remove fewer faults than another but deliver system with higher

reliability.

In this case, criteria to allocate effort do not look for modules with higher content of faults.

Chapter 2. Improving Verification Effectiveness for Reliability 53

Rather, modules most affecting system reliability have to be sought, i.e., the ones most

critical from reliability perspective. This is not trivial. Research area closest to this need

is the one dealing with the well-known problem of “Reliability Allocation”.

FAULT PRONENESS MODELS

As far as fault-proneness models is concerned, several studies related in the past software

metrics to observed faults in a given number of samples (i.e., software programs) [51]. Sta-

tistical techniques are usually adopted in these papers in order to build regression models

that allow one to predict faults content starting from metric values.

In [52] and [53] Object-oriented metrics were proposed as predictors of faults density. A

more recent study [54] empirically validated three OO metrics suited for their ability to

predict software quality in terms of fault-proneness: the Chidamber and Kemerer (CK)

metrics, Abreu’s metrics for object-oriented design (MOOD), and Bansiya and Davis’ qual-

ity metrics for object-oriented design (QMOOD).

The study in [54] presents a survey on eight empirical studies showing that OO metrics are

significantly correlated with faults.

Other studies using metrics are in [56, 57], which investigated design metrics able to predict

modules more prone to failures. In [58], authors used a set of 11 metrics and an approach

based on regression trees to predict most faulty modules. In [59] authors mine metrics to

predict the amount of post-release faults in five large MicrosoftÕs software projects. They

adopted the statistical techniques known as Principal Components Analysis (PCA) in order

to transform the original set of metrics into a set of uncorrelated variables, with the goal

Chapter 2. Improving Verification Effectiveness for Reliability 54

of avoiding the problem of “multicollinearity” (i.e., an inflated variance evaluation caused

by the strong correlation among predictors). Authors also suggest a procedure to build

powerful regression models.

The work in [60] uses logistic regression to relate software measures and fault-proneness

for classes of homogeneous software products. Authors in [61] extend this study, reporting

an empirical analysis of the validity of multivariate models for predicting software fault-

proneness across different applications. Some statistical techniques have been investigated

by Khoshgoftaar, who applied discriminant analysis with Munson [62] and logistic regres-

sion with Allen, Halstead, Trio, and Flass [63].

In many cases, common metrics provide good prediction results also across several different

products. However, it is still quite difficult to claim that a given regression model or a set

of regression models is general enough to be used even with very different products, as also

discussed in [59]. On the other hand, they are undoubtedly useful within an organization

developing one specific class of systems, and that in its process iteratively collects faults

data.

RELIABILITY ALLOCATION

Lot of work in the past considered the optimal allocation of reliabilities to minimize a cost

function related to the design or to the verification phase. Although much initial research

dealt with hardware systems (e.g. the series-parallel redundancy-allocation problem has

been widely studied [66, 67, 68]), also software systems received attention.

Most of work in the software area coped with the design phase, in which the goal is to

Chapter 2. Improving Verification Effectiveness for Reliability 55

select the right set of components with a known reliability and the amount of redundancy

for each one of them, minimizing the total cost under reliability constraint [69], or max-

imizing the total reliability under cost constraint [70, 71, 72] (more specifically, this is

a redundancy reliability allocation problem). In some cases they also considered the re-

dundancy strategies and the hardware. For instance, the work in [70] defines a model

comparing different redundancy strategies (the N-version programming on a single node,

the N-version programming on more nodes and Recovery-Block strategy) at different level,

giving as output the best redundancy strategy to achieve the required reliability. In this

case, the costs defined in the objective function are considered already known and constants.

When redundancy is not considered, the reliability allocation problem can still refer

either to the design or to the verification phase. For instance, authors in [73] proposed an

economic model to allocate reliabilities during the design phase, minimizing a cost function,

which depends on fixed development costs and on a previously experienced failure decrease

cost.

The work in [74] also refers to the design phase and authors define a general-behaviour cost

function to relate the costs to the reliability of a component. Cost in the design phase can

refer to development (i.e., how much development resources should be employed to produce

a component with reliability R), but more commonly it refers to the acquisition (i.e., how

much buying a component with certified reliability R costs). Hence the problem in this case

is to decide the best policy to obtain the desired overall system reliability by acquiring (or

developing) components at minimum cost.

Chapter 2. Improving Verification Effectiveness for Reliability 56

The problem in the verification phase is quite different. Here components reliability has to

be achieved by testing activity, and predicting this is indeed more challenging. The question

is: how much testing should each component receive in order to meet the overall reliability

goal at minimum testing cost?

Contrarily to the design, for this problem not many papers appeared in the literature.

Among these, authors in [75], proposed an optimization model with the cost function

based on well-known reliability growth models. Using growth model in this case is essen-

tial, since they are able to describe relationship between testing time (more generally testing

resources, such as man/month, calendar time, number of test cases) and reliability growth

that testing produces.

Authors in [75] and [76] also include the use of a coverage factor for each component,

to take into account the possibility that a failure in a component could be tolerated (but

fault tolerance mechanisms are not explicitly taken into account, and the coverage factor

is assumed to be known). The authors in [64] also try to allocate optimal testing times to

the components in a software system (here the reliability-growth model is limited to the

Hyper-Geometric (S-shaped) Model).

Some of the cited papers [70, 75, 76] also consider the solution for multiple applications;

i.e., they aim to satisfy reliability requirements for a set of applications. To solve such

models typically heuristic approaches are needed. Authors in [77] present a recent overview

on solution techniques for the reliability allocation problem.

Chapter 2. Improving Verification Effectiveness for Reliability 57

2.1.2 Explicit vs. Implicit Architecture

Effort allocation approaches necessarily need to consider in some way the system architec-

ture, i.e., they need to characterize the system in terms of components and their interaction.

This means that the way in which components interact at runtime should also be considered:

a component with high fault content but rarely used could be decided to receive less testing

than a less faulty but used component. However, almost all the described solutions consider

the system architecture only statically, as sum of components. Fault-proneness models are

not conceived to take into account also this aspect: they assume that components with

more faults must receive more testing, regardless their runtime usage.

Among reliability allocation models, none of the cited papers explicitly considers the ar-

chitecture of the application. Most of them belong to the class of the so-called additive

models [47] (presented in section 1.2.3), in which the system failure intensity (and relia-

bility) is computed as the sum of the individual components failure intensities. In other

words, components usage is not contemplated in the model. Work in [73] and [78], as well

as [79] and [70], by partially taking into account the utilization of each component with a

factor supposed to be known (i.e., engineers should assign a value to a factor indicating the

component utilization; that is not easily derivable). Moreover, among these, only Everett

[79] refers to the verification phase. There are, however, other ways to describe a software

application, which can explicitly consider the architecture and components usage, and lend

themselves to an easy integration with the other aspects of interest for reliability modelling,

such as the inclusion of fault tolerance mechanisms. They have been briefly introduced in

Chapter 2. Improving Verification Effectiveness for Reliability 58

section 1.2.3 (the state-based models and the path-based models) and have been adopted

in this thesis to overcome the limitations of existing models. Section 2.4, and then chapter

3, describes solution we adopt for efforts allocation.

2.2 Comparing Verification Techniques

To select the best technique for a product, a deep knowledge about verification techniques

and their relationship with the objective of verification is required, i.e., how they can con-

tribute to achieve the pursued goal.

A reasonable way to gain this knowledge is to compare techniques, or similarly to exploit

results of past comparisons. In the following subsections, studies about comparison among

verification techniques are presented.

2.2.1 Comparison criterion: Fault Removal vs. Reliability

Several studies in the literature dealt with the comparison of software verification tech-

niques, since eighties. Very often, studies referred to classical testing and analysis tech-

niques, like functional testing, various forms of structural testing, and manual inspection.

One of the main issues addressed in these works is the appropriateness of the adopted

comparison relations: the first question authors attempted to answer is “how to correctly

compare the effectiveness of testing strategies?”. One of the first comparison relations was

used, in 1982, by Rapps and Weyuker [80, 81], known as the “subsumption relation”, where

a criterion C1subsumes a criterion C2 if for every program P , every test suite that satisfies

Chapter 2. Improving Verification Effectiveness for Reliability 59

C1 also satisfies C2 .

They compared several data-flow and control-flow test case selection strategies by this re-

lation. However, this criterion was recognized to be inadequate (many testing techniques

were incomparable using subsumption) or even misleading, as pointed out in [82].

Successively, the “power relation” was introduced by Gourlay [83], which defined a criterion

C1 to be at least as powerful as C2 if for every program P , if C2 detects a failure in P ,

then so does C1. Although this made a positive step, the incomparability problem was not

solved.

The introduction of the “BETTER relation” attempted to address the problems of both the

previously introduced relations [84]. Authors first defined the notion of a test case being

required by a criterion C to test a program P , if every test set that satisfies C for that

program must include that test case. Then, they defined the relation, stating that criterion

C1 is BETTER than criterion C2 if for every program P , any failure-causing input required

by C2 is also required by C1. Although this attempt, authors also stated that very few tech-

niques are comparable with this relation, leaving the incomparability problem unsolved.

In [88] authors addressed the problem by a different view, followed then by others [85].

They address the problem by using a probabilistic measure. Along this trend, authors in

[86] introduced the properly covers and universally properly covers relation, which use the

probability that a test suite expose at least one fault as metric to compare and rank tech-

niques. This paper represented an important step, since research on this field switched to

probabilistic comparison criteria: a test suite or a criterion is not deterministically better

than another, but just probabilistically. This better reflects the reality, where the high

Chapter 2. Improving Verification Effectiveness for Reliability 60

number of variables makes the detection effectiveness of a criterion not guaranteed to be

always better than another: it is just more likely that a criterion detects more faults than

another.

It is relevant for this context to point out that none of these studies consider reliability

measure to compare techniques. From these papers it is not possible to infer what is the

impact that a testing technique has on the final system reliability. As already mentioned,

even if a technique is guaranteed to detect more faults than another one, it is not possible

to say that reliability improves.

However, although not much research has been devoted to this aspect, few work addressed

from a theoretical point of view this issue. In [65], the authors analytically compared what

they refer to as debug testing with operational testing with the goal of evaluating which

technique produces higher reliability. With debug testing, they intend criteria to select test

cases that will cause failures to occur. With operational testing, they intend what we called

“statistical testing”, i.e., selecting inputs according to a statistical distribution representa-

tive of real usage.

2.2.2 Method of analysis: theoretical vs. empirical

Much of the literature, since the eighties, evaluates test cases selection criteria by theo-

retical comparison. All the cited studies in the previous subsection were about theoretical

comparisons.While with the described theoretical relations, authors were able to compare

many testing criteria, the main problem of this approach is the practical applicability of

Chapter 2. Improving Verification Effectiveness for Reliability 61

results in real development projects. Work in [87] lists a set of assumptions that are difficult

to satisfy in practice; the main issue is that the “idealized” versions of compared techniques

are never the actual versions used in practice, due to the numerous underlying assump-

tions. Moreover, the testing environment changes cannot easily be taken into account (e.g.,

the human variability, due to different expertises, experiences and acquired intuition). On

the other hand, there are few empirical studies that compare the effectiveness of testing

techniques in real-scale software systems. Many of them used generally small programs,

specifically written for experimentation [88, 89, 90, 91, 92]; some examples of large projects

are present in [93, 94].

The lack of such studies is mainly due to the difficulties and cost associated with this kind

of analysis; however also in [87] it is recognized that there is a profound need for empirical

study in this field. The major conclusions are that our current testing technique knowledge

is very limited. The work in [96] reports a survey on testing techniques experiments. They

considered: random testing, functional testing, control flow testing techniques, data flow

testing and regression testing techniques. Conclusions drawn from this analysis are even

worse than Weyuker in [87]. They conclude that “there is at present no formally tested

knowledge and over half of the existing knowledge is based on impressions and perceptions

and, therefore, devoid of any formal foundation”.

From reliability perspective, the lack of studies highlighted in the previous subsection is

confirmed for empirical studies. The paper in [95] is one of the rare examples in which tech-

niques are compared empirically with respect to the delivered reliability. Experiments were

conducted on a moderate-sized C-program (about 10,000 LOC) produced by professional

Chapter 2. Improving Verification Effectiveness for Reliability 62

programmers and containing naturally occurring faults. Compared techniques were branch

testing, the all-uses data flow testing criterion, and operational testing.

2.3 Software Aging

Software Aging can be defined as a continued and growing degradation of software internal

state during its operational life. This problem leads to progressive performance degrada-

tion, occasionally causing system crashing. Due to its cumulative property, it occurs more

intensively in continuously running processes that are executed over a long period of time.

It is usually due to the already mentioned “aging-related” bugs.

Recent studies showed that a large number of software systems, employed also in business-

critical or safety-critical scenarios, are affected by Software Aging. The Patriot missile

defence system employed during the first gulf war, responsible for the scud incident in

Dhahran, is perhaps the most representative example of critical system affected by software

aging [7], in which crash was caused by an accrued round-off error in the calculation of

target’s expected position. Users of the system were warned that very long runtime could

negatively affect system’s targeting capabilities. Unfortunately, they were not given a quan-

titative evaluation of such “very long runtime”, thus leading to the famous incident in which

28 people were killed.

Typically, this “long-running” phenomenon is not addressed in the testing phase, as we

intend to do in this thesis. It is instead dealt with approaches that aim to predict the

time to failure (in this case, it is the time to exhaustion), and then at operational time,

Chapter 2. Improving Verification Effectiveness for Reliability 63

to activate proper actions (that are usually referred to as “rejuvenation techniques”) with

an optimal schedule (i.e., neither too early because it is useless and expensive, nor too

late, but just before the failure occurrence). In the following such approaches are briefly

described. They are categorized in analytic modelling and measurements-based approaches.

ANALYTIC MODELLING

Analytic modelling generally determines the optimal rejuvenation schedule starting from

models. Typically, to model the software system affected by aging, stochastic processes

representing system’s states are adopted. In [97] a Markov Decision Process (MDP) is used

to build a software rejuvenation model in telecommunication system. In [98] Markov semi-

ReGenerative Processes (MGRP), in conjunction with Stochastic Petri Nets (SPN), are used

to build a simple but general model for estimating the optimal rejuvenation schedule in a

software system. Stochastic Deterministic Petri Nets (SDPN) are employed in [99], to build

a model to analyze the performability of cluster systems under varying workload. Non-

homogeneous, continuous time Markov Chains are instead used in [100]. Semi-Markovian

Processes have also been used to model proactive fault management in [101].

Different probabilistic distributions were chosen for time-to-failure (TTF). Some papers,

such as [98] are restricted to an hypo-exponential distribution, whereas other papers, such

as [102] employs more general distributions for TTF, like the Weibull distribution. However

these TTF models are not able to capture the effect of load on aging.

A common shortcoming with analytic modelling is that the accuracy of rejuvenation sched-

ule deeply depends on the goodness of the model (i.e., how good the stochastic model used

Chapter 2. Improving Verification Effectiveness for Reliability 64

to represent the system approximates the real behaviour of the system) and on the ac-

curacy of the parameters used to solve the model (e.g., failure rate distribution expected

value, probability of transition from the “steady” state to the “degraded” state). Trivedi

and Vaidyanathan in [38] addressed this problem, by building a measurement-based semi-

markovian model for system workload, defining a set of workload states through cluster

analysis, estimating the time to exhaustion (TTE) for each considered resource and state

using reward functions, and finally building a semi-Markovian availability model, based on

field data rather than on assumptions about system behaviour.

MEASUREMENT-BASED APPROACH

The basic idea of Measurement-based approaches is to directly monitor attributes subject

to software aging, trying to assess the current “health” of the system and obtain predictions

about possible impending failures due to resource exhaustion or performance degradation.

In [105], a measurement-based analysis performed on a set of Unix workstation is reported.

A set of 9 Unix Workstations has been monitored for 53 days using an SNMP-based mon-

itoring tool. During the observation period, 33% of reported outages were due to resource

exhaustion, highlighting how much software aging is a non-negligible source of failures in

software systems. An interesting workload based software aging analysis can be found in

[106]. This paper presents the results of an analysis conducted on the same set of Unix work-

station of the previous paper, which takes into account also some workload parameters, such

as the number of CPU context switches and the number of system call invocations. In this

case different workload state are first identified through statistical cluster analysis; then a

Chapter 2. Improving Verification Effectiveness for Reliability 65

state-space model is built determining sojourn time distributions; a reward function, based

on the resource exhaustion rate for each workload state, is then defined for the model. By

solving the model, authors obtained resource depletion trends and TTE for each considered

resource in each workload state. Although a consistent number of measurement-based anal-

ysis deal with resource exhaustion, only a few of them deal with performance degradation.

In [107], Gross et al. applied pattern recognition methods to detect aging phenomena in

shared memory pool latch contention in large OLTP servers. In [108, 109], Trivedi et al.,

analyzed performance degradation in the Apache Web Server by sampling web serverÕs

response time to predefined HTTP requests at fixed intervals.

Software Aging in a SOAP-based server was analyzed in [110]. A SOAP-based web server

running on top of a Java Virtual Machine, has been stressed with different workload distri-

bution. For each considered distribution, throughput loss and memory depletion highlighted

the presence of software aging.

Finally, in [111], Malek et al., propose a best practice guide for building empirical models

to forecast resource exhaustion. This best practice guide addresses the selection of both

resource and workload variables, the construction of an empirical system model, and the

sensitivity analysis.

2.4 Thesis Contribution

When quality manager has to verify a critical system, he has on one hand standard relia-

bility requirements to satisfy, and, on the other hand, a deadline for delivering the system

Chapter 2. Improving Verification Effectiveness for Reliability 66

and cost constraints that limit his choices. What he needs is a clear quantitative evidence

of consequences of his choices. Especially for large systems, he cannot rely only on his

intuition and experience to take crucial decisions. In particular, he should know, for the

specific system being developed, what happens if a component is devoted a given testing

effort or is tested with a particular set of techniques: what is the impact that these choices

have on the final reliability and on the overall cost/time. On the base of such knowledge,

possibly refined across several projects, he should then tune the process and setting up a

plan for his system, simply following a quantitative reasoning that highlights cost/benefits

of each choice. Based on these considerations, this thesis proposes a solution to

carrying out an effective verification specifically oriented to improve reliability.

It intends to provide engineers with quantitative means that should be adopted and em-

bedded in their process, to allow them conveniently allocating efforts and selecting

techniques for the system under testing. These are presented in chapter 3, 4 and 5. A

procedure to best use such means is outlined, encompassing the steps that engineers should

take to plan verification and tune a process that refines itself across several projects. This

is described in chapter 6.

With respect to past research, as discussed in the previous sections, not much work in the

past dealt with what we referred to as “reliability-oriented” verification. Solutions to sin-

gle issues have been proposed, as for instance reliability allocation models or rejuvenation

techniques (at runtime) for software aging. However no comprehensive solution looking at

the verification process (and choices it implies) has been proposed. Generic solutions for

Chapter 2. Improving Verification Effectiveness for Reliability 67

process improvement, such as ODC or RCA described in section 1.3.2, aim to identify pro-

cess bottlenecks (e.g., ineffective phases), but they are not conceived to address the outlined

problems. The support to a reliability-oriented verification process in its most

critical choices is therefore the major contribution of this thesis. In addition,

previous sections showed that existing related works addressing single issues also suffer from

several limitations. In the following subsection, the thesis contributions with respect to such

related work are highlighted.

2.4.1 Comparison

As for efforts allocation driven by reliability objective, existing models (i.e., reliability

allocation models) do not consider important issues for their actual applicability. They

often make so many assumptions that their adoption is difficult in practice. For instance

none of the solutions described in the section 2.1.1 considers that:

• A model for reliability analysis of a software architecture should explicitly describe

the relationships among its components, in order to consider the effects of individual

component reliabilities on the system reliability. In other words, the architecture

cannot be viewed as the sum of its components; interaction plays a crucial role.

• The reliability of a complex system does not only depend on the application compo-

nents, but also on the operational environment; thus, a model should also take into

account the reliability of the underlying software layers, such as the Operating System.

Indeed, due to the intensive and continuous usage of OS services by the application

Chapter 2. Improving Verification Effectiveness for Reliability 68

components, the OS reliability level has a significant impact on the overall system

reliability so that it should not be neglected;

• Since in a critical application fault tolerance mechanisms are increasingly adopted, a

model should consider the presence of such means of failures mitigation;

• For a model to be useful in practice, it needs to be flexible enough to give detailed an-

swers when the user has a lot of information, and to continue giving useful indications,

even though less accurately, when not much information is available.

The solution we propose to quantitatively identify the most critical components of a software

architecture includes all of the above-mentioned aspects affecting the reliability of a complex

software system. Moreover, it addresses the issue, often neglected, of how retrieving the

necessary information to parameterize the model and provide accurate results.

Note that in section 2.1.1, we presented fault-proneness models as potential mean to

allocate testing efforts. For the purpose of this work, allocating efforts based on faults

content is not the best solution; we need to allocate efforts based on reliability (for this

reason we adopted a reliability-allocation solution). However, in this thesis fault-proneness

models are very important. Their predictive power has been used in two different (both

innovative) ways, detailed in the following, i.e., for characterizing software with respect to

fault types (according to the ODC scheme), useful for verification techniques selection, and

for the aging characterization of the system.

Chapter 2. Improving Verification Effectiveness for Reliability 69

As for verification techniques selection , past studies show that there is very little

comparison among techniques from reliability perspective; hence it is not possible to say

if a technique is better than another to improve reliability. Moreover, such a statement

could be true for a system and not for another. In this thesis we propose a solution to

drive techniques selection tailored for the system under test, and according to reliability

improvement that they are able to provide in that specific case.

Two empirical analyses have been conceived and carried out towards this aim. First, we at-

tempted to relate some software features to distinct ODC fault types potentially contained

in a software system by fault-proneness models; the hypothesis that we investigated is that

values of some metrics can be related to the type of faults present in the software. Such

a relationship would allow engineers to obtain a preliminarily estimate not only of faults

content, but also of faults type possibly present in a module.

Second, four widely used verification techniques have been empirically compared from re-

liability’s point of view and with respect to the distinct fault types (again according to

the ODC scheme). Hence, reliability improvement brought by one technique is tied to the

kinds of fault present in the software (and to other factors too), which in turn are related

to software metrics.

Results of such analyses are tied together: starting from the features of the software sys-

tem being developed, described by its metrics, engineers characterize the system with the

preliminary estimate of faults type and content. Then, they can select techniques by esti-

mating the reliability improvements that a technique may bring in that specific situation

(i.e., with those fault types and contents describing the system). The detailed procedure

Chapter 2. Improving Verification Effectiveness for Reliability 70

is outlined in chapter 6. In this procedure the problem of software aging is also taken

into account. In particular, we sought relationships, again through concepts coming from

fault-proneness models, between software aging and some common software metrics, along

with other specific metrics potentially symptomatic of this phenomenon. In this case, the

goal is to provide testers with a preliminary indication of what modules should receive more

attention (in this, specifically for aging testing).

Summarizing, contributions transpired from the above description target the identified

issues for the effective reliability-oriented verification. Figure 2.1 summarizes such contribu-

tions, along with further side-effect contributions, with respect to the problem they coped

with and to the challenges they addressed. The following chapters will explode each of

them, providing further details.

Chapter 2. Improving Verification Effectiveness for Reliability 71

Figure 2.1: Summary of Contributions

Chapter 3

Verification Resources Allocation

Efficacy of the verification phase strongly depends on the correct identification of the most critical
components in the software architecture, as the available testing resources are usually allotted based
on the components’ risk levels. Identifying parts of a complex system that are the major contributors
to its unreliability is not always an easy task, and consequently the testing resource allocation is most
often based on engineering judgement, and hence suboptimal. Some standards and methodologies for
critical systems suggest to assign predefined risk levels to components, based on the risk level of the
services in which they are involved. This is clearly a rough-grained assignment that merely provides
some guidelines for the verification phase. It does not consider the costs and does not provide suf-
ficient modelling basis to let engineers quantitatively optimize resources usage. Existing reliability
allocation models are inadequate for the reasons exposed in the previous chapter (section 2.4.1). This
chapter presents an allocation model to quantitatively identify the most critical components to best
assign the testing resources to them. The chapter first describes the mathematical formulation, then
discusses its practical applicability depending on the actual available information about the system,
and finally presents its application to an empirical case study.

3.1 Model Overview

Qualitative approaches to identify critical components of an architecture, based on en-

gineers’ judgment, do not provide sufficient quantitative information to suitably allocate

testing resources and quantify the reliability of the final system. Moreover, they could even

lead to wrong assignment (e.g., a less reliable, but rarely used component could affect the

total reliability less than a more reliable and frequently used one). Allocation based on

quantitative reasoning is essential to answer questions such as:

72

Chapter 3. Verification Resources Allocation 73

• How much risk does a component pose to the system?

• Do components at the same risk level have the same impact on the system reliability?

• What is the impact of a change in the reliability of a component on the system

reliability?

Most importantly, non-quantitative approaches cannot answer the following question:

• What is the reliability that each component needs to achieve in order to

assure a minimum system reliability level, and at what cost?

We believe that a system analysis aiming at assuring the required reliability while min-

imizing the testing cost needs to be quantitative.

The approach presented in this chapter aims to quantitatively address this analysis. We

present an optimization model for testing resources allocation that includes all the aspects

affecting the reliability of a complex software system discussed in section 2.4.1.

In particular, to represent the software architecture, we employ the so-called architecture-

based reliability model; a Discrete Time Markov Chain (DTMC) type state-based model is

adopted. This allows us to explicitly consider the effects of such architectural features as

loops and conditional branching on the overall reliability (section 3.2). Moreover, the archi-

tectural model encompasses the operating system to consider its reliability and its influence

on the application. The proposed optimization model also considers the most common fault

tolerance mechanisms (such as restart a component, retry application as recovery mecha-

nisms as also a failover to a standby) that critical systems typically employ (section 3.3.2).

Chapter 3. Verification Resources Allocation 74

Furthermore, we try to impart the necessary flexibility to the model by: (i) providing differ-

ent levels of solutions according to the information the user gives as input, and (ii) carrying

out a sensitivity analysis in order to analyze the effect of the variation of some parameters

on the solution. How to retrieve the information needed for model parameterization is also

an addressed issue (section 3.4). Finally, the impact of performance testing time and the

second-order architectural effects are also considered for a greater accuracy of the result.

The optimization model is implemented in a prototype tool, which receives the model pa-

rameters (e.g., the DTMC transition probabilities) and the user options as inputs and

provides the solution by using an exact optimization technique (the sequential quadratic

programming algorithm).

The approach is then applied to an empirical case study to verify the accuracy of the pre-

diction abilities (section 3.5). The program chosen consists of almost 10,000 lines of C

code, and was developed for the European Space Agency (ESA). Once we built the DTMC

architectural model, we predicted the amount of testing needed for each component, in

order to achieve a predefined level of reliability. Then the software was tested according

to the predicted times and the actual achieved reliability was compared with the predicted

reliability. We also evaluated the effect of the error in the parameter estimations on the

prediction accuracy.

The model presented in this chapter is reported in [103]. In the following, Section 3.2 de-

scribes the adopted architectural model and Section 3.3 illustrates the optimization model.

Section 3.4 discusses the possible sources of information about the parameters of the archi-

tecture and its components. Finally, Section 3.5 discusses the experiments, followed by the

Chapter 3. Verification Resources Allocation 75

conclusion.

3.2 Architectural Model

The proposed approach adopts a state-based architectural model (see section 1.2.3) to

represent the architecture, and NHPP additive models to describe the reliability growth

of components with testing time. It tries to leverage state-based models ability of more

accurate capture of the architecture, by combining it with the NHPP models ability in

relating the reliability and the testing time, as showed in the next Section. In this section

the DTMC architectural model is described. Architecture-based models are conceived to

relate the behaviour of the system (expressed by some attribute, e.g., the reliability) to the

behaviour of its parts. In the literature, the parts of the application under study are often

referred to as “components”. Although the notion of component is not well defined and

universally accepted (except for applications based on component models such as CCM,

EJB or DCOM), in the context of architecture-based analysis it is intended as a logically

independent unit performing a well-defined function [44]. The level of decomposition, which

defines the granularity of components, is an analysis choice, addressed by a trade off between

a large number of small units and a small number of large units.

We describe the software architecture by an absorbing DTMC, to represent terminat-

ing applications (as opposed to irreducible DTMCs, which are more suitable to represent

continuously running applications.) A DTMC is characterized by its states and transition

probabilities among the states. The one-step transition probability matrix P = [pi,j] is a

stochastic matrix so that all the elements in a row of P add up to 1 and each of the pi,j

Chapter 3. Verification Resources Allocation 76

values lies in the range [0, 1]. The one-step transition probability matrix with n states and

m absorbing states can be partitioned as:

P =
(
Q C
0 I

)
(3.1)

where Q is an (n-m) by (n-m) sub-stochastic matrix (with at least one row sum < 1),

I is an m by m identity matrix, 0 is an m by (n -m) matrix of zeros and C an (n-m) by

m matrix. If we denote with P k the k-step transition probability matrix (where the entry

(i,j) of the submatrix Qk is the probability of arriving in the state j from the state i after

k steps), it can be shown [17] that the so-called fundamental matrix M is obtained as

M = (I −Q)−1 = I +Q+Q2 + · · ·+Qk =
∞∑
k=0

Qk (3.2)

Denoting with Xi,j , the number of visits from the state i to the state j before absorption,

it can be shown that the expected number of visits from i to j, i.e., vi,j = E[Xi,j], is the

mi,j entry of the fundamental matrix. Thus, the expected number of visits starting from

the initial state to the state j is:

v1,j = m1,j (3.3)

These values are called expected visit counts; we denote them with Vj = v1,j . They are

particularly useful to describe the usage of each component in the application control flow.

We can also compute the variance of visit counts, using M [114]. Denote with σ2
i,j the

variance of the number of visits to j starting from i. If we indicate with MD the diagonal

matrix with:

Chapter 3. Verification Resources Allocation 77

MD =
{
mi,j if i = j
0 otherwise

(3.4)

and define M2 = [m2
i,j], we have

σ2 = M(2MD − I)−M2 (3.5)

Hence

V ar[Xi,j] = σ2
i,j (3.6)

To represent the application as a DTMC, we consider its control flow graph. Assuming

that an application has n components, with the initial component indexed by 1 and the

final component by n, DTMC states represent the components and the transition from state

i to state j represents the transfer of control from component i to component j. Following

the procedure explained above, we can compute the expected number of visits to each

component and its variance.

The DTMC representation, along with the concept of visit counts, has been used to express

the system reliability as a function of component reliabilities.

In particular, denoting with Ri the reliability of component i, the system reliability is

the product of individual reliabilities raised to the power of the number of visits to each

component, denoted by X1,i (i.e., each component reliability is multiplied by itself as many

times as the number of times it is visited starting from the first component); i.e., R ≈∏n
i R

X1,i

i . Since the number of visits to a component is a random variable (except for

the last component), the so-computed system reliability is also a random variable. Thus,

Chapter 3. Verification Resources Allocation 78

denoting with E[R] the total expected reliability of the system, we have:

E[R] ≈
n∏
i

E[RX1,i

i] ≈ (
n−1∏
i

R
E[X1,i]
i)Rn (3.7)

where E[X1,i] is the expected number of visits to component i (and X1,i is always

1 for the final component n). The adopted model is known to belong to the class of

hierarchical approaches; this kind of models, though approximate, lead to quicker and more

tractable solutions than composite models [43]. To also take into account the second-order

architectural effects and obtain a more accurate result, we can expand the above equation

according to the Taylor series:

E[R] = [
n−1∏
i

(Rm1,i

i +
1
2

(Rm1,i

i)(logRi)2σ2
1,i)]Rn (3.8)

Where m1,i = E[X1,i] and σ2
1,i = Var[X1,i] (since X1,n is always 1, m1,n = 1 and σ2

1,n =

0).

The second-order architectural effects are captured by the variance of the number of vis-

its. The only source of approximation is the Taylor series cut-off. Note that the described

model, as most of the architecture-based models, assumes independent failures among com-

ponents. A more complex analysis would need to also consider failure dependencies. To

complete the architectural model description, we add a state representing the Operating

System (OS). The OS is considered as a component accessed through the system call inter-

face. Transitions to the Operating System represent the transfer of control from components

to the OS, i.e., a service request carried out via a system call.

Assume for now that the OS reliability per request is known and denote it with K

Chapter 3. Verification Resources Allocation 79

(further details about how to estimate this value are in Section 3.4); we have that

K ′ = E[KX1,OS] = (Km1,OS +
1
2

(Km1,OS)(logK)2σ2
1,OS) (3.9)

where m1,OS and σ2
1,OS respectively denote the mean and the variance in the number of

visits to the OS. In the same manner, to simplify the notation, define:

R′i = E[RX1,i

i] = (Rm1,i

i +
1
2

(Rm1,i

i)(logRi)2σ2
1,i) (3.10)

and the expression 3.8 becomes:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ (3.11)

In the optimization problem, E[R] is required to be greater than a predefined level, RMIN

(RMIN is an input) and Ri values are the decision variables (i.e., they are the output), while

K is a given constant.

3.3 Optimization Model

In this Section we present the optimization model starting from a basic form and then

enrich it by adding several features. The goal of the optimization model is to find the

best combination of testing efforts to be devoted to each component so that they achieve

a reliability level that can assure an overall reliability E[R] ≥ RMIN . Based on this model

output, the tester will perform the verification activities focusing greater efforts on more

critical components. If we assume that the reliability of each component grows with the

testing time devoted to it, we can describe this relation by a software reliability growth model

(SRGM), introduced in the Section 1.2.3. Such models are usually calibrated using failure

Chapter 3. Verification Resources Allocation 80

data collected during testing; they are then employed for predictions, in order to answer

questions such as “how long to test a software”, or “how many faults likely remained in

the software”, and so on. In the context of SRGMs, the term failure intensity refers to the

number of failures encountered per unit time; its form determines a wide variety of SRGMs.

The time dimension over which reliability is assessed to grow, can be expressed as calendar

time, clock time, CPU execution time, number of test-runs, or some similar measures.

However, in general, the testing effort and its effectiveness do not vary linearly with time.

The functions that describe how an effort is distributed over the exposure period, and how

effective it is, are referred to as testing-effort functions (TEF). To address this issue, some

SRGMs also include a TEF (Testing Effort Function) to describe this relation.

The model that we propose uses SRGMs, one for each component, to describe the relation

between the reliability of a component and the testing effort devoted to it. This relation

can be represented as T = f(λ), where T is the Testing Time and λ is the failure intensity.

Without loss of generality, we can consider “testing time” in place of “testing effort” (T =

f(λ)): in fact, if the user of the model wants to consider the testing effort variation (for one

or more components), s/he simply chooses an SRGM for that component that includes a

Testing Effort Function (TEF) (like the cited ones) and put it in the model like any other

SRGM. Hence, in the following, we refer to testing time and testing effort synonymously.

This relation can be represented as T = f(λ), where T is the Testing Time and λ is the

failure intensity.

The general optimization model will then look like:

determine the optimal values of T1, T2, . . . , Tn so as to

Chapter 3. Verification Resources Allocation 81

Minimize T =
n∑
i=1

Ti =
n∑
i=1

fi(λi) (12.a)

subject to:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ ≥ RMIN (12.b)

with i = 1 . . . n-1, n components and T indicating the total testing time for the appli-

cation to get a total reliability E[R] ≥ RMIN . Here λi variables are the decision variables

(which determine the Ti variables and that are of course present in the constraint factors,

via Ri = exp[−
∫ ti
0 λi(θ)dθ]).

Note that after the application has been tested according to the output of the model and

then released, the component failure intensities are assumed to be constant; this is rea-

sonable if the application developer does not debug or change the component during the

operational phase.1 With this assumption, the reliability of the component i at the end of

the testing will be:

Ri = exp[−
∫ ti

0
λi(θ)dθ] = exp[−λiti] (3.13)

with ti is the expected execution time per visit to component i; this equation relates

the failure intensity of component i to its reliability. Each component can be

characterized by a different SRGM (among the plethora of proposed ones). For instance, if

we assume the Goel-Okumoto model for all the components (for which λ(Ti) = aigie
−giTi),

1This assumption, anyway, is not that important for us, because the problem of estimating the reliability
variation during operation or maintenance is a different problem; for our purpose, i.e, satisfying the reliability
constraint at the software release (i.e., at the end of testing phase) in minimal tesitng time, the stated
assumption is not that relevant.

Chapter 3. Verification Resources Allocation 82

the objective function becomes T =
∑

i(1/giln(aigi/λi)), where ai is the expected number

of initial faults, λi is the desired failure intensity and gi is the decay parameter. Other

SRGMs can be used to represent the reliability-testing time relation for each component.

This general model can be specialized according to the information the tester has, in order

to get different accuracy levels in the solution in a flexible way. Assume that the tester

has no knowledge about the components and their previous history. In other words, s/he

does not have any historical data related to previous testing campaigns performed on the

components (or on similar ones), and s/he is not able to obtain such information from

the current version. Without such knowledge, s/he cannot build the SRGMs for these. In

this case a basic, minimal solution can be obtained. In particular, the output will be the

reliability that each component needs to achieve, assuming that the testing time to achieve

a failure intensity λ is the same for all components, as though they were described by the

same SRGM with identical parameters (i.e., fi(λi) = f (λi)). In this case, the model will

then look like:

Minimize T =
n∑
i=1

Ti =
n∑
i=1

fi(λi) =
n∑
i=1

f(λi) (14.a)

subject to:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ ≥ RMIN (14.b)

In other words, in this case the model does not predict the testing times needed to achieve

the required reliability. Therefore, the results have to be interpreted as an indication of the

most critical components in the architecture or, equivalently, as the reliability values each

Chapter 3. Verification Resources Allocation 83

component needs to achieve to satisfy E[R] = RMIN . Measuring the reliability during the

testing, (e.g. as in [113]), the engineers will know when the testing for each component can

be stopped. We call this solution the basic solution .

If some qualitative indications about the testing cost of components are available, it is

possible to include them as weights in the objective function. For instance, information

about process/product metrics, that is easily obtainable, can be used to estimate their fault

content. Regression trees are very useful for this purpose, but also the simpler fault density

approach can be used. By including weights proportional to the estimated fault content,

the model solution not only gives the reliabilities the components need to achieve, but

also an indication about the relative testing efforts to make them achieve such reliabilities,

according to the components complexity. The previous assumption is relaxed and becomes:

each component needs an amount of testing time that is proportional to its fault content, and

hence, indirectly to its complexity. A possible way to include the weights in the objective

function is the following:

Ti = f(
λi

1 + rWeighti
) (3.15)

leading to the following model:

Minimize T =
n∑
i=1

Ti =
n∑
i=1

f(
λi

1 + rWeighti
) (16.a)

subject to:

E[R] = [
n−1∏
i

R′i]Rn ∗K ′ ≥ RMIN (16.b)

where f (λi) is a default SRGM, the same for every component with the same parameter

Chapter 3. Verification Resources Allocation 84

as in the basic solution, and rWeighti (i.e., reliability weights) is given by the proportion

of the fault content in the component i with respect to the entire system’s estimated fault

content (i.e. faultContenti /
∑

i faultContenti). We call this solution extended solution .

Note that in order for the weights to really increase the needed testing time when they in-

crease, the f(λ) function (the inverse of the default SRGM) is preferable to be a decreasing

function, rather than an increasing/decreasing function (as for instance, the one derived by

the Goel-Okumoto SRGM), and a simple function to be evaluated. The adoption of a non-

decreasing function would require some expedients to be adopted for it to work correctly;

however, since the only important requirement is that this function be the same for all the

components, it makes no sense choosing a complex function. The most appropriate choice

is a simple SRGM, like the Goel-Okumoto model.

The general model described by the equation 12 can be fully exploited when engineers

also collect information about the failure behavior of the components. In this case the

optimal testing times needed for each component can be predicted. In fact, data about the

components failure behavior allows engineers to build a reliability growth model for each

one of the component.

Engineers often collect this kind of information during the testing process for various pur-

poses, like improving the process, assessing the achieved reliability after some testing time,

building reliability growth models, and use it in the same or in successive projects for

scheduling optimal release policies.

Chapter 3. Verification Resources Allocation 85

In this case, failure data, (i.e., interfailure times or the fault density along with the cov-

erage function [43]) are used to fit the best SRGM (the issue of how to fit an SRGM for

the current project is described in Section 3.4). By solving the model with the SRGMs,

the absolute testing times to be devoted to each component are obtained. The accuracy of

the result depends on how well the testing processes of the components are described by

their corresponding SRGMs. The previous assumptions are replaced by the common SRGM

assumptions (as summarized in [115] and many other related papers). We call this general

solution, epressed by equation 12, complete solution .

Finally, note that the model expression 12 is generalized to the case of multiple applica-

tions by adding a reliability expression, of the form of equation 3.11, for each application

as a constraint. The solution for multiple-applications problems usually requires heuristic

approaches (a genetic algorithm in our case).

3.3.1 Performance Testing Time Contribution

During the testing process of a critical application, part of testing resources could be re-

served to tune the application performance in order to fulfill performance requirements.

This is especially true for real-time systems. To also consider the additional testing re-

sources each component can require for performance testing we should know the relation

between the performance improvement and the performance testing time (i.e., a sort of per-

formance growth model). Even if this could be a topic of future research, more realistically

it is difficult to infer such relations, differently from reliability growth models. For this

reason, it is easier to include the performance testing time contributions as weights in the

Chapter 3. Verification Resources Allocation 86

objective function. In the extended solution case, where no SRGM was available, we saw

that the rWeight values represent the assumed proportionality between the testing time

and the estimated fault content (and indirectly to process/product metrics). In a similar

way, the performance weights will represent the proportionality between the performance

testing time and some performance metric, e.g., the expected total execution time for a

component (ETET). Denoting with ti the expected execution time per visit for the com-

ponent i, the ETETi is given by ETETi = Viti. The argmaxi{Viti} is the performance

bottleneck of the application [43]. Thus, assuming that performance testing time will be

proportionally devoted to components according to their ETETi value, we can add a weight,

named pWeight, in the objective function computed as (ETETi /
∑

iETETi). This weight

represents the performance testing time contribution. In this way, performance bottlenecks

will receive more performance testing time. A possible objective function for the extended

solution (and the basic one, if rWeighti = 0) can be the following:

Minimize T =
n∑
i=1

(f(
λi

1 + rWeighti
) ∗ [1 + PF ∗ pWeighti]) (3.17)

where the first term in the sum has the same meaning as in equation 16 and PF is a

factor between 0 and 1 representing the percentage of time the tester wants to devote to

performance tests. When more information is available (like maximum tolerable execution

times for each component, as in the case of real time systems) different weights are possible

(e.g., ranking the component based on the difference between the total expected execution

time and the imposed maximum execution time; the greater is the difference, the more

Chapter 3. Verification Resources Allocation 87

performance testing time they need). For the complete solution, when the objective function

is the sum of the testing time functions fi(λi) (i.e. the inverse of SRGMs), the performance

weights, pWeight, can be added in the same way, as a penalty, due to the “performance

testing” time to be devoted to each component. We thus have:

Minimize T =
n∑
i=1

(fi(λi) ∗ [1 + PF ∗ pWeighti]) (3.18)

In both cases, accounting for performance testing time will be optional (if the tester does

not want to account for it, PF will be 0). In the future, we plan to explore the relation among

performance testing times and performance improvement, in order to formulate a testing

resource allocation problem, with both minimum reliability and minimum performance

levels as constraints.

3.3.2 Fault Tolerance Mechanisms

The model considers the potential means of failure mitigation that one or more components

could employ. Main mechanisms that are adopted in critical systems, namely, the restart-

component, retry-application and failover to a standby are considered here. Denote as

“subsystem C” a component along with its standby version (in the case of no standby

version, C denotes a single component). The fault tolerance mechanisms are considered

in the following order (Figure 3.1): if a failure occurs, and the failure is detected, the

first recovery attempt is to restart-component operation; the second recovery attempt, if

the first one fails, is to retry-application and the final operation is a failover to a standby

version, once the other actions have failed. The expression we derive below for the reliability

Chapter 3. Verification Resources Allocation 88

of such a subsystem can describe components implementing one or more of these fault

tolerance mechanisms. Other mechanisms can easily be added to the model, by deriving

the corresponding reliability expression.

Figure 3.1: Fault Tolerance Mechanisms

In this case, we need to consider the following events in order to derive an expression

for the reliability of the subsystem C:

• DETFailed = detection failed given a failure occurred

• RESFailed = the restart failed given a failure and detection occurred

• RETFailed = the retry failed, given a failure occurred, detection occurred and the

restart failed

• FOFailed = the failover failed given a failure occurred, detection occurred, the restart

failed and the retry also failed.

Describing the component reliabilities as in the equation 3.13, the failure probability of

a component will be Fi = 1 - Ri = 1 - exp[-λt] , i.e. the time-to-failure (TTF) has an

Chapter 3. Verification Resources Allocation 89

exponential distribution. When a failure occurs in the primary component of a subsystem

C, the following group of events (we denote them as E1, E2, E3) can take place:

1. The detection fails, or the detection succeeds but the restart, retry and failover opera-

tions subsequently fail (i.e. PE1 = PDETFailed
+ (1 - PDETFailed

)(PRESFailed
PRETFailed

PFOFailed
):

in this case the failure has not been covered and the conditional TTF distribution of

the subsystem C is given by the TTF of the primary version:

EXP (λ) = 1− e−λt (3.19)

2. The detection succeeds and the restart also succeeds, or the retry succeeds after the

restart failed (i.e. PE2 = (1 - PDETFailed
)[(1 - PRESFailed

)+PRESFailed
(1 - PRETFailed

)]).

In this case, the failure has been covered and the same component starts operating

from scratch. Thus, the conditional TTF distribution is given by the sequence of two

identical exponentially distribution representing the same component rerun, i.e., by a

2-stage Erlang :

ERLANG(λ, 2) = 1− (e−λt(1 + λt))) (3.20)

3. The detection succeeds, the restart/retry operations fail and the failover to a standby

version succeeds (i.e.PE3 = (1 - PDETFailed
)[PRESFailed

PRETFailed
(1 - PFOFailed

)]).

Thus, after a failure occurrence, the standby version will be activated. When this

event occurs, if the standby is an identical copy of the primary version, the condi-

tional TTF distribution is given again by the equation 3.20. If a different version is

used, the distribution of the conditional TTF is given by the sequence of two indepen-

dent exponential distributions (describing the primary and the standby TTF), which

Chapter 3. Verification Resources Allocation 90

is known to be a Hypoexponential distribution. Given λ and λ1, the failure intensities

respectively of the primary version and its standby, the TTF distribution will be

HY PO(λ, λ1) = 1− (
λ1

λ1 − λ
)e−λt + (

λ

λ1 − λ
)e−λ1t (3.21)

The most general reliability expression, for a component that owns all of the considered

mitigation means, will be:

RC = 1− [PE1 ∗ EXP (λ) + PE2 ∗ ERLANG(λ, 2)+
+PE3 ∗ (sameVersion ∗ ERLANG(λ, 2)+

+!sameVersion ∗HY PO(λ, λ1))]
(3.22)

where sameVersion is 1 if the standby is identical to the primary copy, 0 otherwise. If

a component does not have any mitigation means, the probabilities PRESFailed
, PRETFailed

PFOFailed
will be 1 and PE1 will also be 1, while PE2 and PE3 will be 0:

RC = 1− EXP (λ) (3.23)

If a component has only the restart/retry mechanism and not a standby version, the

PFOF ailed = 1, PE3 = 0 and the expression becomes:

RC = 1− [EXP (λ)PE1 + ERLANG(λ, 2)PE2] (3.24)

Finally, if a component has a stand-by version, but not the restart/retry mechanism,

PRESFailed
and PRETFailed

are 1, PE2 = 0 and the expression is:

RC = 1− [PE1 ∗ EXP (λ)+
+PE3 ∗ (sameVersion ∗ ERLANG(λ, 2)+

+sameVersion ∗HY PO(λ, λ1))]
(3.25)

By replacing Ri by the RCi expression in the equation 3.10, the model will be described

by the following:

Minimize T =
n∑
i=1

(fi(λi)) (3.26)

Chapter 3. Verification Resources Allocation 91

subject to:

E[R] = [
n−1∏
i

R′Ci
]RCn ∗K ′ ≥ RMIN

This general form allows adding any other failure mitigation means for the component

i, by finding the corresponding expression for RCi . Similarly, if one wants to adopt more

complex expressions to describe the reliability of a subsystem C, it is sufficent to replace

the discussed RCi expressions with the new expression (for instance, in the discussed ex-

pression for the failover to a standby version, the statistical independence is assumed; the

RCi expression can be replaced by more complex expressions accounting for any form of

dependence). The parameters estimation (PDETFailed
, PRESFailed

, PRETFailed
, PFOFailed

) is

briefly discussed in the next Section.

3.4 Information Extraction

The described approach is designed to provide different levels of solution according to the

available information. To obtain a minimal solution, the basic information to be provided

is related to the architecture (components identification, transition probabilities), and each

component (expected execution time per visit (t) or expected total execution time (ETET)

and the OS reliability). Additional information about the component fault density and

some process/products metrics allows for computing the extended solution. Further infor-

mation about the interfailure times, or the coverage testing function / faults contents for the

components allows to obtain the SRGMs, and thus the complete solution. The ETET (or

equivalently t) for the components also allows the performance testing time to be included

in the solution. Finally, to include one of the described fault tolerance mechanisms, the

Chapter 3. Verification Resources Allocation 92

corresponding parameters need to be estimated.

Since the model results have to be applied in the testing phase, there are basically two dif-

ferent ways to obtain such information: by design/code information and simulation before

the testing or by dynamically profiling a real execution from system test cases of a previous

version. The former refers to design documents (such as UML diagrams), and to static code

analysis tools (mainly static profiling techniques and simulation tools). The latter refers to

the execution of the system test cases, which emulate the system functionalities (thus, in

this case a previous version of the software has to be profiled, since for the current version

the testing still has not started). Dynamic profiling solution assumes that the executions

will represent the real operational usage; this is generally accomplished in two ways: by as-

sessing the operational profile and assigning an execution probability to each functionality

or by shuffling and re-executing the system functional test cases, averaging the results.

Neither the design/code nor the dynamic profiling approach is the best one for all the

parameters. An approach can be better for some parameters and worse for others.

The advantage of design/code-based estimations is that it relies on the current system ver-

sion and not on a previous one. On the other hand, for some information (such as the

ETET or transition probabilities) the dynamic profiling approach can be easier to use. As

for the accuracy, if the system does not change much between the profiled version and the

current version, execution traces would be more accurate than design-based approaches; but

if the current version introduced significant changes in the code, a design-based approach

would be better. If possible, a combination of both is probably the best solution: values

Chapter 3. Verification Resources Allocation 93

obtained from past execution traces can be refined by reflecting the changes in the new

version (which could have altered some values).

A third important way can be useful for both the approaches: expert judgments and his-

torical data from similar systems. Basic information could be obtained as follows:

• Architecture: components (at each granularity level) are normally identifiable from

design documents. When documents are not available, the architecture can be ex-

tracted by using some source code2 as well as object code extraction tools. It can also

be derived by traces resulting from a dynamic profiling tool, such as gprof3. Transition

probabilities can also be derived by both approaches. As for the design phase, the

estimation can be accomplished by a scenario-based approach [104], by simulation, by

static profiling of the execution or by interviewing the program users, as in [113]. As

for the dynamic profiling, transition probabilities can be estimated by counting the

number of times the control passes from a component to others (or to itself): point

estimate of the transition probability from component i to component j will be given

by (NumberOfTransfersi,j /
∑

j NumberOfTransferi,j).

In particular, from the output of a profiler tool, the flat profile and the call graph can

be obtained: information provided by the flat profile (i.e., how much time a program

spent in each function and how many times that function was called) and by the call

graph (i.e. information regarding the other functions calling a particular function and

the functions called by it) allows us to construct the DTMC model and also get the
2for instance, SWAGkit tool. Available from: http://www.swag.uwaterloo.ca/swag-1354kit/index.html.
3GNU gprof. Available from: www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html.

Chapter 3. Verification Resources Allocation 94

relevant transition probabilities. A possible way to get these parameters is outlined

in [44]. Finally, since the OS is usually not subject to changes, its reliability can

be estimated by dynamic profiling the previous version or also other similar systems

using the same OS. The point estimate is K = 1− limnF/N , where F is the number

of observed OS failures and N is the number of test cases.

• Components: The ETET of a component (or equivalently t) in the design phase can

be obtained as in the case of the transition probabilities. Simulation could be more

suitable in this case. However, this parameter is more easily obtainable experimentally,

by the profiling approach, since the time spent in a component is an output of many

profiler tools. Note that the accuracy of the expected time per visit, t, also depends

on the granularity level chosen for a visit: for instance, in [43] a visit is intended as

the execution of a basic block4 of instruction (that in average was 2 lines of code) and,

as a result, the expected time per visit did not differ significantly among visits. This

consideration also stands for the transition probabilities accuracy. For the extended

solution, we need an estimation of the component fault contents, to compute rWeight

values. Following the fault density approach, we can estimate the fault density (FD)

from past experience of the same system (previous versions) or similar systems, or

by assuming common values from the literature or also by expert’s judgment. The

fault content of component i will be φi = FD ∗ LOCi, where LOC is the number of
4A basic block, or simply a block, is a sequence of instructions that, except for the last instruction, is

free of branches and function calls. The instructions in any basic block are either executed all together, or
not at all.

Chapter 3. Verification Resources Allocation 95

code lines. Following the regression trees approach, we still need the estimated fault

content of the system and some complexity metrics of the components to derive a

more accurate estimation than the FD approach of the components’ fault contents.

Finally, for the complete solution, the data necessary to build the SRGMs can be

the interfailure times or alternatively the testing coverage function along with the

estimated component fault content. Both of these are obtainable by the dynamic

profiling approach (of the previous as well as the current version) or by historical data

from the same or similar components.

In particular, when a component does not undergo significant changes from version to

version, the SRGM parameters estimation based on the collected failure data can be

used; when a component is significantly changed in the new version, some parameters

can still be built using the collected data and refined through the current version

information, while others are completely to be estimated from the current version

information (e.g., the initial fault content, a common parameter, can be estimated

considering the complexity metrics of the new version, with the fault density approach

or regression trees). Some recent studies [115], estimating the number of faults during

the current version testing, reported that after about a 25% of the total testing time,

several SRGMs (both finite and infinite NHPP models) prediction accuracy deviated

by only 20%. For a testing resource allocation problem, this means that initially

the computed resources allocation will be affected by SRGM errors, but dynamically

re-computing the optimal allocation at some time intervals will give more and more

accurate results. It is however worth to point out that SRGMs are known to give

Chapter 3. Verification Resources Allocation 96

good results even when data partly violates the model’s assumptions [115] they are

based on, and their usage is therefore encouraged.

Similar approaches can be used to estimate the parameters for the fault tolerance mecha-

nisms. Depending upon the actual mechanisms used, the failure probability of the failure

detection, restart/retry or failover operations need to be estimated. In particular, some

potential solutions are:

• Estimating the values from historical data form previous similar systems or common

values assumed for the fault tolerance manager components in other critical systems

or from the literature.

• Doing a fault injection campaign and obtain:

– #Failed detections / #faults injected

– #Failed restarts / #attempted restarts

– #Failed retries / #attempted retries

– #Failed failover / #attempted failover

It is finally worth to point out that for all the cited parameters expert judgment should not

be neglected and should always be used to refine the other estimation method results.

In general, it is difficult to have a common method to assess the quality of the extracted

information and to evaluate how much it impacts on results. However, we believe that the

most effective way to do this, is to evaluate the impact of the information quality on the

specific model where it is used, by performing a sensitivity analysis on all the estimated

Chapter 3. Verification Resources Allocation 97

parameters (as we did in the case study). This method is at once practical and accurate. It

allows us to understand and balance possible estimation errors of input parameters (caused

by the low quality of extracted information) and their effects on the solution.

3.5 Experimental Evaluation

The case study chosen for illustrative purpose is an application, written in C, developed for

the European Space Agency. It is a program to provide user interface for the configuration

of an array of antennas. The program consists of about 10000 lines of code. Its purpose is

to prepare a data file according to a predefined format and characteristics from a user, given

the array antenna configuration described using an appropriate Array Definition Language.

The program is divided into three main subsystems: the Parser module, the Computational

module and the Formatting module.

This case study has been used in other studies about reliability analysis and evaluation

(e.g., in [113],[44]),

Figure 3.2 shows the architectural model of the system.

Figure 3.2: Software Architecture

The granularity of component (i.e., the level of decomposition), is an analysis choice that

Chapter 3. Verification Resources Allocation 98

depends on the needs. In general, few large components results in easier computational

analyses and in a greater amount of available data that allow us to build an accurate

SRGM (particularly useful in the case of complete solution). The choice of component

granularity also depends on how much they are decoupled. High decoupling indicates that

components can be more independently tested than with coupled components: this enables

the possibility to better schedule testing activities and organize the testing team to work

on different components, by using results obtained with the allocation model.

The granularity of component, in this case, is chosen to be a subsystem. No fault tolerance

mechanism, as those described above, is present in this system. All the described kinds of

solution (i.e., basic, extended and complete, with or without performance, with or without

fault tolerance means, single or multiple applications) can be obtained with the implemented

tool, depending on the features of the application under study. In the conducted experiments

we computed a single-application complete solution, with performance and without fault

tolerance means. To estimate the parameters we used a hybrid approach, exploiting dynamic

profiling and design/code information. In particular, the experimental procedure is outlined

in the following basic steps:

1. Creation of a faulty version of the program, by reinserting faults belonging to real

fault set discovered during integration testing and operational usage (Table 3.1). This

faulty version emulates the previous version of the application. Note that it is likely

that the version of the application we used contains very few faults (except the ones

inserted by us), since it has been extensively used without having failures for a long

Chapter 3. Verification Resources Allocation 99

time.

Table 3.1: Types of injected faults

Fault Types and Subtypes #Injected Faults Type Number
Logic omitted or incorrect
Forgotten cases or steps 4 1
Unnecessary Functions 2 2
Missing Condition Test 10 3
Checking Wrong Variable 4 4
Computational Problems
Equation insufficient or incorrect 20 5
Interface incorrect or incomplete
Module mismatch 6 6
Data Handling Problems
Data initialized incorrectly 4 7
Data accessed or stored incorrectly 20 8
Total 70

2. Testing execution for the faulty version for a certain amount of total testing time.

Only a fraction of the injected faults are removed. During the tests of this “previous

version”, the application is profiled. From execution traces the DTMC model and

the transition probabilities are obtained. The OS is included among the components.

Failure data and execution times are also collected during this phase.

3. Based on the collected failure data, an SRGM for each component is determined. We

used SREPT functionalities to obtain the SRGMs.

4. Applying the optimization model, testing times for each component is predicted for

the current version. Our tool uses the sequential quadratic programming algorithm

to solve the non-linear constrained optimization problem. The current version is then

Chapter 3. Verification Resources Allocation 100

tested according to the computed test times allocation.

5. At the end of the testing, the reliability predicted by the model is compared with the

actual achieved reliability, computed as by (1− limnNf/N), where Nf is the number

of observed failures and N is the number of executions of input cases. The prediction

error is then analyzed against the possible prediction errors that could occur in the

(i) transition probabilities estimation, (ii) in the SRGMs and (iii) in the OS reliability

estimation, by carrying out a sensitivity analysis.

3.5.1 Results and Analysis

Step 1

According to the described steps, we injected 70 faults in the software (31, 28 and 11

respectively in the component 1, 2 and 3) based on the fault categories of Table 3.1. An

excerpt of the injected faults with the corresponding detection testing time and test case

number is reported in Table 3.2.

Step 2

Test execution for this faulty version was carried out by randomly generating test cases

based on the operational profile (in this phase, 366 test cases were generated). After the

testing phase, 46 faults were removed (respectively 20, 19 and 7), leaving 24 faults in the

software. The reliability of this first version of the software was measured executing further

3600 test cases (picked up from the operational profile) and recording the number of failures,

without removing the corresponding faults. It amounted to R = 1− limnNf/N = 0.93583,

Chapter 3. Verification Resources Allocation 101

Table 3.2: An excerpt of the Injected Faults
Fault Function Line Type Component Detect. Test
Number Time Case
2 Nodedef 62 8 1 0.124 2
3 Hexdef 100 8 1 0.949 7
4 Nodecoor 49 8 1 1.074 8
. .
37 Fixsgrel 99 4 2 2.121 17
38 Fixsgrpha 29 4 2 2.414 20
39 Fixsgrid 64 4 2 2.987 24
. .
68 Gwrite 110 7 3 14.412 120

with Nf = 231 and N = 3600. We assumed a reliability goal for the next release of RMIN

= 0.99; thus the testing resources for the current version are to be allocated according to

this goal. We profiled the previous test executions by gprof5 (for the user functions) and by

straceNT6 (for the system calls), obtaining the execution counts among the components,

the corresponding transition probabilities (as described in the previous section) and then

the visit counts.

In particular, a visit to an application component is a flow of the control to a user function

coming either from a caller user function or from a return by a called function (user function

or system call). Thus, a user function F calling another function will have two visits: one

from the caller function and another from the return of the called function. The average

time per visit to application components during an execution can be computed using the
5MinGW (Minimalist GNU for windows) has been used to provide gprof and other GNU tools under

windows. See http://www.mingw.org/.
6straceNT is a system call tracer for Windows See http://www.intellectualheaven.com/.

Chapter 3. Verification Resources Allocation 102

following formula:

TV = totalT ime/(2 ∗#calls+ systemCalls−
#termination ∗ averageDepth)

(3.27)

where totalTime is the average total user function time per execution (an output of gprof,

averaged over test case executions), and the denominator is the average number of visits per

execution to all the application components: #calls is the number of user functions called

per execution (doubled to consider the return), systemCalls is the number of calls to the

OS (an output of sTrace), not doubled because we are counting the visits to the application

components, not also to the OS; #termination is the number of terminations (either normal

or abnormal) and averageDepth is the average depth of the call graph, included in order

to subtract the “returns” from a function that are lost due to the termination (this value

has been computed by analyzing the output of gprof, and was equal to 2.6). Figure 3.3

clarifies this computation with an example (with a normal terminating single execution

and averageDepth = 1). Execution counts for a component are computed similarly to the

denominator of equation 3.27. The difference is that only the calls from a component to

itself are doubled, in order to consider the return of the control flow to itself. Calls to the

other components (and to the OS) are not doubled, because in that case just the “return”

from the called component has to be accounted as a visit to the calling one.

However, for a better accuracy, we actually estimated the time per visit for each one of the

components, considering:

TVi = totalT imei/visitCountsi (3.28)

Chapter 3. Verification Resources Allocation 103

where totalTimei is the proportion of user time spent in the component i (computed as

totalTime * #callsi / #calls) and visitCountsi are computed from transition probabilities

(in turn derived from execution counts) with the procedure described in the Section 3.2.

Results are summarized in Table 3.3. As for the OS, the visit granularity is slightly differ-

Figure 3.3: Granularity of Visit

ent. Since OS was proprietary, it was not possible to trace the internal function calls (and

this was the reason why we did not consider the block as visit granularity); thus the visit

in this case is the flow of the control coming from a user function to the OS via a system

call; it does not consider the control flow from the OS to itself through internal kernel

function calls. Correspondingly, the time per visit will also have a rougher granularity: it

is the average time spent in an entire system call execution, computed as the average OS

time (obtained by timeit7) divided by the average number of system calls (i.e., the average
7timeit is a command-line tool, provided with Microsoft Windows Resource Kit Tools, that records the

time a specified command takes to run.

Chapter 3. Verification Resources Allocation 104

number of visits in this case). Their product is always the total time spent in the OS.

The return of the system call is accounted as a visit for the calling component from the OS,

as explained above.

Their values (execution counts/number of visits and times per visit), however, are not of

interest for the OS reliability itself, because the OS reliability (i) is given in this case for

the entire execution (not as reliability per visit) and (ii) it is assumed constant with time.

But the execution counts to and from the OS are important to determine the visit counts

for other components.

Also the variance of the visit counts is considered, for the second-order architectural effects.

Finally the performance factor is set to 0.1, i.e., only the 10% of testing efforts will be

employed for performance testing. Results of this step are summarized in Table 3.3.

Note that since the visit granularity is so fine, the expected visit counts during an

execution are very high and the transition probabilities toward the end state are very low

(because only a minimal part of code leads to the end). Moreover, also note that the Parser

subsystem (component 1) and the Formatting subsystem (component 3) make a great use

of the OS, and the corresponding transition probabilities are significantly higher than the

Computational subsystem.

The high values for visit counts could also be due to the first-order DTMC: a first-order

DTMC does not allow one to consider the dependence of transition probability from a

component i to j on the current as well as the previous components from which the control

arrived at component i. However, we also considered the second-order DTMC, detecting

Chapter 3. Verification Resources Allocation 105

Table 3.3: Estimated Paramter Values

Minimum Required Reliability 0.99
Reliability of the Previous Version 0.93583

Mean User Process Execution Time 0.01389
Mean OS Execution Time 0.10589

Mean # User Calls 407.4
Mean # System Calls 5442

Transition Probabilities
TO 1 2 3 OS End

FROM
1 0.2307 2.71E-4 0 0.7689 7.79E-5
2 0 0.65253 0.0298 0.3439 4.96E-4
3 0 0 7.72E-4 0.99902 2.10E-4

OS 0.4049 0.0141 0.5810 0 0
END 0 0 0 0 1

Visit Counts 2865.8 222.8 3165.0 5442.3 -
Exec. Time 0.01128 0.00248 1.251E-4 0.10589 -

SRGM: Exponential SRGM. λ(t) = age−gt

1 2 3
a g a g a g
13 5.46E-2 11 9.46E-2 5 5.34E-2

no significant changes in the transition probabilities. Thus to keep the treatment simple,

the first-order results are considered in the following. Finally, we did not observe failures

due to the OS; thus we estimate an OS reliability value equals to 1. This value is clearly an

overestimation due to the low number of test cases used to estimate it; thus we start with

this value, but it will be varied (step 5) between 0.995 and 1.0 to take into account the

possible estimation error (this will also show how the overall reliability estimate is affected

by the OS reliability value).

Step 3

Based on the interfailure times (Table 3.2) of the previous version testing, an SRGM for

Chapter 3. Verification Resources Allocation 106

each component was built, using SREPT to fit the best model to the data. The fault content

parameters for the current version were derived from the estimated remaining fault contents,

while the rate parameters were set at the same value of the previous testing process (Table

3.3).

For all of the components, the same kind of SRGM was found to be the best fitting one (i.e.,

the Goel-Okumoto model): this is mainly due to the strong similarities among the testing

processes followed for the three components.

Step 4

With the visit count values, the SRGMs and the OS reliability, the model was built and

solved by our tool, giving as output the optimal testing times for each component.

After executing the tests (always by generating test cases from the operational profile)

according to the optimal testing times, 19 faults of 24 were removed (respectively 11 of

11, 5 of 9 and 3 of 4). Table 3.4 shows the testing times devoted to each component, the

corresponding number of executed test cases, the detection time and the detecting test

case number for each fault. (Clearly the actual devoted time will slightly exceed the allotted

time, because the latter is not a perfect multiple of the execution time of a test case).

Step 5

According to the model, the final reliability should be 0.990289. Measuring the actual relia-

bility using the same procedure used for the previous version, it turned out to be 0.989722,

with 37 observed failures over 3600 executions. The relative error is about 5.7289E-4 re-

sulting in an overestimation of 0.057289 %.

The main sources of error in the prediction are i) the DTMC transition probabilities and

Chapter 3. Verification Resources Allocation 107

Table 3.4: Testing of the system according to the model results

Component #Fault Optimal Testing #Test Cases
Removed Time

1 11 40.638 348
2 5 6.315 58
3 3 24.682 215

Fault Number Detection Test Case
Time Number

Component 1
21 1.213 10
22 3.112 25
23 6.452 53
24 6.992 57
25 8.346 69
26 12.240 102
27 13.332 111
28 15.341 128
29 22.021 183
30 30.041 250
31 38.098 of 40.638 318 of 348

Component 2
51 0.933 7
52 2.729 22
53 2.981 24
54 4.065 33
55 6.209 of 6.315 51 of 58

Component 3
69 5.034 42
70 7.355 61
71 20.442 of 24.682 170 of 215

Chapter 3. Verification Resources Allocation 108

Figure 3.4: Sensitivity to visit counts and failure intensities variation

consequently the visit counts, ii) the SRGMs prediction ability and (iii) the OS reliability.

In our case the architecture of the application and the components themselves have not

significantly changed as well as the testing process between the two versions. Such a good

prediction is also due to this. However, we can see how in the presence of significant changes

in such values, the prediction is still good. First, figure 3.4 shows the variation of the per-

centage relative error in the reliability prediction against the variation of the percentage

relative error in all the visit counts (solid line). For a maximum of 20% in the visit counts

estimation errors (underestimation) we have a reliability prediction error of about 0.257%

Chapter 3. Verification Resources Allocation 109

, i.e., a prediction of about 0.99226.

Second, in the same figure (figure 3.4, dashed line) the same variation in the prediction

against the percentage relative error in the failure intensities is shown: if an SRGM does

not accurately describe the testing process, the value of the achieved failure intensities at

the end of the testing time for each component will be affected. We evaluated such effect

by varying the failure intensities. Results in figure 3.4 show that the reliability prediction

will be affected by an error of 0.256% , i.e. 0.99225, for a percentage variation of 20% in

the failure intensities (underestimation). Failure intensities plot shows almost the same be-

havior as the visit counts plot, because in the reliability computation their product appear

in the exponents (the slight difference is due to the second-order part in the formula).

Third, since no OS failures have been observed, we estimated the OS reliability to be equal

to 1; figure 3.5 shows the effect of an estimation error in the OS reliability on the overall

reliability prediction. In this case the overall prediction is more sensitive to OS reliability

prediction errors than the previous parameters.

However, the previous percentage errors simply do not make sense in this case; it is very

unlikely to mistake the OS reliability prediction with an error of 20%. For instance, suppose

that in our case an OS failure over 3600 execution tests has been observed and we estimate

the reliability as (1-1/3600) = 0.9997; an error of 20% would mean making an estimation

of 0.79976, that in our case would correspond to about 720 failures: i.e., in the current

version the OS has experiences 719 failures more than the previous version over only 3600

test cases. It is a huge prediction mistake. Moreover, OS has usually much more historical

failure data than the other application components; this makes OS reliability estimation

Chapter 3. Verification Resources Allocation 110

easier and more accurate. Figure 3.5 shows therefore the percentage error variation of the

overall reliability depending on the absolute variation of OS reliability in a reasonable range.

Figure 3.5: Sensitivity to OS Reliability variation

In this case, for a maximum error of 0.005 (i.e., the 0.5%), the prediction error shifts

from the original overestimation of 0.057289% with respect to the actual reliability to an

underestimation of about 0.443% , i.e., a reliability of 0.98534. The solution is therefore

much more sensitive to the OS reliability estimation than the other parameters.

Finally, all the results have been obtained with the estimated operational profile; changing

the operational profile will yield different results. The effect of the operational profile

variation on reliability measurements (particularly on SRGMs) has been studied by Pasquini

Chapter 3. Verification Resources Allocation 111

et al. in [113], which however pointed out that the “predictive accuracy of the models is not

heavily affected by errors in the OP-estimate. In general, if a model-estimate fits the actual

reliability for a correct OP-estimate then it fits well even if the OP-estimate is erroneous”.

Chapter 4

Verification vs. Reliability

Verification techniques selection requires a deep understanding of their features, their detection abil-
ity, of cost they entail, and of the features of the software being developed. When dealing with complex
and wide systems, engineers have to cope with different and heterogeneous software faults. They are
generally aware that a proper combination of verification techniques should be used, since applying
just one technique is usually not sufficient to meet the dependability goal in an acceptable time.
However, to date, it is not clear what are the most effective techniques to be applied to a system
in hands and what techniques are more prone for detecting a specific kind of fault characterizing a
system. This is left to the tester intuition and expertise. In this chapter we present an empirical
comparison among verification techniques to provide a deeper knowledge of their characteristics in
different situations. The study, in conjunction with what presented in the next chapter, intends to
provide engineers with a support, based on quantitative evidences, for properly planning the verifi-
cation techniques selection. Experimental campaigns described in the following two chapters provide
encouraging results to pursue this direction.

4.1 Understanding the behaviour of Verification Techniques

The contribution presented in this chapter is an empirical analysis aiming to compare four

widely-used verification techniques in critical systems development (i.e., functional testing,

statistical testing, robustness testing, and stress testing), in order to establish their effec-

tiveness in the detection of software faults and reliability improvement. The study intends

to analyze, by running a controlled experimental campaign, the effectiveness of the men-

tioned techniques with respect to several factors, including the software type faults type

112

Chapter 4. Verification vs. Reliability 113

by which the system is potentially affected. It considers the well-known Orthogonal Defect

Classification (ODC), presented in chapter 1.1.3, as fault classification scheme, to distin-

guish fault types.

The Design of Experiments (DoE) methodology is used for experiments planning (16 exper-

iments were run). Investigated aspects are the fault detection effectiveness, the effectiveness

per fault type, the cost, and the delivered reliability. Results provide a deeper knowledge of

the compared techniques in their ability to improve software quality under different initial

conditions, giving valuable guidelines to engineers for techniques selection.

4.2 Design of an Empirical Analysis

4.2.1 Compared Techniques

Before deploying the final application, engineers need to test it against both functional

and non-functional requirements, possibly using more than one technique. In this analysis,

we compare four widely-used techniques for verification referred to as Functional Testing,

Statistical Testing, Robustness Testing and Stress Testing. Even though all the mentioned

techniques definitely aim to detect as many faults as possible, each of them pursues, in

general, different goals and is able to improve some specific aspects of the software being

developed. Here, we intend to compare their ability in detecting faults and improving reli-

ability, and to investigate their differences with regard to the types of faults they are prone

to detect.

In functional testing , engineers derive test cases from specifications often using “the par-

tition principle” (i.e., separating the input space in equivalence classes) along with boundary

Chapter 4. Verification vs. Reliability 114

value analysis. It is often referred to as “specification-based testing” or “black-box testing”

(as presented in Section 1.3.3), and it is described in many books and papers on software

testing.

The goal of statistical testing is to improve the reliability of the software. Similarly to

functional testing, statistical testing does not require any knowledge of the code; test cases

are derived from an estimation of the operational profile, i.e., the set of inputs, and their fre-

quency, that are expected in the operational phase. In order to provide a correct reliability

prediction, a close estimate of the actual operational profile is required. Statistical testing

is close to functional testing, since also in this case the input space is often partitioned

in classes: the difference is that, in statistical testing, classes are assigned a probability

of occurrence (from operational profile estimate) and test cases selection depends on this

assignment.

Robustness testing evaluates the software application reaction to exceptional and unfore-

seen inputs. It provides a measure of how much the application is robust to unspecified

inputs and how well it handles exceptional situations.

Stress testing evaluates the application’s ability to react to unexpected loads; even if

the similarity with robustness testing is evident, stress testing does not use “exceptional

inputs”; it uses normal input values, but with excessive load. In a sense, it lies in between

robustness and functional testing.

The compared techniques can be grouped in two categories: both functional and statistical

testing aim at demonstrating that the software does what it is required to do (we can call

Chapter 4. Verification vs. Reliability 115

them “Demonstrative Testing”), whereas robustness and stress testing aim at evalu-

ating the application’s ability to handle exceptional conditions by attempting to destruct

the software (i.e., “Destructive testing”). We want to evaluate how these differences

affect the detection ability and reliability improvement, and how they manifest themselves

in various experimental conditions.

4.2.2 Investigation Goals

The goal of this study is to characterize the testing techniques with respect to their: (i)

fault detection effectiveness, (ii) fault detection cost, (iii) detection effectiveness per fault

type, and (iv) delivered reliability (i.e., reliability that they make the software achieve).

The output of this set of experiments will have to tell us how each technique behaves

when applied to different software applications, characterized by different amounts and

types of fault. In particular, the mentioned response variables are evaluated with respect

to the following factors: the (i) faults content that is initially present in the software, (ii)

the percentages of fault types by which the software is affected, and (iii) the software type.

Experiments intend to answer the following questions:

Fault detection effectiveness

1. Which of the compared techniques detects the greatest percentage of faults (with

respect to those initially present)?

2. Does the percentage of detected faults depend on the initial amount of faults in the

program?

3. Does the percentage of detected faults depend on the software type?

Chapter 4. Verification vs. Reliability 116

Fault detection cost

1. Which of the techniques requires more testing time (measured in hours)? Which of

them detects the greatest number of faults, standing the same testing time (i.e., the

greatest #faults/hour ratio)?

2. Does the #faults/hour ratio (we call it detection rate) depend on the initial amount

of faults?

3. Does detection rate depend on the software type?

The techniques are then compared with respect to their ability to detect faults of a given

type. What we want to verify is the proneness of verification techniques in detecting faults

of various type (among the considered ones). Hence, the questions we want to answer regard

the effectiveness for each of the considered classes of faults are:

Fault detection effectiveness per fault type

1. Which of the compared techniques detects the greatest percentage of faults of a given

type?

2. Is a given technique more prone to remove some type of faults than others?

3. Are faults of a given type more easily detectable with a particular technique than with

another one?

Reliability

1. Which technique delivers the highest reliability?

Chapter 4. Verification vs. Reliability 117

2. How reliability achievement is affected by fault types initially present?

Experiments presented in the following sections allowed us to get useful (and statistically

significant) answers for the outlined issues.

4.2.3 Experimental Procedure

The empirical study consists of the following phases:

i. Choosing the target applications. In order for experimental campaign to be reason-

ably representative, applications should not be built-in-house programs, but they should

represent a wide class of applications. This would ease the generalization of results to other

software applications. To meet this criterion we have chosen the following three widely

adopted software applications: (i) one of the most spread database management systems

(DBMS), i.e., MySQL; (ii) a commonly used Web server, i.e., Apache and (iii) a net-

working application for Linux/Windows interoperability, i.e., Samba.

ii. Drawing the experimental plan . Once the target applications have been chosen,

the experimental plan has been designed. In this phase, we have identified all the relevant

factors and response variables needed to meet the investigation goals, and we have adopted

the Design of Experiments (DoE) methodology, as detailed in the following subsection. The

output of this step is a minimal list of treatments to be applied in order to get statistically

significant answers.

iii. Injecting faults. In order to compare techniques with respect to fault types and

faults content, the amount and types of faults present for each experiment need to be a

“controllable factor”, i.e., a value that we can determine. This implies a faults injection

Chapter 4. Verification vs. Reliability 118

campaign to be performed, where a different amount of faults of each type is inserted into

the software to be tested for each experiment, according to what the experimental plan

suggests.

Thus the representativeness of injected faults, of their distribution in the software and of

the injection technique are relevant issues. As for fault types, the ODC classification has

been showed to represent common faults present in software applications. The distribution

of faults adheres to the one actually observed in various studies about the presence of ODC

fault types in several software programs [13], [12]; i.e., we used the same percentage as those

actually observed in past studies, allowed to vary of a quantity of +/- 10%. This choice

let us evaluate the impact of variations of different fault types on the response variables,

considering realistic quantities.

The injection campaign has been repeated for each experiment, thus randomizing the place

where faults are injected (i.e., minimizing the potential effect due to “where” faults are

injected). The used injection technique is commonly known as “software mutation”(SM);

it consists of applying changes at source code level, according to well-defined operators (for

ODC operators see [13]).

iv. Running experiments. Each experiment tests the effectiveness of one technique

applied to one software application with a given number of faults and a given combination

of fault types. Hence, once the application under test is prepared with injected faults, the

experiment is run.

v. Recording data . During each testing session the following data have been recorded:

the number of detected faults (both absolute and per each type) and the percentages with

Chapter 4. Verification vs. Reliability 119

respect to those initially present, the time when they were detected, and the test case num-

ber that exposed them.

vi. Measuring Reliability . To compare techniques with respect to the delivered re-

liability, we estimated the final reliability achieved for each testing session (i.e., for each

experiment). The goal was to evaluate reliability that each technique produced in each

experiment, and then analysing results. Details about reliability measurement are given in

Section 4.4.

vii. Analyzing results. Collected data were then used in order to evaluate the variation

of the output variables in response to the variations of the analyzed factors. Statistical

tests allowed us to discard not meaningful results and to focus only on the most relevant

relationships. After numerical interpretation of achieved results, the physical interpretation

took place, by relating data to the questioned investigation goals.

4.2.4 Experimental Plan

The Design of Experiment (DoE) technique has been employed to plan the set of exper-

iments. We adopted a fractional factorial design to keep the number of treatments low

(hence, ignoring the analysis of interaction factors). Factors (i.e., the independent vari-

ables) considered in this study are: i) testing technique, ii) faults content, iii) software type,

and iv) the percentages of faults of a given type initially present in the application (i.e.,

since we consider five faults type, there will be five additional factors). Factors are allowed

to vary among the following levels:

Chapter 4. Verification vs. Reliability 120

• Testing technique can assume four distinct levels, i.e., functional, statistical, stress,

and robustness testing ;

• Software type can assume three levels: MySQL, Apache, Samba;

• Faults content can assume three levels: low, medium and high. The number of faults

for the medium level for the three software applications has been determined by using

a regression model, using software metrics as predictors. A regression model has been

built by using eight software and twenty software metrics (the same ones presented in

Chapter 5). The model presented an R2 value of 0.73, meaning that the it explains

the 73% of the variability of original data, and a F-value of 6.87 (i.e., its confidence

level was greater than 95%, p-value = 0.039 ¡ α = 0.05). Extracting software metrics

for MySQL, Apache and Samba and using the regression model, an estimate of faults

content has been obtained. The low and high levels have been derived by varying the

medium value of +/- 65 % (see Table 4.1).

• The percentages of fault types initially present are allowed to vary between a minimum

and a maximum value (see Table 4.1). As mentioned, the percentage of faults of a

given ODC type has been determined based on typical faults content of that type

observed in real applications in past studies [13], [12]. In order to account for the

prediction error, each quantity is allowed to vary between +/- 10% of the estimated

value, that are the minimum and maximum values. These five variables are related by

the constraint that their sum must amount to 100, since they are percentages values.

Considering past empirical studies, we refer to realistic combinations of faults content,

Chapter 4. Verification vs. Reliability 121

instead of arbitrary, unlikely (and indefinitely numerous) combinations.

Factors and their levels are summarized in Table 4.1.

Table 4.1: Factors and levels adopted in the experiment. Legend: F = Functional Testing,
ST = Statistical Testing, SS = Stress Testing, R = Robustness Testing

Initial faults content of type: Range
From To

Continuous
Variables

Assignment 11% 31%
Checking 15% 35%
Interface 0% 17%

Algorithm 30% 50%
Function 0% 16%

Levels

Categorical
Variables

Technique F ST SS R
Faults # Low Medium High
Software MySQL Apache Samba

The design allows us to analyze the main effects of these factors on the response variables

(i.e., the dependent variables. The experimental plan is reported in Figure 4.1.

The choice of factors and levels, and of response variables, enables the formulation of

the following ANOVA model:

y = µ+
8∑
i=1

αi + ε (4.1)

where:

• y is the response variable;

• µ is the mean response value;

• αi variables are the main effects of the eight considered factors;

Chapter 4. Verification vs. Reliability 122

Figure 4.1: The Experimental Plan

• ε is the experimental error random variable.

This model will allow to analyze how variations in each one of the factors affect the response

variables, and hence to identify the most influential factors.

4.2.5 Fault Injection and Experiments Execution

As reported in Figure 4.1, 6 out of 16 experiments have been executed on MySQL, 5 out of

16 have been executed on Apache and the remaining 5 on Samba. Based on the percentages

of fault of each type required by a treatment, a faults injection campaign has been carried

out in order to prepare the software application for the test run, by using the mentioned

technique (SM).

Then, the verification technique required by the plan has been applied. Each treatment

was preceded by a preliminary phase to set up the test cases to be run: in some cases, this

required a little work, either for the support of available tools or for the availability of part

Chapter 4. Verification vs. Reliability 123

of test cases; in other cases we wrote test cases from scratch. In particular, both Samba

and MySQL provide a valuable support for executing tests: they allow to execute existing

test suites with easy-to-use scripts, to modify them and to write new test cases quite easily;

Apache instead required more effort, since its support to testing is growing, but still limited.

As for MySQL, we used some scripts provided with the distribution as well as a tool, namely

MySQLslap, for test cases execution. In this case, robustness and stress tests were written

from scratch, whereas functional test cases definition required some modifications to the

existing test suites. Statistical testing required the definition of an operational profile (as

with Apache and Samba too).

As for Samba, we used smbTorture utility and supporting scripts, provided with the distri-

bution, to test the software with all the four techniques. With robustness and stress testing,

we extended the existing test suites because it was insufficient compared with test suites in

the other two applications.

Finally, as for Apache, the tool JMeter was used, in order to write and execute test cases.

The test cases for all of the four techniques were written from scratch in this case (JMeter

made these operations easier).

4.3 Data Analysis - Fault Detection Perspective

In this section, data collected during experiments are analyzed with respect to the first three

investigation goals. In particular, response variables regarding fault detection effectiveness,

cost and detection effectiveness per type are discussed; results on reliability are discussed

in the next section.

Chapter 4. Verification vs. Reliability 124

Figure 4.2 reports a summary of obtained results. The first column reports the treatment

number (the combination of factor levels for each treatment can be seen in Figure 4,1,

which reports the experimental plan). The second and third column report, respectively,

the total number and the percentage of faults detected in the corresponding experiment

(i.e., the response variables to measure the Absolute Effectiveness); the third and fourth

column report, respectively, the calendar time, measured in hours, and the detection rate,

measured in number of faults per hour (i.e., the response variables referring to the Cost).

The remaining five columns report the number (and the percentage) of detected faults

per each type. Some of these columns have no value in some cells, meaning that, in the

corresponding treatment, the value for that factor had to set to 0 (e.g., in the first treatment,

the number of function faults to inject is 0; thus no function faults could be detected and

the corresponding cell in Figure 4.2 reports no value).

Figure 4.2: Experimental Results

Chapter 4. Verification vs. Reliability 125

Table 4.2: Results of detection effectiveness, grouped by factors
Factors Average % of Faults

Grouped by Testing Technique
Functional 73.13%
Statistical 67.43%

Stress 59.82%
Robustness 36.11%

Grouped by Software Type
MySQL 54.47%
Apache 67.87%
Samba 57.36%

Grouped by Faults Content
Low 66.06%

Medium 55.17%
High 58.45%

4.3.1 Detection Effectiveness

Since the variable “number of detected faults” is affected by the number of faults that

are initially injected, we evaluate the effectiveness of faults detection as the percentage of

detected faults with respect to those initially injected. Table 4.2 reports the data aggregated

by the three factors of testing techniques, software type and initial faults content.

Observing data aggregated by testing techniques, it is worth noting that, in the average,

(i) functional and statistical testing detect a greater percentages of faults than stress and

robustness testing; (ii) stress testing seems to be closer, from this point of view, to those

techniques that we called “Demonstrative testing” than to robustness testing. (iii) It is

evident that robustness testing detects, in the average, fewer faults than the others; one

explanation is that robustness testing goal is to detect the “hardest”, uncommon faults, even

Chapter 4. Verification vs. Reliability 126

if few, rather than many common faults.

In particular, hypothesis tests report that:

• The difference between functional and statistical testing (i.e., 5.69%) is not statistically

significant (i.e., the value “functional - statistical” was not statistically different form

0 at a significance level of α > 0.05, i.e., p-value = 0.11);

• Functional testing detected 13.30% more faults than stress testing (at α < 0.01), and

37.01% more faults than robustness testing (at α < 0.01);

• The difference between statistical testing and stress testing (7.61%) is not statistically

significant (α > 0.05, p-value = 0.10); whereas the difference between statistical testing

and robustness testing (31.32%) is significant at α < 0.01;

• Stress testing detected 23.71% more faults than robustness testing (at α < 0.05).

Hence, functional testing is confirmed to behave better than both stress and robust-

ness testing; statistical testing overcomes only robustness testing, as also stress testing.

Functional and statistical testing have similar performances. The difference, even if not sig-

nificant, can be explained by considering that statistical testing aims to improve reliability,

exercising mainly the part of code more likely exercised at runtime; functional testing covers

a wider portion of the code (a similar explanation may stand for stress testing, since it exer-

cises some common functionalities with overloaded inputs, but does not span over the code).

In the second part of Table 4.2, data are aggregated by software type; by adopting

Chapter 4. Verification vs. Reliability 127

further hypothesis tests, we gain insights about the dependence of detected faults on soft-

ware type. In particular, we can observe that the differences in faults percentage detected

in Apache and Samba (i.e., 10.51 %), Apache and MySQL (i.e., 13.4%), and Samba and

MySQL (i.e., 2.89 %) are not statistically significant (α > 0.05 for all the tests, with p-value

= 0.15, p-value = 0.10 and p-value = 0.40, respectively). This means that software type

did not affect the ability of testing techniques to detect faults.

The representativeness of the chosen applications in their respective classes (i.e., DBMSs,

Web Servers and Network protocols) along with these results suggest that observed differ-

ences among techniques in detecting faults may, to some extent, be generalized (at least

inside the considered classes of software).

Similarly, the last part of Table 4.2 reports the same data aggregated by the initial

faults content factor. We can derive that the difference in faults percentage detected with

an initial low faults content and an initial high faults content (7.61%) is not statistically

significant (α > 0.05, p-value = 0.22). Hence, the initial faults content has no significant

impact on the percentage of detected faults.

Thus, from this analysis, the only factor affecting the detection effectiveness is the testing

technique.

Note that reported hypothesis tests comparing means are t-student tests; all the results

have been also confirmed by performing the Tukey’s test at 95% protection level, as also

results in successive sections.

The impact of testing techniques on detection effectiveness, as well as the non-influence of

Chapter 4. Verification vs. Reliability 128

Table 4.3: Results of cost response variables, grouped by factors
Average Average

Factors Calendar Detection
Time (h) Rate (Faults/h)

Grouped by Testing Technique
Functional 16 1.118522409
Statistical 16.4 1.097702429

Stress 14.33 1.051282051
Robustness 15.5 0.550313995

Grouped by Software Type
MySQL 16.16 0.780786596
Apache 13.8 1.053382582
Samba 17 1.073214268

Grouped by Faults Content
Low 12.8 0.48738345

Medium 15 1.029755171
High 19.4 1.340451128

other factors, has been confirmed by the analysis of variance (ANOVA), carried out by the

well-known tool JMP. These further statistical confirmations are omitted for brevity.

4.3.2 Cost

Variables measuring fault detection cost are calendar time (in hours) and fault detection

rate, measured in terms of number faults detected per hour. Table 4.3 reports data aggre-

gated by the three factors of testing technique, software type and initial faults content.

Results of hypothesis tests show that:

• The differences in calendar testing time between the technique that required, in the

average, the most time (i.e., Statistical testing) and the technique that required the

least time (i.e., Stress testing) is 2.067 hours. It is not statistically significant (α >0.05,

Chapter 4. Verification vs. Reliability 129

p- value = 0.19); in the average, there are no significant differences in required calendar

time;

• On the other hand, the difference between the technique with the highest detection

rate (that has been the functional testing) and the technique with the lowest one (i.e.,

the robustness testing), which is of 0.5682 Faults/hour, is statistically significant (α <

0.05). One possible explanation is that robustness testing, other than detecting fewer

faults than the other techniques, requires testing to be stopped more often (because

even when the application correctly handles the given exceptional inputs, it often

stops and exits, correctly reporting the occurred exception; thus testing has to be

restarted often).

In the second part of Table 4.3, data are aggregated by software type; we can investigate

about the dependence of detected faults on software type:

• The difference between calendar time values in Samba and Apache (i.e., 3.2h) is not

statistically significant (α > 0.05, p-value = 0.059);

• The difference between calendar time values in MySQL and Apache (i.e., 2.36h) is

not statistically significant (α > 0.05, p-value = 0.12);

• The difference between calendar time values in Samba and MySQL (i.e., 0.83h) is not

statistically significant (α > 0.05, p-value = 0.32);

• The difference between the highest mean detection rate (observed in Samba) and the

lowest one (observed in MySQL), that is of 0.2924 faults/hour, is not statistically

Chapter 4. Verification vs. Reliability 130

significant (α > 0.05, p-value = 0.15);

Hence, also in this case there is no difference due to the software type in variables

measuring fault detection cost.

Finally, the last part of Table 4.3 reports the same data aggregated by the initial faults

content factor. We can observe that:

• Applications with highest initial faults content require more time than those with low

initial faults content (the average difference has been 6.6h, significant at α < 0.01);

this is quite intuitive.

• Applications with highest initial faults content experienced, in the average, a higher

detection rate than those with low initial faults content (the average difference has

been 0.8530 faults/hour, significant at α < 0.01). One possible explanation is that at

the beginning of the test, in software with high initial faults content more faults are

exposed and the initial rate is very high; then, as faults are removed, the behaviour

in the two cases should be almost the same.

4.3.3 Effectiveness per Type

The last point is to investigate the effectiveness in detecting faults of different types. The

same response variable has been used as in the first point: i.e., the percentage of faults

detected per type.

Table 4.4 reports data aggregated by the three factors of testing technique, software type,

and initial faults content for each of the considered fault categories.

Chapter 4. Verification vs. Reliability 131

Table 4.4: Results of detection effectiveness per fault type, grouped by factors
Factors % of Detected Faults

Assignment Checking Interface Algorithm Function

Grouped by Testing Technique

Functional 83.34% 70.48% 64.17% 62.93% 75.00%

Statistical 60.21% 61.24% 58.33% 74.95% 65.71%

Stress 48.89% 73.53% 75.00% 58.73% 25.00%

Robustness 21.67% 54.33% 87.50% 23.41% 17.15%

Grouped by Software Type

MySQL 51.67% 58.80% 73.50% 53.68% 23.81%

Apache 64.92% 76.48% 75.00% 64.81% 75.00%

Samba 58.67% 58.17% 62.50% 50.04% 52.50%

Grouped by Faults Content

Low 70.00% 70.00% 75.00% 70.67% 66.67%

Medium 47.78% 61.81% 86.00% 48.22% 36.67%

High 58.26% 61.03% 41.67% 63.42% 40.48%

Results show that, in the average, functional testing is the fairest technique (it detects

comparable percentages of distinct fault types), and that robustness and stress testing are

more prone to remove some kinds of fault rather than others. In particular, we observed

that:

• Functional testing detects percentages of faults for each type that do not differ sig-

nificantly among each other; (as may be seen in the first row of Table 4.4); the only

exception is the percentage of Assignment faults, that is significantly higher than the

others (e.g., the difference between the percentage of Assignment faults and Algorithm

faults (i.e., 20.41%) is significant at α < 0.05). This means that functional testing is

quite fair with respect to the different fault types;

• Robustness testing detects 65.83% more faults of Interface type than Assignment,

64.09% more faults than Algorithm, 70.35% more faults than Function type, and

Chapter 4. Verification vs. Reliability 132

33.17% more faults than Checking type (α < 0.01 for the difference with Assignment

faults, α < 0.05 for the others); also the percentage of Checking type is high with

respect to the others, but at a significance level lower than 95%;

• Some other differences are worth to mention, even though the hypothesis tests do not

provide significance level greater than 95% due to the lack of data for some treatments

(for instance, Function faults are absent in several treatments, due to the their relative

low occurrence in real applications): in particular, it is possible to see that in the

average, robustness testing detects more interface faults than functional testing and

statistical testing too (24% and 30%, respectively). Stress testing also detects many

faults of Interface type (75%) and of Checking type (73.53%) with respect to the other

types. Functional testing (and statistical testing too) detects many more Function

faults than robustness testing (57.85% and 48.56%, respectively).

4.4 Data Analysis - Reliability Perspective

We already mentioned that detecting more faults does not necessarily imply improving re-

liability. Thus, to compare techniques from reliability perspective, further measurements

have been performed. In particular, for each of the 16 experiments (showed in Figure 4.1),

we assessed the reliability achieved at the end of that testing session, i.e., after that a given

technique has been applied.

Since reliability is sensitive to the operational profile, we generated for each software ap-

plication (i.e., for MySQL, Samba, Apache) three distinct operational profiles. The set of

operations that each application could perform was split in equivalence classes; assuming

Chapter 4. Verification vs. Reliability 133

a uniform distribution inside each class, we then assigned distinct occurrence probability

values to each of them. A measurement consists of an execution where operations are ran-

domly picked up from the classes according to the defined operational profile distribution.

Picking inputs from three different profiles, the final estimate averages the effect due to

three possible distinct usage of the application.

At the end of the execution, reliability was measured with the frequency interpretation ap-

proach, i.e., according to the expression (2) in chapter 1, and as in [44]: R ≈ 1−limN Nf/N ,

where Nf is the number of experienced failures and N is the number of randomly generated

operations (i.e., the inputs). To use this method correctly, when a failure occurs during

the execution, the corresponding fault has not to be removed (i.e, the system has not to be

altered during the measurement).

Figure 4.3 shows reliabilities achieved after each treatment and for each operational profile.

In the last column the average reliability obtained in each case is reported.

Rows represent treatments where the corresponding technique, reported in the third col-

umn, has been applied. The application of the technique removed a given amount of faults,

causing the initial faults content (second column) to be reduced. Reliability measurement is

then applied to the software application version with the residual content of faults reported

in the third column.

Of course, experiments where a technique left few faults show, in the average, a high re-

liability; however the differences in the measurements taken from different profiles shows

that even with few faults, reliability can be low (as in the experiment number 10, with the

second profile). Similarly, the same software application may exhibit a quite high reliability

Chapter 4. Verification vs. Reliability 134

Figure 4.3: Results of reliability measurements

even having a considerable amount faults: for instance, experiment number 9 on MySQL,

stressed according to the third profile show a greater reliability than experiment number 1

(profile 2) on the same application, even though in the first case a greater amount of faults

was left by the testing technique (19 in the former case, 7 in the latter). “Fewer faults” does

not guarantee higher reliability, even if in the average this is true. Hence, fault detection

and reliability perspective often show the same trend, but these results confirm that it is not

always the case. Choosing techniques to improve reliability may be different than choosing

Chapter 4. Verification vs. Reliability 135

techniques to reduce the number of faults.

As for techniques comparison, Figure 4.4 reports the average reliability obtained by each

technique. Obtained reliabilities show that:

• Functional testing leads to a mean reliability greater than stress testing (0.0356, i.e.,

3.77%) at a significance level greater than 95% (p-value = 0,0201)

• Statistical testing is superior to stress testing, bringing a reliability improvement of

0.0425 (i.e., 4.49 %) at a significance level greater than 99% (p-value =0,0037)

• Statistical testing overcomes robustness testing of 0.0519 (i.e., 5.54 %) at significance

level greater than 99% (p-value = 0,0023)

• Also functional testing performs better than robustness testing from reliability perspec-

tive (the difference is 0.045, i.e., 4.81 %, with p-value = 0,0103)

• Statistical testing is slightly better than functional testing but the difference is not

significant (the difference is 0.006, i.e., 0.69 %, with p-value =0,144)

Figure 4.4: Measurements of Average Reliability

The main difference with fault detection effectiveness is about the last test: statistical

Chapter 4. Verification vs. Reliability 136

testing performed slightly better than functional testing from reliability perspective, even

if not significantly.

Observing the results, it is also evident that the average reliability depends on the amount

of faults initially present. Figure 4.4 reports the obtained reliability under different initial

conditions. Almost always, a greater amount of initial faults led to a lower final reliability.

But this is not always the case: for instance, statistical testing performed better with an

initially high faults content than with a medium faults content.

4.5 Discussion

Results confirmed our hypothesis, which is also a common sense, that verification techniques

“systematically” behave differently when the mentioned factors vary. In particular, the

analysis highlighted that the effectiveness is dependent on faults content and fault types

variation (in distinct ways for the various techniques), but less on the variation of software

applicative target.

In summary, results showed that Functional testing is able to detect a greater percent-

age of faults than stress and robustness testing, and it seems to be the fairest technique

with respect to the fault types it is prone to detect; its difference with statistical testing

is not significantly relevant. Statistical testing also detects more faults than robustness

testing (but it does not significantly overcome stress testing) and it also turned out to be

a ‘fair” technique. It differs from functional testing essentially for the different goal that it

pursues: aiming at improving reliability, statistical testing stresses with higher probability

a given part of code, i.e., the one more likely exercised at runtime, considering less the

Chapter 4. Verification vs. Reliability 137

unlikely functionalities. This is confirmed by the results regarding reliability, which showed

a substantially comparable behaviour between these techniques, but with statistical testing

that in this case, slightly over-performed functional testing.

Functional and statistical testing also highlighted a better ability in detecting faults

of Function type, in contrast to stress and robustness testing that are not able to deal with

such kinds of fault.

Stress testing detects a good percentage of faults; it also focuses on common function-

alities, not considering all the code. Although this may penalize it in the absolute number

of detected faults, it allows to better detecting some specific kind of faults. In particular,

stress testing exhibits good performances in detecting Checking faults and Interface faults.

From reliability’s point of view, it behaves similarly to the detection ability perspective,

i.e., it provided higher reliability than robustness testing, but substantially worse than the

functional and statistical testing.

Robustness testing, even detecting fewer faults and delivering lower reliability than

the others, is turned out as the best one to remove faults of Interface type (for instance, it

is very good at detecting faults on passed parameters) and of Checking type. This makes

it an important technique, since it complements the others in the detection of faults that

are hard to be exposed, e.g., by functional or statistical testing.

It is worth to remark that the obtained results refer to the fault detection and reliability

Chapter 4. Verification vs. Reliability 138

improvement brought by techniques when these are applied alone. Hence, it is wrong to

derive from results that robustness testing must not be applied to improve reliability; results

say that robustness testing should not be applied alone.

From reliability’s point of view this is a very important issue. Indeed, verification tech-

niques ultimately determine what types of fault remain in the software, which in turn affect

reliability.

For instance, robustness testing will remove more likely the interface and checking faults, as

showed above. The final reliability depends on the occurrence probability of residual faults.

Indeed, faults activated under exceptional conditions (as those removed from robustness

or stress testing), have low occurrence probability; hence such techniques if applied alone

cannot improve reliability, since they do not aim to remove high-occurrence faults.

On the other hand, applying functional or statistical testing alone, improves reliability just

up to a given bound: when they removed high-occurrence faults, such techniques stabilize,

and reliability is no longer improvable in reasonable testing time (since they are less prone

to remove the residual low occurrence faults). This becomes a tough problem for critical

systems, where high reliability levels are required.

To boost reliability beyond this limit, these techniques should therefore be suitably com-

bined to span over the entire code and fault types. How to select them is the topic discussed

in chapter 6.

Chapter 5

Software System Characterization

The knowledge of verification techniques with respect to their detection ability, their delivered re-
liability and their behaviour against different fault types is of paramount importance for engineers
responsible for setting a verification strategy. The analysis presented in chapter 4 was conceived
to provide such knowledge. However, verification strategy does not depend only on the features of
techniques that could be selected; it also depends on how well such techniques are suitable for the
specific software being developed. This requires, jointly with what presented in chapter 4, a deep
knowledge of the software under test. This chapter presents our approach to characterize the system
by the tester’s point of view. We first present an empirical analysis carried out to evaluate potential
relationships between some relevant software’s features and the ODC fault types affecting a software
system. The features of the software were expressed by means of common software metrics. Such a
characterization adopted techniques of fault-proneness models to predict faults content from software
metrics. Then, by adopting the same principle and statistical techniques, we considered an extended
set of features, by additional metrics, to also characterize the system with respect to the phenomenon
of software aging. A further empirical analysis to relate software’s features to software aging is
presented; this allows engineers to have a preliminary prediction of software aging proneness in the
testing phase. Results of these analyses, jointly with what presented in chapter 4, can be very useful
to testing practitioners who can start by characterizing the system by means of software metrics; then
they can obtain a prediction of fault types that potentially affect the system and of aging proneness
of modules; and, finally, they can choose the most effective combination of verification techniques
(and focus greatest “aging detection” effort) to provide a better detection coverage of software faults.

5.1 Software Metrics vs. Fault Types

5.1.1 Investigation goals

The analysis presented in chapter 4 showed the existence of some relevant relationships

between verification techniques and the amount and types of faults potentially present in

139

the software. Such relationships could be important for a tester to select one technique (or

a convenient combination of techniques), since s/he could adopt the best strategy based on

fault content and types expected to be present in the software under test.

However, tester cannot easily know what kinds of fault characterize the software; this de-

pends on how the software has been developed, on what programming techniques have been

adopted, on how complex and large the developed code is and on other factors. Since many

of software features can be expressed by common software metrics, we investigated the po-

tential relationship between fault types present in the software (classified according to the

ODC) and a set of common software metrics. The conjecture here is that metrics are able

to capture (and to describe) those software features that mainly determine (or are related

to) what types of faults affect a software application.

If such a relation exists, tester is able to give a statistical estimate of fault content and

types that characterize the software; on that base s/he adopts the most suitable techniques

for the verification phase, by exploiting the results previously presented. As discussed in

Section 2.1, several studies in the literature ascertained a statistical relationship between

software metrics and faults content in the software; here we aim to extend such studies, by

inferring potential relationships between metrics and ODC fault types.

Thus, the main questions to be answered by this study are:

• Does it exist some relation between software metrics and ODC fault types?

• If yes, is it possible to give estimates of ODC faults content in the software

by using its metrics?

140

5.1.2 Empirical Analysis

The empirical analysis has been carried out following these steps:

• Metrics Selection, where a set of metrics is chosen as predictor variables;

• Software Selection, where a set of software applications with known values of the

response variables are selected as samples;

• Metrics Extraction, where static analysis tools are adopted to extract metric values

of selected software;

• Verifying correlation, where a first rough analysis is performed to evaluate whether

metrics and ODC fault types are correlated;

• Building of regression models, where models to predict response variables from inde-

pendent variables are formulated.

Metrics Selection

A set of 20 common software metrics describing the code complexity and size are selected

as predictors. Figure 5.1 shows the chosen metrics with a brief description.

These metrics can be roughly categorized as metrics describing the code volume (that

are the majority), such as CountLine, CountLineBlank, CountLineCode, CountLineCom-

ment, CountLineCode Decl, CountLineCodeExe, metrics describing the files volume, such

as C Header Files, C Code Files, and metrics describing complexity, such as AvgCyclo-

matic, MaxCyclomatic, MaxNesting, CountPath, SumCyclomatic, SumEssential. Metrics

141

Figure 5.1: Selected metrics

as CountDeclClass and CountDeclFunction, could be mentioned in the code volume met-

rics; however, they describe something more than the “size” of the code. A high number

of classes and/or function may indicate a large code volume, but may also indicate high

modularity (not necessarily coupled with a large code volume).

Software Selection and Metrics Extraction

To evaluate relations between metrics and ODC fault types, a set of software applications of

which we can know the metrics value and the ODC fault types content is needed as sample

142

Table 5.1: Faults Content per Type in the chosen Software Applications
Software Fault Types

Assign. Checking Interface Algor. Function

Linux 21 24 5 31 12

Bash 2 0 0 0 0

Pdftohtml 11 1 0 8 0

Firebird 1 1 0 0 0

Scummvm 18 6 3 42 5

Zsnes 2 0 0 1 0

Freecvi 6 7 4 28 8

Mingwrt 6 23 3 28 0

to build regression models. We have chosen a set of eight software applications with known

ODC fault types content: they were the subjects of the study in [13], where a classification

task from bug reports was carried out by authors for fault injection -related purposes. From

the initial set of that study (twelve applications), we discarded three applications as possible

outliers and one application since no longer available, obtaining a final set of eight software

applications, shown in Table 5.1.

Columns report the number of faults per type affecting each of the chosen software.

Once chosen the software, metric values need to be extracted. We did it by using a tool

for static code analysis (named Understand), which derived the values for the 20 metrics

selected in the first step.

Regression Models

When both data about metrics and faults content were available, we have verified, be-

fore building regression models, if software metrics correlate with ODC fault types content.

143

Results are reported in Figure 5.2, confirming the presence of statistically significant correla-

tions for several metrics. Cells highlighted in boldface indicate the presence of correlation at

0.05 significance level. This allows us to answer the first question: there is a correlation

between software metrics and ODC fault types.

Figure 5.2: Selected metrics

Standing correlation results, the next step is the definition of statistical regression models

able to predict the amounts of faults of each ODC type, by using software metrics as

predictors. One difficulty associated with the models construction is determined by the

high inter-correlation among some metrics (and hence among the predictors): this causes

the well-known problems of multicollineraity. For instance, CountLine and CountLineBlank

144

are strongly correlated among each other; this leads to an inflated variance in the estimation

of the dependent variables.

To overcome this problem, two techniques are usually adopted: the Principal Component

Analysis (PCA) or the Stepwise regression. The first one transforms original data into

uncorrelated data; it computes new variables, called Principal Components (PCs), which are

linear combination of original variables, such that all principal components are uncorrelated.

From this new set of variables, a subset of them able to explain the most of variance of

original data is usually selected. Typically, a very small percentage of original variables

(e.g.: 10%) are able to explain 85% to 90% of the original variance. Each of the principal

components is expressed as:

PCi =
m∑
j=1

aijXj with 1 ≤ i ≤ m (5.1)

where Xjs are the original variables, m is the number of variables and aijs are coefficients

expressing the weights that the j-th original variables has on the i-th principal component.

With this technique, once the m PCs are obtained, a subset of them that containing as

much variance as possible is selected. The chosen PCs will be the independent variables of

the regression model.

The second technique, i.e., the stepwise regression, considers an initial partial set of vari-

ables (the predictors) and then attempts to add a new variable that improves the model (it

performs some statistical tests to measure the improvement) or eliminate a variable which

coefficient is not statistically significant; this leads to a minimum subset of variables that

provide the best model (it yields a sub-optimal solution, since it is a heuristic technique).

145

Table 5.2: Regressione Models and their Predictive Power

ODC Type Technique # of Variables R2 Adjusted R2 F-test

Assignment StepWise 3 0.9884 0.9797 113.92, p = 0.00024
Checking PCA 5(99.75%) 0.9888 0.9608 34.49, p=0.02841
Interface PCA 6(99.98%) 0.9997 0.9979 673, p = 0.02948
Algorithm PCA 6(99.98%) 0.9995 0.9965 377.36, p = 0.03938
Function StepWise 3 0.9899 0.9823 130.92, p = 00018

While the first technique has the advantage of using totally uncorrelated variables for the

model (that is not the case of the stepwise regression), a problem is that the principal

components obtained from equation (5.1) do not have a physical meaning; they are a com-

bination of original variables. The stepwise regression, on the other hand, does not use

totally uncorrelated variables, but it preserves the physical meaning of predictors.

In our analysis, we used both techniques, computing and evaluating the resulting models

and choosing the best one.

5.1.3 Data Analysis

To compare models obtained with the PCA technique and with the stepwise regression, we

have first carried out the PC transformation, obtaining 20 principal components from the

20 original metrics. As for PCA, models have been constructed with a number of principal

components able to explain at least the 95% of the original data as independent variables.

Five regression models have been built, one for each of the considered ODC fault types.

Table 5.2 reports the statistics obtained for these models.

In the second column the technique that has been chosen for the model is shown. The

146

third column reports the number of variables used (for PCA, the percentage of explained

variance is also reported); in the fourth column the R2 value is reported, which is the

ratio of the regression sum of squares to the total sum of squares. A larger value indicates

a better predictive power, since it means that more variability is explained by the model

with respect to the total variability. The fifth column reports the adjusted R2 value, that

accounts for the degree of freedom of the independent variables and the sample population;

it is a measure of the robustness of the model.

Then, in the sixth column, the F-test value is reported; it tests the null hypothesis that all

regression coefficients are zero at a given significance level. Once we built models by using

both PCA and stepwise regression, we chosen the best one firstly using this F-test value: if

a model obtained with either PCA or stepwise was not significant at least at α = 0.05, we

discarded it and evaluated the alternative technique. If both were significant, we evaluated

the R2 and adjusted R2 values to choose the model.

Finally, we obtained regression models for all the ODC categories. Observing the statistics,

it is worth noting that regression models built by using the PCA technique have the highest

p − values, an order of magnitude greater than the models obtained with the stepwise

technique (a higher p− value means less confidence in the model). However, also in these

cases, such values are lower than 0.05 significance level (that is a good value to consider the

model as acceptable). R2 values are also high in all the cases, meaning a high variability

explained by the models.

Even if results allow to obtain good predictions, increasing the number of samples, by

evaluating more software applications with known ODC fault types, can allow in the future

147

to obtain even more reliable prediction models; this study is a first step toward this direction.

Adopting these models, engineers can characterize their software application by using the

described metrics as predictors. Charactering applications from the tester’s point of view

is a relevant piece of knowledge that engineers should have for planning a good verification

strategy. This allows them to obtain a preliminary estimate of what types of fault more

likely affect the system and can select verification techniques more prone to cope with them.

5.2 Software Aging Analysis

The same principle as the study presented in the previous section inspired the analysis of

software aging presented in the following. We recall that the software aging is a phenomenon

due to the continued and growing degradation of software internal state caused by accrued

error conditions (such as round-off errors or a wrong management of system’s resources).

A typical example is an unreleased memory region inside a programÕs heap area, which

cause a memory depletion trend that eventually leads to crash. Common aging indicators

are the throughput loss, indicating the decrease of performances that a system affected by

aging undergoes, and the memory depletion, i.e., the quantity of memory lost per unit time

due to aging. In the following we refer to memory depletion as aging indicator (that is the

most commonly adopted).

As discussed in section 1.1.3 and 2.3, this is typically a long running phenomenon coped

with at operational time. However, we intend to address it already in the testing phase.

The goal of the presented analysis is to give a preliminary knowledge to engi-

neers responsible for verification of software modules/components/subsystems

148

more prone to suffer from aging, so that they can intervene on them with a

focused testing effort. The hypothesis (to verify) is that the aging phenomenon is re-

lated to several software’s features that can be described by means of software metrics. In

particular, we hypothesize that the software size, its complexity, the usage of some kinds

of programming structures related to the resource management, the use of arithmetic op-

erators, and other features is tightly related to the occurrence of aging-related bugs. For

instance, it is more likely for a developer to omit a “free” function call (to release memory)

in complex and large code than in a relatively simple and small piece of code. As stated, the

principle underlying this kind of analysis is the same of fault-proneness models previously

applied; however it has not been possible to conduct this analysis together with the previous

one, for two main reasons:

• For software aging analysis, we need to choose a wider set of metrics than the 20

adopted previously; other than classical metrics, a subset of specific metrics potentially

bound to this phenomenon (i.e., that could be symptomatic of aging bugs) has to be

taken into account.

• The software applications used as sample population cannot be the same of the pre-

vious analysis, since the response variable is different: here we looked for software

suffering from aging as samples of the response variable, whereas in the previous

study, applications with a known content of ODC fault types were sought.

Due to additional difficulties we faced during the analysis, we also varied the experimental

procedure to obtain statistically relevant results. In the following, we detail the main steps.

149

5.2.1 Experimental Procedure and Data Analysis

Metrics Selection

In this analysis, an initial set of 51 software metrics was considered. Due to their inter-

correlation, subsequent analyses will show that consider just a small subset of them are

relevant as predictors. In particular, other than the 20 metrics considered in the previous

analysis, the following additional metrics are collected:

Code Volume ,

Logical source lines of code (SLOC-L), Physical source lines of code, Number of comment

words (CWORDS).

Files Volume

Source Files, Complexity, McCabe Cyclomatic Complexity.

Halstead’s Metrics (science metrics)

These metrics are also known as Software Science Metrics. They are useful to describe the

software complexity in terms of operands and operators. We considered their Mean and

Variance (as for instance the mean Volume, Length, Bugs Delivered, Vocabulary, Difficulty,

Effort).

Resource Management Metrics

These metrics are take into account the usage of system’s resources: a number of mem-

ory allocation much higher than memory de-allocations in a software, could indicate a bad

memory management, and hence potential source of aging; similarly for other resources

that could be used and never released. In this study, we considered:

150

Number of memory allocations, Number of memory de-allocations, Number of opened files,

Number of closed files

Software Selection and Metrics Extraction

To select the sample population, we looked for software systems already known as suffering

from aging. They are showed in Figure 5-3.

Figure 5.3: Software selected for the aging analysis

The first two software modules belong the Java Virtual Machine (JVM): authors in [16],

conducted a deep analysis of software aging inside the Java Virtual Machine, founding out

a notable aging contribution in both Garbage Collector module, and in the Just-in-Time

Compiler module. Apache is the notorious Web Server, which has been subject of several

studies about software aging, as reported in chapter 2, reporting that it is affected by this

phenomenon. The successive six components are software modules belonging to a CORBA-

based middleware platform, named CARDAMOM, developed by Thales and Selex-SI, and

designed to support the development of software architectures for safety and mission critical

151

systems. The study in [112] showed that these components are affected by aging. The same

studies highlighted the presence of software aging also in a well-known C++ implementa-

tion of a CORBA-compliant ORB, that is The Ace ORB (TAO). Such software systems

were used a sample population to derive regression models using the described metrics as

predictors.

Verifying the presence of correlation

Before proceeding with the analysis, the presence of significant correlations has been veri-

fied, as in the previous analysis. Results, showed in Figure 5-4, allow stating that there is

a correlation statistically significant between many metrics and the aging phenomenon; so

the next step of the analysis can take place.

Subset Selection and Classification

Observing aging trends of the selected software applications, it is evident the difference

between two groups of applications, the former (composed of the Garbage Collector, Jit

Compiler, Apache, Trace Service and TAO) exhibiting an aging trend of orders of magnitude

greater than the latter (the remaining five modules). Thus, the first regression model we

built based on this data presented an excessive standard error (amounting to 1.6 MB/h).

We therefore proceeded with a features selection and classification step, in order to arrange

data according to these two groups (named BigAging and LittleAging). In particular,

we sought those software metrics (i.e., the features) most able to establish if an instance

belongs to a class or another. We adopted a simple algorithm that provides significance

152

Figure 5.4: Metrics correlation with software aging

153

indexes for each feature representing their ability to classify instances, named IndFeat (i.e.,

independent significance features test) . The most significant metrics turned out to be

Halstead’s Metrics, and in particular: the Mean Volume, the Mean Effort, the Variance of

Volume, the Variance of N1, the Variance of N2 and the Variance of Length.

Such metrics were then used to train a simple classifier (implemented by means of the

MATLAB libSVM library). The classifier has been validated by the leave-one-out cross-

validation method, which consists in building a classifier with n-1 software samples, using

the remaining sample as test set, and iterating the procedure changing the test set each

time (i.e., n steps). Hence, n-1 software applications are used as training set, while the

remaining one as test set. Table 5-5 shows that an error of 10% is committed with the

selected metrics (0 represents the BigAging group, 1 the littleAging).

Figure 5.5: Classification error

However, since in several experiments the software Trace Service has always been the

source of error, we decided to remove it and repeat the validation. In this latter case the

error with the leave-one-out cross-validation was null. Once built the classifier, for each

class a distinct regression model was built.

154

Figure 5.6: Statistics for the LittleAging group

Building Regression Models

Regression models were formulated, as in the previous analysis, with both the PCA

technique and the stepwise procedure. The stepwise procedure produced better models for

both groups; hence we report here only these results. As for the group LittleAging, the

stepwise procedure selected two metrics (CountLineInactive and RatioCommentToCode)

as predictors (at 95% confidence level), providing a model which statistics are reported in

Figure 5-6: The mean relative error with this model amounted to 11.49As for the group

BigAging, the stepwise procedure pinpointed the following two metrics: Lines of Code and

the Mean Volume. Statistics are reported in Table 5-7:

Figure 5.7: Statistics for the BigAging group

The mean relative error with this model amounted to 6.81%. Obtained models show

therefore good predictive power inside each class. Model assumptions have been verified

as in this case of the empirical analysis of chapter 4 and in the previous analysis in this

155

chapter; hence adopting the same tests to verify the omoschedasticity, the normality of

residuals and the non-correlation between independent variables and residuals.

In summary, differently from the ODC fault type analysis, in this case an engineer that

wants to obtain a prediction of software aging of a given software module has to carry out

the following steps: (i) to extract the metrics with an automatic tool; (ii) then s/he has to

apply the classifier to determine if its software belongs to the LittleAging group or to the

BigAging group; (iii) finally s/he has to apply one of the two described regression models

according to class it belongs to. In this way a preliminary estimate of aging trend in the

testing phase is obtained starting from software metrics. Of course, standing the validity of

these results, further samples would allow for improving these characterizations; hence all

the presented empirical analyses, from chapter 4 and 5, leave wide room for improvements

of their predictions. Chapter 6 discusses such aspects, where a procedure to self-enrich

such results is proposed, with the goal of providing, with time, more and more reliable and

accurate results.

156

Chapter 6

Steps for Reliability-Oriented
Verification

This chapter intends to synthesize what exposed in the previous chapters in the definition of a step-by-
step procedure that critical systems developer could consider for carrying out verification activities.
The approaches proposed for efforts allocation, software system characterization and verification
techniques selection are logically placed in a procedure conceived to exploit at their best the presented
results. Moreover, the chapter describes how such steps should be incorporated in a verification pro-
cess in a self-refining way; i.e., in order that results of each process application iteratively enrich the
empirical data on which the procedure is based. Indeed, being the procedure steps based on empirical
data, its iterative adoption across several projects allows to enrich the empirical base of knowledge,
increasing the confidence in the suggested policies and yielding higher and higher accuracy across the
projects.

6.1 Step-by-step procedure outline

The main issue arising from what presented in chapter 3, 4 and 5 is how tester can exploit

at the best those results. Although there is no a unique right answer to this, in the following

a possible procedure is proposed.

Steps of this procedure describe actions that a tester should take in order to pursue an

effective verification activity.

The procedure starts by adopting the approach described in chapter 3 for the effective

allocation of verification effort aimed at assuring a given level of reliability. Depending on

157

the adopted solution (i.e., basic, extended or complete), engineers distribute the effort to

the various subsystems/components. For each of them a testing session is carried out. Note

that effort allocation step may not always apply, as discussed in section 6.1.1; in this case

the testing session (and the next steps) refers to the entire system rather than on single

parts of it.

In order to select the best techniques for that specific subsystem (or system), a set of

preliminary actions has to be taken before starting the testing session. We gathered such

actions in the “Initialization” step. They include the selection of the first technique, and

the system characterization in terms of ODC-faults content and expected aging trend (by

means of proneness models presented in chapter 5).

Aging is considered separately; since aging bugs can be anyone of the ODC faults. Instead of

the compared techniques, aging bugs need to be treated with analysis techniques (dynamic

analysis is preferable). However, there is still a little work on aging-oriented testing; dynamic

analysis tools, such as Valgrind, have successfully been adopted [112].

For the purpose of our work, we simply have to indicate what part of the system may be

more or less affected by aging; the tester will then devote greater effort for aging detection

(likely through analysis) to such parts.

Once these preliminary steps are completed, the testing session execution starts, by adopting

the technique selected in the first step. As the testing proceeds, faults are detected and

removed. The number of faults detected per unit time will decrease over time, since a

technique (whatever it is) always adopts the same criterion to stress the code; as the faults

that it is able to detect are removed, its detection ability decreases. When this technique

158

becomes ineffective (section 6.1.2 will detail what “ineffective” means), another technique

has to be adopted. A techniques selection step will then be responsible for choosing the next

technique most suited for that system, based on the ODC faults prediction. This choice is

made dynamically, since as faults are removed during testing, the ODC faults content varies.

This is described in section 6.1.3. Techniques selection is of course repeated when the same

ineffectiveness condition, as with the first technique, occurs, until the available testing time

for that system/subsystem expires. Figure 6.1 summarizes the outlined procedure. The

Figure 6.1: Step-by-step Procedure

159

following subsections describe the various steps in more detail.

6.1.1 Effort Allocation

The first step is the allocation of available resources for verification to parts of the system,

by adopting the model described in chapter 3. Hence, engineers set a reliability level to

achieve, and gather all the necessary information to apply one of the three solutions: basic,

extended, and complete, according to what they are able to know about the system and

its components. Information gathering is discussed in section 3.4. Recall that the best

case is when a reliability growth model for each component can be obtained (along with

the necessary architectural information), which lead to a complete solution, i.e., a solution

where the exact testing efforts are assigned.

An important remark is that the number of components of the system is an analysis choice;

the granularity is chosen depending on the needs. In the case of experiments presented in

section 3.5, by choosing three big components (rather than many small components) it has

been more relevant to apply the approach to distribute testing efforts: indeed, when compo-

nents are large, it is more likely to have significant differences in the required testing times,

whereas with many small components, avoiding the usage of the model and devoting the

same time to each components, would lead to slighter errors. With few large components,

assigning the same testing time to each component could instead lead to significant errors.

It becomes in this case important to assign the right testing effort to the components. More-

over, another reason to prefer large components, especially when the user wants to adopt

a “complete solution” (i.e., with SRGMs), is that with small components few failure data

160

are available to build an accurate reliability growth model. The granularity of components

to be selected for a useful analysis also depends on how much they are decoupled. High

decoupling indicates that components can be more independently tested than with coupled

components: this enables the possibility to better schedule testing activities and organize

the testing team to work on different components, by using results obtained by the alloca-

tion model.

These considerations for components granularity also indicate that this step may not al-

ways take place. If engineers deal with a very small system, or with few small components,

allocating efforts according to the model may yield a very little benefit. It may happen

that all the testing team is preferred to work on the system as a whole, especially when the

system is small and with highly coupled components. In this case, engineers can prefer to

skip this step and proceed with the next one, applied to the entire system rather than on

single subsystems/components.

6.1.2 Initialization

Steps from initialization to the end of procedure, can be applied either to a subsystem/component

to which a given testing effort has been allocated, or to the entire system, in the case the pre-

vious step did not apply. Hence, in the following we refer to system or to subsystem without

distinction, unless differently specified. Initialization consists of four main activities:

• Selecting the first technique to apply. Since reliability improvement is the main

objective, the technique to adopt should be the one most prone to improve reliability.

In chapter 4, we compared techniques also with respect to the delivered reliability

161

(section 4.4); results showed that the best performance was yield by the statistical

testing and by the functional testing (without a statistically significant difference).

The main reason for this, is that these “Demonstrative” techniques (as we called

them in chapter 4), aim to remove high-occurrence faults and rapidly achieve a notable

level of reliability. However, as discussed in section 4.5, further improvement requires

other techniques to be adopted, capable of detecting faults with lower occurrence

probability. How to select these techniques and when is the right moment to switch

technique is described in the next section. In this step, based on results of chapter 4,

either statistical or functional testing can be adopted as first technique.

• System characterization in terms of fault types and content. Results of

chapter 5 allow to give a preliminary characterization of the software system in terms

of fault types (according to the ODC scheme). Starting from software metrics, which

describe the features of the software, regression models provide the estimates of the

content of faults per each ODC type. Software features are therefore used as predictors

of faults content. This characterization is useful at runtime, when a new technique has

to be selected, since the choice will also depend on what types of fault are expected

to be present. In this sense, techniques selection is “adaptive”, i.e., it is tailored to

specific system being tested, to its expected fault types and hence to its features.

• System characterization in terms of expected aging trend. Regression models

for aging prediction (presented in chapter 5) are used in this initialization step to

characterize the system in terms of expected aging trend. Aging can be due to different

162

types of ODC faults. Predictions can be made on the entire system/subsystem, or

also to software modules of several granularity within a system/subsystem.

• Aging-testing effort allocation. Aging-oriented testing is not yet an established

topic in the literature; it is generally detected with dynamic analysis techniques.

Hence the previous characterization is used, in this step, to understand which subsys-

tem/modules/components needs more attention. Without determining the technique

to be applied (let us suppose it is a dynamic analysis technique), this step allocates

how much effort has to be devoted to various modules, specifically for aging detection

purposes. Hence the next steps (dealing with techniques selection) do not apply to

aging.

6.1.3 Switching techniques

When the steps required by initialization are complete, the testing session actually begins.

As already discussed, to achieve high reliability in less time, the first technique should be

replaced after some time, when its “detection power” is exhausted. Initially, faults more

prone to be detected by the technique are revealed and removed; as testing proceeds, less

and less faults are detected, since the technique tries to look for faults always with the same

criterion, probably addressing always the same fault types and in near regions of the code.

At a given point it should be replaced. However, the first question is when?

Based on the observation of the detection trend, engineers can decide to switch to another

technique when the detection rate of the current technique (i.e., the number of faults

detected per unit time) goes under a given threshold.Although several different measures

163

can be adopted to evaluate the current “ineffectiveness” of a technique, detection rate is

the most suited to describe the problem outlined.

The threshold should be set depending on the available testing time, or on the ratio be-

tween the expected number of faults to be still removed and the remaining testing time.

For instance, if at time t, engineers evaluate that in the remaining testing time, with the

current detection rate, only a small fraction of faults are removed (that does not meet their

expectation), technique has to be changed. Once decided when to switch technique, the

next step is to establish what is the next technique.

Techniques selection has to be carried out based on the prediction of ODC faults content.

The study conducted in chapter 4 also investigated the impact of ODC fault types on de-

tection ability of techniques. Hence if, for example, a technique is more prone to detect

the Interface faults, and ODC faults prediction estimates a high number of Interface faults

expected to be present, than that technique could be selected. However also in this case,

there is no an exact solution, but some heuristics that can be adopted (as for the threshold

choice).

More formally, given the initial prediction of ODC fault types and considering the faults

removed until time t (i.e., the time to switch technique), an estimate of residual ODC fault

types at time t is obtained. Figure 6-2, summarizes the concept. Engineers know how many

faults of what type are expected to be present at time t.

Based on this result, the next technique can be:

• Simply the one more prone (in our experiments) to detect the predominant faults

164

Figure 6.2: Removal of ODC Fault types durig testing

type.

• The one that in the average allows detecting more faults among the remaining ones.

Saying that a technique is more prone to remove Interface faults does not mean that

it will detect only Interface faults. Hence, the percentages reported in the Figure

4.2 in chapter 4, showing the relative effectiveness of techniques with respect to fault

types, could be considered to define an average index. For instance, if functional

testing detects 80% for Assignment category and 40% for the Interface category, while

robustness testing detects 30% of Assignment and 60% of Interface, a simple index

can be: Functional = #Assignment * 80% + #Interface * 40%, and Robustness =

#Assignment*40% + #Interface*60%. Technique with higher index will be the next

one.

• Even though faults detection ability and reliability improvement showed in the aver-

age a similar trend, results of chapter 4 also highlighted that this is not always true.

165

Hence a tailored index for reliability can be formulated, in order to choose the tech-

nique that, in the presence of those specific kinds of faults, showed higher reliability.

Observing results, which report reliability achieved under different initial conditions

(e.g., with different initial faults type percentages) several indexes can be formulated.

One suitable index could be the observed increment in the average reliability when

the fault of type j varied from PERCENTAGEmin to PERCENTAGEmax, i.e.,

the increment of reliability per percentage unit relatively to the fault type j. Alter-

natively, indexes derived from the Analysis of Variance (ANOVA) can be computed.

Adopting ANOVA techniques would allow to relate each ODC category to reliability

to infer how the variation of ODC type impacts on reliability.

The final step is the iteration of the techniques selection. Indeed, once a given technique is

selected, its detection ability, after some time, will decrease; hence a new technique selection

has to take place, until the available testing time expires.

It is finally worth to note that, alternatively to the described procedure, techniques can

be selected before starting the testing phase, based only on the initial fault types distribution

(rating the techniques more prone to cope with that faults distribution, and apply them

subsequently). This static solution is simpler to implement; however, it does not allow to

schedule the order of application of techniques dynamically, based on current faults type

distribution and hence yields worse results.

166

6.2 Improving the Process

This final section intends to show how the outlined procedure can be embedded in a verifi-

cation process.

Steps described in the previous sections are intended to exploit in the best possible way

results of the analyses and of the approaches proposed in the thesis. One commonality of

such approaches is that they are based on empirical data. The allocation model presented

in chapter 3 needs data to train the model parameters (for both the architectural model

and for SRGMs of components); the system characterization and techniques selection pre-

sented in chapter 4 and 5 are entirely based on empirical observations, produced by massive

experimental campaigns. The effectiveness of a verification activity conducted by means of

the outlined procedure will mainly depend on the accuracy of the empirical-based predic-

tions. Hence, a natural way to improve the effectiveness is to exploit results produced in

one project to train iteratively the predictive models, obtaining progressively more accurate

results.

The base of knowledge produced by a company can in this way be exploited to increase

the confidence in the suggested policies, and to set up more and more reliable verification

plans. In particular, the following data are worth to be gathered:

• Inter-failure times of each system’s component. These are useful to build Software

Reliability Growth Models of components, especially useful if the same components

are used across several projects (that is a widely established practice). Considering

as components not only built-in-house applicative components, but also off-the-shelf

167

items ranging from the applicative layer to the middleware and even to the operating

system layer, it is clear that their reuse is a very frequent situation. This improves

SRGMs accuracy.

• Detected faults and adopted techniques. Recording the percentages of faults

detected by each technique and the type of faults classified according to the ODC, is

useful to improve the confidence levels of comparisons among techniques, as the one

conducted in the study of chapter 4, and their relationships with fault types.

• ODC Faults Type-Metrics. The type of ODC faults actually present in each

software modules, along with the corresponding software metrics, allow to improve

the predictive power of regression models presented in chapter 5.

• Aging Trend-Metrics. Monitoring at runtime the aging trends of software modules

and extracting the corresponding metrics, allows enriching the empirical models for

aging prediction. Due to the poor body of studies about aging, having software

instances with known aging estimates is essential to improve the empirical analysis

with a richer sample population.

168

Chapter 7

Conclusion

Companies developing critical systems often encounter serious difficulties in satisfying reli-

ability requirements, in many cases imposed by certification standards, at competitive and

acceptable cost and time. Since most of development cost is due to the verification phase,

carrying out an effective verification is of paramount importance to significantly reduce the

overall cost.

This dissertation focused on software verification effectiveness of large critical software sys-

tems. Specifically, the problem addressed in this thesis is how engineers can plan an effective

verification activity oriented to improve the final system reliability. Starting from the anal-

ysis of the current state-of-the-art about verification strategies in this field, the author

identified the main open challenges to be faced, by trying to figure out what are the most

crucial steps that engineers need to take for an effective planning.

In particular, the identified needs include: (i) the suitable allocation of efforts available for

verification to the system’s components, (ii) the scheduling of the most appropriate verifi-

cation technique(s), specifically oriented to improve reliability and tailored for the system

being tested, and (iii) the handling of phenomena usually accounted for only at runtime,

169

but that in a critical system cannot be disregarded (e.g., software aging). Such activities,

although crucial for the final results, are often left to the engineers’ intuition and experi-

ence, due to the lack of convincing approaches coping with them. The present dissertation

focused on these challenges, and proposed a solution, based on objective criteria rather than

intuition, to achieve high effective verification processes in the considered class of systems.

Its support to a reliability-oriented effective verification process in the most critical activi-

ties is the major contribution. In particular, for the investigated activities and the identified

need, the thesis contributed by proposing:

• An optimization model to allocate the verification resources to different system

components in order for the system to achieve a required reliability level at minimum

verification costs. The purpose of the model, through the tool implementing it, is

to drive engineers in the first phase of verification activities, when efforts have to be

allocated. An architecture-based model (in particular a DTMC) was used to describe

the software architecture. The optimization model was conceived for providing flex-

ible solutions, at different levels of detail, according to the information provided by

the user. This allows engineers to actually adopt an allocation model even with a

limited knowledge about the system and its components, in contrast to past models.

The solution considers the OS as a component and the potential fault tolerance mech-

anisms that a component could employ, being closer to the realty of critical systems.

Experiments showed that the prediction ability of the model and its sensitivity to

the variation of potential sources of errors are widely acceptable. As side effect, the

170

adopted architecture-based solution allows to obtain information about the sensitiv-

ity of some components and their impact on the final reliability that are useful to

successive designs for future versions.

• Empirical analyses to investigate some relevant aspects of the verification activity

of software systems. Experimental campaign results provide a valuable support to

engineers for properly planning the verification strategy. Results of such analyses

have been then used (i) to ease the selection of the most appropriate techniques for

improving reliability, i.e., the ones most suited to the specific features of the software

under test, and (ii) to dealing with the phenomenon of software aging, by providing

estimates of aging trends potentially affecting software modules. Empirical analyses

allowed to tune prediction models able to characterize the system, and to characterize

the behaviour of verification techniques with respect to several relevant factors, such

as the types of faults, related to the system’s features. Results are quite useful, in

that they quantitatively support engineers’ intuition or experience in judging what is

the best technique for their case.

• The work defines a procedure to improve verification processes in the considered

class of systems, able to iteratively refine results across the developed projects. By

following this procedure, which exploits results of the outlined contributions, testers

may determine the most suited set of techniques, their best order of application and

the final confidence at which reliability is improved. Its iterative adoption (i.e., its

171

inclusion in the verification process) across more projects allows enriching the em-

pirical base of knowledge, increasing the confidence in the suggested policies. The

continuous refinement would yield higher quality and more confident processes where

resources, approaches and techniques systematically serve the final reliability objective

in a cost-effective way.

Finally, it is worth to remark that the solution proposed in this thesis supports verification

process effectiveness independently from organizational factors, and may benefit critical

systems companies adopting various different development cycles, personnel management

policies and bound to different certification standards. In other words, it has been conceived

to provide an added value to the quality assurance process independently from organiza-

tional settings.

172

Bibliography

[1] M. Pezze, M. Young, Software Testing and Analysis: Process, Principles and Techniques, Wiley,
John & Sons, Incorporated, (January 2007)

[2] T., Pasquale, E., Rosaria, M., Pietro, O., Antonio: Hazard analysis of complex distributed
railway systems, in proc. of the 22nd IEEE International Symposium on Reliable Distributed
Systems (SRDS’03), pp. 283-292, Oct. 2003.

[3] Functional safety and IEC 61508 Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems Produced by IEC/SC65A/WG14, the working group responsible for
guidance on IEC 61508., Sep. 2005.

[4] DO-178B/ED12B, “Software consideration in airborne systems and equipment certification,”
RTCA and EUROCAE, Dec. 1992.

[5] K. Fowler: Mission-Critical and Safety-Critical Development, in IEEE Instrumentation and Mea-
surement Magazine, Dec. 2004

[6] Y. Huang, C.M.R. Kintala, N. Kolettis, and Fulton N.D. Software rejuvenation: Analysis, module
and applications. In Proc. of the 25th International Sym- posium on Fault-Tolerant Computing
(FTCS-25), Pasadena,CA (USA), pp. 381–390, 1995.

[7] E. Marshall. Fatal Error: How Patriot Overlooked a Scud. Science, 255:1347, 1992.

[8] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on De- pendable and Secure Computing,
1(1):11-33, 2004.

[9] J. Gray. A Census of Tandem System Availability Between 1985 and 1990. Technical Report
90.1 (Part Number 33579), Tandem Computers Inc., January 1990.

[10] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting how badly “good”
software can behave. IEEE Software, 14(4):73-83, 1997.

[11] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, M.-Y. Wong,
Orthogonal Defect Classification-A Concept for In-Process Measurements, IEEE Transactions
on Software Engineering, Vol. 18, No. 11 (November 1992), 943-956.

[12] Joao Duraes and Henrique Madeira. Definition of software fault emulation operators: A field
data study. In Proc. of the 2003 International Conference on Dependable Systems and Networks
(DSN 2003), 22-25 June 2003, San Francisco, CA, USA, pages 105-114. IEEE Computer Society,
2003.

173

Bibliography 174

[13] J.A. Duraes, H.S. Madeira, Emulation of Software Faults: A Field Data Study and a Practical
Approach, Software Engineering, IEEE Transactions on Software Engineering, Vol.32, No.11,
Nov. 2006, 849–867

[14] J. Gray. Why do computers stop and what can be done about it? In Proc. of the Symposium
on Reliability in Distributed Software and Database Systems (SRDS), Los Angeles, USA, pages
3-12, 1986.

[15] Michael Grottke and Kishor S. Trivedi. Fighting bugs: Remove, retry, replicate, and rejuvenate.
Computer Communications, 40(2):107-109, 2007.

[16] Software Aging Analysis Of Off The Shelf Software Items, Salvatore Orlando, Ph.D Thesis,
2007.

[17] K.S. Trivedi, “Probability and Statistics with Reliability, Queuing and Computer Science Ap-
plications,” John Wiley and Sons, 2001.

[18] R. Mullen. The Lognormal Distribution of Software Failure Rates: Origin and Evidence. Proc.
of the 9th IEEE International Symposium on Software Reliability Engineering, November 1998.

[19] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability analysis of Computer
Systems; An Example-based Approach Using the SHARPE Software Package. Kluwer Academic
Publisher, 1996.

[20] A. P. Wood. Multistate block diagrams and fault trees. IEEE Transactions on Reliability, R-
34:236-240, 1985.

[21] W. G. Schneeweiss. Petri Nets for Reliability Modeling. LiLoLe Verlag, 1999.

[22] J. Bechta-Dugan, S. J. Bavuso and M. A. Boyd, Dynamic fault-tree models for fault-tolerant
computer systems, IEEE Transactions on Reliability, 41, pp.363-377, 1992.

[23] A. Bobbio, G. Franceschinis, R. Gaeta and L. Portinale, ÒParametric Fault-Tree for the De-
pendability Analysis of Redundant Systems and its High Level Petri Net SemanticsÓ, IEEE
Transactions Software Engineering, 29 (270-287) 2003.

[24] D. Codetta Raiteri, G. Franceschini, M. Iacono and V. Vittorini, Repairable Fault Tree for the
automatic evaluation of repair policies, inInternational Conference on Dependable Systems and
Networks (DSN ’04), (Florence, Italy), pp.659-668, IEEE Computer Society, 2004.

[25] C. B. Almeida and K. Kanoun, Construction and Stepwise Refinement of Dependability Models,
Performance Evaluation, vol. 56, 277-306, 2004.

[26] Y. Dai, Y. Pan, X. Zou, A Hierarchical Modeling and Analysis for Grid Service Reliability,
IEEE Trans. on Computers, vol. 56, 681-691, 2007.

[27] Trivedi, K. Wang, D. Hunt, D.J. Rindos, A. Smith, W.E. Vashaw, B., Availability Modeling of
SIP Protocol on IBM c©WebSphere c©, Proc. of the 14th IEEE Pacific Rim Intl. Symposium on
Dependable Computing, 2008, 323-330.

[28] G. A. Hoffmann, K. S. Trivedi , M. Malek, A Best Practice Guide to Resource Forecasting
for the Apache Webserver, Proc. of the 12th IEEE Pacific Rim Intl. Symposium on Dependable
Computing, 2006,183-193.

[29] W. E. Smith, K. S. Trivedi, L. A. Tomek, J. Ackaret, Availability analysis of blade server
systems, Ibm Systems Journal, vol. 47, no. 4, 2008.

Bibliography 175

[30] G. Ciardo and K. S. Trivedi, Decomposition Approach to Stochastic Reward Net Models, Per-
formance Evaluation, vol. 18, 37-59, 1993.

[31] D. Daly, W. H. Sanders, A connection formalism for the solution of large and stiff models, 34th
Annual Simulation Symposium, 2001, 258-265.

[32] Garzia, M.R., Assessing the Reliability of Windows Servers, Proc. of Dependable Systems and
Networks, (DSN-2002).

[33] Silva, G.J., Madeira, H., Experimental dependability evaluation. In Diab, H.B., Zomaya, A.Y.,
eds.: Dependable Computing Systems: Paradigms, Performance Issues, and Applications. Wiley
(2005) 319-347.

[34] D. Tang, R.K. Iyer, Dependability Measurement and Modeling of a Multicomputer System,
IEEE Trans. on Computers, 42(1), 62-75, 1993

[35] D.Long, A.Muir, R.Golding, A Longitudinal Survey of Internet Host Reliability, Proc. of the
14th Symposium on Reliable Distributed Systems.

[36] Kesari Mishra, K.S. Trivedi, Model Based Approach for Autonomic Availability Management,
Proc. of the Intl. Service Availability Symposium, Helsinki , Finlande, 2006, vol. 4328, 1-16

[37] Haberkorn, M. Trivedi, K., Availability Monitor for a Software Based System, Proc. of the 10th
IEEE High Assurance Systems Engineering Symposium, 2007. HASE ’07, 21-328

[38] Kalyanaraman Vaidyanathan and Kishor S. Trivedi. A comprehensive model for Software Re-
juvenation. IEEE Transactions on Dependable and Secure Computing, 2(2):124-137, 2005.

[39] A.L. Goel, K. Okumoto, A time dependent error detection rate model for software reliability
and other performance measures, IEEE Transactions on Reliability, R-28(3) 206-211, 1979

[40] A.L. Goel,Software reliability Models: Assumptions, limitations, and applicability, IEEE trans-
actions on software engineering, SE-11, 1411-1423 (1985)

[41] S. Gokhale, K. Trivedi, Log-logistic software reliability growth model, Proc. of the 3rd IEEE
Intl. High Assurance Systems Engineering Symp., 1998

[42] J.D. Musa, K. Okumoto, A logarithmic Poisson execution time models for software reliability
mesaurement, Proc of the 7th Intl. Conference on Software Engineering, 1983, 230-237.

[43] S.S. Gokhale, W. E.Wong, J.R. Horganc, K. S. Trivedi, “An analytical approach to architecture-
based software performance and reliability prediction,” Performance Evaluation, vol. 58, issue 4,
pp. 391-412, 2004.

[44] K. Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi, “Comparison of architecture-based soft-
ware reliability models,” Proc. of the 12th International Symposium on Software Reliability
Engineering (ISSRE ’01), pp. 22-31, 2001.

[45] S. Gokhale, M.R. Lyu, K.S. Trivedi, “Incorporating fault debugging activities into software
reliability models: A simulation approach,” IEEE Trans. on Reliability, vol. 55, No. 2, pp. 281–
292, June 2006.

[46] W.Wang, Y.Wu, M.H. Chen, “An architecture-based software reliability model,” Proc. of the
Pacific Rim Dependability Symposium, 1999.

[47] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based approach to reliability assess-
ment of software systems,” Performance Evaluation, vol. 45, issue 2-3, pp. 179-204, 2001.

Bibliography 176

[48] S. Gokhale, K.S. Trivedi, “Time/Structure Based Software Reliability Model,” Annals of Soft-
ware Engineering, vol. 8, pp. 85-121, 1999.

[49] A. Reibman, K.S.Trivedi, “Numerical transient analysis of Markov models,” Computers &
Operations Research, vol. 15, n. 1, pp. 19-36,1988.

[50] S.S. Gokhale, K.S. Trivedi, “Reliability prediction and sensitivity analysis based on software
architecture,”Proc. of the 13th International Symposium on Software Reliability Engineering
(ISSRE’02), p. 64, 2002.

[51] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
Brooks/Cole, 1998

[52] S. R. Chidamber and C. F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE Trans-
actions on Software Engineering, Vol. 20, No. 6, 1994, 476-493.

[53] V. R. Basili, L. C. Briand, and W. L. Melo, A Validation of Object-Oriented Design Metrics as
Quality Indicators, IEEE Transactions on Software Engineering, 22(10), pp. 751-761, 1996.

[54] R. Subramanyam and M. S. Krishnan, Empirical Analysis of CK Metrics for Object-Oriented
Design Complexity: Implications for Software Defects, IEEE Transactions on Software Engineer-
ing, Vol. 29, No. 4 (April 2003) 297-310

[55] R. Subramanyam and M. S. Krishnan, ”Empirical Analysis of CK Metrics for Object-Oriented
Design Complexity: Implications for Software Defects”, IEEE Transactions on Software Engi-
neering, 29(4) pp. 297-310, April 2003.

[56] A. B. Binkley, Schach, S., Validation of the coupling dependency metric as a predictor of run-
time failures and maintenance measures. In the proc. of the International Conference on Software
Engineering, pp. 452 - 455, 1998.

[57] N. Ohlsson, Alberg, H., Predicting fault-prone software modules in telephone switches, IEEE
Transactions on Software Engineering, Vol. 22, No. 12, 1996, 886 - 894.

[58] S.S. Gokhale, M.R Lyu, Regression Tree Modeling for the Prediction of Software Quality, in
Proc. of the third ISSAT 1997, Anhaiem, CA.

[59] N. Nagappan, T. Ball, A. Zeller, Mining Metrics to Predict Component Failures, In the Proc.
of the 28th international conference on Software engineering (ICSE ’06), 2006, 452–461.

[60] G.Denaro, S. Morasca, M.Pezze’, Deriving Models of Software Fault-Proneness, SEKE 2002.

[61] G. Denaro, M.Pezze’, An Empirical Evaluation of Fault-Proneness Models, in proc of the 24th
International Conference on Software engineering, 241-251, 2002.

[62] J. C. Munson and T. M. Khoshgoftaax. The detection of fault-prone programs. IEEE Transac-
tions on Software Engineering, 18(5):423-33, May 1992.

[63] T. M. Khoshgoftaar, E. B. Allen, R. Halstead, G. P. Trio, and R. M. Flass. Using process
history to predict software quality. Computer, 31(4):66-72, Apr. 1998.

[64] R.H. Hou, S.Y. Kuo, and Y.P. Chang, “Efficient allocation of testing resources for software
module testing based on the hyper-geometric distribution software reliability growth model,”
Proc. of the 7th International Symposium on Software Reliability Engineering (ISSRE ’96), pp.
289-298, Oct./Nov. 1996.

[65] Frankl, P.G., Hamlet, D., Littlewood, B., Strigini, L.: Evaluating testing methods by delivered
reliability. IEEE Transactions on Software Engineering 24(8), 586-601 (1998)

Bibliography 177

[66] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for reliability optimization
problems with two constraints,” IEEE Trans. Reliability, vol. R-30, pp. 175-181, 1981.

[67] L. Painton and J. Campbell, “Genetic algorithms in optimization of system reliability,” IEEE
Trans. on Reliability, vol. 44, pp. 172-178, 1995.

[68] F. A. Tillman, C. L. Hwang, and W. Kuo, “Determining component reliability and redundancy
for optimum system reliability,” IEEE Trans. on Reliability, vol. R-26, pp. 162-165, 1977.

[69] A.O.C. Elegbede, C.Chu, K.H. Adjallah, and F.Yalaoui “Reliability Allocation Through Cost
Minimization,” IEEE Trans. on Reliability, vol. 52, no. 1, Mar 2003.

[70] N. Wattanapongsakorn and S. P. Levitan, “Reliability optimization models for embedded sys-
tems with multiple applications,” IEEE Trans. on Reliability, vol. 53, no. 3, Sep 2004.

[71] J. Onishi, S. Kimura, R.J.W. James, and Y. Nakagawa, “Solving the Redundancy Allocation
Problem With a Mix of Components Using the Improved Surrogate Constraint Method,” IEEE
Trans. on Reliability, vol. 56, no. 1, Mar 2007.

[72] F. W. Rice, C.R. Cassady and R.T. Wise, “Simplifying the solution of redundancy allocation
problems,” Proc. of the Annual Reliability & Maintainability Symposium (RAMS ’99), pp. 190-
194, 1999.

[73] Rani, R.B. Misra, “Economic Allocation of Target Reliability in Modular Software Systems,”
Proc. of the Annual Reliability & Maintainability Symposium (RAMS ’05), pp. 428- 432, 2005.

[74] A.Mettas, “Reliability Allocation and optimization for complex systems,” Proc. of the Annual
Reliability and Maintainability Symposium (RAMS ’00), pp. 216-221, 2000.

[75] M.R. Lyu, S. Rangarajan and A.P.A. van Moorsel, “Optimal Allocation of Test Resources for
Software Reliability Growth Modeling in Software Development,” IEEE Trans. on Reliability,
vol. 51, no. 2, June 2002.

[76] M. R. Lyu, S. Rangarajan, A.P.A. van Moorsel, “Optimization of Reliability Allocation and
Testing Schedule for Software Systems,” Proc. of the 8th International Symposium On Software
Reliability Engineering (ISSRE ’97), pp. 336-347,1997.

[77] Way Kuo and Rui Wan ÒRecent Advances in Optimal Reliability AllocationÓ IEEE Transac-
tions on systems, man, and cybernetics, vol. 37, no. 2, march 2007

[78] M. E.Helander, M.Zhao, N.Ohisson, “Planning Models for software reliability and Cost,” IEEE
Trans. on Software Engineering, vol. 24, No. 6, June 1998.

[79] W.Everett, “Software Component Reliability Analysis,” Proc. of the Symp. Application specific
Systems and Software Engineering Technology (ASSET ’99), pp. 204-211, 1999.

[80] S. Rapps, E.J. Weyuker, Data ßow analysis techniques for program test data selection. In proc.
of the Sixth International Conference on Software Engineering, Tokyo, Japan (September 1982),
272-278

[81] S. Rapps, E.J. Weyuker, Selecting software test data using data ßow information. IEEE Trans-
actions on Software Engineering Vol. SE-14 No.4 (1985), 367-375.

[82] D. Hamlet, Theoretical comparison of testing methods. In proc. of the Third Symposium on
Testing, Analysis and Verification, Key West, (1989), 28–37.

[83] J.S. Gourlay, A mathematical framework for the investigation of testing. IEEE Transactions on
Software Engineering, Vol. SE-9, No. 6, (1983), 686–709.

Bibliography 178

[84] E.J. Weyuker, S.N. Weiss, D. Hamlet, Comparison of program testing strategies. In proc. of the
Fourth Symposium on Software Testing, Analysis, and Verification, October 1991, ACM Press,
New York, 1–10

[85] D. Hamlet, R. Taylor, Partition testing does not inspire confidence. IEEE Transactions on
Software Engineering Vol. 16, No.12, (1990), 1402-1411.

[86] P.G. Frankl, E.J. Weyuker, A formal analysis of the fault detecting ability of testing methods.
IEEE Transactions on Software Engineering (March 1993), 202-213.

[87] E.J. Weyuker, Comparing the Effectiveness of Testing Techniques, Formal Methods and Testing
2008, 271-291.

[88] J.W. Duran, S.C. Ntafos, An evaluation of random testing. IEEE Transactions on Software
Engineering Vol. 10, No. 7, (1984), 438-444.

[89] P. Thevenod-Fosse, H. Waeselynck, Y. Crouzet, An Experimental Study on Software Structural
Testing: Deterministic Versus Random Input Generation. IEEE Fault-Tolerant Computing: The
Twenty-First International Symposium, Montreal, Canada, June 1991, 410-417.

[90] P.G. Frankl, S.N. Weiss, C. Hu, All-Uses versus Mutation Testing: An Experimental Compar-
ison of Effectiveness, Journal of Systems and Software Vol. 38, No. 3 (1997), 235-253.

[91] M.R. Girgis, M.R. Woodward, An Experimental Comparison of the Error Exposing Ability of
Program Testing Criteria. In proc. of the IEEE Workshop on Software Testing, July 1986, 64-73.

[92] M. Grindal, B. Lindstrom, J. Offutt, S.F. Andler, An Evaluation of Combination Testing Strate-
gies. Empirical Software Engineering Vol. 11, No. 4 (2006), 583-611.

[93] A. Avritzer, A., E.J. Weyuker, Deriving workloads for performance testing. Software Practice
and Experience Vol. 26, No. 6, (1996), 613-633.

[94] A. Avritzer, E.J. Weyuker, Metrics to assess the likelihood of project success based on archi-
tecture reviews. Empirical Software Engineering Journal Vol. 4, No. 3, (1999), 197-213.

[95] P.G., Weiss, S.N.: An Experimental Comparison of the Effectiveness of Branch Testing and
Data Flow Testing. IEEE Transactions on Software Engineer- ing 19(8), 774-787 (1993)

[96] N. Juristo, a. Moreno, S.Vegas, Reviewing 25 Years of Testing Technique Experiments, Empir-
ical Software Engineering, 9, 7-44, 2004.

[97] Andras Pfening, Sachin Garg, Antonio Puliafito, Miklos Telek, and Kishor S. Trivedi. Optimal
Software Rejuvenation for Tolerating Soft Failures. Performance Evauation, 27-28(4):491-506,
1996.

[98] S. Garg, A. Puliafito, M. Telek, and K.S. Trivedi. Analysis of software rejuvenation using
markov regenerative stochastic petri nets. In 6th International Symposium on Software Reliabil-
ity Engineering (ISSRE 1995), pages 24-27, 1995.

[99] Dazhi Wang, Wei Xie, and Kishor S. Trivedi. Performability analysis of clustered systems with
rejuvenation under varying workload. Performance Evaluation, 64(3):247-265, 2007.

[100] Sachin Garg, Antonio Puliafito, Miklos Telek, and Kishor S. Trivedi. Analysis of Preven-
tive Maintenance in Transactions Based Software Systems. IEEE Transactions on Computers,
47(1):96-107, 1998.

[101] Yujuan Bao, Xiaobai Sun, and Kishor S. Trivedi. A workload-based analysis of software aging,
and rejuvenation. IEEE Transactions on Reliability, 54(3):541-548, 2005.

Bibliography 179

[102] S. Garg, Y. Huang, C.M.R. Kintala, and K.S. Trivedi. Minimizing completion time of a pro-
gram by checkpointing and rejuvenation. In ACM SIGMET- RICS Conference on Measurement
and Modeling of Computer Systems, Philadelphia,PA (USA), pages 252-261, 1996.

[103] R. Pietrantuono, S. Russo, K.S. Trivedi. Software Reliability and Testing Time Allocation:
An Architecture-Based Approach. To appera in IEEE Transactions on Software Engineering,
Special Issue on Software Dependability, January/February 2010.

[104] S. Yacoub, B. Cukic, and H.H. Ammar,“A Scenario-Based Reliability Analysis Approach for
Component-Based Software,” IEEE Trans. on Reliability, vol. 53, no. 4, Dec. 2004.

[105] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K.S. Trivedi. A methodology for detection
and estimation of software aging. page 283, Los Alamitos, CA, USA, 1998. IEEE Computer
Society.

[106] K. Vaidyanathan and K.S. Trivedi. A measurement-based model for estimation of resource
exhaustion in operational software systems. pages 84-93, 1999.

[107] Karen J. Cassidy, Kenny C. Gross, and Amir Malekpour. Advanced pattern recognition for
detection of complex software aging phenomena in online transaction processing servers. In 2002
International Conference on Dependable Systems and Networks (DSN 2002), 23-26 June 2002,
Bethesda, MD, USA, Proceedings, pages 478-482. IEEE Computer Society, 2002.

[108] Lei Li, Kalyanaraman Vaidyanathan, and Kishor S. Trivedi. An approach for estimation of
software aging in a web server. In 2002 International Symposium on Empirical Software Engi-
neering (ISESE 2002), 3-4 October 2002, Nara, Japan, pages 91-102, 2002.

[109] M. Grottke, L. Li, K. Vaidyanathan, and K.S. Trivedi. Analysis of software aging in a web
server. IEEE Transactions on Reliability, 55(3):411 - 420, Sept. 2006

[110] L. Silva, H. Madeira, and J.G. Silva. Software aging and rejuvenation in a soap- based server.
In Proc. of 5th International Symposium on Network Computing and Applications (NCA06),
Cambridge,MA (USA), pages 56 - 65, 2006.

[111] Gunther A. Hoffmann, Kishor S. Trivedi, and Miroslaw Malek. A best practice guide to re-
sources forecasting for the apache webserver. In 12th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC 2006), 18-20 December, 2006, University of California, River-
side, USA, pages 183-193. IEEE Computer Society, 2006.

[112] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo, An experiment in memory leak
analysis with a mission-critical middleware for Air Traffic Control, in proc. of the 1st Workshop
on Software Aging and Rejuvenation.

[113] A. Pasquini, A. N. Crespo, and P. Matrella, “Sensitivity of reliability-growth models to opera-
tional profile errors vs testing accuracy,” IEEE Trans. on Reliability, vol. 45, no. 4, pp. 531-540,
1996.

[114] V.S.Sharma, K.S.Trivedi, “Quantifying software performance, reliability and security: An
architecture-based approach,” The Journal of Systems and Software, vol. 80, Issue 4. pp. 493-
509, April 2007.

[115] V. Almering, M. Van Genuchten,G. Cloudt, P.J.M. Sonnemans, “Using Software Reliability
Growth Models in Practice,” IEEE Software, vol. 24, no. 6, pp. 82-88, Nov.-Dec. 2007.

